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Abstract

The problem of phase retrieval has many applications in the field
of optical imaging. Motivated by imaging experiments with biological
specimens, we primarily consider the setting of low-dose illumina-
tion where Poisson noise plays the dominant role. In this paper, we
discuss gradient descent algorithms based on different loss functions
adapted to data affected by Poisson noise, in particular in the low-
dose regime. Starting from the maximum log-likelihood function for
the Poisson distribution, we investigate different regularizations and
approximations of the problem to design an algorithm that meets the
requirements that are faced in applications. In the course of this, we
focus on low-count measurements. For all suggested loss functions,
we study the convergence of the respective gradient descent algo-
rithms to stationary points and find constant step sizes that guarantee
descent of the loss in each iteration. Numerical experiments in the low-
dose regime are performed to corroborate the theoretical observations.
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1 Introduction

Phase retrieval is a fundamental problem particularly in diffraction imaging
techniques, where intensity measurements of several diffraction patterns of an
object are recorded. In many instances, these measurements are taken in the
far-field distance. It can be shown that such far-field intensity measurements
are given by the squared absolute value of the Fourier transform of the object.
To make this more concrete suppose a detector with N pixels is placed in the
far-field distance. A discretized form of the signal at the detector plane is then
given by the discrete Fourier transform

N−1∑
n=0

xne
−2πi k n/N = ⟨x, uk⟩,

with vectors uk = (e2πi k n/N )N−1
n=0 and x = (xn)

N−1
n=0 . The latter is a discrete

representation of the object which we would like to reconstruct. According to
this model, the vector uk can be related to the k-th frequency, or equivalently,
with the k-th pixel of the detector. As mentioned above, the detector itself mea-
sures only intensities, that is, it records only the squared modulus of ⟨x, uk⟩.
Consequently, we are faced with the challenging problem of reconstructing x
from data of the form |⟨x, uk⟩|2, k = 0, . . . , N − 1.

It is known, however, that this data set does not contain enough informa-
tion to make the inverse problem uniquely solvable [1], i.e., it is not sufficient
to probe the object x only by the pure states uk, k = 0, . . . , N − 1. To avoid
these difficulties, we have to insert a certain amount of redundancy into our
data set. In order to introduce a sufficient portion of redundancy, one replaces
the set of measurement vectors uk by an over-complete system of vectors
ak ∈ CN , k = 1, . . . ,m with m ≫ N , and measures |⟨x, ak⟩|2, k = 1, . . . ,m,
instead of only |⟨x, uk⟩|2, k = 0, . . . , N − 1. A prominent realization for this
approach is the so-called far-field ptychography. This method uses measure-
ment vectors of the form ak,ℓ = (wn,ℓ e

−2πi k n/N )N−1
n=0 with a mask wn,ℓ, which

is given as translates (wn−ℓmodN )N−1
n=0 of a vector w = (wn)

N−1
n=0 with short

support. The number of translates is arranged such that the object is scanned
by the mask in a way that for adjacent scanning positions the supports of
the mask overlap with each other by a certain fraction. We will not discuss
ptychography further, instead we refer to [2–4].

Motivated by ptychography, we consider the following reconstruction
problem. Given data of the form

ŷi = |⟨x, ai⟩|2 , i = 1, . . . ,m, (1)

we have to reconstruct the vector x ∈ Cn. This is the phase retrieval problem
in its mathematical abstract form. The problem attracted a lot of attention
during the last decades and a number of fundamental contributions were made
[5–8]. The first fundamental problem is that of uniqueness. That is the question
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of how large m has to be in order to make the mapping Cn → Cm, x 7→
(|⟨x, ai⟩|2)mi=1 injective. This problem was considered by several authors under
different assumptions on x and on the vectors ai. We refer to the fundamental
papers [6, 9] for further discussion. Our focus lies on the reconstruction of
the vector x given ŷi, i = 1, . . . ,m, and we will consider this problem under
specific assumptions on the data set, which are again motivated by specific
constraints in the experimental setup. Before going into the details of those, let
us first recall the reconstruction techniques based on a variational approach.
The variational method tries to recuperate x via a minimization

x = argmin
z

L(z), (2)

using a suitable loss function L : Cn → R. For determining x, or at least a good
approximation, usually gradient descent methods are applied to the problem
(2), i.e.,

zk+1 = zk − µ∇L(zk), k ≥ 0,

with learning rate µ > 0 and some appropriate initial vector z0. For the phase
retrieval problem, the loss function is of the form L(z) = ℓ ◦ φ(z), with a
suitable function ℓ : Rm → R and φ : Cn → Rm, z 7→ (|⟨ai, z⟩|2)mi=1. Note also
that the function φ usually makes the problem non-convex.

A frequently used loss function for reconstruction of x is the least squares
loss

L(z) =
m∑
i=1

∣∣|⟨ai, z⟩|2 − ŷi
∣∣2 ,

or some regularized variants of it. Gradient descent algorithms for the
corresponding minimization problem which apply Wirtinger calculus were
investigated to some extent. These methods, now known as Wirtinger flow
algorithms, were studied first by E. Candés, X. Li, and M. Soltanolkotabi in
[10]. Different variants were further discussed by other authors [11–19]. These
works study the convergence of stochastic and non-stochastic gradient descent
algorithms involving Wirtinger derivatives for different loss functions in case
of random (Gaussian) measurement vectors ai. Apart from convergence guar-
antees for random measurements, [20] and [21] analyze convergence of gradient
descent algorithms to stationary points of an amplitude-based loss function
for any type of measurement vectors, random or deterministic.

