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Abstract: Given a graph G, a subset of vertices is called a maximum dissociation set of G if it induces a subgraph
with vertex degree at most 1, and the subset has maximum cardinality. The cardinality of a maximum dissociation
set is called the dissociation number of G. The adjacency matrix and the degree diagonal matrix of G are denoted
by A(G) and D(G), respectively. In 2017, Nikiforov proposed the Ay-matrix: A,(G) = aD(G) + (1 — @) A(G),
where « € [0,1]. The largest eigenvalue of this novel matrix is called the A,-index of G. In this paper, we firstly
determine the connected graph (resp. bipartite graph, tree) having the largest A,-index over all connected graphs
(resp. bipartite graphs, trees) with fixed order and dissociation number. Secondly, we describe the structure of
all the n-vertex graphs having the minimum A,-index with dissociation number 7, where 7 > (%n] Finally,
we identify all the connected n-vertex graphs with dissociation number 7 € {2,[2n],n — 1,n — 2} having the

minimum A,-index.
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1. Introduction

In this section, we introduce some definitions that will help the reader to build up the necessary background for

the main results.

1.1. Background and definitions

Given a graph G, its adjacency matriz A(G) is an n x n 0-1 square matrix whose (u,v)-entry is 1 if and only
if u ~wvin G. Let D(G) = diag(ds,...,d,) be the diagonal matrix of vertex degrees in a graph G. The matrix
Q(G) = D(G)+ A(QG) is called the signless Laplacian matriz of G; see [8]. Nikiforov [22] introduced the A, -matriz
of a graph G, which is a convex combination of D(G) and A(G), i.e.,

A(G)=aD(G)+ (1 - a)A(G), 0<a< .

Note that A, (G) is real symmetric. Hence its eigenvalues are real, and so we may display the eigenvalues of
An(G) as M (G) = X2(G) = -+ = A\, (G). For short, the A, spectral radius of G (i.e. the largest eigenvalue of
An(G)), denoted by Ao (G) = M\ (G), is called the A,-index of G. Notice that

A(G) = Ao(G), Q(G) =2A,,(G) and D(G) = A1(G). (1.1)

Recently, more and more people studied the A,-spectra of graphs. Nikiforov et al. [23] gave some bounds
on the A,-index of a graph, and they determined the unique tree with maximum (resp. minimum) A,-index
among n-vertex trees. Nikiforov and Rojo [24] determined the graph of order n and diameter at least d having the
largest Ay-index. Xue et al. [33] determined the graphs with the maximum (resp. minimum) A4,-index among all

connected graphs with given diameter (resp. clique number). Li and Zhou [20] determined the unique n-vertex
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block graph with prescribed independence number having the maximum A,-index. In the same paper, they also
characterized the unique n-vertex graph with given number of cut edges having the largest A,-index, and it is
surprising to see that in both cases, the extremal graphs always coincide. For more advances on the A,-spectra,
we refer the reader to [6l, 12, [15] 16} 17, 18] 19, 211, [30, B32].

For a subset S C Vg, we call S a dissociation set if the induced subgraph G[S] does not contain P; as
a subgraph, which is equivalent to say that the degree of each vertex in G[S] is at most one. A mazimum
dissociation set of G is a dissociation set with the maximum cardinality. The dissociation number of G, written
as 7(G), is the cardinality of a maximum dissociation set of G. The problem of determining 7(G) is a classical
problem, which may date back to the work of Yannakakis [34] in 1981. In the same paper, he also proved that
this problem is NP-complete for bipartite graphs. Boliac, Cameron and Lozin [4] strengthened the result of
Yannakakis by reducing the problem, in polynomial time, from general bipartite graphs to some particular classes
such as bipartite graphs with maximum degree 3 or Cy-free bipartite graphs. In the same paper, they also proved
that finding the dissociation number is polynomially solvable for bipartite graphs containing no induced subgraph
isomorphic to a tree obtained from P, by attaching a path of length three to one quasi-pendant vertex of Py. For
more advances about this problem one may consult [T}, 2] 3] [5 25] 26].

Quite recently, characterizing the graphs having maximum number of maximum dissociation sets becomes an
attractive problem. Tu, Zhang and Shi [29] determined all the trees having the maximum number of maximum
dissociation sets among trees with given order. Tu, Zhang and Du [28] characterized all the trees having the
maximum number of maximum dissociation sets among trees with given dissociation number. Li and Sun [I4]
identified all the trees (resp. forests) having the largest and the second largest number of maximum dissociation
sets among trees (resp. forests) with given order and dissociation number. Tu, Li and Du [27] presented the
upper bounds on the number of maximal (resp. maximum) dissociation sets in a general graph of order n and in
a triangle-free graph of order n, and they also characterized the corresponding extremal graphs.

Naturally, one may be interested in relating the spectra of a graph and its dissociation number. Very recently,
Huang, Li and Zhou [11] characterized all the graphs among all connected graphs (resp. bipartite graphs, trees)
with given order and dissociation number having the maximum Ag-spectral radius. Das and Mohanty [7] identified
the unique block graph with given order and dissociation number having the largest Agp-spectral radius.

In this paper we consider the relation between the A,-spectra of a graph and its dissociation number, which
extends the main results of [I1]. We firstly characterize the n-vertex connected graph (resp. bipartite graph, tree)
with dissociation number 7 having the largest A,-index. Secondly, we describe the structure of all the n-vertex
graphs with dissociation number 7 having the minimum A,-index, where 7 > (%”W . Finally, we identify all the

connected n-vertex graphs with dissociation number 7 € {2, {%n] ,n—1,n — 2} having the minimum A,-index.

1.2. Basic notations and main results

In this subsection, we give some basic notations and then describe our main results. Throughout this paper, we
consider only simple and finite graphs. For spectral graph theoretic notation and terminology not defined here,
we refer to Godsil and Royle [9] and West [31].

Let G = (Vi, Eg) be a graph with vertex set Vi and edge set Eg. We call n = |Vg| and m = |E¢g| the order
and the size of G, respectively. We say that two vertices u and v are adjacent (or neighbors) if they are joined
by an edge and we write u ~ v. As usual, let P,,C,, K,, and K;,_; denote the path, cycle, complete graph and
complete bipartite graph on n vertices, respectively. Denote by K ,—1 the star graph, which is also denoted by
S, as usual.

