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On the Aα-index of graphs with given order and dissociation number∗
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Abstract: Given a graph G, a subset of vertices is called a maximum dissociation set of G if it induces a subgraph

with vertex degree at most 1, and the subset has maximum cardinality. The cardinality of a maximum dissociation

set is called the dissociation number of G. The adjacency matrix and the degree diagonal matrix of G are denoted

by A(G) and D(G), respectively. In 2017, Nikiforov proposed the Aα-matrix: Aα(G) = αD(G) + (1 − α)A(G),

where α ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the Aα-index of G. In this paper, we firstly

determine the connected graph (resp. bipartite graph, tree) having the largest Aα-index over all connected graphs

(resp. bipartite graphs, trees) with fixed order and dissociation number. Secondly, we describe the structure of

all the n-vertex graphs having the minimum Aα-index with dissociation number τ , where τ > ⌈ 2
3n⌉. Finally,

we identify all the connected n-vertex graphs with dissociation number τ ∈ {2, ⌈ 2
3n⌉, n − 1, n − 2} having the

minimum Aα-index.
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1. Introduction

In this section, we introduce some definitions that will help the reader to build up the necessary background for

the main results.

1.1. Background and definitions

Given a graph G, its adjacency matrix A(G) is an n × n 0-1 square matrix whose (u, v)-entry is 1 if and only

if u ∼ v in G. Let D(G) = diag(d1, . . . , dn) be the diagonal matrix of vertex degrees in a graph G. The matrix

Q(G) = D(G)+A(G) is called the signless Laplacian matrix of G; see [8]. Nikiforov [22] introduced the Aα-matrix

of a graph G, which is a convex combination of D(G) and A(G), i.e.,

Aα(G) = αD(G) + (1− α)A(G), 0 6 α 6 1.

Note that Aα(G) is real symmetric. Hence its eigenvalues are real, and so we may display the eigenvalues of

Aα(G) as λ1(G) > λ2(G) > · · · > λn(G). For short, the Aα spectral radius of G (i.e. the largest eigenvalue of

Aα(G)), denoted by λα(G) = λ1(G), is called the Aα-index of G. Notice that

A(G) = A0(G), Q(G) = 2A1/2(G) and D(G) = A1(G). (1.1)

Recently, more and more people studied the Aα-spectra of graphs. Nikiforov et al. [23] gave some bounds

on the Aα-index of a graph, and they determined the unique tree with maximum (resp. minimum) Aα-index

among n-vertex trees. Nikiforov and Rojo [24] determined the graph of order n and diameter at least d having the

largest Aα-index. Xue et al. [33] determined the graphs with the maximum (resp. minimum) Aα-index among all

connected graphs with given diameter (resp. clique number). Li and Zhou [20] determined the unique n-vertex
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block graph with prescribed independence number having the maximum Aα-index. In the same paper, they also

characterized the unique n-vertex graph with given number of cut edges having the largest Aα-index, and it is

surprising to see that in both cases, the extremal graphs always coincide. For more advances on the Aα-spectra,

we refer the reader to [6, 12, 15, 16, 17, 18, 19, 21, 30, 32].

For a subset S ⊆ VG, we call S a dissociation set if the induced subgraph G[S] does not contain P3 as

a subgraph, which is equivalent to say that the degree of each vertex in G[S] is at most one. A maximum

dissociation set of G is a dissociation set with the maximum cardinality. The dissociation number of G, written

as τ(G), is the cardinality of a maximum dissociation set of G. The problem of determining τ(G) is a classical

problem, which may date back to the work of Yannakakis [34] in 1981. In the same paper, he also proved that

this problem is NP-complete for bipartite graphs. Boliac, Cameron and Lozin [4] strengthened the result of

Yannakakis by reducing the problem, in polynomial time, from general bipartite graphs to some particular classes

such as bipartite graphs with maximum degree 3 or C4-free bipartite graphs. In the same paper, they also proved

that finding the dissociation number is polynomially solvable for bipartite graphs containing no induced subgraph

isomorphic to a tree obtained from P4 by attaching a path of length three to one quasi-pendant vertex of P4. For

more advances about this problem one may consult [1, 2, 3, 5, 25, 26].

Quite recently, characterizing the graphs having maximum number of maximum dissociation sets becomes an

attractive problem. Tu, Zhang and Shi [29] determined all the trees having the maximum number of maximum

dissociation sets among trees with given order. Tu, Zhang and Du [28] characterized all the trees having the

maximum number of maximum dissociation sets among trees with given dissociation number. Li and Sun [14]

identified all the trees (resp. forests) having the largest and the second largest number of maximum dissociation

sets among trees (resp. forests) with given order and dissociation number. Tu, Li and Du [27] presented the

upper bounds on the number of maximal (resp. maximum) dissociation sets in a general graph of order n and in

a triangle-free graph of order n, and they also characterized the corresponding extremal graphs.

Naturally, one may be interested in relating the spectra of a graph and its dissociation number. Very recently,

Huang, Li and Zhou [11] characterized all the graphs among all connected graphs (resp. bipartite graphs, trees)

with given order and dissociation number having the maximum A0-spectral radius. Das and Mohanty [7] identified

the unique block graph with given order and dissociation number having the largest A0-spectral radius.

In this paper we consider the relation between the Aα-spectra of a graph and its dissociation number, which

extends the main results of [11]. We firstly characterize the n-vertex connected graph (resp. bipartite graph, tree)

with dissociation number τ having the largest Aα-index. Secondly, we describe the structure of all the n-vertex

graphs with dissociation number τ having the minimum Aα-index, where τ >
⌈
2
3n

⌉
. Finally, we identify all the

connected n-vertex graphs with dissociation number τ ∈ {2,
⌈
2
3n

⌉
, n− 1, n− 2} having the minimum Aα-index.

1.2. Basic notations and main results

In this subsection, we give some basic notations and then describe our main results. Throughout this paper, we

consider only simple and finite graphs. For spectral graph theoretic notation and terminology not defined here,

we refer to Godsil and Royle [9] and West [31].

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. We call n = |VG| and m = |EG| the order

and the size of G, respectively. We say that two vertices u and v are adjacent (or neighbors) if they are joined

by an edge and we write u ∼ v. As usual, let Pn, Cn,Kn and Kt,n−t denote the path, cycle, complete graph and

complete bipartite graph on n vertices, respectively. Denote by K1,n−1 the star graph, which is also denoted by

Sn as usual.

For a vertex v ∈ VG, let NG(v) be the set of all neighbors of v in G. Then dG(v) = |NG(v)| is the degree of v
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in G. For simplicity, when there is no danger of confusion, we may omit the subscripts G for our notation. The

vertex with degree n − 1 in a star Sn is called the centre of Sn. A pendant vertex (or a leaf ) is a vertex of G

whose degree is one. We denote by PG the set of all pendant vertices of G. We call a vertex quasi-pendant vertex

of G if it is adjacent to a pendant vertex of G. We denote by QG the set of all quasi-pendant vertices of G and

let Q′
G consist of all quasi-pendant vertices of degree 2 of G. A pendant path of length r is a path with vertex set

V = {v0, v1, . . . , vr} such that d(v0) > 2, d(v1) = · · · = d(vr−1) = 2 and d(vr) = 1. In particular, if r = 1, then it

is a pendant edge. A matching M is a set of edges, no two of which have a vertex in common. In particular, M is

a perfect matching if each vertex of G is incident with an edge from M . A subset I of VG is called an independent

set if any two vertices of I are not adjacent.

For two graphs G and H, we define G ∪H their disjoint union. In addition, we use kG to denote the disjoint

union of k copies of G. The join G ∨H is the graph obtained by joining every vertex of G with every vertex of

H with an edge. If U ⊆ VG, then we write G[U ] to denote the induced subgraph of G with vertex set U and two

vertices being adjacent if and only if they are adjacent in G. The complement of a graph G is a graph G with the

same vertex set as G, in which any two distinct vertices are adjacent if and only if they are non-adjacent in G.