In all practical relevant measurement scenarios, the data ŷi is corrupted
by some sort of noise. Hence, we are given perturbed values yi instead of
ŷi. The perturbation may have many sources such as thermal noise, read-out
noise, background noise, among others [22]. The problem of a certain type of
background noise was recently tackled by one of the authors in [23]. Here, we
concentrate on the perturbation which is caused by the operation mode of the
detector. All modern detectors, such as CCD cameras, are ultimately counting
devices. That means, the measurement process can be modelled as a counting
process and can, therefore, mathematically be formulated in terms of a Poisson
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distributed discrete random variable, viz.

yi ∼ Poisson
(
|⟨ai, x⟩|2

)
, i = 1, . . . ,m,

where |⟨ai, x⟩|2 is the ground-truth. This means that the probability that
yi particles are counted at position i given the ground-truth |⟨ai, x⟩|2 is
1
yi!

e−|⟨ai,x⟩|2 (|⟨ai, x⟩|2)yi . In order to incorporate the fact that the measure-
ment process is a Poisson process into a variational reconstruction method,
it is necessary to adapt the loss function accordingly. We follow a maximum
likelihood approach and replace the least squares loss function by the Poisson
log-likelihood loss which reads as

LP (z) =

m∑
i=1

|⟨ai, z⟩|2 − yi log
(
|⟨ai, z⟩|2

)
.

The minimization problem (2) for the Poisson likelihood loss LP was studied
by many authors, see for example [13, 24–28] and references therein.

Our motivation to reconsider the minimization problem (2) with Poisson
log-likelihood LP originates in specific diffraction imaging setups. For imaging
biological tissue like cells, viruses, etc., it is generally not possible to work with
a radiation beam of high intensity as such exposure would destroy the object
instantaneously [29–31]. Therefore, it is essential to perform the measurement
with a beam of suitably low intensity, which in turn leads to a weak signal at
the detector. In realistic measurement scenarios, the counting rate can be in
the range below 10 illumination particles per pixel, and at a number of pixels
it can be even zero. This low-count scenario leads to serious problems with
respect to the gradient descent reconstruction process as it causes a singularity
in the gradient of LP . In order to take these problems into account, we have
to introduce a regularization technique which deals with these singularities.
Algorithmic approaches for solving phase retrieval problems with low-dose
Poisson noisy data were also considered in [32–34].

The outline of the paper is as follows. In Section 2, we summarize the theory
on Wirtinger derivatives and some fundamental results on the convergence of
the gradient descent algorithm with Wirtinger derivatives. Section 3 contains a
discussion on the choice of loss function in the optimization problem formulated
for solving the phase retrieval problem with Poisson noisy low-dose data. In
Section 4, we present a convergence analysis for the algorithms involving the
different loss functions. We provide numerical justification of our theoretical
results in Section 5. In Section 6, we summarize our results and conclude with
a brief outlook on further possible model adjustments.
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2 Gradient descent with Wirtinger derivatives

We start with presenting some theory on the Wirtinger calculus. Consider a
function

f(z) = u(x, y) + iv(x, y), z = x+ iy, x, y ∈ Rn,

with real-valued and differentiable functions u and v. Using conjugate variables
z = x + iy and z̄ = x − iy, the function f can be considered as a function
of variables z and z̄. Since u and v are differentiable, the function f(z, z̄)
is holomorphic w.r.t. z for fixed z̄ and vice versa. The Wirtinger calculus
expresses the derivatives of f w.r.t. the real variables x and y in terms of
the conjugate variables z and z̄ treating them as independent. The Wirtinger
derivatives of f are given as

∂zf = 1
2 (∂xf − i∂yf), ∂z̄f = 1

2 (∂xf + i∂yf).

This implies the relation

∂zf = ∂z̄ f̄ , and ∂z̄f = ∂z f̄ . (3)

The Wirtinger derivatives ∂zf and ∂z̄f can also be expressed as

∂zf = ∂zf(z, z̄)
∣∣
z̄=const.

=
[
∂z1f(z, z̄), . . . , ∂znf(z, z̄)

] ∣∣
z̄=const.

,

∂z̄f = ∂z̄f(z, z̄)
∣∣
z=const.

=
[
∂z̄1f(z, z̄), . . . , ∂z̄nf(z, z̄)

] ∣∣
z=const.

.

Consequently, the Wirtinger gradient and Wirtinger Hessian are given as

∇f(z) =

(
(∂zf)

∗

(∂z̄f)
∗

)
, ∇2f(z) =

(
∂z(∂zf)

∗ ∂z̄(∂zf)
∗

∂z(∂z̄f)
∗ ∂z̄(∂z̄f)

∗

)
. (4)

In case that f is a real-valued function, i.e., f(z) = u(x, y), the relations in (3)
provide

∂z̄f = ∂zf, ∂z̄(∂z̄f)
∗ = ∂z(∂zf)∗, ∂z(∂z̄f)

∗ = ∂z̄(∂zf)∗.

It is more convenient to use the following simplified notation

∇zf ..= (∂zf)
∗, ∇2

z,zf
..= ∂z(∂zf)

∗, resp. ∇2
z,z̄f

..= ∂z(∂z̄f)
∗.