For a vertex v € Vg, let Ng(v) be the set of all neighbors of v in G. Then dg(v) = |[Ng(v)| is the degree of v



in G. For simplicity, when there is no danger of confusion, we may omit the subscripts G for our notation. The
vertex with degree n — 1 in a star S, is called the centre of S,,. A pendant vertex (or a leaf) is a vertex of G
whose degree is one. We denote by P the set of all pendant vertices of G. We call a vertex quasi-pendant vertez
of GG if it is adjacent to a pendant vertex of G. We denote by Q¢ the set of all quasi-pendant vertices of G and
let Q. consist of all quasi-pendant vertices of degree 2 of G. A pendant path of length r is a path with vertex set
V ={wo,v1,...,v.} such that d(vg) > 2, d(v1) = --- =d(v,—1) = 2 and d(v,) = 1. In particular, if » = 1, then it
is a pendant edge. A matching M is a set of edges, no two of which have a vertex in common. In particular, M is
a perfect matching if each vertex of G is incident with an edge from M. A subset I of Vi is called an independent
set if any two vertices of I are not adjacent.

For two graphs G and H, we define G U H their disjoint union. In addition, we use kG to denote the disjoint
union of k copies of G. The join GV H is the graph obtained by joining every vertex of G with every vertex of
H with an edge. If U C Vg, then we write G[U] to denote the induced subgraph of G with vertex set U and two
vertices being adjacent if and only if they are adjacent in G. The complement of a graph G is a graph G with the
same vertex set as G, in which any two distinct vertices are adjacent if and only if they are non-adjacent in G.

In order to formulate our main results, let G (resp. B],.,7) denote the set of connected graphs (resp.
bipartite graphs, trees) with order n and dissociation number 7.

Our first main result characterizes the n-vertex connected graph with dissociation number 7 having the largest
A,-index. Note that adding an edge to connect two nonadjacent vertices in a connected graph will strictly increase

its A,-index (see, for example, [22]). Consequently, the following theorem obviously holds.

Theorem 1.1. Let G be in G having the mazimum Aq-index and let o € [0,1). Then G 2 K,,_, V (%Kg) if T
is even, and G = K,,_, V (TT_lKQ U Kl) if T is odd.

Our second main result establishes a sharp upper bound on the A,-index of bipartite graphs with given order

and dissociation number. The corresponding extremal graph is also characterized.

Theorem 1.2. Let G be a graph in B]. Assume that o € [0, 1), then

Aa(G) < % (an +Va2n2 +4r(n —1)(1 — 2a))

with equality if and only if G = K, .
Let S};)T be a tree obtained from the star S, _, by attaching exactly two pendant edges to each leaf of S,,_,

and attaching 37 — 2n + 2 pendant edges to the centre of S,,_, (see Figure[ll). The next result determines the

n-vertex tree with dissociation number 7 having the largest A,-index, which reads as

3T —2n+2

Figure 1: Tree S;fm together with some labeled vertices.

Theorem 1.3. Let T be a tree in 7,7 (n = 3) having the mazimum A, -index with 0 < o < 1. Then

Aa(T) < 0(a,m, T)



with equality if and only if T =S,

T
n,T’

where O(a,n, ) is the largest zero of

Py (z) =2t + a(n — 21 — 6)2® 4 (80T — 4a’n + 4aT — 2an — 27 +n + 9a? + 6a — 3)z?
+ a(16an — o®n — 8n — 28at + 147 — 20a + 10)z + 2a°n — 17a°n + 16an — 4n
+ 240’7 — 24a1 + 67 — 20° + 170% — 16 + 4. (1.2)

The next result characterizes the structure of all the n-vertex connected graphs with dissociation number

T(r> [%n]) having the minimum A,-index.

Theorem 1.4. Let GT be a graph in G with T > [%nw having the minimum A, -index with 0 < o < 1. Then Gt

s a tree.

Denote by Sk, .k, the tree obtained from S, 1 by attaching ke pendant paths of length two to the centre of
Sk,+1- Let T be the tree obtained from P; by attaching 71 and p; pendant paths of length two to the two

T1,P1

leaves of Py, respectively. Then let T2 _ be the tree obtained from 7). by attaching one pendant edge to the

T2,P2 T2,P2

vertex of degree 7o + 1 in T The trees Sk, k., 1, and T2 _ are depicted in Figure Pl

T2,p2° 7“1 yP1 T2,P2

D

Skl,kz Tl »P1 7"2 P2

Figure 2: Trees Sk, k,, 1) , and T2

7“1 p1 T2,P2

Our last main result determines all the connected n-vertex graphs with dissociation number 7 € {2, (%nw s —

1,m — 2} having the minimum A,-index.
Theorem 1.5. Let G* be a graph in G having the minimum Aq-index with 0 < a < 1.

(i) If T =2, then G* 2 K,, — M, where M is a mazimum matching of K,.
(ii) If 7= [3n], then G* = P,.
(iii) If n >4 and 7 =n — 1, then G* = 0,1 if n is odd and G* = Sl,% if n is even.
(iv) If n 26 and 7 =n — 2, then G* = Tﬁn_,ﬂ 3 if n is even and G* = TE"—J (2221 if n is odd.
4 ? 4 E

The remainder of this paper is organized as follows. In Section 2, we give some essential definitions and some
necessary preliminaries. In Section 3, we give the proofs of Theorems and In Section 4, we give the proofs

for Theorems [[.4] and Some concluding remarks are given in the last section.

2. Preliminaries

In this section, we give some necessary results, which will be used to prove our main results.

Lemma 2.1 ([22]). If G is a connected graph and H is a proper subgraph of G, then Ao (H) < Ao(G) for a € [0,1).

Lemma 2.2 ([23]). If T is a tree of order n and o € [0,1], then X\o(T) < % (om+ Vazn? +4(n—1)(1 - 2a))
with equality if and only if T = .S,,.

Lemma 2.3 ([23]). If G is a connected graph of order n and « € [0, 1], then Ao (G) = Ao (Pp) with equality if and
only if G = P,.



For Vi C Vi and E; C Eg, we write G — Vi and G — E; for the graphs obtained from G by deleting the
vertices in V7 and their incident edges and the edges in E;, respectively. For convenience, we may use G — v and
G — wv to denote G — {v} and G — {uv}, respectively. Similarly, G + uv is obtained from G by adding the edge
uv ¢ Eg.

By the well-known Perron-Frobenius theorem, if G is connected, we know that the multiplicity of A\, (G) is one
and there exists a unit positive eigenvector, say x = (21, ...,7,)7, corresponding to it, where z; is the component
of x at v; € Vo [22]. As usual we call x the Perron vector of A, (G).

Lemma 2.4 ([33]). Let G be a connected graph with u,v € Vg and let o € [0,1). Assume that x is the Perron
vector of Ao (G) such that x, = x,. If {v1,ve,...,vs} € Nag(v)\Ng(u) (1 < s < dy) and G' = G—{wvvy,...,vvs}+
{uvy, ..., uvs}, then Ao (G') > Ao (G).

Lemma 2.5 ([I0]). Let G be a connected graph with |Eg| > 1 and u € V. Denote by G, the graph obtained
from G by attaching two pendant paths of length s and t to u, respectively. If s >t > 1 and 0 < a < 1, then
)\a(Gs,t) > )\a(quLl,tfl)-

Let P = vivy... v, with & > 2 be a path in a connected graph. Then we call P an internal path, if
min{d(v1),d(vg)} = 3 and d(v2) = -+ = d(vg—1) = 2. The subdivision operation for an edge wv € Eg is

adding a new vertex w and substituting uv by a path wwv, and we denote the resultant graph by G,,.