In order to formulate our main results, let Gτ
n (resp. Bτ

n,T
τ
n ) denote the set of connected graphs (resp.

bipartite graphs, trees) with order n and dissociation number τ.

Our first main result characterizes the n-vertex connected graph with dissociation number τ having the largest

Aα-index. Note that adding an edge to connect two nonadjacent vertices in a connected graph will strictly increase

its Aα-index (see, for example, [22]). Consequently, the following theorem obviously holds.

Theorem 1.1. Let G be in Gτ
n having the maximum Aα-index and let α ∈ [0, 1). Then G ∼= Kn−τ ∨

(
τ
2K2

)
if τ

is even, and G ∼= Kn−τ ∨
(
τ−1
2 K2 ∪K1

)
if τ is odd.

Our second main result establishes a sharp upper bound on the Aα-index of bipartite graphs with given order

and dissociation number. The corresponding extremal graph is also characterized.

Theorem 1.2. Let G be a graph in Bτ
n. Assume that α ∈ [0, 1), then

λα(G) 6
1

2

(

αn+
√

α2n2 + 4τ(n− τ)(1 − 2α)
)

with equality if and only if G ∼= Kτ,n−τ .

Let S†
n,τ be a tree obtained from the star Sn−τ by attaching exactly two pendant edges to each leaf of Sn−τ

and attaching 3τ − 2n + 2 pendant edges to the centre of Sn−τ (see Figure 1). The next result determines the

n-vertex tree with dissociation number τ having the largest Aα-index, which reads as

v0

v1 vn−τ−1. . .

. . .
︸ ︷︷ ︸

3τ − 2n+ 2

Figure 1: Tree S†
n,τ together with some labeled vertices.

Theorem 1.3. Let T be a tree in T τ
n (n > 3) having the maximum Aα-index with 0 6 α < 1. Then

λα(T ) 6 θ(α, n, τ)

3



with equality if and only if T ∼= S†
n,τ , where θ(α, n, τ) is the largest zero of

Pα(x) =x4 + α(n− 2τ − 6)x3 + (8α2τ − 4α2n+ 4ατ − 2αn− 2τ + n+ 9α2 + 6α− 3)x2

+ α(16αn− α2n− 8n− 28ατ + 14τ − 20α+ 10)x+ 2α3n− 17α2n+ 16αn− 4n

+ 24α2τ − 24ατ + 6τ − 2α3 + 17α2 − 16α+ 4. (1.2)

The next result characterizes the structure of all the n-vertex connected graphs with dissociation number

τ (τ >
⌈
2
3n

⌉
) having the minimum Aα-index.

Theorem 1.4. Let G† be a graph in Gτ
n with τ >

⌈
2
3n

⌉
having the minimum Aα-index with 0 6 α < 1. Then G†

is a tree.

Denote by Sk1,k2
the tree obtained from Sk1+1 by attaching k2 pendant paths of length two to the centre of

Sk1+1. Let T 1
r1,p1

be the tree obtained from P4 by attaching r1 and p1 pendant paths of length two to the two

leaves of P4, respectively. Then let T 2
r2,p2

be the tree obtained from T 1
r2,p2

by attaching one pendant edge to the

vertex of degree r2 + 1 in T 1
r2,p2

. The trees Sk1,k2
, T 1

r1,p1
and T 2

r2,p2
are depicted in Figure 2.

...k1 k2...

Sk1,k2

...
...

r1 p1

T 1
r1,p1

...
...

r2 p2

T 2
r2,p2

Figure 2: Trees Sk1,k2
, T 1

r1,p1
and T 2

r2,p2

Our last main result determines all the connected n-vertex graphs with dissociation number τ ∈ {2,
⌈
2
3n

⌉
, n−

1, n− 2} having the minimum Aα-index.

Theorem 1.5. Let G∗ be a graph in Gτ
n having the minimum Aα-index with 0 6 α < 1.

(i) If τ = 2, then G∗ ∼= Kn −M , where M is a maximum matching of Kn.

(ii) If τ =
⌈
2
3n

⌉
, then G∗ ∼= Pn.

(iii) If n > 4 and τ = n− 1, then G∗ ∼= S0,n−1

2

if n is odd and G∗ ∼= S1,n−2

2

if n is even.

(iv) If n > 6 and τ = n− 2, then G∗ ∼= T 1

⌈n−4

4 ⌉,⌊n−4

4 ⌋
if n is even and G∗ ∼= T 2

⌊n−5

4 ⌋,⌈n−5

4 ⌉
if n is odd.

The remainder of this paper is organized as follows. In Section 2, we give some essential definitions and some

necessary preliminaries. In Section 3, we give the proofs of Theorems 1.2 and 1.3. In Section 4, we give the proofs

for Theorems 1.4 and 1.5. Some concluding remarks are given in the last section.

2. Preliminaries

In this section, we give some necessary results, which will be used to prove our main results.

Lemma 2.1 ([22]). If G is a connected graph and H is a proper subgraph of G, then λα(H) < λα(G) for α ∈ [0, 1).

Lemma 2.2 ([23]). If T is a tree of order n and α ∈ [0, 1], then λα(T ) 6
1
2

(

αn+
√

α2n2 + 4(n− 1)(1− 2α)
)

with equality if and only if T ∼= Sn.

Lemma 2.3 ([23]). If G is a connected graph of order n and α ∈ [0, 1], then λα(G) > λα(Pn) with equality if and

only if G ∼= Pn.
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For V1 ⊆ VG and E1 ⊆ EG, we write G − V1 and G − E1 for the graphs obtained from G by deleting the

vertices in V1 and their incident edges and the edges in E1, respectively. For convenience, we may use G− v and

G− uv to denote G− {v} and G− {uv}, respectively. Similarly, G + uv is obtained from G by adding the edge

uv /∈ EG.

By the well-known Perron-Frobenius theorem, if G is connected, we know that the multiplicity of λα(G) is one

and there exists a unit positive eigenvector, say x = (x1, . . . , xn)
T , corresponding to it, where xi is the component

of x at vi ∈ VG [22]. As usual we call x the Perron vector of Aα(G).

Lemma 2.4 ([33]). Let G be a connected graph with u, v ∈ VG and let α ∈ [0, 1). Assume that x is the Perron

vector of Aα(G) such that xu > xv. If {v1, v2, . . . , vs} ∈ NG(v)\NG(u) (1 6 s 6 dv) and G′ = G−{vv1, . . . , vvs}+

{uv1, . . . , uvs}, then λα(G
′) > λα(G).

Lemma 2.5 ([10]). Let G be a connected graph with |EG| > 1 and u ∈ VG. Denote by Gs,t the graph obtained

from G by attaching two pendant paths of length s and t to u, respectively. If s > t > 1 and 0 6 α < 1, then

λα(Gs,t) > λα(Gs+1,t−1).

Let P = v1v2 . . . vk with k > 2 be a path in a connected graph. Then we call P an internal path, if

min{d(v1), d(vk)} > 3 and d(v2) = · · · = d(vk−1) = 2. The subdivision operation for an edge uv ∈ EG is

adding a new vertex w and substituting uv by a path uwv, and we denote the resultant graph by Gw.

Lemma 2.6 ([13]). Let G be a connected graph with α ∈ [0, 1) and uv be an edge on an internal path of G. Let

Gw be the graph obtained from G by the subdivision operation for the edge uv. Then λα(Gw) < λα(G).

Let R be a real matrix, whose rows and columns are indexed by V = {1, 2, . . . , n}. Assume that π =

{V1, V2, . . . , Vt} is a partition of V . Then R can be partitioned based on π as

R =






R11 · · · R1t

...
. . .

...
Rt1 · · · Rtt




 ,

where Rij denotes the submatrix of R, indexed by the rows and columns of Vi and Vj , respectively. Let rij be

the average row sum of Rij for 1 6 i, j 6 t. Usually, the t× t matrix Rπ = (rij) is called the quotient matrix of

R. Moreover, if the row sum of Rij is constant for 1 6 i, j 6 t, then we call π an equitable partition.

Lemma 2.7 ([35]). Let R be a real matrix with an equitable partition π, and let Rπ be the corresponding quotient

matrix. Then each eigenvalue of Rπ is an eigenvalue of R. Furthermore, if R is nonnegative, then the spectral

radii of R and Rπ are equal.