The second-order Taylor polynomial of f at a point z0 is

Pf (v, z0) = f(z0) + (∇f(z0))
∗
(
v
v̄

)
+

(
v
v̄

)∗

∇2f(z)

(
v
v̄

)
.
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In case of a real-valued function f , the quadratic term of the Taylor polynomial
Pf can be expressed as(

v
v̄

)∗

∇2f(z)

(
v
v̄

)
= 2Re(v∗∇2

z,zf(z) v) + 2Re(v∗ ∇2
z̄,zf(z) v̄). (5)

In this paper, we focus on real-valued functions f . For minimizing such a
function f , we apply gradient descent

zk+1 = zk − µk ∇zf(zk) (6)

with some appropriate initial vector z0 ∈ Cn. The parameter µk > 0 is called
step size or learning rate. It can be chosen to be constant or adaptive, prefer-
ably such that descent in every iteration is guaranteed, i.e., f(zk+1) ≤ f(zk)
for all k ≥ 0. The proof of the following result can be found in [21].

Proposition 1 Let b ∈ R, f : Cn → [b,∞), be a twice Wirtinger differentiable
function with a uniformly bounded Hessian, i.e.,(

v
v

)∗

∇2f(z)

(
v
v

)
≤ L

∥∥∥∥(vv
)∥∥∥∥2

2

for all z, v ∈ Cn, with a constant L > 0 independent of z. Let the sequence
(zk)k≥0 be generated by the update (6) with an arbitrary initialization z0 ∈ Cn.
If 0 < µ ≤ L−1, then

f(zk)− f(zk+1) ≥ µ ∥∇zf(zk+1)∥22

for all k ≥ 0. Then, if f has compact sublevel sets Ls(f) = {z ∈ Cn : f(z) ≤ s},
the Wirtinger flow algorithm (6) is guaranteed to converge to a stationary point
of f .

We now specify the requirements of this result to loss functions which are
relevant in our context. As mentioned above, the loss functions we are going to
consider are given as a composition ℓ◦φ with a smooth function ℓ : R → R and
φ : Cn → [0,∞), φ(z) = |⟨a, z⟩|2. For such functions, we obtain the following
bound on the Hessian.

Lemma 2 Let ℓ : R → R be twice differentiable and φ : Cn → [0,∞), φ(z) =
|⟨a, z⟩|2 with a ∈ Cn. Then(
v
v

)∗

∇2(ℓ ◦ φ)(z)
(
v
v

)
≤
(
2ℓ′′
(
|⟨a, z⟩|2

)
|⟨a, z⟩|2 + ℓ′

(
|⟨a, z⟩|2

))
∥a∥22

∥∥∥∥(vv
)∥∥∥∥2

2

for all z, v ∈ Cn.
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Proof. The Wirtinger derivative of (ℓ ◦ φ)(z, z) = ℓ(zTaa∗z) is

∂z(ℓ ◦ φ)(z, z) = ∂z(ℓ ◦ φ)(z, z) |z̄=const.

= ℓ′(zTaa∗z)zTaa∗ = ℓ′(|⟨a, z⟩|2)z∗aa∗.

For the second derivatives we obtain

∂z

(
∂z(ℓ ◦ φ)(z, z)

)∗
= ∂z

(
ℓ′(|⟨a, z⟩|2)aa∗z

)
= ℓ′′(|⟨a, z⟩|2) |⟨a, z⟩|2 aa∗ + ℓ′(|⟨a, z⟩|2)aa∗,

and analogously

∂z̄

(
∂z(ℓ ◦ φ)(z, z)

)∗
= ∂z̄

(
ℓ′(|⟨a, z⟩|2)aa∗z

)
= ℓ′′(|⟨a, z⟩|2) ⟨a, z⟩2 aaT.

In view of (5) we get(
v

v

)∗

∇2(ℓ ◦ φ)(z)

(
v

v

)
= 2
(
ℓ′′(|⟨a, z⟩|2) |⟨a, z⟩|2 + ℓ′(|⟨a, z⟩|2)

)
|⟨a, v⟩|2

+ 2Re
(
ℓ′′(|⟨a, z⟩|2) ⟨a, z⟩2 ⟨a, v⟩2

)
≤ 2
(
2ℓ′′(|⟨a, z⟩|2) |⟨a, z⟩|2 + ℓ′(|⟨a, z⟩|2)

)
|⟨a, v⟩|2

≤
(
2ℓ′′(|⟨a, z⟩|2) |⟨a, z⟩|2 + ℓ′(|⟨a, z⟩|2)

)
∥a∥22

∥∥∥∥(vv
)∥∥∥∥2

2

,

where we used Re(α2 β2) ≤ |α|2 |β|2 for α, β ∈ C. □

In order to apply the convergence result of Proposition 1, we need to bound
2 ℓ′′ (x) x+ℓ′ (x) by a constant independent of x ∈ [0,∞) and we have to show
that the level sets of ℓ ◦ φ are compact. The compactness of the level sets will
be addressed in the following lemma.

Lemma 3 Let f : Cn → R, z 7→
∑m

i=1 |⟨ai, z⟩|
2
with ai ∈ Cn, i = 1, . . . ,m.

Denote with A the matrix with rows a∗i , i = 1, . . . ,m. For any z0 ∈ Cn, f
restricted to z0 + range(A∗) has compact level sets.

Proof. Consider any z ∈ z0+range(A∗). We use that
∑m

i=1 |⟨ai, z⟩|
2
= ∥Az∥22.

It is z0 = ẑ0+ z̃0 with ẑ0 ∈ ker(A) and z̃0 ∈ range(A∗). The vector z̃ ..= z− ẑ0 is
the orthogonal projection of z onto the range of A∗. As z̃ is orthogonal to the
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kernel of A, it is ∥Az̃∥22 ≥ σ2
min ∥z̃∥

2
2, where σmin denotes the smallest non-zero

singular value of A. Then, as ∥Az∥22 = ∥Az̃∥22, we can continue to bound

∥Az∥22 ≥ σ2
min ∥z̃∥

2
2 ≥ σ2

min

(
∥z∥22 − ∥ẑ0∥22

)
.