Lemma 2.6 ([I3]). Let G be a connected graph with oo € [0,1) and uv be an edge on an internal path of G. Let
G be the graph obtained from G by the subdivision operation for the edge uv. Then Ao (Gy) < Aa(G).

Let R be a real matrix, whose rows and columns are indexed by V = {1,2,...,n}. Assume that 7 =

{W1,Va,...,V;} is a partition of V. Then R can be partitioned based on 7 as

R:

where R;; denotes the submatrix of R, indexed by the rows and columns of V; and V}, respectively. Let r;; be
the average row sum of R;; for 1 < ¢,j < t. Usually, the ¢ x ¢ matrix R™ = (r;;) is called the quotient matriz of

R. Moreover, if the row sum of R;; is constant for 1 < 4,7 < ¢, then we call 7 an equitable partition.

Lemma 2.7 ([35]). Let R be a real matriz with an equitable partition 7, and let R™ be the corresponding quotient
matriz. Then each eigenvalue of R™ is an eigenvalue of R. Furthermore, if R is nonnegative, then the spectral

radii of R and R™ are equal.

Recall that Pg denotes the set of all pendant vertices of G and Qf, denotes the set of all quasi-pendant vertices
of degree 2 of GG. The following lemma reveals that there exists a maximum dissociation set of G containing all

vertices in Pg |J Qf;, which plays an essential role in the proofs of our main results.

Lemma 2.8 ([I1]). Let G be a graph with order n > 5. Then there exists a mazimum dissociation set S such that

PGUQ/GQS.

A maximum dissociation set is said to be good if it contains all vertices in Pg |J Q. According to Lemma 28]

we know that such a set always exists.



3. Proofs of Theorems and

In this section, we give the proofs for Theorems and [[L3l The former identifies the unique n-vertex bipartite
graph with dissociation number 7 having the largest A,-index, and the later characterizes the tree with given

order n and dissociation number 7 having the maximum A,-index.

Proof of Theorem Choose G = (X,Y) € B, such that its A,-index is as large as possible. We first assume
that G is connected. Without loss of generality, we assume that |X| > |Y]. Let S be a maximum dissociation set
of G. Since X is a dissociation set of G, we have 7 = |S| > | X|. Clearly, our result is true for n < 2. So in what
follows, we consider n > 3.

If 7 = |X|, by Lemma [ZI] we obtain that G = K, ,_.. In the following, we may assume that 7 > |X]|.
Therefore, SNY # 0. Let X3 =X NS, Yo=Y NS and Xo = X\ X3, ¥} =Y \ Y. For convenience, assume
|X1| = a, [Y1| =b, | X2| = ¢, and |Ya| = d. Since | X1]|+|Y2| = |S| > | X]| > |V, we have d > ¢, a > b. According to
the choice of G and by Lemma [Z7] one sees that both G[(X1,Y7)] and G[(X2,Y)] are complete, and G[(X1, Y>)]
contains independent edges as many as possible. We proceed by considering the following three cases according
to the values of a and d.

Case 1. a = d. In this case, Eg[x,uy,) is a perfect matching of G[X; U Ys]. It is easy to see that m :=
X1 UX,UY7 UY5 is an equitable partition of Vi, and the corresponding quotient matrix can be written as follows:
alb+1) 0 l-a)h 1-a

0 afa+b) 1-a)h (1-a)a
(1-a)a a)e ala+c) 0

11—« a)c 0 alc+1)

L R
(1-
Let Pl(z) := det (x4 — (A,)™) be the characteristic polynomial of (4,)™. Note that (A,)™ is nonnegative and
irreducible. Together with Lemma 277 and the Perron-Frobenius theorem, we know that A, (G) coincides with
the largest root of Pl(z) = 0.

Since n > 3 and G is connected, we have a = d > max{b,c} > 1. Recall that |X| > |Y| and a = d, we can
deduce that ¢ > b. Let G =2 K4 pyc. It is easy to see that G’ € B]. By a simple calculation, we have

Aa(G) = % (a(2a +b+¢)+va22a+b+c)?+8a(b+c)(l — 2a)) :

Utilizing calculations by Matlab, we obtain that min Pl(z) ~ 2.598 for 2 > \,(G’) (see the Appendix), i.e.
Pl(z) > 0 when z > A\, (G’). Recall that A\, (G) is the largest zero of P!(x). That is to say, \a(G) < Aa(G'),
which contradicts the choice of G.

Case 2. a < d. In this case, there exists a set Y5 C Y5 such that |[Y3| = a and Egx,uyy) is a perfect matching
of G[X71 UYy]. Let Yy = Yo\ Yy, then Y3" # (). Thus it is easy to see that m := X3 UXoUY, UYy UY,) is an

equitable partition of Vi, and the corresponding quotient matrix can be written as follows:

alb+1) 0 l-a)p 1-« 0
0 ab+d) 1-a)p (I-a)a (1—a)d-—a)
(A)™ = I1-a)a 1—a)c ala+c) 0 0
l—a (1-a)c 0 alc+1) 0
0 (1—-a) 0 0 ac

Let P2(z) := det (x1y — (A,)™) be the characteristic polynomial of (4,)™2. Note that (A,)™ is nonnegative and
irreducible. Together with Lemma 27 and the Perron-Frobenius theorem, we know that A, (G) coincides with
the largest root of P2(z) = 0.



It is easy to see that ¢ > 1 (since otherwise |X| = |X1| = a < d = [Ya| < |V, which contradicts | X| > |Y]).
Thus we have d > ¢+ 1 > 2. Let G’ = Kqt4,p+c. It is easy to see that G’ € B]. By a simple calculation, we have

(G = % (a(a+b+c+d) +va2(a+b+c+d)?+4(a+d)(b+c)(l— 2a)) .

With the same idea as the Appendix of calculations using Matlab, we obtain that min P2(z) = 1 for z > \,(G"),
that is to say, P2(G) > 0 when = > A\,(G”). Recall that \,(G) is the largest zero of P2(z). That is to say,
Aa(G) < Ao(G"), which contradicts the choice of G.

Case 3. a > d. We can also derive a contradiction in a similar way as Case 2, whose procedure is omitted
here.

By Cases 1-3, we obtain G = K, ,,_. A simple calculation gives us

Aa(G) = % (om + Va2 +4r(n —1)(1 — 2a)) .