Recall that PG denotes the set of all pendant vertices of G and Q′
G denotes the set of all quasi-pendant vertices

of degree 2 of G. The following lemma reveals that there exists a maximum dissociation set of G containing all

vertices in PG

⋃
Q′

G, which plays an essential role in the proofs of our main results.

Lemma 2.8 ([11]). Let G be a graph with order n > 5. Then there exists a maximum dissociation set S such that

PG

⋃
Q′

G ⊆ S.

A maximum dissociation set is said to be good if it contains all vertices in PG

⋃
Q′

G. According to Lemma 2.8,

we know that such a set always exists.
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3. Proofs of Theorems 1.2 and 1.3

In this section, we give the proofs for Theorems 1.2 and 1.3. The former identifies the unique n-vertex bipartite

graph with dissociation number τ having the largest Aα-index, and the later characterizes the tree with given

order n and dissociation number τ having the maximum Aα-index.

Proof of Theorem 1.2. Choose G = (X,Y ) ∈ Bτ
n such that its Aα-index is as large as possible. We first assume

that G is connected. Without loss of generality, we assume that |X | > |Y |. Let S be a maximum dissociation set

of G. Since X is a dissociation set of G, we have τ = |S| > |X |. Clearly, our result is true for n 6 2. So in what

follows, we consider n > 3.

If τ = |X |, by Lemma 2.1, we obtain that G ∼= Kτ,n−τ . In the following, we may assume that τ > |X |.

Therefore, S ∩ Y 6= ∅. Let X1 = X ∩ S, Y2 = Y ∩ S and X2 = X \X1, Y1 = Y \ Y2. For convenience, assume

|X1| = a, |Y1| = b, |X2| = c, and |Y2| = d. Since |X1|+ |Y2| = |S| > |X | > |Y |, we have d > c, a > b. According to

the choice of G and by Lemma 2.1, one sees that both G[(X1, Y1)] and G[(X2, Y )] are complete, and G[(X1, Y2)]

contains independent edges as many as possible. We proceed by considering the following three cases according

to the values of a and d.

Case 1. a = d. In this case, EG[X1∪Y2] is a perfect matching of G[X1 ∪ Y2]. It is easy to see that π1 :=

X1∪X2∪Y1∪Y2 is an equitable partition of VG, and the corresponding quotient matrix can be written as follows:

(Aα)
π1 :=







α(b + 1) 0 (1− α)b 1− α
0 α(a+ b) (1− α)b (1− α)a

(1− α)a (1− α)c α(a+ c) 0
1− α (1− α)c 0 α(c+ 1)







.

Let P 1
α(x) := det (xI4 − (Aα)

π1) be the characteristic polynomial of (Aα)
π1 . Note that (Aα)

π1 is nonnegative and

irreducible. Together with Lemma 2.7 and the Perron-Frobenius theorem, we know that λα(G) coincides with

the largest root of P 1
α(x) = 0.

Since n > 3 and G is connected, we have a = d > max{b, c} > 1. Recall that |X | > |Y | and a = d, we can

deduce that c > b. Let G′ ∼= K2a,b+c. It is easy to see that G′ ∈ Bτ
n. By a simple calculation, we have

λα(G
′) =

1

2

(

α(2a+ b+ c) +
√

α2(2a+ b+ c)2 + 8a(b+ c)(1 − 2α)
)

.

Utilizing calculations by Matlab, we obtain that minP 1
α(x) ≈ 2.598 for x > λα(G

′) (see the Appendix), i.e.

P 1
α(x) > 0 when x > λα(G

′). Recall that λα(G) is the largest zero of P 1
α(x). That is to say, λα(G) < λα(G

′),

which contradicts the choice of G.

Case 2. a < d. In this case, there exists a set Y ′
2 ⊆ Y2 such that |Y ′

2 | = a and EG[X1∪Y ′
2
] is a perfect matching

of G[X1 ∪ Y ′
2 ]. Let Y ′′

2 = Y2 \ Y ′
2 , then Y ′′

2 6= ∅. Thus it is easy to see that π2 := X1 ∪X2 ∪ Y1 ∪ Y ′
2 ∪ Y ′′

2 is an

equitable partition of VG, and the corresponding quotient matrix can be written as follows:

(Aα)
π2 :=









α(b + 1) 0 (1− α)b 1− α 0
0 α(b+ d) (1− α)b (1− α)a (1− α)(d − a)

(1− α)a (1− α)c α(a+ c) 0 0
1− α (1− α)c 0 α(c+ 1) 0
0 (1− α)c 0 0 αc









.

Let P 2
α(x) := det (xI4 − (Aα)

π2) be the characteristic polynomial of (Aα)
π2 . Note that (Aα)

π2 is nonnegative and

irreducible. Together with Lemma 2.7 and the Perron-Frobenius theorem, we know that λα(G) coincides with

the largest root of P 2
α(x) = 0.
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It is easy to see that c > 1 (since otherwise |X | = |X1| = a < d = |Y2| 6 |Y |, which contradicts |X | > |Y |).

Thus we have d > c+1 > 2. Let G′′ ∼= Ka+d,b+c. It is easy to see that G′′ ∈ Bτ
n. By a simple calculation, we have

λα(G
′′) =

1

2

(

α(a+ b+ c+ d) +
√

α2(a+ b+ c+ d)2 + 4(a+ d)(b + c)(1− 2α)
)

.

With the same idea as the Appendix of calculations using Matlab, we obtain that minP 2
α(x) = 1 for x > λα(G

′′),

that is to say, P 2
α(G) > 0 when x > λα(G

′′). Recall that λα(G) is the largest zero of P 2
α(x). That is to say,

λα(G) < λα(G
′′), which contradicts the choice of G.

Case 3. a > d. We can also derive a contradiction in a similar way as Case 2, whose procedure is omitted

here.

By Cases 1-3, we obtain G ∼= Kτ,n−τ . A simple calculation gives us

λα(G) =
1

2

(

αn+
√

α2n2 + 4τ(n− τ)(1 − 2α)
)

.

In what follows, we show G is connected. Otherwise suppose that G is disconnected. Let G =
⋃s

i=1 Gi, where

Gi is a connected bipartite graph in Bτi
ni

and s > 2. Thus we have

s∑

i=1

(ni − τi) =
s∑

i=1

ni −
s∑

i=1

τi = n− τ.

Therefore, ni < n, τi < τ and ni − τi < n− τ. Consequently, by Lemma 2.1,

λα(G) = max {λα(Gi) | 1 6 i 6 s} 6 max {λα(Kτi,ni−τi) | 1 6 i 6 s} < λα(Kτ,n−τ ),

a contradiction to the choice of G.

This completes the proof.

Let T 1
n,τ be a set of all the n-vertex trees obtained from Sn−τ+1 by attaching exactly one pendant edge to the

centre of Sn−τ+1, and attaching at least two pendent edges to each leaf of Sn−τ+1 such that the total number of

leaves of the resultant tree is τ − 1, where τ /∈
{
2
3n,

2n+1
3

}
. Let T 2

n,τ be a set of all the n-vertex trees obtained

from Sn−τ+1 by attaching at least two pendent edges to every leaf of Sn−τ+1 such that the total number of leaves

of the resultant tree is τ − 1, where τ 6= 2
3n. Let T 3

n,τ be a set of all the n-vertex trees obtained from Sn−τ by

attaching at least two pendant edges to each vertex of Sn−τ such that the total number of leaves of the resultant

tree is τ. In Figure 3, one sees a tree in T 1
n,τ ,T

2
n,τ and T 3

n,τ , respectively. Let Sn,τ = T 1
n,τ

⋃
T 2

n,τ

⋃
T 3

n,τ . In view

of Lemma 2.8, we have Sn,τ ⊆ T τ
n . Sun and Li [14] showed that τ(F ) >

⌈
2
3n

⌉
for each forest F with order n.