Since σmin and ∥ẑ0∥22 are constant for all z ∈ z0 + range(A∗), this shows that

∥Az∥22 is bounded from below by a scaled and shifted version of ∥z∥22 for all

z ∈ z0 + range(A∗). As z 7→ ∥z∥22 has compact level sets, f has compact level
sets on z0 + range(A∗). □

Remark 4 With Lemma 3 we obtain that
∑m

i=1 ℓi(|⟨ai, z⟩|
2
) has compact level

sets on z0 + range(A∗) if the functions ℓi : [0,∞) → R, i = 1, . . . ,m, are
continuous, bounded from below, and satisfy ℓi(t) → ∞ for t → ∞.

3 Phase retrieval as an optimization problem

As discussed above, our aim is to reconstruct an (approximate) solution to the
phase retrieval problem (1) under certain assumptions on the random nature of
the measurement process. Our focus lies on those cases where the measurement
process can be modelled as a Poisson distributed random process. In order to
associate this assumption with a variational reconstruction method, we use
the maximum (log-)likelihood estimation.

3.1 Poisson log-likelihood loss

In order to maximize the (log)-likelihood function for the Poisson distributed
random variable yi with ground-truth |⟨ai, x⟩|2, we have to determine z
such that

∑m
i=1(yi log

(
|⟨ai, z⟩|2 − |⟨ai, z⟩|2

)
is maximal. This is equivalent to

determining argminz LP (z) with

LP (z) =

m∑
i=1

|⟨ai, z⟩|2 − yi log
(
|⟨ai, z⟩|2

)
. (7)

As mentioned earlier, we are interested in measurement scenarios where we
can have no counts at certain pixels. In those cases we need to consider the
value |⟨ai, z⟩|2 = 0, which leads to singularities in the loss function LP . A
simple strategy to deal with them is shifting the logarithmic term by a positive
constant ε > 0, i.e.,

LP,ε(z) =

m∑
i=1

|⟨ai, z⟩|2 − yi log
(
|⟨ai, z⟩|2 + ε

)
. (8)
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The corresponding gradient descent update rule with constant step size reads
as

zk+1 = zk − µ

m∑
i=1

(
1− yi

|⟨ai, zk⟩|2 + ε

)
⟨ai, zk⟩ ai.

A suitable choice of the parameter is, however, not obvious. In this regard,
one could for example study a discrepancy principle similar to [35, 36]. We,
instead, propose to consider an approximation of the Poisson loss (8). An
appropriate approximation is discussed in the next section.

3.2 Gaussian log-likelihood and variance stabilization

Recall that the maximum log-likelihood loss function for a Gaussian dis-
tributed random variable yi with distribution N (|⟨ai, x⟩|2, σ2

i ), i = 1, . . . ,m,
is given as

L(z) =
m∑
i=1

1

2σ2
i

(
|⟨ai, z⟩|2 − yi

)2
. (9)

Often, this loss is used for image reconstruction even if the underlying process
is a counting process, i.e., the random variable is Poisson distributed. This
can be justified in cases for which the variance parameter λ in the Poisson
distribution Poisson(λ) is sufficiently large. In this situation, the central limit
theorem shows that Poisson(λ) can be approximated by a Gaussian distri-
bution N (λ, λ). However, in the low-dose scenario this approximation is no
longer suitable.

Another approach to approximate a Poisson random variable by a Gaussian
random variable is the so-called variance stabilization method [37–40]. This
method transforms the Poissonian data such that the resulting random variable
has approximately constant variance. The rationale of this method is as follows.
Let λ > 0 and X ∼ Poisson(λ). Assume f : R≥0 → R is a sufficiently smooth
function. Then, its first order Taylor approximation around the variance λ is
f(t) ≈ f(λ) + (z − λ)f ′(λ), and, hence, V(f(X)) ≈ V(X) (f ′(λ))2. In order
to obtain an approximate constant variance, set the right-hand side of the
latter relation equal to σ2. This leads to f(t) = 2σ

√
t. The approach goes

back to [37, 38] and was modified by Anscombe in [40] using a fifth order
Taylor approximation in order to handle cases where the variance λ is rather
small. Anscombe considered the shifted square-root transform f(t) =

√
t+ c.

Following the same arguments as above, one arrives at

V
(√

X + c
)
≈ (λ+ c) · V

[
1 +

1

2
· X − λ√

λ+ c
− 1

8

(
X − λ√
λ+ c

)2

+
1

16

(
X − λ√
λ+ c

)3

− 5

128

(
X − λ√
λ+ c

)4

+
7

256

(
X − λ√
λ+ c

)5
]

≈ 1

4
·
(
1 +

3
8 − c

λ
+

32c2 − 52c+ 17

32λ2

)
,
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which suggests to choose c = 3
8 to achieve V(X) ≈ 1/4.

However, neither the simple square-root transform nor the Anscombe
transform performs well when λ ∈ [0, 2], hence, we aim for a better suited
variance-stabilizing transform of square-root type f(t) =

√
t+ c. We try to

determine the parameter c > 0 such that V(
√
X + c ) = 1/4 by considering

V
(√

X + c
)
= E(X) + c−

[
E
(√

X + c
)]2

= λ+ c−

( ∞∑
k=0

√
k + c · exp(−λ)λk

k!