In what follows, we show G is connected. Otherwise suppose that G is disconnected. Let G = |J;_, G;, where

G is a connected bipartite graph in Bji and s > 2. Thus we have

S

S S
S =Y m Y n=nr
=1 =1

i=1

Therefore, n; < n,7; < 7 and n; — 7; < n — 7. Consequently, by Lemma [2.T],

Aa(G) = max{ A (Gi) |1 < i < s} <max{ Ao (Kr;n;—r;)

1 <i < 5} < )\a(KT,nf‘r)v

a contradiction to the choice of G.

This completes the proof. O

Let fan be a set of all the n-vertex trees obtained from S;,_11 by attaching exactly one pendant edge to the
centre of S, _,41, and attaching at least two pendent edges to each leaf of S,,_,41 such that the total number of
leaves of the resultant tree is 7 — 1, where 7 ¢ {%n, 2"3—“} Let 72 be a set of all the n-vertex trees obtained
from S, _,4+1 by attaching at least two pendent edges to every leaf of S,,_, 41 such that the total number of leaves
of the resultant tree is 7 — 1, where 7 # %n Let 9737 be a set of all the n-vertex trees obtained from S, _, by
attaching at least two pendant edges to each vertex of S,,_, such that the total number of leaves of the resultant
tree is 7. In Figure B, one sees a tree in .7}, .72 and .7}, respectively. Let S, . = 7,! UZ2, U7, In view
of Lemma 28, we have S, C ;7. Sun and Li [I4] showed that 7(F) > [2n] for each forest F with order n.
Therefore, for every tree T in Sy -, 7(T) > [2n], then 37 — 2n + 2 > 2, which implies that S . € 73 .

Up—7

U1 Ur

T, Ty 1.

Figure 3: Trees T, € .7}

n,r?

Ty € 72, and T, € 7,3 together with some labeled vertices.

In order to prove Theorem [[.3] we need the following lemma.



Lemma 3.1. For 0 < a < 1, the A,-index of sz,
defined in ([L2).

Proof. Recall that SI _ is a tree obtained from the star S,_, by attaching exactly two pendant edges to each

n,T

is equal to the largest root of P,(x) = 0, where P,(x) is

T

leaf of S,,_, and attaching 37 — 2n + 2 pendant edges to the centre of S,,_, (see Figure[Il). Let vy be the centre
of S;,—-, V1 be the set of 2(n — 7 — 1) pendant vertices adjacent to the leaves of S,,_., and let V5 be the set of
37 — 2n + 2 pendant vertices adjacent to vg. Hence m:= {vo} U (Vg, .\ {vo}) UV1 UV, is an equitable partition

of Vgi . Then the corresponding quotient matrix can be written as follows:

a2r—n+1) 1-a)(n—7-1) 0 (1—a)(37—2n+2)

_— l1-a 3a 2(1 — ) 0
(Ae)™ = 0 -« o 0
l1-—a 0 0 «

The characteristic polynomial of (A,)™ is P,(z), where P, (z) is defined in (I2]). Note that (A,)™ is nonnegative

and irreducible. Together with Lemma [27] and the Perron-Frobenius theorem, our result holds immediately. O

Proof of Theorem .3l Choose T among 7,7 such that its A,-index is as large as possible. Let x be the Perron
vector of A, (T'). In view of Lemma [2.2] we obtain that T' = S, & S’lm_l ifr=n—1or3<n<4. So,in what
follows, we assume that 7 < n — 2 and n > 5. We are to characterize the structure of T through the following

three claims.
Claim 1. Q7 = 0.

Proof of Claim [I} Suppose that O # (). Let v € 9} and Nr(v) = {u,w}, where u is a leaf. Denote by
Ty = T — vu + vw. Then by Lemma [Z5] we have A\, (T1) > Ao(T). However, by Lemma 28 77 € 77, a
contradiction to the choice of T. Thus Q7 = ). This completes the proof of Claim [II O

Claim 2. T € S, -.

Proof of Claim 21 Let 7/ = T — Pr. By Claim [I] one sees that T € S, is equivalent to |Qp/| = 1. Suppose
that |Qr/| > 2. Choose two vertices u,v € Qs such that the distance between v and v in T” is as large as possible.
Let w' and v’ be the neighbors of u and v lying on the path connecting u and v, respectively. Then we have
(Nz(u) \ {u'}) U (Np(v) \ {v'}) € Pr U Qr, (Np(u)\ {w'}) N Qr # 0 and (Nr(v) \ {v'}) N O # 0.

Assume that (Nr(u) \ {«'})NOr = {u1,ua,...,us} and (N7 (v) \ {v'}) N Qr = {v1,va,...,v:}. Thus we have
s,t > 1. By Claim[I] we know that there exist at least two leaves adjacent to each vertex in {uy, ..., us,v1,...,0¢}.
Let S be a good dissociation set of T. Then u; ¢ S and v; ¢ Sfor 1 <i<s, 1<j <t Let

T—4ovv; |1 <7
T, — { J| J
1<14

In view of Lemmas [Z4 and 2.8 we have A, (T2) > Ao (T') and Ty € 7,7, a contradiction. Thus we have |Qp/| = 1,
ie. T €S, O

<g<t), ifxy >,
<i<s}, ifay, <@y

Claim 3. T € .72 .

Proof of Claim [3l Suppose that T' ¢ 7,2 . Then by Claim 2, we know that T € 7! |J.Z,2,. For the star
Sn—r+1, assume that ug is the centre of S,_,4+1, and u1,...,u,—, are leaves of S,_,y1 (see Figure B)). We

proceed by considering the following two cases.



Case 1. T € 7, . Assume that N(u1) \ {uo} = {v1,..., 0.} and w is just the leaf adjacent to ug in T". Let
T T—{uv; |1 <i<r}+{uvi |1 <i<r}, if xyy > o,
3 =
T — uow + uqw, if @y, < Xy, -

By Lemma 2.8, we obtain T3 € .72 |J Z,2,. However, in view of Lemma 24} A (T3) > Ao(T), which contradicts
the choice of T
Case 2. T € 7,2 . Similarly, assume that N (u1) \ {uo} = {v1,...,v.}. Let

T—{uwv; |1 <i<r +{uovi|1<i<r} if Tyy > Tu,,
4 =
T—{uuj|2<j<n—7}+{wmu;|2<j<n—7}, iz, <2y
By Lemma 2.8 we get that Ty € yﬁT. And once again, by Lemma [Z4] A\, (T4) > Ao (T), a contradiction. O

We come back to show Theorem [I.3]

By Claim B we have T € ﬂﬁT. Similarly, for the star S,_,, assume that Vg, __ = {ug,u1,...,up—r-1},
where ug is the unique non-pendant vertex. Suppose that T 2 S’;fm. Then there exists a vertex wu;, where
i€{L,2,...,n—7—1}, such that d(u;) > 4. Without loss of generality, assume that d(u1) > 4. Let N(ug) N\Pr =
{w1,...,wp} and N(u1) \ {wo} ={v1,...,vr}. Thenp > 2 and r > 3.

