
CREATING SPANNING TREES IN WAITER-CLIENT GAMES

GRZEGORZ ADAMSKI, SYLWIA ANTONIUK, MAŁGORZATA BEDNARSKA-BZDĘGA, DENNIS CLEMENS,
FABIAN HAMANN, AND YANNICK MOGGE

Abstract. For a positive integer n and a tree Tn on n vertices, we consider an unbiased Waiter-Client
game WCpn, Tnq played on the complete graph Kn, in which Waiter’s goal is to force Client to build a
copy of Tn. We prove that for every constant c ă 1{3, if ∆pTnq ď cn and n is sufficiently large, then
Waiter has a winning strategy in WCpn, Tnq. On the other hand, we show that there exist a positive
constant c1 ă 1{2 and a family of trees Tn with ∆pTnq ď c1n such that Client has a winning strategy
in the WCpn, Tnq game for every n sufficiently large. We also consider the corresponding problem in
the Client-Waiter version of the game.

1. Introduction

We consider finite, two-person, perfect-information games called unbiased Waiter-Client games, which
are closely related to Maker-Breaker and Avoider-Enforcer positional games (cf. [2], [8]). Given a
hypergraph H “ pX , Fq, in the Waiter-Client game played on board H, the first player, called Waiter,
offers the second player, called Client, two previously unclaimed elements of X . Client then chooses
one of these elements which he keeps and the other element goes to Waiter. If in the final round only
one unclaimed element remains, then it goes to Waiter. The game ends when all elements of X have
been claimed. Waiter wins if at the end there is a set F P F with all its elements claimed by Client;
otherwise Client is the winner.
The rules of the Client-Waiter game on H are similar, with the difference that if at the end of the
game there is a set F P F with all its elements claimed by Client, then Client is the winner. Also the
last round rule in the Client-Waiter game is different: if only one unclaimed element remains, it goes
to Client. Let us add that Waiter-Client and Client-Waiter games were introduced by Beck [1] under
the names of Picker-Chooser and Chooser-Picker, respectively.
Usually, Waiter-Client (or Client-Waiter) games are studied in a graph setting, i.e. it is assumed that
X is the set of edges of the complete graph Kn and Waiter tries to force Client to build (or Client
wants to build) a graph having a given graph property (which is just a family of graphs). In other
words, the family F consists of the edge-sets of a given graph family. With some abuse of notation,
we say that such games are played on Kn.
There is an interesting relation between games played on Kn and random processes. For instance,
the case where in a Waiter-Client game on Kn Waiter plays randomly is the well-known Achlioptas
process (without replacement). Furthermore, a classic observation shows that sometimes the winner
of the game could be predicted using a heuristic known as the probabilistic intuition. This intuition

The research of the fourth and sixth author is supported by Deutsche Forschungsgemeinschaft (Project CL 903/1-1).
1

ar
X

iv
:2

40
3.

18
53

4v
1

 [
m

at
h.

C
O

]
 2

7
M

ar
 2

02
4

suggests that the result of the game is related to the properties of the (binomial) random graph
Gpn, 1{2q, in which the number of edges is roughly the same as the number of Client’s edges at the
end of the game. A fascinating example of this phenomenon was observed by Beck [2] who proved
that the size of the largest clique that Waiter can force in a Waiter-Client game played on Kn is
2 log2 n ´ 2 log2 log2 n ` Op1q. The same holds for the Client-Waiter version of the problem, i.e. this
is the size of the largest clique Client can build in Kn. Note that 2 log2 n ´ 2 log2 log2 n ` Op1q is also
the clique number of the random graph Gpn, 1{2q with high probability, see e.g. [4]. We return to
random intuition hints in the last part of this section.
In this paper, we focus on Waiter-Client games on Kn where Waiter tries to force Client to build
a copy of a fixed spanning tree Tn. We denote such a game by WCpn, Tnq. Throughout the paper
we assume that every edge claimed by Client is colored red, while every edge in the Waiter’s graph
is colored blue. Note that if we relax the assumption that the spanning tree is fixed and we allow
any spanning tree, then Waiter’s task becomes much easier. Indeed, Csernenszky et al. [6] showed
that Waiter can achieve such a goal playing on any graph G (not necessarily complete), if and only if
G contains two edge-disjoint spanning trees. Hence, Waiter can force a spanning red tree in Kn for
every n ě 4.
Returning to WCpn, Tnq, we are interested in the outcome of the game depending on the maximum
degree of Tn and for large n. The last three authors and their co-authors proved in [5] that if n is
large enough, Waiter can force a red Hamilton path within n ´ 1 rounds. Furthermore, Waiter can
force a red copy of any fixed tree Tn with ∆pTnq ď c

?
n within n rounds, for some suitable constant

c. Though the authors of [5] focused on the problem of building a given tree fast, they also posed the
following question regarding maximum degrees.

Question 1.1. What is the largest integer Dpnq such that for every tree Tn with n vertices and the
maximum degree at most Dpnq Waiter has a winning strategy in WCpn, Tnq?

The above mentioned result in [5] implies that Dpnq “ Ωp
?

nq. On the other hand, it is known that
Dpnq ď n{2 ` Op

?
n log nq. Indeed, Waiter cannot even force a red star of size n{2 ` c

?
n log n for a

sufficiently large constant c ą 0, which follows from a much more general results on discrepancy games
played on hypergraphs, proved by Beck ([2], Theorem 18.3). Our main result is that n{3 ` opnq ď

Dpnq ď p1{2 ´ cqn ` opnq for some positive constant c. We state it as the following two theorems.

Theorem 1.2. For every ε P
`

0, 1
3

˘

there exist positive constants b and n0 such that the following
holds. Let Tn be a tree on n ě n0 vertices with ∆pTnq ă

`1
3 ´ ε

˘

n. Then Waiter has a winning
strategy in WCpn, Tnq. Furthermore, she can obtain her goal within at most n ` b

?
n rounds.

Theorem 1.3. There are positive constants c and n0 such that the following holds for every n ě n0.
There exists a tree Tn with n vertices and ∆pTnq ă

`1
2 ´ c

˘

n such that Client has a winning strategy
in WCpn, Tnq.

We prove the above theorem with c “ 0.001 and make no further effort to optimize it. Though the
improvement from Dpnq ď 0.5n ` opnq to Dpnq ď 0.499n ` opnq seems cosmetic, we think that it is

2

important for predicting a proper constant C in the desired formula Dpnq “ Cn ` opnq, provided such
a constant C exists. The linear bounds on Dpnq prove that Dpnq is far from Θpn{ logpnqq suggested
by the random graph Gpn, 1{2q behavior [11]. Nonetheless, our argument for Theorem 1.3 involves
randomness. Namely, we describe a randomized strategy for Client that allows avoiding a red copy of
a given tree with high probability.
Finally, let us mention the Client-Waiter version of the above game. In contrast to Waiter-Client
games, here the random graph intuition may help. It is known [10] that there exists a tree Tn with n

vertices and ∆pTnq “ Opn{ logpnqq such that with high probability the random graph Gpn, 1{2q has
no copy of Tn. We prove that a similar phenomenon occurs in Client-Waiter games.

Theorem 1.4. There are positive constants c and n0 such that the following holds. For every n ě n0

there exists a tree Tn with n vertices and ∆pTnq ď cn
logpnq

such that in a Client-Waiter game on Kn,
Waiter can prevent Client from claiming a red copy of Tn.

Organization of the paper. In Section 2 we collect useful probability tools, positional games
theory tools and some results on embedding trees. In Section 3 we prove a few lemmas and theorems
regarding forcing red forests in Waiter-Client games. Some of them may be of independent interest.
For example we show (see Theorem 3.17) that if n ě 2 and F is a forest with at most n vertices and
exactly m edges, such that every of its components has less than m{3 edges, then Waiter can force
a red copy of F in Kn.
Theorem 1.2 is proved in Section 4, while Theorem 1.3 is proved in Section 5. Section 6 contains the
proof of Theorem 1.4. We add some concluding remarks at the end of the paper.