)2

,

and obtain an approximately optimal value for c by setting this equal to 1/4.
By this method, we obtain, e.g., for λ = 1 the optimal value c ≈ 0.12 and for
λ = 2 the value c ≈ 0.27.

To cover not only one optimal choice of c for one specific value of λ, we
propose to consider an averaging transform

f(z) = 1
2

(√
z + c1 +

√
z + c2

)
(10)

with c1, c2 ≥ 0. An example for such a transform is the Tukey-Freeman
transform [41]

f(z) = 1
2

(√
z +

√
z + 1

)
(11)

that is known to perform well for small λ. We advance this idea with using
c1 = 0.12 and c2 = 0.27 in an experiment dominated by 1 and 2 counts. This
is justified as for measurements of this size it is very likely that the underlying
ground-truth is close to 1 or 2. The performance of this transform compared
to the square-root and the Anscombe transform can be studied in Figure 1.

Fig. 1 Variance-stabilizing transforms.

By means of Figure 1 we note that for λ close to 0 the square-root transform
might be preferred over the other variance-stabilizing transforms. Also by the
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method described above we find that for λ → 0 the optimal choice is c close
to 0.

Returning back to the discussion on suitable loss functions, we can use any
of the presented variance-stabilizing transforms f and consider the loss

L(z) =
m∑
i=1

2
(
g
(
|⟨ai, z⟩|2

)
− f (yi)

)2
,

which represents the log-likelihood function for a Gaussian distribution
N
(
g
(
|⟨ai, z⟩|2

)
, 1/4

)
, with function g satisfying g(X) = E (f(X)).

If we consider a transform f(x) =
√
x+ c with c ≥ 0 that stabilizes the

variance of a Poisson random variable around 1/4, the mean of the transformed
random variable is approximately

E
(√

X + c
)
=
√

E (X + c)− V
(√

X + c
)

≈
√

E(X) + c− 1
4 . (12)

Hence, we would work with a loss function

L(z) =
m∑
i=1

2

(√
|⟨ai, z⟩|2 + c− 1

4 −
√
yi + c

)2

. (13)

A special case of this type of loss function is the amplitude loss

L(z) =
m∑
i=1

2

(√
|⟨ai, z⟩|2 + ε−√

yi

)2

, (14)

with ε > 0, which has attracted interest recently in the phase retrieval com-
munity, see [20, 21]. This loss function is motivated by the Gaussian model
involving a square-root transform. However, this formulation disregards the
relation (12) but uses the coarse approximation E

(√
X
)
≈
√

E(X) .
A loss function based on the maximum likelihood model for a Gaussian

distribution using the Anscombe transform, i.e., with c = 3
8 , was considered

before, e.g., in [42], and studied for mixed Poisson-Gaussian noise in [43]. These
works also used the approximation E

(√
X + 3/8

)
≈
√
E(X + 3/8) instead of

(12).
While a loss function (13) fits very well the problem setting we want to

consider, applying a gradient descent method to this loss function is prob-
lematic if c ≤ 1/4. The considered function is not well-defined for z with
|⟨ai, z⟩|2 ∈ [0, 1/4− c), and not differentiable at |⟨ai, z⟩|2 = 1/4− c. Hence, we
need to regularize again to counteract this issue. We decide to also utilize the
coarse approximation E

(√
X + c

)
≈
√
E(X + c) and consider

L(z) =
m∑
i=1

2

(√
|⟨ai, z⟩|2 + c−

√
yi + c

)2

. (15)
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The idea of adapting the expectation of the distribution accordingly is also
not reflected in works as, e.g., [16]. The intention of those approaches is to
smoothen the loss function. We, additionally, aim at formulating the loss such
that it is close to the Poissonian model. However, in an experiment with too
low illumination dose, resulting in ground-truth values much smaller than 1,
the variance after variance-stabilizing transform is rather close to 0. Hence,
the approximation (12) is not good for an extreme low-dose experiment and,
thus, we abstain from subtracting 1/4 in the mean approximation and prefer
using (15).

More generally, we can also use an averaging transform (10), with values
c1, c2 ≥ 0, for variance stabilization. For the same reasons as before, we use
the coarse approximation

E
(√

X + c1 +
√

X + c2

)
≈
√

E(X) + c1 +
√

E(X) + c2 ,

and consider loss functions of the form

L(z) =
m∑
i=1

1

2

(√
|⟨ai, z⟩|2 + c1 +

√
|⟨ai, z⟩|2 + c2 −

√
yi + c1 −

√
yi + c2

)2
.

All discussed variance-stabilizing transforms result in a variance approxi-
mately equal to 1/4 only for distribution parameters λ > 0. Hence, it might not
be advisable to use the loss functions resulting from the variance-stabilizing
transforms in case of ground-truth values equal or close to 0. In an exper-
iment, the ground-truth values are not known. However, if yi = 0, it is
likely that the corresponding ground-truth is close to 0 and we wish to avoid
variance-stabilizing transforms for these instances. Note that for yi = 0 no
regularization is required in the exact Poisson log-likelihood model as the loss
function reduces to the term |⟨ai, z⟩|2. Therefore, we propose to consider

L0(z) =

m∑
i=1

1yi>0 ·
1

2

(√
|⟨ai, z⟩|2 + c1 +

√
|⟨ai, z⟩|2 + c2 − C

)2

(16)

+ 1yi=0 · |⟨ai, z⟩|2 ,

with c2 ≥ c1 > 0, C ≥ 0, if one is working with low-dose data dominated by
zero measurements.