Therefore, for every tree T in Sn,τ , τ(T ) >
⌈
2
3n

⌉
, then 3τ − 2n+ 2 > 2, which implies that S†

n,τ ∈ T 3
n,τ .

u0

u1 un−τ

v1 vr

w

. . .

. . .. . .

Ta

u0

u1 un−τ

v1 vr

. . .

. . .. . .

Tb

u0

u1 un−τ−1

v1 vr

w1 wp

. . .

. . .. . .

. . .

Tc

Figure 3: Trees Ta ∈ T 1
n,τ , Tb ∈ T 2

n,τ and Tc ∈ T 3
n,τ together with some labeled vertices.

In order to prove Theorem 1.3, we need the following lemma.
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Lemma 3.1. For 0 6 α < 1, the Aα-index of S†
n,τ is equal to the largest root of Pα(x) = 0, where Pα(x) is

defined in (1.2).

Proof. Recall that S†
n,τ is a tree obtained from the star Sn−τ by attaching exactly two pendant edges to each

leaf of Sn−τ and attaching 3τ − 2n+ 2 pendant edges to the centre of Sn−τ (see Figure 1). Let v0 be the centre

of Sn−τ , V1 be the set of 2(n − τ − 1) pendant vertices adjacent to the leaves of Sn−τ , and let V2 be the set of

3τ − 2n+ 2 pendant vertices adjacent to v0. Hence π := {v0} ∪ (VSn−τ
\ {v0}) ∪ V1 ∪ V2 is an equitable partition

of VS†
n,τ

. Then the corresponding quotient matrix can be written as follows:

(Aα)
π :=







α(2τ − n+ 1) (1− α)(n − τ − 1) 0 (1− α)(3τ − 2n+ 2)
1− α 3α 2(1− α) 0
0 1− α α 0

1− α 0 0 α







.

The characteristic polynomial of (Aα)
π is Pα(x), where Pα(x) is defined in (1.2). Note that (Aα)

π is nonnegative

and irreducible. Together with Lemma 2.7 and the Perron-Frobenius theorem, our result holds immediately.

Proof of Theorem 1.3. Choose T among T τ
n such that its Aα-index is as large as possible. Let x be the Perron

vector of Aα(T ). In view of Lemma 2.2, we obtain that T ∼= Sn
∼= S†

n,n−1 if τ = n− 1 or 3 6 n 6 4. So, in what

follows, we assume that τ 6 n − 2 and n > 5. We are to characterize the structure of T through the following

three claims.

Claim 1. Q′
T = ∅.

Proof of Claim 1. Suppose that Q′
T 6= ∅. Let v ∈ Q′

T and NT (v) = {u,w}, where u is a leaf. Denote by

T1 = T − vu + uw. Then by Lemma 2.5, we have λα(T1) > λα(T ). However, by Lemma 2.8, T1 ∈ T τ
n , a

contradiction to the choice of T. Thus Q′
T = ∅. This completes the proof of Claim 1.

Claim 2. T ∈ Sn,τ .

Proof of Claim 2. Let T ′ = T − PT . By Claim 1, one sees that T ∈ Sn,τ is equivalent to |QT ′ | = 1. Suppose

that |QT ′ | > 2. Choose two vertices u, v ∈ QT ′ such that the distance between u and v in T ′ is as large as possible.

Let u′ and v′ be the neighbors of u and v lying on the path connecting u and v, respectively. Then we have

(NT (u) \ {u′}) ∪ (NT (v) \ {v′}) ⊆ PT ∪QT , (NT (u) \ {u′}) ∩QT 6= ∅ and (NT (v) \ {v′}) ∩QT 6= ∅.

Assume that (NT (u) \ {u
′})∩QT = {u1, u2, . . . , us} and (NT (v) \ {v

′})∩QT = {v1, v2, . . . , vt}. Thus we have

s, t > 1. By Claim 1, we know that there exist at least two leaves adjacent to each vertex in {u1, . . . , us, v1, . . . , vt}.

Let S be a good dissociation set of T. Then ui /∈ S and vj /∈ S for 1 6 i 6 s, 1 6 j 6 t. Let

T2 =

{

T − {vvj | 1 6 j 6 t}+ {uvj | 1 6 j 6 t}, if xu > xv,

T − {uui | 1 6 i 6 s}+ {vui | 1 6 i 6 s}, if xu 6 xv.

In view of Lemmas 2.4 and 2.8, we have λα(T2) > λα(T ) and T2 ∈ T τ
n , a contradiction. Thus we have |QT ′ | = 1,

i.e. T ∈ Sn,τ .

Claim 3. T ∈ T 3
n,τ .

Proof of Claim 3. Suppose that T /∈ T 3
n,τ . Then by Claim 2, we know that T ∈ T 1

n,τ

⋃
T 2

n,τ . For the star

Sn−τ+1, assume that u0 is the centre of Sn−τ+1, and u1, . . . , un−τ are leaves of Sn−τ+1 (see Figure 3). We

proceed by considering the following two cases.

8



Case 1. T ∈ T 1
n,τ . Assume that N(u1) \ {u0} = {v1, . . . , vr} and w is just the leaf adjacent to u0 in T . Let

T3 =

{

T − {u1vi | 1 6 i 6 r} + {u0vi | 1 6 i 6 r}, if xu0
> xu1

,

T − u0w + u1w, if xu0
6 xu1

.

By Lemma 2.8, we obtain T3 ∈ T 2
n,τ

⋃
T 3

n,τ . However, in view of Lemma 2.4, λα(T3) > λα(T ), which contradicts

the choice of T.

Case 2. T ∈ T 2
n,τ . Similarly, assume that N(u1) \ {u0} = {v1, . . . , vr}. Let

T4 =

{

T − {u1vi | 1 6 i 6 r} + {u0vi | 1 6 i 6 r}, if xu0
> xu1

,

T − {u0uj | 2 6 j 6 n− τ} + {u1uj | 2 6 j 6 n− τ}, if xu0
6 xu1

.

By Lemma 2.8, we get that T4 ∈ T 3
n,τ . And once again, by Lemma 2.4, λα(T4) > λα(T ), a contradiction.

We come back to show Theorem 1.3.

By Claim 3, we have T ∈ T 3
n,τ . Similarly, for the star Sn−τ , assume that VSn−τ

= {u0, u1, . . . , un−τ−1},

where u0 is the unique non-pendant vertex. Suppose that T ≇ S†
n,τ . Then there exists a vertex ui, where

i ∈ {1, 2, . . . , n− τ −1}, such that d(ui) > 4. Without loss of generality, assume that d(u1) > 4. Let N(u0)∩PT =

{w1, . . . , wp} and N(u1) \ {u0} = {v1, . . . , vr}. Then p > 2 and r > 3.

If τ = n− 2, then T is a tree obtained from Sp+1 and Sr+1 by adding an edge to connect the centres of theirs.

Since T ≇ S†
n,τ , we have p > 3. Let

T5 =

{
T − {u1vi | 3 6 i 6 r}+ {u0vi | 3 6 i 6 r}, if xu0

> xu1
,

T − {u0wj | 3 6 j 6 p}+ {u1wj | 3 6 j 6 p}, if xu0
6 xu1

.

Then T5
∼= S†

n,n−2. By Lemma 2.4, we have λα(T5) > λα(T ), a contradiction.

If τ 6 n− 3, then let

T6 =







T − {u1vi | 3 6 i 6 r} + {u0vi | 3 6 i 6 r}, if xu0
> xu1

,

T − {u0uk | 2 6 k 6 n− τ − 1}+ {u1uk | 2 6 k 6 n− τ − 1}, if xu0
6 xu1

and p = 2,

T − {u0uk | 2 6 k 6 n− τ − 1} − {u0wj | 3 6 j 6 p}

+{u1uk | 2 6 k 6 n− τ − 1}+ {u1wj | 3 6 j 6 p}, if xu0
6 xu1

and p > 3.