2. Preliminaries

2.1. Notation. First of all, we set rns :“ tk P N : 1 ď k ď nu for every positive integer n.
Most of our graph notation is standard and follows [12]. Let G be any graph. Then we write V pGq

and EpGq for the vertex set and the edge set of G, respectively, and we set vpGq :“ |V pGq| and
epGq :“ |EpGq|. If tv, wu is a pair of vertices, we write vw for short. The neighborhood of a vertex
v in graph G is NGpvq :“ tw P V pGq : vw P EpGqu, and its degree is degGpvq :“ |NGpvq|. The
maximum degree in G is ∆pGq :“ maxvPV pGq degGpvq. Given any A, B Ď V pGq and v P V pGq, we
set EGpAq :“ tvw P EpGq : v, w P Au, eGpAq :“ |EGpAq|, EGpA, Bq :“ tvw P EpGq : v P A, w P Bu,
eGpA, Bq :“ |EGpA, Bq|, degGpv, Aq :“ |NGpvq X A|, and NGpAq :“ p

Ť

vPA NGpvqq zA. Note that
whenever the graph G is clear from the context, we may omit the subscript G in all definitions
above. Given A Ă V pGq, we let GrAs “ pA, EGpAqq be the subgraph of G induced by A, and we
set G ´ A :“ GrV pGqzAs. Similarly, if we have disjoint sets A, B Ă V pGq, we write GrA, Bs :“
pA Y B, EGpA, Bqq. If v is a vertex in G, we shortly write G ´ v for G ´ tvu. Given B Ď EpGq,
we also let GzB :“ pV pGq, EpGqzBq. The disjoint union of graphs G and G1 is denoted by G Ÿ G1.
Moreover, an embedding of a graph H into a graph G is an injective map f : V pHq Ñ V pGq such
that vw P EpHq implies fpvqfpwq P EpGq.

3

We will consider forests F with roots, where we may allow that the components have up to two roots.
We say that a component of a forest is rooted if it contains exactly one root, and we say that it is
double-rooted if it has exactly two roots. By a rooted forest we mean a forest such that each of its
components has exactly one root. A leaf of F is a vertex of degree 1 which is not a root (if F has no
roots, then every vertex of degree 1 is a leaf). With LpF q we denote the set of leaves in F . A bare
path in F is a path in F such that all its inner vertices have degree 2 in F . A leaf matching in F is a
matching such that each of its edges contains a vertex from LpF q.
Assume that some Waiter-Client game is in progress. We let W and C denote the graphs consisting
of Waiter’s (blue) edges and Client’s (red) edges, respectively, with the vertex set being equal to
the graph that the game is played on. If an edge belongs to C Y W , we say that it is colored, or
alternatively we say that it is claimed. Otherwise, we say that the edge is uncolored or free. A vertex
is free if all edges incident to it are free. We say that Waiter can force a graph G withing t rounds if
Waiter has a strategy such that after at most t rounds there is a red copy of G at the board.
In some of our arguments Waiter forces a red copy of a given forest F with roots in a greedy kind of
way. That is, there is a sequence F1 Ă F2 Ď . . . Ď Fs “ F with F1 containing the roots of F , and for
each i, Waiter makes sure that after a total of epFiq rounds a red copy F̄i of Fi is created. Implicitly,
this way we obtain an embedding fi : V pFiq Ñ V pF̄iq which extends the earlier embedding fi´1 and
which fixes the images of the the vertices of Fi. Having such a strategy, we sometimes simply say
that Waiter embeds the graph Fi into the given board. Moreover, if the image of a vertex v under fi

is a vertex x, then we simply say that Waiter maps v to x.

2.2. Probabilistic tools. In our probabilistic argument, we will use a variant of the Chernoff bound,
for a sum of independent random variables Zi such that the number of terms is a random variable,
not necessarily independent of Zi.

Lemma 2.1. For n P N and ρ P p0, 1q, let pZiq
n
i“1 be a sequence of i.i.d. random variables with

probability distribution

Zi “

$

&

%

1, with probability ρ,

0, with probability 1 ´ ρ.

Then for any random variable T taking values in the set t0, 1, . . . , nu, we have

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

i“1
Zi ´ Tρ

ˇ

ˇ

ˇ

ˇ

ˇ

ą 2
a

n log n

¸

“ opn´2
q.

Proof. Using the union bound and the Chernoff inequality (see e.g. [9]), we obtain

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

i“1
Zi ´ Tρ

ˇ

ˇ

ˇ

ˇ

ˇ

ą 2
a

n log n

¸

ď

n
ÿ

k“1
P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1
Zi ´ kρ

ˇ

ˇ

ˇ

ˇ

ˇ

ą 2
a

n log n

¸

ď

ď

n
ÿ

k“1
2 exp

ˆ

´8n log n

k

˙

ď 2n expp´8 log nq “ opn´2
q.

□
4

We say that an event, depending on n, holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to 1 if n tends to infinity.

2.3. Positional games tools. We will use a variant of the Erdős-Selfridge Breaker’s winning criterion
(see e.g. [2, 8]), adapted to the Client-Waiter version by the third author, which can be also applied
for Waiter-Client games.

Theorem 2.2 (Corollary 1.4 in [3]). Consider a Waiter-Client game on a hypergraph pX , Fq satisfying
ÿ

F PF
2´|F |`1

ă 1.

Then Waiter has a strategy to force Client to claim at least one element in each of the sets in F .

3. Forcing forests

For the proof of Theorem 1.2 we aim to provide Waiter’s strategy that forces Client to build any
fixed n-vertex tree T whose maximum degree is at most

`1
3 ´ ε

˘

n. For this, we will distinguish trees
by certain structural properties, but in any case, the overall strategy for Waiter will then be to first
force a red copy of a subforest F Ď T which contains all vertices of large degree in T , and then she
will complete this subforest to a copy of T while making use of the structural properties mentioned
above. Note that in such a procedure, when F is already embedded, we also fix the images of some of
the vertices in order to be able to embed the remaining forest T zEpF q. This is why we need to study
games in which Waiter wants to force rooted forests. Below we prepare the tools for our main strategy,
which is given in Section 4, by collecting and proving several lemmas regarding forcing different kinds
of forests and forests with roots. A rich collection of lemmas is used to prove Theorems 3.17 and 3.22
– only these two results, together with Lemma 3.18, are applied in the proof of Theorem 1.2.

3.1. Forcing Hamilton paths and perfect matchings. The following two lemmas are more
quantitative versions of results from [5] on forcing Hamilton paths with fixed endpoints.

Lemma 3.1. For n ě 5, Waiter can force Client to build a red Hamilton path on Kn within n ´ 1
rounds and such that one of its endpoints is incident with at most two blue edges.

Proof. Let v be any vertex of Kn. In each of the first two rounds Waiter offers any two free edges
incident with v. The result is a red path P on three vertices whose endpoints are not incident with
any other colored edge outside the path. Next, in each of the following n ´ 3 rounds, let P be the
current red path, and let w be any vertex not in P . Then Waiter offers the two edges between w and
the endpoints of P , hence extending the red path P by one vertex. By the end of round n ´ 1, the
path P is a Hamilton path. Let w be the vertex which was added in the last round. Then there are
at most two blue edges incident with w: the blue edge that was offered in the last round, and maybe
one more edge if vw was offered within the first two rounds. □

Lemma 3.2. Let x, y P V pKnq with n ě 8. Then within n rounds Waiter can force Client to build a
red Hamilton path between x and y in Kn.

5

Proof. Using Lemma 3.1, within n ´ 3 first rounds Waiter can force a red Hamilton path P “

pv1, v2, . . . , vn´2q on Kn ´ tx, yu in which v1 is incident with at most two blue edges. In round n ´ 2
she offers the edges xvn´2 and yvn´2, and without loss of generality we can assume that Client claims
vn´2y. Let i, j, with 3 ď i, j ď n ´ 2, be such that v1vi and v1vj are free. This is possible since so far
v1 is incident with at most two blue edges. Then in round n ´ 1 Waiter offers edges v1vi and v1vj,
and again without loss of generality we can assume that Client claims the edge v1vi. Finally, in round
n, Waiter offers the edges xv1 and xvi´1. It is easy to see that no matter which edge Client claims, a
red Hamilton path is built as required. □

The next lemma shows that Waiter can force quickly a perfect matching in an almost complete
bipartite graph (with equal bipartition).

Lemma 3.3. Let t ě 4 and K´
t,t be the graph obtained from the complete bipartite graph Kt,t by

removing one edge. By offering edges of K´
t,t only, Waiter can force a red copy of a perfect matching

in K´
t,t within t ` 1 rounds.

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4

u1 u2 u3 u4

v1 v2 v3 v4

Figure 3.1. In order to build a perfect matching in K´
4,4, in each round Waiter offers

the two dashed edges.