If 7 =n—2, then T is a tree obtained from 5,11 and 5,41 by adding an edge to connect the centres of theirs.
Since T 2 S}; we have p > 3. Let

{T—{ulvi|3§z <r}p4{uov; |3 <i < r}y if yy > Ty,
5:
T —{uow; |3<j<pt+{wmw;|3<j<p}, if myy < 2oy

Then T5 = sz,n—2' By Lemma [24] we have Ao (T5) > Ao (T'), a contradiction.
If 7 < n — 3, then let

T —{uv; |3 <i<r}+{uwv|3<i<r}, if Xyy > oy,

T—{wup|2<k<n—7-1}+{uwur|2<k<n—7—-1}, if xy, <y, and p =2,
To= T—{uwur|2<k<n—7—-1} —{uw,; |3 < j <p}

Huup [2<k<n—7—-1} + {ww; |3 < j < pl, if x,, < 2y, and p > 3.

By Lemma 2.8 7(T6) = 7(T). In view of Lemma 2.4 one has A\, (T6) > Aa(T), a contradiction. Therefore,
T = SJ .. By Lemma[Il our result holds immediately.
This completes the proof. [l

4. Proofs of Theorems [1.4] and

In this section, we present the proofs for Theorems [[L4] and The former shows that a connected graph with
given order n and dissociation number 7 (7 > {%nb having the minimum A,-index is a tree, and the latter
characterizes all the connected graphs with order n and dissociation number 7 € {2, [%rﬂ ,n— 1,n — 2} having
the minimum A,-index.

Let Y7 (resp. Y2) be a tree obtained from P,_5 (resp. P,_g) by attaching exactly two pendant edges (resp.
two pendant paths of length three) to one leaf of P,,_o (resp. P,_g). Let Y3 be a tree obtained from P,_4 by
attaching one pendant edge and one pendant path of length three to one leaf of P,_4. Recall that G, is a graph
constructed from G by a subdivision operation for an edge of G. The triple subdivision operation for an edge

uwv € Eg is adding three new vertices z,y, z and substituting wv by a path uzyzv, and we denote the resultant



graph by G,.. We call G a subdivision transformation graph of G if G is obtained from G by a (triple) subdivision
operation for an edge on an internal path of G, and deleting one or three other vertices of G such that |V| = |Vg|.
A subdivision transformation graph G is said to be optimal if G is connected and 7(G) € {7(G) — 1,7(G)}.

In order to show Theorem [[4 we need the following key lemma. It presents the relationship between 7(G.,)
(resp. T(Gayz)) and 7(G).

Lemma 4.1 ([I1]). Let G be a connected graph with uwv € Eg and let Gy, and Gy, be the graph obtained from

G by the subdivision operation and triple subdivision operation for uv, respectively. Then

(i) T(Gw) € {7(G), 7(G) + 1};
(ii) 7(Gayz) =7(G) + 2.

Let T be a tree, we call v € V a branching vertex if dr(v) > 3. The next lemma was obtained previously in
[11]. We include its proof here.

Lemma 4.2 ([11]). Let T be a tree with at least two branching vertices. Then there exists an optimal subdivision

transformation graph of T'.

Proof. We use T, and Ty, to denote the trees obtained from 7" by the subdivision operation and triple subdivision
operation for an edge on an internal path of T, respectively. Choose a diameter path P; = ujususuyg---ug of T
such that dp(uz) is as large as possible. Then Ny (uz) \ {us} C Pr and Np(us) \ {ua} € Pr U Qrp.

If dp(uz) = dr(us) = 2, then by Lemma 2.8 we obtain

T(Toy> — 1 — ug —ug) = 7(Thy.) — 2. (4.1)

By Lemma 1] we have 7(T,y.) = 7(T') + 2. Combining this with @I yields 7(Tyy. — u1 — ue — u3) = 7(T).
Therefore, Ty, — u1 — ug — us is an optimal subdivision transformation graph of T

If dr(ug) = 2 and dr(us) > 3, then according to the choice of Py, we know that Ny (us)\{us4} C PrUQ/.. Hence,
in view of Lemmas 2.8 and 1], we obtain that T, — u; is a tree with 7(T, —u1) = 7(Ty) — 1 € {r(T),7(T) — 1}.
This implies that T, — u; is an optimal subdivision transformation graph of 7.

If dr(ug) = 3, then by Lemmas 2.8 and 1] we have Ty, — u1 —ug — v is a tree with 7(Typy, — u1 —ug —v) =
T(Tgyz) — 2 = 7(T), where v is the only pendant vertex adjacent to us other than wu;. This indicates that
Twy. —u1 — uz — v is an optimal subdivision transformation graph of T

If dr(us) > 4, then in view of Lemmas 2.8 and 1] we have T, — u; is a tree with 7(T, —uy) =7(T,) — 1 €
{r(T),7(T) — 1}. Hence T,, — u; is an optimal subdivision transformation graph of T.

This completes the proof. O
Now we are ready to show Theorem [[4

Proof of Theorem [LL4L If 7(G') = [2n], then by Lemma 23| we have GT = P, since 7(P,) = [3n], and our
result holds obviously. So, in what follows, we assume that 7(G') > [2n] .

Suppose to the contrary that GT is not a tree. If GT is a subgraph of (nKz) V Ki, then 7(GT) = n — 1 and
there exists a cycle vgv1v2vg such that d(vy) = d(ve) = 2. Let GI = G — vv9. By Lemmas 21 and 2.8, we have
Ao (GD < Aa(GT) and GI € Gn~!, which contradicts the choice of GT. This means that there exists a spanning
tree, say T'1, of GT such that TT 2 Sk, , (see Figure ) for all ky + 2ko =n — 1.

It is clear that 7(T") > 7(GT). By Lemma 2] we have

Aa(TT) < Ao (GT). (4.2)
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If 7(TT) = 7(GT), then we can derive a contradiction by the choice of G. Hence,
2
(TT) > 7(G") > [gn—‘ + 1. (4.3)

Since 7(TT) > {%n} = 7(P,), we have T' 2 P,, which implies that there exists at least one branching vertex
in TT.

If Tt has at least two branching vertices, then by Lemma[£2] there exists an optimal subdivision transformation
graph, say T, of T*. Denote by Ty = TT. In view of Lemma 26 and ([@2)), we obtain Ao (T1) < Aa(Th) < Aa(GT).

We can repeat the above transformation to get an n-vertex tree sequence
To, Ty,...., T, ..., Ty

such that T} is a tree having exactly one branching vertex with 7(7}) = [2n] and (T;) € {r(Ty_1) — 1,7(T;_1)}
and Ao (T3) < Ao (Ti_1) for 1 <4 < s. According to the proof of Lemma 2, we know that such T, must exist, for
example, Yl,Yg,Y3 By @3), ( 0) > [2n] +2 = 7(Ts) + 2, which implies that s > 2. Since T(To) > 7(GT) >

[2n] = 7(T}), there exists j € {1,2,...,5 — 1} such that 7( T;) = 7(G1). However, Ao (T}) < Ma(To) < Ma(G),

which contradicts the choice of G.