By Lemma 2.8, τ(T6) = τ(T ). In view of Lemma 2.4, one has λα(T6) > λα(T ), a contradiction. Therefore,

T ∼= S†
n,τ . By Lemma 3.1, our result holds immediately.

This completes the proof.

4. Proofs of Theorems 1.4 and 1.5

In this section, we present the proofs for Theorems 1.4 and 1.5. The former shows that a connected graph with

given order n and dissociation number τ (τ >
⌈
2
3n

⌉
) having the minimum Aα-index is a tree, and the latter

characterizes all the connected graphs with order n and dissociation number τ ∈ {2,
⌈
2
3n

⌉
, n − 1, n− 2} having

the minimum Aα-index.

Let Y1 (resp. Y2) be a tree obtained from Pn−2 (resp. Pn−6) by attaching exactly two pendant edges (resp.

two pendant paths of length three) to one leaf of Pn−2 (resp. Pn−6). Let Y3 be a tree obtained from Pn−4 by

attaching one pendant edge and one pendant path of length three to one leaf of Pn−4. Recall that Gw is a graph

constructed from G by a subdivision operation for an edge of G. The triple subdivision operation for an edge

uv ∈ EG is adding three new vertices x, y, z and substituting uv by a path uxyzv, and we denote the resultant
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graph by Gxyz. We call Ġ a subdivision transformation graph of G if Ġ is obtained from G by a (triple) subdivision

operation for an edge on an internal path of G, and deleting one or three other vertices of G such that |VĠ| = |VG|.

A subdivision transformation graph Ġ is said to be optimal if Ġ is connected and τ(Ġ) ∈ {τ(G)− 1, τ(G)}.

In order to show Theorem 1.4, we need the following key lemma. It presents the relationship between τ(Gw)

(resp. τ(Gxyz)) and τ(G).

Lemma 4.1 ([11]). Let G be a connected graph with uv ∈ EG and let Gw and Gxyz be the graph obtained from

G by the subdivision operation and triple subdivision operation for uv, respectively. Then

(i) τ(Gw) ∈ {τ(G), τ(G) + 1};

(ii) τ(Gxyz) = τ(G) + 2.

Let T be a tree, we call v ∈ VT a branching vertex if dT (v) > 3. The next lemma was obtained previously in

[11]. We include its proof here.

Lemma 4.2 ([11]). Let T be a tree with at least two branching vertices. Then there exists an optimal subdivision

transformation graph of T .

Proof. We use Tx and Txyz to denote the trees obtained from T by the subdivision operation and triple subdivision

operation for an edge on an internal path of T, respectively. Choose a diameter path Pd = u1u2u3u4 · · ·ud of T

such that dT (u2) is as large as possible. Then NT (u2) \ {u3} ⊆ PT and NT (u3) \ {u4} ⊆ PT ∪QT .

If dT (u2) = dT (u3) = 2, then by Lemma 2.8, we obtain

τ(Txyz − u1 − u2 − u3) = τ(Txyz)− 2. (4.1)

By Lemma 4.1, we have τ(Txyz) = τ(T ) + 2. Combining this with (4.1) yields τ(Txyz − u1 − u2 − u3) = τ(T ).

Therefore, Txyz − u1 − u2 − u3 is an optimal subdivision transformation graph of T.

If dT (u2) = 2 and dT (u3) > 3, then according to the choice of Pd, we know thatNT (u3)\{u4} ⊆ PT∪Q′
T .Hence,

in view of Lemmas 2.8 and 4.1, we obtain that Tx − u1 is a tree with τ(Tx − u1) = τ(Tx)− 1 ∈ {τ(T ), τ(T )− 1}.

This implies that Tx − u1 is an optimal subdivision transformation graph of T.

If dT (u2) = 3, then by Lemmas 2.8 and 4.1, we have Txyz − u1 − u2 − v is a tree with τ(Txyz − u1 − u2 − v) =

τ(Txyz) − 2 = τ(T ), where v is the only pendant vertex adjacent to u2 other than u1. This indicates that

Txyz − u1 − u2 − v is an optimal subdivision transformation graph of T.

If dT (u2) > 4, then in view of Lemmas 2.8 and 4.1, we have Tx − u1 is a tree with τ(Tx − u1) = τ(Tx) − 1 ∈

{τ(T ), τ(T )− 1}. Hence Tx − u1 is an optimal subdivision transformation graph of T.

This completes the proof.

Now we are ready to show Theorem 1.4.

Proof of Theorem 1.4. If τ(G†) =
⌈
2
3n

⌉
, then by Lemma 2.3, we have G† ∼= Pn since τ(Pn) =

⌈
2
3n

⌉
, and our

result holds obviously. So, in what follows, we assume that τ(G†) >
⌈
2
3n

⌉
.

Suppose to the contrary that G† is not a tree. If G† is a subgraph of (nK2) ∨K1, then τ(G†) = n − 1 and

there exists a cycle v0v1v2v0 such that d(v1) = d(v2) = 2. Let G†
1 = G† − v1v2. By Lemmas 2.1 and 2.8, we have

λα(G
†
1) < λα(G

†) and G†
1 ∈ Gn−1

n , which contradicts the choice of G†. This means that there exists a spanning

tree, say T †, of G† such that T † ≇ Sk1,k2
(see Figure 2) for all k1 + 2k2 = n− 1.

It is clear that τ(T †) > τ(G†). By Lemma 2.1, we have

λα(T
†) < λα(G

†). (4.2)
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If τ(T †) = τ(G†), then we can derive a contradiction by the choice of G†. Hence,

τ(T †) > τ(G†) >

⌈
2

3
n

⌉

+ 1. (4.3)

Since τ(T †) >
⌈
2
3n

⌉
= τ(Pn), we have T † ≇ Pn, which implies that there exists at least one branching vertex

in T †.

If T † has at least two branching vertices, then by Lemma 4.2, there exists an optimal subdivision transformation

graph, say Ṫ1, of T
†. Denote by Ṫ0 = T †. In view of Lemma 2.6 and (4.2), we obtain λα(Ṫ1) < λα(Ṫ0) < λα(G

†).

We can repeat the above transformation to get an n-vertex tree sequence

Ṫ0, Ṫ1, . . . , Ṫi, . . . , Ṫs

such that Ṫs is a tree having exactly one branching vertex with τ(Ṫs) =
⌈
2
3n

⌉
and τ(Ṫi) ∈ {τ(Ṫi−1)− 1, τ(Ṫi−1)}

and λα(Ṫi) < λα(Ṫi−1) for 1 6 i 6 s. According to the proof of Lemma 4.2, we know that such Ṫs must exist, for

example, Y1, Y2, Y3. By (4.3), τ(Ṫ0) > ⌈ 2
3n⌉ + 2 = τ(Ṫs) + 2, which implies that s > 2. Since τ(Ṫ0) > τ(G†) >

⌈
2
3n

⌉
= τ(Ṫs), there exists j ∈ {1, 2, . . . , s − 1} such that τ(Ṫj) = τ(G†). However, λα(Ṫj) < λα(Ṫ0) < λα(G

†),

which contradicts the choice of G†.

u0

u1
1

u1
2

u1
n1

u2
1

u2
2

u2
n2

ut
1

ut
2

ut
nt

...
...

...

. . .

. . .

T †

u0

u1 ur

ur+1

ur+t+1

ur+t

ur+2t

un−3 un−2 un−1

. . .

. . .

. . .

T †
2
∼= Wr,t

Figure 4: Trees T † and T †
2 .

In what follows, we assume that T † has exact one branching vertex. Let u0 be the branching vertex of T †.