Proof. We will use induction. First consider the case t “ 4. Let tu1, u2, u3, u4u and tv1, v2, v3, v4u be
the bipartition classes of K´

4,4. Assume that u1v1 is the missing edge. Waiter plays in such a way that
in each round Client’s choices are irrelevant for the obtained structure of red and blue graphs, but
they do have impact on the vertex labels in the edges offered by Waiter. (see Figure 3.1).
Waiter starts by offering the edges u1v2 and u2v1. By symmetry we can assume that u1v2 becomes
red. Then Waiter offers the edges u1v3 and u1v4. Client chooses one of them, say u1v3. Then Waiter
offers the edges u3v1 and u4v1. Again we can assume that Client colors for instance u3v1 red. Next
Waiter offers the edges u2v4 and u4v4. Without loss of generality Client colors u2v4 red. Finally,
Waiter offers the edges u4v2 and u4v3. Client colors any of them red, say u4v2, and we get the desired
red matching, namely tu1v3, u2v4, u3v1, u4v2u, within 5 rounds.

6

Now for t ą 4, suppose that uv is the missing edge. Then in the first round Waiter offers one edge
incident with u, and the other incident with v, say uv1 and vu1. By symmetry we can assume that
Client colors uv1 red. Then we remove from our graph the vertices u and v1 and the blue edge vu1, and
the problem reduces to forcing a perfect matching in K´

t´1,t´1 (now vu1 is the missing edge), which by
inductive assumption can be done within t rounds. Altogether, we get a perfect matching in K´

t,t

within t ` 1 rounds. □

3.2. Rooted forest-tuples. We begin by defining a couple of technical notions used extensively
throughout the remaining part of this section.

Definition 1. Let F1, F2, . . . , Fℓ be vertex-disjoint rooted forests (i.e. each component has exactly one
root), such that epFiq ą 0 for some i. We call the tuple F “ pF1, F2, . . . , Fℓq a rooted forest-tuple, and
define V pF q “

Ť

iPrℓs
V pFiq, vpF q “ |V pF q|, EpF q “

Ť

iPrℓs
EpFiq, epF q “ |EpF q|, and

apF q “ maxtepFiq : i P rℓsu,

kpF q “ |ti P rℓs : epFiq “ apF qu|,

tpF q “ |ti P rℓs : epFiq ą 0u|.

Moreover, we define the following:

(i) Let ℓ1 ď ℓ. We call a rooted forest-tuple F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓ1q a valid subforest of F if for

every i P rℓ1s, we have F 1
i Ď Fi and every root of F 1

i is a root of Fi. Furthermore, we assume
that a rooted forest with no edges consisting of ℓ roots of F is also a valid subforest of F .

(ii) For a valid subforest F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓq of F , we define F ´ F 1 :“ pF ˚

1 , F ˚
2 , . . . , F ˚

ℓ q to be
a rooted forest-tuple in which for every i P rℓs, F ˚

i is a rooted forest such that V pF ˚
i q “ V pFiq,

EpF ˚
i q “ EpFiqzEpF 1

i q and the root set of F ˚
i is V pF 1

i q. If e is an edge incident to a root in
Fj, then by F ´ e we mean the rooted forest-tuple F ´ F 1, where F 1

j has only one edge e and
the remaining forests of F 1 have no edges.

(iii) We say that F is suitable if 3apF q ` kpF q ´ epF q ď 2 or if apF q “ 1 and tpF q ě 4.
(iv) We say that F is m-suitable if it is a valid subforest of a suitable forest-tuple F 1 with epF 1q “ m.
(v) We say that F is simple if tpF q ě 4 and either apF q “ 2 and kpF q “ 1, or apF q “ 1.

Our main goal is to analyze whether Waiter can force a red copy of a forest F , based only on the
sizes of the trees in F . We will show that if F (or rather a forest-tuple made from F) is m-suitable,
which roughly speaking means that every tree in F has less than m{3 edges and epF q ď m, then
Waiter can force a red copy of F on the board Km`r, where r “ vpF q ´ epF q is the number of roots.
However, in some cases it is useful to have some additional properties under control, for example the
number of blue edges between groups of red trees. This is why we do not simply divide a forest F

into trees, but rather into forests. Consequently, we will treat F as a forest-tuple and consider sizes
of the tuple forests instead of sizes of the trees.
With a slight abuse of notation we will sometimes denote by F also the rooted graph F1 ŸF2 Ÿ . . . ŸFℓ

corresponding to the rooted forest-tuple F “ pF1, F2, . . . , Fℓq. Before we proceed, let us focus on
some properties of suitable and m-suitable rooted forest-tuples.

7

Lemma 3.4. If a rooted forest-tuple F is suitable, then tpF q ě 4.

Proof. Suppose that F is suitable and tpF q ď 3. Then epF q ě 3apF q ` kpF q ´ 2. However, there are
kpF q forests with apF q edges and the remaining ones have at most apF q ´ 1 edges. Hence

epF q ď kpF qapF q ` p3 ´ kpF qqpapF q ´ 1q “ 3apF q ` kpF q ´ 3

and we reach a contradiction. □

Lemma 3.5. If a rooted forest-tuple F satisfies apF q ă epF q{3, then F is suitable.

Proof. If kpF q ď 3, then 3apF q ` kpF q ´ epF q ď 3apF q ` 3 ´ p3apF q ` 1q “ 2, so F is suitable. Hence,
suppose that kpF q ě 4. Using the fact that epF q ě apF qkpF q and 1 ´ apF q ď 0, we get

3apF q ` kpF q ´ epF q ď 3apF q ` kpF q ´ apF qkpF q “ pkpF q ´ 3qp1 ´ apF qq ` 3 ď 4 ´ apF q.

If apF q ě 2, then the inequality 3apF q ` kpF q ´ epF q ď 2 holds. Otherwise we have apF q “ 1 and
tpF q “ epF q ą 3 by the assumption of the Lemma. Hence, in both cases F is suitable. □

Lemma 3.6. Let m P N and F be a rooted forest-tuple.

‚ If F is m-suitable, then 3apF q ` kpF q ´ m ď 2 or apF q “ 1.
‚ If m ě maxt4, epF qu and either 3apF q ` kpF q ´ m ď 2 or apF q “ 1, then F is m-suitable.

Proof. Suppose first that F is m-suitable. Then there exists a forest-tuple F 1 Ě F with m edges
satisfying 3apF 1q ` kpF 1q ´ m ď 2 or apF 1q “ 1. If apF 1q “ 1, then apF q ď apF 1q “ 1 and we are
done.
Hence assume that 3apF 1q ` kpF 1q ´ m ď 2. If apF q “ apF 1q, then kpF q ď kpF 1q, so 3apF q `

kpF q ´ m ď 3apF 1q ` kpF 1q ´ m ď 2. Therefore suppose that apF q ă apF 1q. If kpF q ě 4, then
3apF q ă kpF qapF q ď epF q, therefore, by Lemma 3.5, F is suitable and we have 3apF q `kpF q ´m ď 2
or apF q “ 1. Finally, if kpF q ă 4, then 3apF q ` kpF q ´ m ď 3apF 1q ` 1 ´ m ď 3apF 1q ` kpF 1q ´ m ď 2
and we are done.
Now suppose that F satisfies 3apF q ` kpF q ´ m ď 2 or apF q “ 1, and let F 1 be a forest-tuple obtained
from F by adding m´epF q forests, each consisting of a single edge. Then F is a valid subforest of F 1 so
it is enough to show that F 1 is suitable. Assume first that 3apF q ` kpF q ´ m ď 2 and apF q ą 1. Then
we have apF 1q “ apF q, kpF 1q “ kpF q and epF 1q “ m, so 3apF 1q`kpF 1q´epF 1q “ 3apF q`kpF q´m ď 2,
and hence F 1 is suitable. On the other hand, if apF q “ 1, then since m ě 4, we have tpF 1q ě 4, which
implies that F 1 is suitable. □

Lemma 3.7. Let F be an m-suitable rooted forest-tuple. Let F 1 be a rooted forest-tuple obtained from
F by adding m ´ epF q additional forests, each consisting of a single edge. Then F 1 is suitable.

Proof. Notice that m ě epF q and apF q “ apF 1q.
First consider the case apF q “ 1. Let F 2 be a suitable rooted forest-tuple with epF 2q “ m, given by
m-suitability of F . It follows from Lemma 3.4 that tpF 2q ě 4. Since apF 1q “ 1 and epF 1q “ m, we
have tpF 1q ě tpF 2q, and hence we get that F 1 is suitable as well.

8

Now suppose that apF q ą 1. We have kpF q “ kpF 1q. Using Lemma 3.6 for F , we conclude that
3apF 1q ` kpF 1q ´ m “ 3apF q ` kpF q ´ m ď 2. Thus F 1 is suitable. □

Lemma 3.8. Let F be a rooted forest-tuple and m P N. If apF q ă m{3 and m ě epF q, then F is
m-suitable.