4 Convergence analysis of gradient descent
algorithms for phase retrieval

In the following, we analyze the convergence of gradient descent algorithms
for optimization problems using the loss functions discussed in Section 3.1 and
Section 3.2.
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Firstly, we state a convergence guarantee for a gradient descent algorithm
according to the Poisson log-likelihood loss.

Theorem 5 Let ε > 0 and LP,ε(z) =
∑m

i=1 |⟨ai, z⟩|
2−yi log

(
|⟨ai, z⟩|2 + ε

)
. Let

M be the matrix with rows
√

1 + yi

8ε ·a
∗
i , i = 1, . . . ,m, and choose µ ≤ ∥M∥−2

.
Then, the sequence (zk)k≥0 ⊂ Cn defined by

zk+1 = zk − µ ·
m∑
i=1

(
1− yi

|⟨ai, zk⟩|2 + ε

)
⟨ai, zk⟩ ai

converges to a stationary point of LP,ε.

Proof. We shall apply Proposition 1. Since LP,ε(z) =
∑m

i=1 ℓi ◦ φ(z) with
ℓi : [0,∞) → R, t 7→ t− yi log(t+ ε) and φ(z) = |⟨ai, z⟩|2, we compute

2 · ℓ′′i (t) · t+ ℓ′i (t) = 2 · yi
(t+ ε)2

· t+ 1− yi
t+ ε

= 1 +
yi(t− ε)

(t+ ε)2
≤ 1 +

yi
8ε

,

where we used that s−ε
(s+ε)2 ≤ 1

8ε for every s ∈ R and any fixed ε > 0. With

Lemma 2 and this bound, we obtain(
v
v

)∗

∇2LP,ε(z)

(
v
v

)
≤ 2 ·

m∑
i=1

∣∣∣〈√1 + yi

8ε · ai, v
〉∣∣∣2

≤ 2 ∥M∥2 ∥v∥22 = ∥M∥2
∥∥∥∥∥
(
v

v

)∥∥∥∥∥
2

2

for all z, v ∈ Cn. It remains to show that LP,ε has compact sublevel sets on the
subspace z0 + range(A∗), which contains all possibly attainable iterates of the
algorithm. This follows from Lemma 3 and Remark 4. Clearly, all functions
ℓi are continuous and bounded from below. Further, we can find k1 > 0 and
k2 ∈ R with ℓi(t) ≥ k1 · t + k2 for all t ∈ [0,∞), hence ℓi(t) → ∞ for t → ∞.
Then, using Proposition 1, we conclude that the considered gradient descent
algorithm converges to a stationary point of the loss LP,ε. □

Our main conclusion of Theorem 5 is that the step size which guarantees
convergence must be of the order of the regularization parameter ε. If we are
interested in affecting the problem with only a small regularization parameter,
this involves choosing a small step size, but using a constant small step size in
all iterations results in slow convergence.

In [13], a convergence analysis for a similar algorithm is presented. In con-
trast to our theory on convergence to stationary points, the authors of [13] state
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a guarantee for convergence to the ground-truth solution. However, while this
guarantee only holds in case of a good initialization and is only applicable for
measurement vectors ai being Gaussian random vectors, our result holds inde-
pendently of the quality of the initialization and for arbitrary measurement
systems and, hence, is more relevant for applications.

We proceed with a convergence analysis for the gradient descent algorithms
based on the class of loss functions considered in Section 3.2.

Theorem 6 Let

Lavg(z) =

m∑
i=1

1

2

(√
|⟨ai, z⟩|2 + c1 +

√
|⟨ai, z⟩|2 + c2 − C

)2

, (17)

with constants c2 ≥ c1 > 0, C ≥ 0. For arbitrary z0 ∈ Cn define a sequence
(zk)k≥1 by

zk+1 = zk − µ · 1
2

m∑
i=1

(√
|⟨ai, zk⟩|2 + c1 +

√
|⟨ai, zk⟩|2 + c2 − C

)

·

 1√
|⟨ai, zk⟩|2 + c1

+
1√

|⟨ai, zk⟩|2 + c2

 ⟨ai, zk⟩ ai.

Then, (zk)k≥0 converges to a stationary point of the loss function Lavg provided

µ ≤ 2
((

3 +
√

c2/c1
)
∥A∥2

)−1

, where A denotes the matrix with rows a∗i , i =

1, . . . ,m.

Proof. We proceed as in the proof of Theorem 5. A bound for the Hes-
sian of Lavg is found by using Lemma 2 with ℓi : [0,∞) → [0,∞), t 7→
1
2

(√
t+ c1 +

√
t+ c2 − C

)2
. We have

ℓ′(t) =
1

2

(√
t+ c1 +

√
t+ c2 − C

)
·
(

1√
t+ c1

+
1√

t+ c2

)

=
1

2

[
2 +

√
t+ c1√
t+ c2

+

√
t+ c2√
t+ c1

− C ·
(

1√
t+ c1

+
1√

t+ c2

)]
,

which leads to

ℓ′′(t) =
1

4

(
1√

t+ c1
+

1√
t+ c2

)2

− 1

4

(√
t+ c1 +

√
t+ c2 − C

)
·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)
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=
1

4

[
2√

t+ c1
√
t+ c2

−
√
t+ c1

(t+ c2)
3
2

−
√
t+ c2

(t+ c1)
3
2

+ C ·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)]

≤ 1

4
C ·

(
1

(t+ c1)
3
2

+
1

(t+ c2)
3
2

)
.