Uo
1 2 t
S Up—3 Up—2 U
u% . ) u% ® ’Z,Lé n—3 Un—-2 Un—1
: . Upr4-t
1 T T 9 T t ® Ury2¢
unl d L uTLQ L u’n
TS =W,
TT 2 = Writ

Figure 4: Trees T and TQT.

In what follows, we assume that 7T has exact one branching vertex. Let ug be the branching vertex of T'f.
Then T can be obtained from ¢ paths P, +1, Pnot1,-- -5 Pn,+1 by sharing a common vertex ug, where ¢ > 3. Let
ug, ul, ..., ul, denote the vertices of P, 11 for 1 <4 <t (see FigureH). Without loss of generality, we can assume
that n; > ng > --- > ny > 1. Since TT 2 Sky ks for all ky +2ky =n — 1, we have n; > 3. Let
T, if no € {1,2},

TT —uou} + v} u?, ifny =0 (mod 3),

T =
! TT—uuz—i—unlu%, ifngo=1 (
(

mod 3) and ny > 4,
Tt —udud +u} v}, ifny=2 (mod3)andny>5
In view of Lemmas 25 and I8, we get that 7(77) = 7(TT) and A (T}) < Ao

for TlT , we finally obtain an n-vertex tree TQT = W+, such that

(T1). Repeating the above procedure

Aa(TF) < Aa(TT), 7(TS) = 7(T7), (4.4)
where W, , is an n-vertex tree obtained from a star S,;1 by attaching ¢ pendant paths of length 2 and one pendant
path of length n — r — 2t — 1 to the centre of S,41 (see Figure H).

If (r,t) = (3,0) or r + ¢t < 2, then we can obtain
[2n], if (r,t) € {(0,0),(0,1),(1,0),(2,0)},
T(T3) =14 [22]+1, if (rnt) = (0,2),
[2222] + 1, if (r,t) € {(1,1),(3,0)}.
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By @3) and @A), we have 7(T}) = r(T1) > [2n] + 2, a contradiction.
If t =0 and r > 4, then by Lemmas 2.5] and 2.8 we have

)\a(Wr—Q,t—i-l) < )\a(Wr,t)a T(Wr—2,t+l) = T(Wr,t)- (45)

In view of ([@.3]), we assume that ¢ > 1 and r + ¢ > 3 in what follows. The labels of the vertices of TT are shown
in Figure[d Let

{wotr45 11 <j <t =2} +{up—sur;]1<j<t =2}, ifr=0,¢t>3,
{wotr45 11 <j<t =1} +{up—sur; |1 <j<t =1}, ifr=1,¢t> 2,
TP]L: TQT—{uOuiHgigr—l}—l—{un,gu”lgzgr—l}, ifr>2t=1,
TQT—{uouTHHgjgt—l}—{uoui|1<i§r—1}
F{up—strg; |1 <j<t =1} +{up_su; |1 <i<r—1}, ifr,t > 2.
In view of Lemma 2.8 we have
(L) = (1)), (1.6)

Let y = (¥0,¥1,---,Yn—1)" be the Perron vector of Tg, where y; corresponds to u; (0<i<n—1). If yg < yn—3,
let
Tt { Ty — woUpgt—1 + Un_3trig—1, if 7 =0,
4 =

Tg — Uy + Up_3Up, if r > 0.

It is obvious that T} = TJ. By LemmaZd we have Ao (T5) < Aa(T)) = Ao (T3). If o > yn_3, then we can undo the
step from T4 to T3. By Lemma 2] we have Ao (T4) < Ao (T3). Consequently, both cases yield Ao (T3) < Ao (T3).
Together with (£2), [@3)), (£4) and 6], we have

Ao (TH < A (GD), 7(T) > 7(GT) > Enw +1. (4.7)

Note that Tg has two branching vertices. We obtain, similarly as in the case “I'" has at least two branching

vertices,” that there exists an n-vertex tree sequence

To,Tv,...,Ti,..., T,

such that Ty = Tg, T, is a tree having exactly one branching vertex with 7(7T}) = [2n] and (Ty) € {T( 1) —
1L, 7(Ti- 1)}, Aa(T) < Ma(Ti—1) for 1 < i < p. Note that p > 2. By [@7), we have 7(1p) > T(GT) > 7(T5p). ThlS
implies that there exists j € {1,2,...,p— 1} such that 7(7};) = 7(GT). However, we know that A\, (T}) < Ao (Tp) <
Ao (GT), which contradicts the choice of GT.

This completes the proof. O

For an n-vertex graph G, denote by P, (G, z) = det(xl, — A,(G)) the characteristic polynomial of A,(G),

where I, is the identity matrix of order n. The following result is obvious.

Lemma 4.3. Let Gy and Gy be two connected graphs. If Po(Ga,x) > Po(G1,2) for x 2 Ao (G1), then Ao (G2) <
Aa(G1).

Recall that T,}l . 18 a tree obtained from P, by attaching 71 and p; pendant paths of length two to the two

leaves of Py, respectively, whereas TT2 p» 18 a tree obtained from Trl2 », DY attaching one pendant edge to the vertex
of degree r +1in T}, . (see Figure[2). In order to show Theorem L5, we need the following lemma.
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Lemma 4.4. Ifr; > p1 > 1, then Mo (T} ) < Ao (T2 ).

T1,P1 r1+1,p1—1

Proof. For simplicity, let G* := T, and G’ := T}, ;;,, 1. If p1 = 1, then the result follows immediately from
Lemma 235 So in what follows, we may assume that r; > p; > 2. We can easily obtain an equitable partition of
Ve« (resp. Vi), with four parts each of which contains only one vertex, two parts each of which contains r; (resp.
r1 + 1) vertices and two parts each of which contains p; (resp. p; — 1) vertices. Therefore, the corresponding

quotient matrices can be written as follows:

«a 11—« 0 0 0 0 0 0
1-—a 2« 1-a 0 0 0 0 0
0 (1-a)r am+1l) 1—-a 0 0 0 0
(Ao)™ = 0 0 1-« 20 1—-« 0 0 0
* o 0 0 0 l—a 2« 1-« 0 0 ’
0 0 0 0 l—a apr+1) (I1-a);m 0
0 0 0 0 0 l1-—« 2 l1-«
0 0 0 0 0 0 11—« @
@ l—a 0 0 0 0 0 0
1l—a 2a 1-a 0 0 0 0 0
0 l-a)(ri+1) a(m+2) 1-« 0 0 0 0
(Ao)™ 0 0 1-« 20 11—« 0 0 0
« o 0 0 0 l—-a 20 1-« 0 0
0 0 0 0 l1-a apr (1—a)pi—1) 0
0 0 0 0 0 l1-« 2 l1-«
0 0 0 0 0 0 l—a e

Let P3(z) := det (v1s — (Aa)™) (vesp. P3(x) := det (zIz — (A,)™)) be the characteristic polynomial of (A,)™
(resp. (An)™). Note that (Ay)™ (resp. (Aq)™) is nonnegative and irreducible. Together with Lemma 277 and
the Perron-Frobenius theorem, we know that A\, (G*) (resp. Ao (G’)) coincides with the largest zero of P3(x) (resp.