Proof. Let F 1 be a rooted forest-tuple obtained from F by adding m ´ epF q forests, each consisting
of a single edge. In particular, if epF q “ m then F “ F 1. We have apF 1q “ apF q ă m{3 “ epF 1q{3.
Hence, by Lemma 3.5, F 1 is suitable. Since F is a valid subforest of F 1, the assertion follows. □

3.3. Shrinking operations. While considering a game in which Waiter is trying to obtain a red
copy of a forest F (or a rooted forest-tuple) by increasing its partial embedding, one can look at the
game as a process of decreasing the part of F left for embedding. Below we define two corresponding
kinds of shrinking operations on rooted forest-tuples.

Definition 2. Let H “ pH1, H2, . . . , Hℓq be a rooted forest-tuple with the set of roots R. Assume that
epH1q ě epH2q ě . . . ě epHℓq. Let B be a complete graph on at least vpHq vertices, with fixed distinct
images uprq of roots r P R.

(1) Suppose that tpHq ě 2 and ri P V pHiq, for i “ 1, 2, are any non-isolated roots. We say that
playing on B, Waiter performs an H-shrink operation of type 1 if he plays one round in the
following way. Waiter offers the edges upr1qw and upr2qw for any free vertex w P V pBq which
is not an image of a root of H.

(2) Suppose that tpHq ě 3 and ri P V pHiq, for i “ 1, 2, 3, are any non-isolated roots. We say that
playing on B, Waiter performs an H-shrink operation of type 2 if he plays two rounds in the
following way. First Waiter offers the edges upr1qw1 and upr1qw2 for any distinct free vertices
w1, w2 P V pBq which are not root images. Client colors upr1qwi blue and upr1qwj red. In the
following round Waiter offers upr2qwi and upr3qwi.

During the above H-shrink operation of type 1, Client claims a red edge e incident to the image uprq

of a root r P V pHiq, for some i P t1, 2u. Let e1 be any edge of H incident to r. We say that the rooted
forest-tuple H ´ e1 arises from the H-shrink operation of type 1. Analogously, we define a rooted
forest-tuple arising from the H-shrink operation of type 2, namely, it is pH ´ e1

1q ´ e1
2, where e1

1, e1
2

are edges of H corresponding to the two red edges claimed by Client.

For simplicity of the above definition, we assumed the forests of H are sorted by their number of
edges. However, we will also allow H-shrink operations in case of any rooted forest-tuple – in an
H-shrink operation of type 1 Waiter deals with any two biggest forests of the tuple, while in an
H-shrink operation of type 2 she deals with any three biggest forests.
In the following lemma we prove among others that H-shrink operations of both types preserve
suitability, provided H is not simple.

Lemma 3.9. Let H “ pH1, H2, . . . , Hℓq be a rooted forest-tuple with the set of roots R and s P t1, 2u.
Suppose that minpkpHq, 2q “ 3 ´ s and tpHq ą s. Let B be a complete graph on at least vpHq vertices,

9

with fixed distinct images uprq of roots r P R. Assume that playing on B, Waiter performs an H-shrink
operation of type s and let H 1 be the rooted forest-tuple arising from this operation. Then the following
holds.

(a) If H is suitable and not simple, then H 1 is suitable.
(b) If H is m-suitable and epHq ´ tpHq ě 2, then H 1 is pm ´ sq-suitable.

Proof. Since the order of forests in F is irrelevant for the above properties, we can assume that
epH1q ě epH2q ě epH3q ě . . . ě epHℓq. Suppose that H is m-suitable and epHq ´ tpHq ě 2. Then
apHq ě 2 and hence 3apHq ` kpHq ´ m ď 2 in view of Lemma 3.6. Another consequence of the
inequality epHq ´ tpHq ě 2 is that 3apHq ` kpHq ě 8, so m ě 6. Thus, we also have m ´ s ě 4. We
know that epH 1q “ epHq ´ s and m ě epHq, hence m ´ s ě maxt4, epH 1qu. Therefore, in order to
prove that H 1 is pm ´ sq-suitable, it is enough to verify that 3apH 1q ` kpH 1q ´ pm ´ sq ď 2 and use
Lemma 3.6. We consider two cases depending on s.
Case 1. Suppose that s “ 1. Then kpHq ě 2 by assumption that minpkpHq, 2q “ 3 ´ s “ 2, and
hence epH1q “ epH2q “ apHq. Observe that the H-shrink operation of type 1 decreases either epH1q

or epH2q by 1, so apH 1q “ apHq and kpH 1q “ kpHq ´ 1. Thus

3apH 1
q ` kpH 1

q ´ pm ´ sq “ 3apHq ` kpHq ´ m ď 2.

Case 2. Suppose that s “ 2. Then kpHq “ 1 by assumption that minpkpHq, 2q “ 3 ´ s “ 1. The
H-shrink operation of type 2 decreases epH1q and exactly one of epH2q, epH3q by 1. We note that
apH 1q “ apHq ´ 1 and consider two subcases, depending on the structure of H 1.

‚ If kpH 1q ď 2, then

3apH 1
q ` kpH 1

q ´ pm ´ sq ď 3papHq ´ 1q ` 2 ´ pm ´ 2q “ 3apHq ` kpHq ´ m ď 2.

‚ If kpH 1q ě 3, then epH2q “ epH3q “ . . . “ epHkpH 1q`1q “ apHq´1, so apHq`papHq´1qkpH 1q ď

epHq ď m. This implies that

3apH 1
q ` kpH 1

q ´ pm ´ sq ´ 2 “ 3papHq ´ 1q ` kpH 1
q ´ m

ď 3apHq ´ 3 ` kpH 1
q ´ apHq ´ papHq ´ 1qkpH 1

q

“ 1 ´ papHq ´ 2qpkpH 1
q ´ 2q.

Since epHq ´ tpHq ě 2 and kpHq “ 1, we have apHq ě 3, so 1 ´ papHq ´ 2qpkpH 1q ´ 2q ď 0.

In both subcases 3apH 1q ` kpH 1q ´ pm ´ sq ď 2 and the assertion (b) follows.
Property (a) is a consequence of (b) applied with m “ epHq, since if H is suitable and not simple,
then epHq ´ tpHq ě 2. □

Remark 3.10. If F is suitable, then tpF q ě 4 ą 2 ě s. Therefore, in this case we do not need the
assumption tpF q ą s, required for performing a shrink operation of type s.

Shrinking operations will be the main ingredient of Waiter’s strategy in most games considered further
in this chapter, but it would be more convenient to look at them in the reversed way, i.e. increasing
the red graph. Below we define an operation of type s corresponding to a shrink operation of type s.

10

Let F “ pF1, F2, . . . , Fℓq be a rooted forest-tuple with the set of roots R. Consider a game played
on a board B which is the complete graph, and such that Waiter’s aim is to force a red copy of F .
Suppose that after a number of rounds Client’s graph is a red copy F̄ 1 “ F̄ 1

1 Ÿ F̄ 1
2 Ÿ . . . Ÿ F̄ 1

ℓ of a valid
subforest F 1 “ pF 1

1, F 1
2, . . . , F 1

ℓq of F . Let R1 be the set of roots of F ´ F 1, and for every r P R1 let uprq

be the image of r in F̄ 1. We say that Waiter performs an operation of type s P t1, 2u, if she performs
an pF ´ F 1q-shrink operation of type s, according to Definition 2 applied with fixed vertices uprq,
r P R1. During the operation of type 2, Client claims red edges e1, e2 incident to roots r1 P V pF̄ 1

i q,
r2 P V pF̄ 1

jq, i ‰ j, respectively. We define F̄ 2
i “ F̄ 1

i Y te1u, F̄ 2
j “ F̄ 1

j Y te2u and F̄ 2
k “ F̄ 1

k for k R ti, ju,
and we call F̄ 2 “ F̄ 2

1 Ÿ F̄ 2
2 Ÿ . . . Ÿ F̄ 2

ℓ the red graph arising from the operation of type 2. We define
the red graph arising from the operation of type 1, in which F̄ 1 increases by one edge, in an analogous
way. Note that if F̄ 2 arises from the operation of type s, then it is a copy of a valid subforest F 2 of F

such that F ´ F 2 arises from the pF ´ F 1q-shrink operation of type s.
Observe that Waiter is able to perform operation of type s P t1, 2u if Client’s graph F̄ 1 satisfies
tpF ´ F 1q ą s and there are at least s free vertices on the board which are not the roots of F̄ 1.
Furthermore, if Waiter is going to increase a red forest F̄i by the operation of type 1, then she has
freedom in deciding which edge of Fi, not yet embedded, will correspond to the next red edge e in a
copy of Fi, provided an endpoint of e is mapped into a vertex of F̄ 1

i . Similarly, while increasing F̄i or F̄j

by the operation of type 2, Waiter is flexible in selecting (simultaneously) edges ei P EpFiq, ej P EpFjq

such that one of them will correspond to the next red edge in a copy of Fi or Fj , as long as ei, ej have
exactly one endpoint mapped into a vertex of F̄i, F̄j, respectively. We summarize this observation in
the following remark used later in the proofs.