For the bound of the second derivative we have used that 2
αβ ≤ α

β3 + β
α3 for

α, β ∈ R. Thus, we arrive at

2 t ℓ′′ (t) + ℓ′ (t) ≤ 1

2
C ·

(
t

(t+ c1)
3
2

+
t

(t+ c2)
3
2

)

+
1

2

[
2 +

√
t+ c1√
t+ c2

+

√
t+ c2√
t+ c1

− C ·
(

1√
t+ c1

+
1√

t+ c2

)]

=
1

2

(
−C ·

(
c1√
t+ c1

+
c2√
t+ c2

)
+ 2 + 1 +

√
c2
c1

)

≤ 1

2

(
3 +

√
c2
c1

)
,

and, consequently,(
v
v

)∗

∇2Lavg(z)

(
v
v

)
≤

m∑
i=1

(
3 +

√
c2
c1

)
|⟨ai, v⟩|2

≤ 1

2

(
3 +

√
c2
c1

)
∥A∥2

∥∥∥∥∥
(
v

v

)∥∥∥∥∥
2

2

for all z, v ∈ Cn. This suggests choosing µ = 2
((

3 +
√

c2/c1
)
∥A∥2

)−1

.

The function Lavg restricted to z0 + range(A∗) has compact level sets by
Lemma 3 and Remark 4, as all functions ℓi are continuous, bounded from
below, and satisfy ℓi(t) → ∞ for t → ∞. By Proposition 1, the gradient descent
algorithm converges to a stationary point of the loss function Lavg. □

By this result, we also obtain a rule for the step size when using a gradient
descent algorithm for a loss (13) or (14).
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Corollary 7 Convergence to a stationary point of a loss function (14) for some
regularization parameter ε > 0 can be achieved by the corresponding gradient

descent algorithm using a step size µ ≤
(
2 ∥A∥2

)−1

.

This is the same result as Theorem A.1 in [20], which means that we gen-
eralized the convergence guarantee of [20] for the amplitude loss to the class
of loss functions (17).

The important difference of this result to the convergence guarantee for
the Poisson log-likelihood loss, as stated in Theorem 5, is that the bound on
the step size necessary for convergence is independent of a potentially small
regularization parameter.

Corollary 8 A loss function using the Tukey-Freeman transform (11) for
variance stabilization would be of the form

L(z) =
m∑
i=1

1

2

(√
|⟨ai, z⟩|2 + ε +

√
|⟨ai, z⟩|2 + 1 −√

yi −
√

yi + 1

)2

,

with ε > 0 to avoid the singularity in the derivative. By Theorem 6, we conclude
that a gradient descent algorithm using this loss function requires a step size

µ ≤ 2
((

3 +
√

1/ε
)
∥A∥2

)−1

for guaranteed convergence.

This means that for this type of variance-stabilizing transform we face the
same problematic as for the Poisson log-likelihood loss.

Also for the loss L0 finally proposed by us we can use the same fixed step
size and can guarantee convergence to a stationary point of the loss function.

Corollary 9 Convergence to a stationary point of loss L0 defined in (16) can
be achieved by the corresponding gradient descent algorithm with a step size

µ ≤ 2
((

3 +
√

c2/c1
)
∥A∥2

)−1

.

5 Numerical experiments

5.1 Phase retrieval from low-dose data with Poisson noise

We corroborate our theoretical consideration with numerical experiments on
the reconstruction of an object from simulated low-dose Poissonian phase
retrieval measurements. Our simulations are based on a test object x ∈ Cn with
n = 256, and complex Gaussian measurement vectors ai ∈ Cn, i = 1, . . . ,m,
where m = 10n. We normalize the measurements such that

∑m
i=1 |⟨ai, x⟩|

2
= 1

and understand a noiseless value |⟨ai, x⟩|2 as the probability that photons
arrive at the i-th detector pixel. We choose a dose d ∈ N and work with
measurements

yi ∼ Poisson
(
d · |⟨ai, x⟩|2

)
, i = 1, . . . ,m.
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In the following, we experiment with doses d ∈ {500, 1000, 1500, . . . , 4000}.
The histograms in Figure 2 show exemplary realizations of measurement dis-
tributions for d = 500 and d = 4000. The lowest dose corresponds to a
signal-to-noise-ratio SNR ..= ∥(d · | ⟨ai, x⟩ |2)mi=1∥2

/
∥(yi − d · |⟨ai, x⟩|2)mi=1∥2

of approximately 0.6, the highest dose corresponds to SNR ≈ 1.7.

(a) Dose d = 500. (b) Dose d = 4000.

Fig. 2 Distribution of measurements for a low-dose and a higher-dose experiment.

We initialize all considered algorithms using the power method proposed in
[10]. For each dose we repeat the experiments twenty times and show averages
of the reconstruction results.

5.1.1 Gradient descent with Poisson log-likelihood

First, we compare the performance of the gradient descent algorithm using the
Poisson log-likelihood loss (8) for different regularization parameters ε. The
respective algorithm is named ‘Poisson flow’.

Fig. 3 Performance of the Poisson flow with regularization parameter ε ∈{
10−3, 0.1, 0.25, 0.5, 1

}
.

Figure 3 depicts the performance of the discussed algorithms for this experi-
ment in terms of the relative reconstruction error minθ∈[0,2π] ∥x−eiθx̃∥2

/
∥x∥2,

with ground-truth x and approximate reconstruction x̃. This experiment shows
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that the performance of the algorithm clearly depends on the choice of the
regularization parameter ε. While in a higher-dose experiment the algorithm
is not very sensible to the parameter selection, a low-dose experiment requires
knowledge about a good choice for ε.