Py(x))-
Note that G’ contains S, 13 as its proper subgraph, then by Lemma 211 we have

Aa(G') > Ao (Sri43), (4.8)

and a simple calculation gives us

Aa(Sri43) = % (Oz(?“l +3)+a2(r +3)2 +4(r +2)(1 — 204)) .

With the same idea as the Appendix of calculations using Matlab, we obtain that min (P3(z) — Pj(x)) ~ 0.6527
for > Ao (S, 43), that is to say, P3(x) — P¥(x) > 0 when x > \o(S;,13). Combining this with (Z8) yields

P3(z) — Pi(z) > 0 when z > X\ (G’). Then by Lemma 3] we have A\, (G*) < Ao (G’), as desired. O
Let T2 . (vesp. T} ,.) be the tree obtained from Sy (resp. P,) by attaching rs (resp. r4) and p3 (resp. p4)
pendant paths of length two to two leaves of Sy (resp. P»), respectively. Let T%JJS be the tree obtained from P3 by

attaching one pendant edge and r5 pendant paths of length two to one leaf of P; and attaching ps pendant paths
of length two to the other leaf of Ps. Let Tf&pG be the tree obtained from S; » by attaching r¢ and ps pendant
paths of length two to the two quasi-pendant vertices with degree 2 of S; 2, respectively. Let 7,7 (resp. TS )

r7,P7 78,08

be the tree obtained from Py (resp. Ps) by attaching r7 (resp. rs) and p7 (resp. ps) pendant paths of length two

to two quasi-pendant vertices of Py (resp. Ps), respectively. Tﬁl . for i€ {3,...,8} are depicted in Figure

P
Now we are ready to give the proof for Theorem
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TTSJ’B TT57P5 TT67p6 TT7,P7 TTS,PS

Figure 5: Trees T?i,pi for 3 <7 <8.

Proof of Theorem (i) Let G* be a graph in G2 having the minimum A,-index. Then we know that G* does
not contain K; UK and 3K as its induced subgraph. Let G* be the complement of G*. Then we have de=(v) <1
for each vertex v € Vg« (since otherwise there exist two vertices, say u,w, of Vg« satisfying uv, wv ¢ Eg-, and
thus G*[u,v,w] = K; U K3 or G*[u,v, w] = 3K;). This implies that Fz= is a matching of K,,. Combining this
with Lemma 1] gives us that G* = K,, — M, where M is a maximum matching of K.

(i) Since 7(P,) = [2n], the result follows immediately from Lemma 23|

(iii) Let G* be a graph in G"~! having the minimum A,-index with n > 4. Since n — 1 > (%nw , we have
G* € 7! (based on Theorem [[4). Let S = S’ U S” be a maximum dissociation set of G* such that S’ is an
independent set and Eg-[g] is a matching of G*. Assume that Vg« = {u1,u2,...,u,} and S = Vg« \ {u1}. Then
G* = Sk, k,, where Sy, i, is depicted in Figure[2 and |S’| = k;.

Claim 4. k; < 1.

Proof of Claim [4l Suppose that k; > 2, i.e., there exist two vertices us,u; in S/, where s,t € {2,...,n}. Then
let G% = G* — ujus + ugus. In view of Lemma 28 we know that G% € 7" ~!. However, by Lemma 2.5 we have
Aa(GT) < Ao (G*), which contradicts the choice of G*. Therefore, k1 < 1, as desired. O

According to Claim ] we obtain G* = 5’07%1 if n is odd and G* = 517%4 if n is even.

(iv) Let G* be a graph in G#~? having the minimum A,-index with n > 6. Since n —2 > [2n], we have
G* € 7" 2 by Theorem[[4l Let S = S'US” be a maximum dissociation set of G* such that S’ is an independent
set and Eg-[g is a matching of G*. Assume that V- = {u1,u2,...,u,} and S = V- \ {u1,uz}, then we have
min{|N () \ {u2}l, [N (u2)\ {u}} > 1.

Note that G* is a tree. Then we know that |N(u1) N N(uz)|
leaves in S’. By a similar discussion as that in (iii), we obtain |S’|
n=|S|4+2=|5+1]5"| +2 and |S”| is even, we have |S’| is even, i.e., |S'| € {0,2}. We split the proof in the

< 1, and thus there exist at least |S'| — 1
< 3. We first assume that n is even. Since
following two cases.

Case 1 |N(uj) N N(uz)| = 1. In this case, we proceed by considering the size of S’.

Subcase 1.1 |S’| = 0. In this subcase, we have G* = T2 = with (rs,ps) # (0,0) and r3 + ps = 5.

If max{rs,ps} < 1, then by Lemma 25, we have Mo (T}, ,.) < Aa(T}3 ,.). If max{rs,ps} > 2, without loss of

generality, we assume that r3 > 2. Let T/ . be the tree obtained from Tll1 1 Dby attaching a pendant edge to a

i1,J1

14



o——

11,71

Figure 6: Tree T

11,71

2-degree vertex on its internal path of length 3 (see Figure[f]). Then by Lemma 2.6 we obtain

Aa(T2 ) < Aa(T3

73,P3

(4.9)

T3, PS)

It is easy to see that T\, s
gether this with (@3], we have A\, (T}
to the choice of G*.

Subcase 1.2 |S’| =2 and N(u1) N N(ug) € S’. In this subcase, we have G* = T2 with r5 > 0,ps > 1 and

rs+ps = 250 I r5 =0, then G* = Tj . If r5 > 1,p5 = 1, then by Lemma 2B we have Ao (T} ;) < Aa(G*), a
contrad1ct1on If r5 > 1,ps > 2, then by Lemma [Z.6] we obtain

isa proper subgraph of T,
) < AalT:

o s thus we have Ao (T3 ) < Ao (T}, ,,.) by Lemma2Z.l To-
). Note that T\, .~ € 7,2 Both cases yield a contradiction

73,P3 73,P3

Aa(T72 ) < AalT3 ) (4.10)

Note that T}, , is a proper subgraph of T;2 . Therefore, by Lemma 2T, Ao (T}, ,.) < Aa(T7 ). Combining

this with I0) yields Ao (T}, ,.) < Aa(T}, ,.). Thus we derive a contradiction to the choice of G*.
Subcase 1.3 |S’| = 2 and N(u1) N N(uz) C S”. In this subcase, we have G* = TS  with (rg,ps) # (0,0)

T6,P6

and 76+pg = “5°. Similarly, by Lemmas 2T and 20 we obtain Ao (TS, ,.) < Aa(T%, ). Note that TS € Zn~1,

T6,P6 76,06 T6,P6
a contradiction again.