Remark 3.11. Consider a game in which Waiter’s aim is to obtain a red copy of a rooted forest-tuple
F “ pF1, F2, . . . , Fℓq. Suppose she can force edges of Fi in a series of (not necessarily subsequent)
operations of type 1 or 2. Then the edges of Fi can be forced by Waiter in any order, provided that at
every stage of the game the part of F already embedded is a valid subforest of F . Such an ordering of
embedding edges can be fixed for every Fi at the beginning of the game.

The result below is a straightforward consequence of the definitions of a valid subforest, the operation
of type s and Lemma 3.9, so we omit its proof.

Lemma 3.12. Let F “ pF1, F2, . . . , Fℓq be a rooted forest-tuple with its root set R and let F 1 “

pF 1
1, F 1

2, . . . , F 1
ℓq be a valid subforest of F . Consider a moment of the game played on the complete

graph B such that Client’s graph is a red copy F̄ 1 “ F̄ 1
1 Ÿ F̄ 1

2 Ÿ . . . Ÿ F̄ 1
ℓ of F 1. If Waiter is able to

perform the operation of type s P t1, 2u, then the following holds for the red graph F̄ 2 arising from
this operation.

(a) F̄ 2 is a copy of a valid subforest F 2 “ pF 2
1 , F 2

2 , . . . , F 2
ℓ q.

(b) No edge claimed during the operation of type s has both endpoints in the roots of F .
(c) Every blue edge claimed during the operation of type s lies between sets V pF̄ 2

i q and V pF̄ 2
j q for

some i ‰ j.
(d) Every red edge claimed during the operation of type s is an edge of F̄ 2

i , for some i P rℓs.
11

(e) If F ´ F 1 is suitable but not simple and minpkpF ´ F 1q, 2q “ 3 ´ s, then F ´ F 2 is suitable.
(f) If F ´ F 1 is m-suitable, epF q ´ tpF q ě 2, and minpkpF ´ F 1q, 2q “ 3 ´ s, then F ´ F 2 is

pm ´ sq-suitable.

3.4. Forcing rooted forest-tuples. We are ready to prove a couple of results regarding forcing
rooted forests.

Lemma 3.13. Let F “ pF1, F2, . . . , Fℓq be a suitable rooted forest-tuple with the set of roots R. Let
B be a complete graph on vpF q vertices, with fixed distinct vertices u1, u2, . . . , u|R|. Then, playing
on B, Waiter can force a red copy F̄ 1 “ F̄ 1

1 Ÿ F̄ 1
2 Ÿ . . . Ÿ F̄ 1

ℓ of a valid subforest F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓq

of F such that F ´ F 1 is suitable and simple. Furthermore, she can achieve this goal within epF 1q

rounds applying operations of type 1 or 2 and such that after the jth operation Client’s graph is a red
copy F̄ j “ F̄ j

1 Ÿ F̄ j
2 Ÿ . . . Ÿ F̄ j

ℓ of a valid subforest F j “ pF j
1 , F j

2 , . . . , F j
ℓ q of F satisfying the following

properties.

(a) For every r P R, the image of r in F̄ j is ur.
(b) No edges between the images of the roots are colored.
(c) Every blue edge lies between the sets V pF̄ j

i q and V pF̄ j
i1q, for some i ‰ i1.

(d) Every red edge is an edge of F̄ j.
(e) F ´ F j is suitable.

Proof. Note that there are exactly |R| trees which are the components of F . The general strategy
for Waiter is to force Client to grow each tree starting from the root, until the obtained rooted
forest-tuple is simple. Our argument is inductive.
At the beginning of the game, let F 0

i consist of the roots in R X V pFiq, and F̄ 0
i consist of their fixed

images ur, r P R X V pFiq. Then F̄ 0 :“ pF̄ 0
1 , F̄ 0

2 , . . . , F̄ 0
ℓ q and F 0 :“ pF 0

1 , F 0
2 , . . . , F 0

ℓ q satisfy (a) – (e).
For j ě 0, assume that j operations of type 1 or 2 were already played and that Client’s graph
F̄ j

1 Ÿ F̄ j
2 Ÿ . . . Ÿ F̄ j

ℓ is a copy of a rooted forest F j
1 Ÿ F j

2 Ÿ . . . Ÿ F j
ℓ as described above. Assume further

that F ´ F j is not simple and hence Waiter is going to play the pj ` 1qst operation of type 1 or 2.
Note that F ´ F j is suitable, so tpF ´ F jq ě 4 and there are at least 4 free vertices among non-roots
images on the board, so Waiter can perform an operation of any type. The type of the operation
depends on kpF ´ F jq. If kpF ´ F jq ě 2, then she performs the operation of type 1; otherwise she
performs the operation of type 2. Let F̄ j`1 be the red graph arising from this operation. In view of
Lemma 3.12 applied to F and F j , the graph F̄ j`1 is a copy of a valid subforest of F , let us denote it
by F j`1. Conditions (a) – (e) are satisfied by F̄ j`1 and F j`1 in view of the inductive hypothesis and
Lemma 3.12. In particular, the suitability of F j`1 follows from Lemma 3.12 (e).
Observe that the number of edges of F ´ F j is decreasing with j, while tpF ´ F jq ě 4 by Lemma 3.4,
so F ´ F s is simple for some s ě 0. It is also suitable because of (e). Finally, note that every red
edge claimed in the game becomes an edge of F̄ s, so it takes Waiter epF sq rounds in total to achieve
the desired graph. □

12

Lemma 3.14. Let F “ pF1, F2, . . . , Fℓq be a suitable rooted forest-tuple. Then playing on a complete
graph B with vpF q vertices, Waiter can force a copy F̄ “ F̄1 Ÿ F̄2 Ÿ . . . Ÿ F̄ℓ of F1 Ÿ F2 Ÿ . . . Ÿ Fℓ

within epF q ` 1 rounds and such that the following properties hold.

(a) All roots are mapped into vertices fixed at the beginning.
(b) No edges between the images of the roots are colored.
(c) For every i P rℓs there are no blue edges spanned by vertices in V pF̄iq.
(d) There are no red edges spanned by vertices in V pF̄iq other than those of F̄i.

Proof. Let R be the set of all roots of F1 Ÿ F2 Ÿ . . . Ÿ Fℓ, and for each r P R fix a distinct vertex ur

of B. We present Waiter’s strategy in two stages. In the first stage she forces Client to build a copy
of a valid subforest F 1 of F such that F ´ F 1 is simple. In the second stage Waiter forces a copy of
F ´ F 1, which completes building a copy of F .
Stage I. Waiter applies her strategy provided by Lemma 3.13 and forces Client to build a red copy
F̄ 1 “ pF̄ 1

1, F̄ 1
2, . . . , F̄ 1

ℓq of a valid subforest F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓq of F such that F ´ F 1 is suitable and

simple, and such that every root ur of F̄ 1 is the image of r, for r P R. It follows from Lemma 3.13
that no edges between the roots ur are colored, all red edges are edges of F̄ 1 and every blue edge lies
between the sets V pF̄ 1

i q and V pF̄ 1
jq, for some i ‰ j. The first stage lasts epF 1q rounds.