Then T † can be obtained from t paths Pn1+1, Pn2+1, . . . , Pnt+1 by sharing a common vertex u0, where t > 3. Let

u0, u
i
1, . . . , u

i
ni

denote the vertices of Pni+1 for 1 6 i 6 t (see Figure 4). Without loss of generality, we can assume

that n1 > n2 > · · · > nt > 1. Since T † ≇ Sk1,k2
for all k1 + 2k2 = n− 1, we have n1 > 3. Let

T †
1 =







T †, if n2 ∈ {1, 2},

T † − u0u
2
1 + u1

n1
u2
1, if n2 ≡ 0 (mod 3),

T † − u2
1u

2
2 + u1

n1
u2
2, if n2 ≡ 1 (mod 3) and n2 > 4,

T † − u2
2u

2
3 + u1

n1
u2
3, if n2 ≡ 2 (mod 3) and n2 > 5.

In view of Lemmas 2.5 and 2.8, we get that τ(T †
1 ) = τ(T †) and λα(T

†
1 ) 6 λα(T

†). Repeating the above procedure

for T †
1 , we finally obtain an n-vertex tree T †

2
∼= Wr,t, such that

λα(T
†
2 ) 6 λα(T

†), τ(T †
2 ) = τ(T †), (4.4)

where Wr,t is an n-vertex tree obtained from a star Sr+1 by attaching t pendant paths of length 2 and one pendant

path of length n− r − 2t− 1 to the centre of Sr+1 (see Figure 4).

If (r, t) = (3, 0) or r + t 6 2, then we can obtain

τ(T †
2 ) =







⌈
2
3n

⌉
, if (r, t) ∈ {(0, 0), (0, 1), (1, 0), (2, 0)},

⌈
2n−1

3

⌉
+ 1, if (r, t) = (0, 2),

⌈
2n−2

3

⌉
+ 1, if (r, t) ∈ {(1, 1), (3, 0)}.
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By (4.3) and (4.4), we have τ(T †
2 ) = τ(T †) >

⌈
2
3n

⌉
+ 2, a contradiction.

If t = 0 and r > 4, then by Lemmas 2.5 and 2.8, we have

λα(Wr−2,t+1) < λα(Wr,t), τ(Wr−2,t+1) = τ(Wr,t). (4.5)

In view of (4.5), we assume that t > 1 and r + t > 3 in what follows. The labels of the vertices of T †
2 are shown

in Figure 4. Let

T †
3 =







T †
2 − {u0ur+j | 1 6 j 6 t− 2}+ {un−3ur+j | 1 6 j 6 t− 2}, if r = 0, t > 3,

T †
2 − {u0ur+j | 1 6 j 6 t− 1}+ {un−3ur+j | 1 6 j 6 t− 1}, if r = 1, t > 2,

T †
2 − {u0ui | 1 6 i 6 r − 1}+ {un−3ui | 1 6 i 6 r − 1}, if r > 2, t = 1,

T †
2 − {u0ur+j | 1 6 j 6 t− 1} − {u0ui | 1 6 i 6 r − 1}

+{un−3ur+j | 1 6 j 6 t− 1}+ {un−3ui | 1 6 i 6 r − 1}, if r, t > 2.

In view of Lemma 2.8, we have

τ(T †
3 ) = τ(T †

2 ). (4.6)

Let y = (y0, y1, . . . , yn−1)
T be the Perron vector of T †

3 , where yi corresponds to ui (0 6 i 6 n− 1). If y0 < yn−3,

let

T †
4 =

{

T †
3 − u0ur+t−1 + un−3ur+t−1, if r = 0,

T †
3 − u0ur + un−3ur, if r > 0.

It is obvious that T †
4
∼= T †

2 . By Lemma 2.4, we have λα(T
†
3 ) < λα(T

†
4 ) = λα(T

†
2 ). If y0 > yn−3, then we can undo the

step from T †
2 to T †

3 . By Lemma 2.4, we have λα(T
†
3 ) < λα(T

†
2 ). Consequently, both cases yield λα(T

†
3 ) < λα(T

†
2 ).

Together with (4.2), (4.3), (4.4) and (4.6), we have

λα(T
†
3 ) < λα(G

†), τ(T †
3 ) > τ(G†) >

⌈
2

3
n

⌉

+ 1. (4.7)

Note that T †
3 has two branching vertices. We obtain, similarly as in the case “T † has at least two branching

vertices,” that there exists an n-vertex tree sequence

T̈0, T̈1, . . . , T̈i, . . . , T̈p

such that T̈0
∼= T †

3 , T̈p is a tree having exactly one branching vertex with τ(Ṫs) =
⌈
2
3n

⌉
and τ(T̈i) ∈ {τ(T̈i−1) −

1, τ(T̈i−1)}, λα(T̈i) < λα(T̈i−1) for 1 6 i 6 p. Note that p > 2. By (4.7), we have τ(T̈0) > τ(G†) > τ(T̈p). This

implies that there exists j ∈ {1, 2, . . . , p− 1} such that τ(T̈j) = τ(G†). However, we know that λα(T̈j) < λα(T̈0) <

λα(G
†), which contradicts the choice of G†.

This completes the proof.

For an n-vertex graph G, denote by Pα(G, x) = det(xIn − Aα(G)) the characteristic polynomial of Aα(G),

where In is the identity matrix of order n. The following result is obvious.

Lemma 4.3. Let G1 and G2 be two connected graphs. If Pα(G2, x) > Pα(G1, x) for x > λα(G1), then λα(G2) <

λα(G1).

Recall that T 1
r1,p1

is a tree obtained from P4 by attaching r1 and p1 pendant paths of length two to the two

leaves of P4, respectively, whereas T
2
r2,p2

is a tree obtained from T 1
r2,p2

by attaching one pendant edge to the vertex

of degree r2 + 1 in T 1
r2,p2

(see Figure 2). In order to show Theorem 1.5, we need the following lemma.
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Lemma 4.4. If r1 > p1 > 1, then λα(T
1
r1,p1

) < λα(T
1
r1+1,p1−1).

Proof. For simplicity, let G∗ := T 1
r1,p1

and G′ := T 1
r1+1,p1−1. If p1 = 1, then the result follows immediately from

Lemma 2.5. So in what follows, we may assume that r1 > p1 > 2. We can easily obtain an equitable partition of

VG∗ (resp. VG′), with four parts each of which contains only one vertex, two parts each of which contains r1 (resp.

r1 + 1) vertices and two parts each of which contains p1 (resp. p1 − 1) vertices. Therefore, the corresponding

quotient matrices can be written as follows:

(Aα)
π3 :=















α 1− α 0 0 0 0 0 0
1− α 2α 1− α 0 0 0 0 0
0 (1− α)r1 α(r1 + 1) 1− α 0 0 0 0
0 0 1− α 2α 1− α 0 0 0
0 0 0 1− α 2α 1− α 0 0
0 0 0 0 1− α α(p1 + 1) (1− α)p1 0
0 0 0 0 0 1− α 2α 1− α
0 0 0 0 0 0 1− α α















,

(Aα)
π4 :=















α 1− α 0 0 0 0 0 0
1− α 2α 1− α 0 0 0 0 0
0 (1− α)(r1 + 1) α(r1 + 2) 1− α 0 0 0 0
0 0 1− α 2α 1− α 0 0 0
0 0 0 1− α 2α 1− α 0 0
0 0 0 0 1− α αp1 (1− α)(p1 − 1) 0
0 0 0 0 0 1− α 2α 1− α
0 0 0 0 0 0 1− α α















.

Let P 3
α(x) := det (xI8 − (Aα)

π3) (resp. P 4
α(x) := det (xI8 − (Aα)

π4)) be the characteristic polynomial of (Aα)
π3

(resp. (Aα)
π4). Note that (Aα)

π3 (resp. (Aα)
π4) is nonnegative and irreducible. Together with Lemma 2.7 and

the Perron-Frobenius theorem, we know that λα(G
∗) (resp. λα(G

′)) coincides with the largest zero of P 3
α(x) (resp.

P 4
α(x)).