Case 2 |N(u1) N N(uz)| = 0. In this case, we proceed by considering the following four subcases.

Subcase 2 1 [S'] = 0 and uy; ~ up. In this subcase, we have G* = T} = with min{ry,ps} > 1 and
rg+ps =22 Ifry =py =1, then G* NTlo If r4 =1 and py > 2, then G* NTOP If r4 > 2 and py = 1, then
G =T} r4.0- If r4,ps = 2, then by Lemmas 2.1l and 2.6l we obtain

min{Aa (T}, 1 ,,): Aa(TY, 5o 1)} < Aa(TE, ,,) < Aa(GY). (4.11)

It is easy to see that both T
to the choice of G*.

Subcase 2.2 |S’| =0 and u; ~ us. In this subcase, we have G* =2 T} with 71 + p; = "7_4.

m1p, and T ) arein 7,2, Combining this with EIT]) gives us a contradiction

r1,P1
Subcase 2.3 |S'| = 2 and u; ~ wug. In this subcase, we have G*p T7 ,, with min{r7,ps} > 1 and
r7 4+ pr = 25*. Similarly, by Lemmas 21 and 28] we get Ao (T} ,.) < Aa(TF ,.) < Aa(G*), and thus we get a
contradiction.
Subcase 2.4 |S'| = 2 and u; » us. In this subcase, we have G* = ng ps With rs+ps = "T_G. If (rs, ps) = (0,0),

then G* & Tllyo, and the result holds. So, In what follows, we assume that (rg,ps) # (0,0). If rs > 1 and
ps = 0, then by Lemma 2ZF we obtain that Ao (T}, ;) < Aa(G*). If rs = 0 and pg > 1, then by Lemma
again, Ao (T} ,,) < Aa(G*). Both cases give us a contradiction. Therefore, in what follows we may assume that
rg,ps = 1. By a similar proof of Lemma 4] applying Matlab to compare the spectral radii of the correspond-

1ng quotlent matrices, we get min{ Ao (T} e 11)s Xa (7,

rei1ps)} < Aa(G*), which leads to a contradiction since
{ rg,ps+17 T8+1 ;Ds} < yn 2
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By Cases 1 and 2, we obtain that G* = Trl1 py With 7 +py = ”774. Without loss of generality, we may assume

that 1 > p1. If (r1,p1) = (1,0), then G* = Tfﬁ07 and thus the result holds. If p; = 0 and 7, > 2, then by
Lemma 27 we have Ao (T}, 1) < Aa(T}, o), a contradiction. If p1 > 1, then in view of Lemma B4, we obtain

G* = Tln,q 24 ] the result holds. If n is odd, we can also get G* =2 Tf"’SJ 23] in a similar way, whose
n_47 |n_s =]
procedure 4is omitted here. ’ [l

5. Concluding remarks

In this paper, we mainly head in characterizing the extremal graphs having the maximum A,-index over all graphs
in G7, B}, and 7,7, respectively, and determining the structure of graphs having the minimum A,-index among
all graphs in G7 with some restrictions on 7. Theorem [[T] (resp. Theorem [[.22 Theorem [[3]) characterizes all
the connected graphs (resp. bipartite graphs, trees) having the maximum A,-index among all connected graphs

(resp. bipartite graphs, trees) with given order and dissociation number. Theorem [[.4] shows that the graph over
2
3
with fixed order n and dissociation number 7 € {2, {%n] ,n—1,n — 2} having the minimum A,-index.

G7 having the minimum A,-index is a tree provided that 7 > [ nw ; whereas Theorem determines the graphs

In view of (), if we put a = 0, respectively, in Theorems [[.THI.H then we may deduce the main results
obtained for the adjacency spectral radius of graphs with given order and dissociation number (see [11] for details),
whereas if we put o = %, respectively, in Theorems [[LTHL.E] we may also deduce the corresponding results for the
signless Laplacian spectral radius, say ¢(G), of graphs with given order and dissociation number. Then the next

corollaries follow immediately.

Corollary 5.1. Let G be in G, having the maximum signless Laplacian spectral radius. Then G = K,_;V (%KQ)
if T is even, and G 2 K,,_, V (%Kg U Kl) if T is odd.

Corollary 5.2. Let G be a graph in Bl. Then q(G) < n with equality if and only if G = K; ;.

Corollary 5.3. Let T be a tree in 7 (n > 3) having the mazimum signless Laplacian spectral radius. Then
q(T) < 0(n, ) with equality if and only if T =2 S} _, where O(n,T) is the largest root of 3+ (n — 27 — 6)x? + (87 —
dn+9)x —n = 0.

7T7

Corollary 5.4. Let G be a graph in G with 7 > {%n] having the minimum signless Laplacian spectral radius.
Then Gt is a tree.

Corollary 5.5. Let G* be a graph in G, having the minimum signless Laplacian spectral radius.

(i) If T =2, then G* 2 K,, — M, where M is a mazimum matching of K,.

(ii) If 7= [3n], then G* = P,.

(iii) If n >4 and T =n — 1, then G* = 5’07%1 ifn is odd and G* = 517"7’2 if n is even.

(iv) If n 26 and 7 =n — 2, then G* = Tﬁn_,ﬂ 3 if n is even and G* = TELJ (2221 if n is odd.
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clear

clc

syms a b ¢ alpha x

AA=[alphax(b+1) 0 (1—alpha)*b 1—alpha
0 alphax(at+b) (1—alpha)*b (1—alpha)
(I—alpha)*a (1—alpha)xc alphax(atc)
1-alpha (1—alpha)*xc 0 alphax(c—+1)];

I=eye (4);

y=simplify (det (xxI-AA))

fun=matlabFunction (y);

objfun=Q(x)fun (x(1),x(2),x(3),x(4),x(5));

x0=[0 0 0 0 0]:

A=[-1 001 0;0 01 —1 0];

b=[-1 0];

Aeq=[];

beq={];

b=[2 0 0 1 0];

ub=[inf 1 inf inf inf];

[x,fval]=fmincon(objfun ,x0,A,b,Aeq,beq,lb ,ub,Qconfun)

function [c,ceq]=confun(x)

c=0.5.%(x(2).%(2.%x(1)+x(3)+x(4))+sqrt (x(2). 2. % (2.xx(1)+x(3)+x(4))." 2

+8.xx (1).x(x(3)+x(4)).x(1—-2.%x(2)))) —x(5);

ceq=0;

end

*a
0
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