Stage II. Let F ˚ “ pF ˚
1 , . . . , F ˚

ℓ q :“ F ´ F 1. We set ai “ epF ˚
i q “ epFiq ´ epF 1

i q for every i P rℓs. By
reordering forests F 1

1, . . . , F 1
ℓ , we can assume that a1 ď 2 and a2 “ . . . “ aℓ̃ “ 1 with ℓ̃ :“ tpF ´F 1q ě 4,

since F ´ F 1 is simple and suitable.
First assume that a1 “ 2. Let V pBqzV pF̄ 1q “: tv1, v2, . . . , vℓ̃`1u. Notice that all vertices of this set
are free because of the properties of F̄ 1 mentioned at the end of Stage I.
Waiter now plays as follows. For the first round of Stage II, let w be the image of a root of F ˚

1 . Waiter
offers wvℓ̃ and wvℓ̃`1. By symmetry, we can assume that Client colors wvℓ̃`1 red.
Afterwards, for every i P rℓ̃s, let wi P V pF̄ 1

i q be the unique vertex at which still exactly one red
edge needs to be forced. Then Waiter’s goal is to get a red perfect matching between the sets
W :“ tw1, w2, . . . , wℓ̃u and V :“ tv1, v2, . . . , vℓ̃u. Due to the previous round, in the following rounds
Waiter cannot offer w1vℓ̃, since either w1 “ w and w1vℓ̃ is blue or w1 ‰ w and w1vℓ̃ is free but, if
colored red, would violate condition (c). Other edges between W and V are still free. Hence, using
Lemma 3.3, Waiter can force a required red matching within ℓ̃ ` 1 rounds.
Now assume that a1 “ 1. This case is similar, yet a bit simpler, since we can apply Lemma 3.3 at
once.
In both cases Waiter wastes one red edge when she tries to force a perfect matching, so Stage II lasts
epF q ´ epF 1q ` 1 rounds. Furthermore, this extra red edge joins copies of two distinct forests Fi and
Fj, and every blue edge claimed in Stage II joins copies of two distinct forests as well.
Summarizing, Stage I and Stage II last together epF q ` 1 rounds and all properties (a) – (d) are
satisfied. □

13

In some cases Waiter may want to force a forest that has a smaller number of vertices than the
board B. We formulate two lemmas, corresponding to Lemma 3.13 and Lemma 3.14, with an extra
condition on the blue edges incident to vertices not belonging to the red forest obtained at the end.

Lemma 3.15. Let F “ pF1, F2, . . . , Fℓq be an m-suitable rooted forest-tuple with the set of roots
R. Let B be a complete graph on vpF q ` m ´ epF q vertices, with fixed ℓ vertices u1, u2, . . . , uℓ.
Then, playing on B, Waiter can force a red copy F̄ 1 “ F̄ 1

1 Ÿ F̄ 1
2 Ÿ . . . Ÿ F̄ 1

ℓ of a valid subforest
F 1 “ pF 1

1, F 1
2, . . . , F 1

ℓq of F such that F ´ F 1 is pm ´ epF 1qq-suitable and either tpF ´ F 1q ď 2 and
kpF ´ F 1q “ 1, or epF ´ F 1q ´ tpF ´ F 1q ď 1. Furthermore, she can achieve this goal within epF 1q

rounds applying operations of type 1 or 2, and such that after the jth operation, Client’s graph is a red
copy F̄ j “ F̄ j

1 Ÿ F̄ j
2 Ÿ . . . Ÿ F̄ j

ℓ of a valid subforest F j “ pF j
1 , F j

2 , . . . , F j
ℓ q of F satisfying the following

properties.

(a) For every r P R, the image of r in F̄ j is ur.
(b) No edges between the images of the roots are colored.
(c) Every blue edge lies between the sets V pF̄ j

i q and V pF̄ j
i1q, for some i ‰ i1.

(d) Every red edge is an edge of F̄ j.
(e) F ´ F j is pm ´ epF jqq-suitable.

Proof. The argument is similar to the proof of Lemma 3.13, nonetheless we present the inductive
argument (omitting a few details), since an m-suitable rooted forest-tuple may not be suitable.
For j ě 0, assume that j operations of type 1 or 2 were already played and that Client’s graph
F̄ j

1 Ÿ F̄ j
2 Ÿ . . . Ÿ F̄ j

ℓ is a copy of a rooted forest F j
1 Ÿ F j

2 Ÿ . . . Ÿ F j
ℓ satisfying (a) – (e). Assume

further that epF ´ F jq ´ tpF ´ F jq ě 2, and tpF ´ F jq ě 3 or kpF ´ F jq ě 2, so Waiter is going
to perform the pj ` 1qst operation of type 1 or 2. If kpF ´ F jq ě 2, then Waiter performs the
operation of type 1, while if kpF ´ F jq “ 1 and tpF ´ F jq ě 3, then the operation of type 2 is
performed. Let F̄ j`1 be the red graph arising from the operation of type s, s P t1, 2u, performed by
Waiter. In view of Lemma 3.12 applied to F and F j, the graph F̄ j`1 is a copy of a valid subforest
of F . Let us denote it by F j`1. Conditions (a) – (e) are satisfied by F̄ j`1 and F j`1 in view of the
inductive hypothesis and Lemma 3.12. In particular, the pm ´ epF j`1qq-suitability of F j`1 follows
from Lemma 3.12 (f), the assumption that F ´ F j is pm ´ epF jqq-suitable, epF ´ F jq ´ tpF ´ F jq ě 2,
and m ´ epF jq ´ s “ m ´ epF j`1q. This finishes the inductive argument. □

Let us recall that if a vertex u of a rooted forest F is a root, then we do not treat it as a leaf, even if
degF puq “ 1. For example, an isolated edge in a rooted forest has only one leaf, not two.

Lemma 3.16. Let F “ pF1, F2, . . . , Fℓq be an m-suitable rooted forest-tuple and let m ą epF q.
Then playing on a complete graph B on m ` vpF q ´ epF q vertices, Waiter can force a red copy
F̄ “ F̄1 Ÿ F̄2 Ÿ . . . Ÿ F̄ℓ of F1 Ÿ F2 Ÿ . . . Ÿ Fℓ within epF q rounds and such that the following properties
hold.

(a) All roots are mapped into vertices fixed at the beginning.
(b) No edges between the images of the roots are colored.

14

(c) For every i P rℓs, there are no blue edges spanned by vertices in V pF̄iq.
(d) There are no red edges spanned by vertices in V pF̄iq other than those of F̄i.
(e) All colored edges intersect V pF̄ q.
(f) Every vertex not in V pF̄ q is incident with at most one colored edge, and the other endpoint of

such an edge is not a leaf of F̄ .

Proof. We divide the game into two stages. In the first stage Waiter forces a red copy of a valid
subforest F 1 of F such that F ´ F 1 either has at most two non-empty forests or all forest in the tuple
are very small. In the second stage, Waiter forces a copy of F ´ F 1, which completes building a copy
of F .
Stage I. Waiter applies her strategy provided by Lemma 3.15 and forces Client to build a red
copy F̄ 1 “ pF̄ 1

1, F̄ 1
2, . . . , F̄ 1

ℓq of a valid subforest F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓq of F such that F ˚ :“ F ´ F 1 is

pm ´ epF 1qq-suitable and either tpF ˚q ď 2 and kpF ˚q “ 1, or epF ˚q ´ tpF ˚q ď 1. Furthermore, every
root ur of F̄ 1 is the image of r, for r P R. It follows from Lemma 3.15 that no edges between the
vertices ur are colored, all red edges are edges of F̄ 1 and every blue edge lies between sets V pF̄ 1

i q and
V pF̄ 1

jq for some i ‰ j. The first stage lasts epF 1q rounds.
Stage II. For F ˚ “ pF ˚

1 , . . . , F ˚
ℓ q we set ai “ epF ˚

i q “ epFiq ´ epF 1
i q for every i P rℓs. By reordering

the forests F ˚
1 , . . . , F ˚

ℓ , we can assume that a1 ě a2 ě . . . ě aℓ. We consider two cases depending on
the properties of F ˚ mentioned at the end of Stage I.