Note that G′ contains Sr1+3 as its proper subgraph, then by Lemma 2.1, we have

λα(G
′) > λα(Sr1+3), (4.8)

and a simple calculation gives us

λα(Sr1+3) =
1

2

(

α(r1 + 3) +
√

α2(r1 + 3)2 + 4(r1 + 2)(1− 2α)
)

.

With the same idea as the Appendix of calculations using Matlab, we obtain that min
(
P 3
α(x)− P 4

α(x)
)
≈ 0.6527

for x > λα(Sr1+3), that is to say, P 3
α(x) − P 4

α(x) > 0 when x > λα(Sr1+3). Combining this with (4.8) yields

P 3
α(x)− P 4

α(x) > 0 when x > λα(G
′). Then by Lemma 4.3, we have λα(G

∗) < λα(G
′), as desired.

Let T 3
r3,p3

(resp. T 4
r4,p4

) be the tree obtained from S4 (resp. P2) by attaching r3 (resp. r4) and p3 (resp. p4)

pendant paths of length two to two leaves of S4 (resp. P2), respectively. Let T
5
r5,p5

be the tree obtained from P3 by

attaching one pendant edge and r5 pendant paths of length two to one leaf of P3 and attaching p5 pendant paths

of length two to the other leaf of P3. Let T 6
r6,p6

be the tree obtained from S1,2 by attaching r6 and p6 pendant

paths of length two to the two quasi-pendant vertices with degree 2 of S1,2, respectively. Let T
7
r7,p7

(resp. T 8
r8,p8

)

be the tree obtained from P4 (resp. P6) by attaching r7 (resp. r8) and p7 (resp. p8) pendant paths of length two

to two quasi-pendant vertices of P4 (resp. P6), respectively. T
i
ri,pi

for i ∈ {3, . . . , 8} are depicted in Figure 5.

Now we are ready to give the proof for Theorem 1.5.

13



. . .

. . .

r3

p3

T 3
r3,p3

. . .

. . .

r4

p4

T 4
r4,p4

. . .

. . .

r5

p5

T 5
r5,p5

. . .

. . .

r6

p6

T 6
r6,p6

. . .

. . .

r7

p7

T 7
r7,p7

. . .

. . .

r8

p8

T 8
r8,p8

Figure 5: Trees T i
ri,pi

for 3 6 i 6 8.

Proof of Theorem 1.5. (i) Let G∗ be a graph in G2
n having the minimum Aα-index. Then we know that G∗ does

not contain K1∪K2 and 3K1 as its induced subgraph. Let G∗ be the complement of G∗. Then we have dG∗(v) 6 1

for each vertex v ∈ VG∗ (since otherwise there exist two vertices, say u,w, of VG∗ satisfying uv, wv /∈ EG∗ , and

thus G∗[u, v, w] ∼= K1 ∪K2 or G∗[u, v, w] ∼= 3K1). This implies that EG∗ is a matching of Kn. Combining this

with Lemma 2.1 gives us that G∗ ∼= Kn −M , where M is a maximum matching of Kn.

(ii) Since τ(Pn) =
⌈
2
3n

⌉
, the result follows immediately from Lemma 2.3.

(iii) Let G∗ be a graph in Gn−1
n having the minimum Aα-index with n > 4. Since n − 1 >

⌈
2
3n

⌉
, we have

G∗ ∈ T n−1
n (based on Theorem 1.4). Let S = S′ ∪ S′′ be a maximum dissociation set of G∗ such that S′ is an

independent set and EG∗[S′′] is a matching of G∗. Assume that VG∗ = {u1, u2, . . . , un} and S = VG∗ \ {u1}. Then

G∗ ∼= Sk1,k2
, where Sk1,k2

is depicted in Figure 2, and |S′| = k1.

Claim 4. k1 6 1.

Proof of Claim 4. Suppose that k1 > 2, i.e., there exist two vertices us, ut in S′, where s, t ∈ {2, . . . , n}. Then

let G∗
1 = G∗ − u1us + utus. In view of Lemma 2.8, we know that G∗

1 ∈ T n−1
n . However, by Lemma 2.5, we have

λα(G
∗
1) < λα(G

∗), which contradicts the choice of G∗. Therefore, k1 6 1, as desired.

According to Claim 4, we obtain G∗ ∼= S0,n−1

2

if n is odd and G∗ ∼= S1,n−2

2

if n is even.

(iv) Let G∗ be a graph in Gn−2
n having the minimum Aα-index with n > 6. Since n − 2 >

⌈
2
3n

⌉
, we have

G∗ ∈ T n−2
n by Theorem 1.4. Let S = S′∪S′′ be a maximum dissociation set of G∗ such that S′ is an independent

set and EG∗[S′′] is a matching of G∗. Assume that VG∗ = {u1, u2, . . . , un} and S = VG∗ \ {u1, u2}, then we have

min{|N(u1) \ {u2}|, |N(u2) \ {u1}|} > 1.

Note that G∗ is a tree. Then we know that |N(u1) ∩ N(u2)| 6 1, and thus there exist at least |S′| − 1

leaves in S′. By a similar discussion as that in (iii), we obtain |S′| 6 3. We first assume that n is even. Since

n = |S| + 2 = |S′| + |S′′| + 2 and |S′′| is even, we have |S′| is even, i.e., |S′| ∈ {0, 2}. We split the proof in the

following two cases.

Case 1 |N(u1) ∩N(u2)| = 1. In this case, we proceed by considering the size of S′.

Subcase 1.1 |S′| = 0. In this subcase, we have G∗ ∼= T 3
r3,p3

with (r3, p3) 6= (0, 0) and r3 + p3 = n−4
2 .

If max{r3, p3} 6 1, then by Lemma 2.5, we have λα(T
1
r3,p3

) < λα(T
3
r3,p3

). If max{r3, p3} > 2, without loss of

generality, we assume that r3 > 2. Let T ′
i1,j1 be the tree obtained from T 1

i1,j1 by attaching a pendant edge to a

14



...
...

T ′
i1,j1

Figure 6: Tree T ′
i1,j1

2-degree vertex on its internal path of length 3 (see Figure 6). Then by Lemma 2.6, we obtain

λα(T
′
r3,p3

) < λα(T
3
r3,p3

). (4.9)

It is easy to see that T 1
r3,p3

is a proper subgraph of T ′
r3,p3

, thus we have λα(T
1
r3,p3

) < λα(T
′
r3,p3

) by Lemma 2.1. To-

gether this with (4.9), we have λα(T
1
r3,p3

) < λα(T
3
r3,p3

). Note that T 1
r3,p3

∈ T n−2
n . Both cases yield a contradiction

to the choice of G∗.

Subcase 1.2 |S′| = 2 and N(u1)∩N(u2) ⊆ S′. In this subcase, we have G∗ ∼= T 5
r5,p5

with r5 > 0, p5 > 1 and

r5 + p5 = n−4
2 . If r5 = 0, then G∗ ∼= T 1

0,p5
. If r5 > 1, p5 = 1, then by Lemma 2.5, we have λα(T

1
r5,1) < λα(G

∗), a

contradiction. If r5 > 1, p5 > 2, then by Lemma 2.6, we obtain

λα(T
2
r5,p5

) < λα(T
5
r5,p5

). (4.10)

Note that T 1
r5,p5

is a proper subgraph of T 2
r5,p5

. Therefore, by Lemma 2.1, λα(T
1
r5,p5

) < λα(T
2
r5,p5

). Combining

this with (4.10) yields λα(T
1
r5,p5

) < λα(T
5
r5,p5

). Thus we derive a contradiction to the choice of G∗.

Subcase 1.3 |S′| = 2 and N(u1) ∩N(u2) ⊆ S′′. In this subcase, we have G∗ ∼= T 6
r6,p6

with (r6, p6) 6= (0, 0)

and r6+p6 =
n−6
2 . Similarly, by Lemmas 2.1 and 2.6, we obtain λα(T

8
r6,p6

) < λα(T
6
r6,p6

). Note that T 8
r6,p6

∈ T n−1
n ,

a contradiction again.

Case 2 |N(u1) ∩N(u2)| = 0. In this case, we proceed by considering the following four subcases.