We would like to comment that, alternatively to (8), we could also work
with the loss

L(z) =
m∑
i=1

|⟨ai, z⟩|2 − (yi + ε) log
(
|⟨ai, z⟩|2 + ε

)
.

The corresponding method can be understood as unbiased since this loss is
minimized by z satisfying |⟨ai, z⟩|2 = yi, i = 1, . . . ,m. Hence, this method
would be less sensible to the selection of ε. However, we found in our numerical
analysis that the corresponding algorithm performs worse than the algorithm
using loss (8) with a good parameter ε. Moreover, the problematic that the
recommended step size is parameter dependent remains.

5.1.2 Gradient descent with Gaussian log-likelihood after
variance stabilization

Further, we compare the Poisson flow with gradient descent algorithms using
Gaussian log-likelihood losses, with and without variance stabilization. We
denote with ‘Wirtinger flow’, as common in the literature, the algorithm
using the loss (9) with constant variance σ2

i = 1/4. ‘Amplitude flow’ means
the gradient descent algorithm for loss (14). The algorithm we label here as
‘Flow with optimized variance stabilization’ uses the loss function (16) with
c1 = 0.12, c2 = 0.27 and C =

√
yi + c1 +

√
yi + c2 and algorithm ‘Flow with

optimized variance stabilization without adaption for zeros’ uses loss (17) with
the same parameters.

Fig. 4 Performance of the gradient descent algorithms for the different discussed loss func-
tions. The gray lines correspond to the Poisson flow as in Figure 3.
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The plot of the relative reconstruction errors for different doses in Figure 4
indicates that the algorithm using the suggested loss function with the
optimized variance-stabilizing transform including the Poisson log-likelihood
adaption to zero measurements performs comparably to the Poisson flow for
a close to optimal choice of regularization parameter. If we are aware of an
optimal parameter selection, it is reasonable to apply the Poisson flow. How-
ever, if no decision rule is available, it is advisable to use a form of regularized
amplitude loss function with adaption.

We note that the adaption (16) of the loss for zero measurements is essential
for a low-dose experiment dominated by zero measurements. In the amplitude
flow using the amplitude loss function (14) we did not include such an adaption.
In this special case, this adaption is implicitly contained in the method as
the amplitude loss for zero measurements corresponds to the exact Poisson
log-likelihood loss for zero measurements.

Aside from that, we recognize that for a very low-dose experiment the
amplitude flow works just as well as the flow using the variance stabilization
improved for low-count experiments. This can be explained by the fact that
for a distribution parameter close to 0 the square-root transform performs best
in terms of variance stabilization, see Figure 1.

Interpreting the reconstruction results, we have to note that we are in the
low-dose regime and cannot expect very small reconstruction errors without
much redundancy in the data, i.e., a large amount of measurements. Fur-
thermore, we have to mind that for drawing more measurements, the dose
per measurement needs to be reduced accordingly in a low-dose experiment
because more measurements cause more damage.

5.2 Discussion of the step size selection

For the Wirtinger flow algorithm using the Gaussian log-likelihood loss we do
not find a constant step size that guarantees a decrease of the loss function in
each iteration as for the other loss functions discussed in this paper. We can
choose an iteratively adapted step size, based on an analysis similar to the
proof ideas used over all this paper, where it is not possible to get rid of the
dependence on the iterates. However, this implementation is computationally
expensive and makes the choice of this loss function less attractive. For the
experiments, we used the step size proposed in [44] as this is computationally
more efficient.

For all other algorithms, we use the step sizes proposed by the respective
theoretical results.

[34] suggest to use a step size based on an approximation of the Hessian
using observed Fisher information for the Poisson log-likelihood loss. This step
size is claimed to accelerate the convergence as it is larger than the step size
involving the inverse of the factor 1 + yi

8ε . However, in comparison to the step
size derived in Theorem 5, the Fisher information based step size solves a line
search in each iteration, which results in computational expense.



20 Wirtinger gradient descent methods for low-dose Poisson phase retrieval

Here, we face a trade-off between having a constant step size, independent
of the approximate obtained in each iteration, that guarantees convergence or
having a step size rule that can be made independent of ε by performing a
step size optimization in each iteration. Due to the computational advantage,
our interest lies rather in the constant step size.

We found in our numerical experiments that for larger regularization
parameters ε the step size proposed by [34], as contrasted with our step
size rule, does not guarantee descent of the loss in each iteration. While for
ε → 0 our step size rule becomes impractical, the iteration dependent step
size becomes more useful as it does not decrease on the order of ε. On the
other hand, our experiments showed that it is not reasonable to work with an
extremely small regularization parameter ε.

We conclude that using the constant step size in combination with ε large
enough seems to be reasonable. Other than that, we would like to emphasize
again that this trade-off problematic can be avoided when using the Gaussian
log-likelihood with a good variance stabilization as suggested here.

6 Conclusion

In this paper, we studied gradient descent algorithms for suitable regulariza-
tions and approximations of the Poisson log-likelihood problem. Motivated by
the nature of low-dose imaging experiments, we designed a method that allows
for improved treatment of zero measurements and other small counts. For all
discussed algorithms, we provided a convergence analysis including a step size
rule.

In terms of applying such methods to real-world data, a next step is to
incorporate a suitable regularization term in the optimization problem, for
example of the type discussed in [45] or [46]. The optimal choice for the regu-
larization term depends highly on the type of object under consideration. It is
future work to find a reasonable problem formulation for objects such as, for
example, viruses that shall be imaged using low-dose illumination. A possible
follow-up work on this paper would be to extend the convergence analysis to
algorithms involving such regularization attempts.
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