Case 1. Suppose that tpF ˚q ď 2 and kpF ˚q “ 1. Then a1 “ apF ˚q and a2 ď apF ˚q ´ 1 (in case ℓ “ 1
we set a2 “ 0).
If a1 “ 1, then Waiter can simply finish the game in one round, since vpBq “ vpF q ` m ´ epF q ě

vpF q ` 1 “ vpF ˚q ` 2, and hence there are still two free vertices (which are not roots) at this moment.
Here we used the assumption that m ą epF q.
If a1 ą 1, then in view of pm ´ epF 1qq-suitability of F ˚ and Lemma 3.6, we have 3apF ˚q ` kpF ˚q ´

pm ´ epF 1qq ď 2. Thus m ě 3apF ˚q ´ 1 ` epF 1q and the number of free vertices (which are not roots)
is vpBq ´ vpF 1q “ m ´ epF q ` vpF q ´ vpF 1q ě 3apF ˚q ´ 1 ě 2a1 ` a2.
For the next a2 rounds, Waiter performs the operation of type 1. Let F̄ 2 be the red graph arising
after all a2 operations. It follows from Lemma 3.12 and the properties of the colored graph at the
end of Stage I that no edges between the vertices ur are colored, all red edges are edges of F̄ 2 and
every blue edge lies between distinct forests of F̄ 2. Note that exactly a2 free vertices where used in
these a2 rounds.
The part of F remaining for embedding has a1 edges and since there are still at least 2a1 free vertices
left, Waiter can simply use two free vertices for each remaining edge to force the desired red copy F̄ .
Note that the only vertices not in V pF̄ q incident to a colored edge at the end of the game are the ones
used during the last a1 rounds. Every such vertex was used exactly once and the edge incident to
that vertex was also incident to a vertex which was already in the red forest and which had another
red incident edge, so it was not a leaf. Therefore properties (e) and (f) are satisfied. Since the last a1

rounds do not spoil properties (a) – (d), we conclude that properties (a) – (f) hold.
15

Case 2. Suppose that Case 1 does not hold and epF ˚q ´ tpF ˚q ď 1.
Then either a1 “ 2, tpF ˚q ě 3 and a2, a3, . . . , aℓ ď 1, or a1 “ 1. In the first case Waiter can perform
the operation of type 2. The red graph F̄ 2 arising after this operation satisfies apF̄ 2q “ 1 and further
argument coincides with the analysis in case a1 “ 1. For the next tpF ˚q ´ 1 rounds, Waiter performs
the operation of type 1. Thereby she forces a red matching of size tpF ˚q ´ 1 and only one edge of
F remains for embedding. Then Waiter can finish the game in one round, since there are two free
vertices (which are not roots) at this moment. Since the operations of type 1 or 2 did not spoil
properties (a) – (d), and the last round did not spoil properties (e) and (f), we obtain a desired red
copy of F . □

We are now ready to state and prove one of the main results of this section.

Theorem 3.17. Let 0 ď q ă t be integers, and let F be a forest with at most t edges, consisting of s

rooted trees T1, T2, . . . , Ts, and such that for each i P rss we have 1 ď epTiq ă
t´q

3 . Let r1, . . . , rs be the
roots of the corresponding trees. Consider a partially colored complete graph B with V pBq “ U Ÿ V ,
|U | “ s, |V | “ t, and such that B contains a collection of s vertex-disjoint blue stars with centers
u1, . . . , us P U , with total number of edges equal q ď t, while all other edges of BrU, V s and all edges
of BrV s are free. Then, playing on B, Waiter can force a red copy F̄ of F within at most epF q ` 1
rounds in such a way that the following holds.

(a) Every root ri is mapped into ui.
(b) All colored edges of F̄ intersect V pF̄ q.
(c) No edges connecting vertices from U are offered by Waiter.
(d) Every vertex not in V pF̄ q is incident with at most one colored edge in F̄ , and the other

endpoint of such an edge is not a leaf of F̄ .

Proof. We apply induction on q.
For q “ 0 and epF q “ t we have apF q ă epF q{3. Hence, by Lemma 3.5, F is suitable, and by
Lemma 3.14, Waiter can force the desired copy of F̄ in B.
For q “ 0 and epF q ă t we also have apF q ă t{3. Hence, using Lemma 3.8, we get that F is t-suitable.
Then, by Lemma 3.16, Waiter can force the desired copy of F̄ in B.
For q ą 0 we consider two cases, in both of which we start by mapping the roots ri to vertices ui in U .

Case 1. |U | ě 3.
Then there exists a vertex v P V which is incident to a blue edge and there are two root images
ui, uj P U , such that the edges uiv, ujv are free. Waiter offers uiv, ujv. By symmetry we can assume
that Client colors uiv red. Let Ti be the component of F with root ri, and let r1

i be any neighbor of
ri in Ti. We replace F with F 1 :“ F ´ rir

1
i, U with U 1 :“ U Y tvu and V with V 1 :“ V ztvu, and add

r1
i to the set of roots of F with a fixed image v. Moreover, if the new tree rooted at ri or r1

i in F 1 is
trivial, we delete it from F 1, and we delete the corresponding image of that root from U 1 as well. We
are left with the forest F 1 with t1 “ t ´ 1 edges and a board B1 :“ BrU 1 Y V 1s such that there are
q1 “ q ´ 1 blue edges forming stars with centers in U 1 and edges towards V 1. As every component of

16

F 1 has less than t´q
3 “

t1´q1

3 edges, we can apply the induction hypothesis. Indeed, note that the edges
offered in the first round are not incident with V 1, and hence all edges in B1rU 1, V 1s and B1rV 1s, apart
from the q ´ 1 initial blue edges, are free. This ensures that Waiter can force a copy of F 1 where each
of the roots r1, . . . , rs, r1

i is mapped to its fixed image u1, . . . , us, v, respectively. Together with the
red edge uiv, we get the desired copy F̄ of F .

Case 2. |U | ď 2.
Then there are at most two trees in F , and hence epF q ă 2

3pt ´ qq. In this case we can remove all
vertices in V which are incident to a blue edge, thus obtaining a subset V 1 Ă V of t1 :“ t ´ q vertices.
Let B1 :“ BrU Y V 1s be the new board. The smaller board B1 has s ` t1 vertices and no blue edges.
Since epF q ă 2

3pt ´ qq ď t1 and each component Ti in F satisfies epTiq ă
t´q

3 “ t1

3 , the assertion follows
from the induction base case applied to the board B1. □

The last result of this subsection is an observation that if the board is much larger than the target
forest, then Waiter can easily achieve her goal.

Lemma 3.18. Let F be a rooted forest and let B be a complete graph on at least vpF q ` epF q vertices.
Then Waiter can force a red copy F̄ of F in B within at most epF q rounds in such a way that

(a) all roots are mapped into vertices fixed at the beginning,
(b) every colored edge has an endpoint in a non-leaf of F̄ ,
(c) all blue edges in EBpV pF̄ q, V pBqzV pF̄ qq form a star forest such that every star is centered in

a vertex u P V pF̄ q and has at most degF̄ puq edges.

Proof. Waiter has enough space to force a red copy of every component of F in a greedy way: starting
from its roots, Waiter always offers two edges incident to a vertex of a partial embedding of F , with
both other endpoints free. Then the properties (a), (b) and (c) are satisfied. □

Forcing forests with double-rooted components. We have dealt with rooted forests so far. In
the remaining part of the section we analyze games in which Waiter’s aim is to obtain a red forest
with double-rooted components (trees). We abandon the forest-tuples notation while stating the
theorems, but it will still be present in the proofs.

Lemma 3.19. Let F be a forest such that each of its components is rooted or double-rooted. Assume
that every tree in F has at least 1 and less than epF q´d

3 edges, where d is the number of double-rooted
components of F , and that in every double-rooted component its roots are at distance at least 4. Then
playing on a complete graph B on n ě vpF q vertices, Waiter can force a red copy F̄ of F within at
most epF q ` d ` 1 rounds in such a way that all roots are mapped into vertices fixed at the beginning.

Proof. The main idea is to split every double-rooted tree into a forest consisting of two trees by
removing one edge, and then follow the strategy from Lemma 3.14. The main strategy will be
interrupted at some point in order to connect such pairs of trees into one.
We call a double-rooted tree T a path-double-rooted tree, if every inner vertex of a path from one
root to the other has degree exactly 2 in T ; in other words, the path connecting the roots in T is a

17

bare path. Suppose that F “ T1 Ÿ T2 Ÿ . . . Ÿ Tℓ, where the first d1 trees are double-rooted but not
path-double-rooted, the next d2 trees are path-double-rooted, and the remaining trees are rooted
which means that they have exactly one root. Let R1, R2 and R3 be the sets of roots of the above
trees of three kinds, respectively, and let V pBq “ U1 Ÿ U2 Ÿ U3 Ÿ V , where Ui consists of the images
of the roots in Ri, for i P r3s.
Consider a double-rooted tree Ti which is not path-double-rooted, i.e. with i P rd1s. Suppose that ri

and r1
i are its two roots, Pi is a path connecting ri to r1

i, and let v be an inner vertex of degree at
least 3 in Ti. Moreover, without loss of generality suppose that v and r1

i are at distance at least 2.
Let x be the neighbor of v on a path to r1

i and let y be the neighbor of x on a path to r1
i (note that if

v and r1
i are at distance 2, then y “ r1

i). Finally, let w be a neighbor of v which does not belong to Pi.
Set T 1

i :“ T rV pPiq Y twus, T
p1q

i Y T
p2q

i :“ T 1
i ´ txyu (see Figure 3.2) and F 1

i :“ Ti ´ xy. Furthermore,
for every path-double-rooted tree Tj, i.e. with j “ d1 ` k for k P rd2s, let Pj be the path between the
roots rj and r1

j in Tj and let q be the neighbor of r1
j on Pj . We set T 1

j “ Pj ´ tr1
ju and F 1

j :“ Fj ´ r1
jq.