Subcase 2.1 |S′| = 0 and u1 ∼ u2. In this subcase, we have G∗ ∼= T 4
r4,p4

with min{r4, p4} > 1 and

r4 + p4 = n−2
2 . If r4 = p4 = 1, then G∗ ∼= T 1

1,0. If r4 = 1 and p4 > 2, then G∗ ∼= T 1
0,p4

. If r4 > 2 and p4 = 1, then

G∗ ∼= T 1
r4,0. If r4, p4 > 2, then by Lemmas 2.1 and 2.6, we obtain

min{λα(T
1
r4−1,p4

), λα(T
1
r4,p4−1)} < λα(T

1
r4,p4

) < λα(G
∗). (4.11)

It is easy to see that both T 1
r4−1,p4

and T 1
r4,p4−1 are in T n−2

n . Combining this with (4.11) gives us a contradiction

to the choice of G∗.

Subcase 2.2 |S′| = 0 and u1 ≁ u2. In this subcase, we have G∗ ∼= T 1
r1,p1

with r1 + p1 = n−4
2 .

Subcase 2.3 |S′| = 2 and u1 ∼ u2. In this subcase, we have G∗ ∼= T 7
r7,p7

with min{r7, p7} > 1 and

r7 + p7 = n−4
2 . Similarly, by Lemmas 2.1 and 2.6, we get λα(T

1
r7,p7

) < λα(T
8
r7,p7

) < λα(G
∗), and thus we get a

contradiction.

Subcase 2.4 |S′| = 2 and u1 ≁ u2. In this subcase, we haveG∗ ∼= T 8
r8,p8

with r8+p8 = n−6
2 . If (r8, p8) = (0, 0),

then G∗ ∼= T 1
1,0, and the result holds. So, In what follows, we assume that (r8, p8) 6= (0, 0). If r8 > 1 and

p8 = 0, then by Lemma 2.5, we obtain that λα(T
1
r8,1) < λα(G

∗). If r8 = 0 and p8 > 1, then by Lemma 2.5

again, λα(T
1
1,p8

) < λα(G
∗). Both cases give us a contradiction. Therefore, in what follows we may assume that

r8, p8 > 1. By a similar proof of Lemma 4.4, applying Matlab to compare the spectral radii of the correspond-

ing quotient matrices, we get min{λα(T
1
r8,p8+1), λα(T

1
r8+1,p8

)} < λα(G
∗), which leads to a contradiction since

{T 1
r8,p8+1, T

1
r8+1,p8

} ⊆ T n−2
n .
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By Cases 1 and 2, we obtain that G∗ ∼= T 1
r1,p1

with r1 + p1 = n−4
2 . Without loss of generality, we may assume

that r1 > p1. If (r1, p1) = (1, 0), then G∗ ∼= T 1
1,0, and thus the result holds. If p1 = 0 and r1 > 2, then by

Lemma 2.5, we have λα(T
1
r1−1,1) < λα(T

1
r1,0), a contradiction. If p1 > 1, then in view of Lemma 4.4, we obtain

G∗ ∼= T 1

⌈n−4

4 ⌉,⌊n−4

4 ⌋
, the result holds. If n is odd, we can also get G∗ ∼= T 2

⌊n−5

4 ⌋,⌈n−5

4 ⌉
in a similar way, whose

procedure is omitted here.

5. Concluding remarks

In this paper, we mainly head in characterizing the extremal graphs having the maximum Aα-index over all graphs

in Gτ
n, B

τ
n and T τ

n , respectively, and determining the structure of graphs having the minimum Aα-index among

all graphs in Gτ
n with some restrictions on τ. Theorem 1.1 (resp. Theorem 1.2, Theorem 1.3) characterizes all

the connected graphs (resp. bipartite graphs, trees) having the maximum Aα-index among all connected graphs

(resp. bipartite graphs, trees) with given order and dissociation number. Theorem 1.4 shows that the graph over

Gτ
n having the minimum Aα-index is a tree provided that τ >

⌈
2
3n

⌉
; whereas Theorem 1.5 determines the graphs

with fixed order n and dissociation number τ ∈ {2,
⌈
2
3n

⌉
, n− 1, n− 2} having the minimum Aα-index.

In view of (1.1), if we put α = 0, respectively, in Theorems 1.1–1.5, then we may deduce the main results

obtained for the adjacency spectral radius of graphs with given order and dissociation number (see [11] for details),

whereas if we put α = 1
2 , respectively, in Theorems 1.1–1.5, we may also deduce the corresponding results for the

signless Laplacian spectral radius, say q(G), of graphs with given order and dissociation number. Then the next

corollaries follow immediately.

Corollary 5.1. Let G be in Gτ
n having the maximum signless Laplacian spectral radius. Then G ∼= Kn−τ ∨

(
τ
2K2

)

if τ is even, and G ∼= Kn−τ ∨
(
τ−1
2 K2 ∪K1

)
if τ is odd.

Corollary 5.2. Let G be a graph in Bτ
n. Then q(G) 6 n with equality if and only if G ∼= Kτ,n−τ .

Corollary 5.3. Let T be a tree in T τ
n (n > 3) having the maximum signless Laplacian spectral radius. Then

q(T ) 6 θ(n, τ) with equality if and only if T ∼= S†
n,τ , where θ(n, τ) is the largest root of x3+(n− 2τ − 6)x2+(8τ −

4n+ 9)x− n = 0.

Corollary 5.4. Let G† be a graph in Gτ
n with τ >

⌈
2
3n

⌉
having the minimum signless Laplacian spectral radius.

Then G† is a tree.

Corollary 5.5. Let G∗ be a graph in Gτ
n having the minimum signless Laplacian spectral radius.

(i) If τ = 2, then G∗ ∼= Kn −M , where M is a maximum matching of Kn.

(ii) If τ =
⌈
2
3n

⌉
, then G∗ ∼= Pn.

(iii) If n > 4 and τ = n− 1, then G∗ ∼= S0,n−1

2

if n is odd and G∗ ∼= S1,n−2

2

if n is even.

(iv) If n > 6 and τ = n− 2, then G∗ ∼= T 1

⌈n−4

4 ⌉,⌊n−4

4 ⌋
if n is even and G∗ ∼= T 2

⌊n−5

4 ⌋,⌈n−5

4 ⌉
if n is odd.
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clear

clc

syms a b c alpha x
AA=[alpha ∗(b+1) 0 (1−alpha )∗b 1−alpha

0 alpha ∗( a+b) (1−alpha )∗b (1−alpha )∗ a
(1−alpha )∗ a (1−alpha )∗ c alpha ∗( a+c ) 0
1−alpha (1−alpha )∗ c 0 alpha ∗( c +1) ] ;

I=eye ( 4 ) ;
y=s imp l i f y (det ( x∗ I−AA))
fun=matlabFunction (y ) ;
ob j fun=@(x ) fun (x ( 1 ) , x ( 2 ) , x ( 3 ) , x ( 4 ) , x ( 5 ) ) ;
x0=[0 0 0 0 0 ] ;
A=[−1 0 0 1 0 ;0 0 1 −1 0 ] ;
b=[−1 0 ] ;
Aeq= [ ] ;
beq = [ ] ;
lb =[2 0 0 1 0 ] ;
ub=[ i n f 1 i n f i n f i n f ] ;
[ x , f v a l ]= fmincon ( objfun , x0 ,A, b ,Aeq , beq , lb , ub , @confun )
function [ c , ceq ]=confun (x )
c =0 .5 .∗ ( x ( 2 ) . ∗ ( 2 . ∗ x(1)+x(3)+x(4))+ sqrt ( x ( 2 ) . ˆ 2 . ∗ ( 2 . ∗ x(1)+x(3)+x ( 4 ) ) . ˆ 2
+8.∗x ( 1 ) . ∗ ( x(3)+x (4 ) ) .∗ (1 −2 .∗x (2)))) −x ( 5 ) ;
ceq=0;
end
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