Hence T 1
j is just a rooted path where the root is a vertex of degree 1.

T
p1q

i T
p2q

i

ri v x y r1
i

w

Figure 3.2. The subtree T 1
i of the double-rooted tree Ti, which is not path-double-

rooted. The forest F 1
i contains trees T

p1q

i and T
p2q

i , which are forced before the rest of
Ti.

We now consider the rooted forest-tuple F 1 “ pF 1
1, F 1

2, . . . , F 1
ℓq, where for h ą d1 ` d2, we set F 1

h “ Th.
We claim that F 1 satisfies the assumptions of Lemma 3.14. We need to check whether F 1 is suitable.
Since epTiq ď

epF q´d
3 for any i P rℓs, and since we have removed from F exactly d edges, we have

apF 1q ď
epF q´d

3 “
epF 1q

3 . Thus, by Lemma 3.5, F 1 is suitable.
Waiter now plays according to the strategy in the proof of Lemma 3.14, which will be interrupted
in order to connect the roots in each image of a double-rooted tree as follows. Before we proceed,
let us recall that the operations of type 1 or 2 are the heart of the proof of Lemma 3.14, so in view
of Remark 3.11, Waiter has some flexibility while choosing the order of the edge embedding for a
given forest. Hence, while forcing F 1

i for i P rd1s, she can first force copies of T
p1q

i and T
p2q

i , and while
forcing F 1

j for j “ d1 ` k with k P rd2s, she first forces T 1
j .

Suppose that for a tree Ti which is double-rooted but not path-double-rooted, Waiter already forced
in B its subforest F̄ 1

i (see Figure 3.2) in such a way, that the only colored edges spanned by vertices
in V pF̄ 1

i q are the red edges in F̄ 1
i . In particular, the edges ȳx̄ and ȳw̄, where x̄, ȳ, w̄ are the images

of x, y, w, respectively, are still free. Hence, Waiter offers ȳx̄ and ȳw̄. Now no matter which of the
two edges Client chooses, Waiter forces a red copy T̄ 1

i of the double-rooted subtree T 1
i Ă Ti, possibly

18

changing the role of x and w. Waiter repeats this strategy for each tree Ti with i P rd1s using exactly
d1 rounds to create d1 red edges not in E

`
Ť

iPrd1s
F̄ 1

i

˘

(but included in F̄).
As for a path-double-rooted tree Tj, suppose that at some point Waiter forced a copy F̄ 1

j of a rooted
path Pj ´ tr1

ju :“ rjv1v2 . . . vq, which is a part of the double-rooted path Pj with one missing edge
vqr

1
j. Let r̄j, v̄1, v̄2, . . . , v̄q be the corresponding images of vertices in B. Note also that since the

length of P is at least 4, we have q ě 3. Let r̄1
j be the image of r1

j in U2. Then all edges between r̄1
j

and V pF̄ 1
jq are free. First Waiter offers the edges v̄qv̄q´2 and v̄qv̄q´3 which, again by the hypothesis of

Lemma 3.14, are free. If Client chooses v̄qv̄q´2, then in the following round Waiter offers r̄1
j v̄q and

r̄1
j v̄q´1. But then, even if Client colors r̄1

j v̄q blue, a red path of length vpPjq between r̄j and r̄1
j is

created, namely we have a red path r̄j v̄1 . . . v̄q´2v̄qv̄q´1r̄
1
j. Similarly, if in the previous round Client

chooses v̄qv̄q´3, then in the following round Waiter offers r̄1
j v̄q and r̄1

j v̄q´2. Again, even if Client colors
r̄1

j v̄q blue, a red path r̄j v̄1 . . . v̄q´3v̄qv̄q´1v̄q´2r̄
1
j is created (see Figure 3.3). Hence, Waiter forces a red

copy of P̄j of the double-rooted path Pj. Waiter repeats this strategy for each tree Tj, j “ d1 ` k for
k P rd2s, creating d2 extra red edges (not included in F̄).

r̄j v̄q´3 v̄q´2 v̄q´1 v̄q r̄1
j

r̄j v̄q´3 v̄q´2 v̄q´1 v̄q r̄1
j

r̄j v̄q´3 v̄q´2 v̄q´1 v̄q r̄1
j

r̄j v̄q´3 v̄q´2 v̄q´1 v̄q r̄1
j

Figure 3.3. Connecting the roots r̄j and r̄1
j to get a double-rooted path P̄j: in the

first round Waiter offers edges v̄qv̄q´3 and v̄qv̄q´2.

In view of Lemma 3.14, while creating a red copy of F 1, Waiter creates only one red edge not
included later in F̄ . Thus the above strategy guearantees the desired red copy F̄ of F within at most
epF q ` 1 ` d2 ď epF q ` d ` 1 rounds. □

While most of the previous lemmas deal with forests in which the size of each component is bounded,
we will also need strategies for forests where the components can be larger but the maximum degree
is bounded sufficiently.

Lemma 3.20. Let F be a forest such that each of its components is rooted or double-rooted. Suppose
that d ě 0 of the components of F are double-rooted trees, and the two roots of such components are
distant by at least 7. Let B be a complete graph on at least vpF q ` ∆pF q vertices. Then Waiter can
force a copy F̄ of F in B within at most epF q ` d rounds in such a way that

19

(a) all roots are mapped into vertices fixed at the beginning,
(b) every colored edge has an endpoint in a non-leaf of F̄ ,
(c) every non-leaf of F̄ is incident with at most ∆pF q blue edges whose other endpoint is in

V pBqzV pF̄ q.

Proof. Let T1, T2, . . . , Td be the components of F with two roots, and denote with xi and yi the roots
of Ti for every i P rds. Let x1

i and y1
i be their fixed images, and let Pi be the unique path between xi

and yi in F , where we let di “ epPiq ě 7. Before the game starts, partition V pBq into vertex sets
V1, V2, . . . , Vd, Vd`1 such that for every i P rds, we have |Vi| “ di ` 1 and that Vi contains x1

i and y1
i

but no other fixed image of roots in F . Let F0 be the union of all paths Pi.
In the first stage of the game, for each i P rds, Waiter plays on each of the boards BrVis according to
the strategy from Lemma 3.2 in order to claim a Hamilton path in BrVis between x1

i and y1
i, i.e. a

copy of Pi. In total, this stage lasts
ř

iPrds
pepTiq ` 1q “ epF0q ` d rounds.

Afterwards, for the second stage, Waiter can extend the copy of F0 in a greedy way to a copy of
F , while keeping the images of all roots fixed. To be more precise, as long as there is a vertex x in
the image of a partial embedding of F at which still some number t ď ∆pF q of edges need to be
claimed, Waiter simply plays t rounds in each of which she offers two edges between x and the free
vertices. Note that this is possible since vpBq ě vpF q ` ∆pF q. Moreover, this second stage lasts
precisely epF0q ´ epF1q rounds, so that after a total of epF q ` d rounds Waiter has forced a copy of F .
Property (a) is immediate. Property (b) holds since in the first stage no leaf is embedded and since
in the second stage, Waiter only offers edges incident to some vertex x which already belongs to the
embedding and still needs at least one more neighbor, thus cannot be a leaf. Moreover, as Waiter
only offers edges between such a vertex x and the remaining free vertices as long as x is still missing
some neighbors, which happens at most ∆pF q rounds, property (c) follows. □

The following lemma is a variant of Theorem 5.2 in [5] and can be proven analogously. It roughly
states that a spanning tree of not too large maximum degree can be forced by Waiter fast, even if the
images of r P t1, 2u vertices are fixed at the beginning of the game. In fact, the case r “ 1 is already
covered by Theorem 5.2 in [5], while the case r “ 2 only requires a few modifications. We therefore
omit the details here, and move the proof to the appendix.

Lemma 3.21. There exists α ą 0 and nα such that for every n ě nα the following holds. Let T be
tree on n vertices, with r P t1, 2u roots and with ∆pT q ď α

?
n, and such that its roots (if there are

two of them) are distant by at least 7. Then Waiter can force a copy T̄ of T in Kn within at most
epT q ` r rounds, in such a way that all roots are mapped into vertices fixed at the beginning.

Finally, we can conclude the following theorem.

Theorem 3.22. There exists α ą 0 and nα such that for every n ě nα the following holds. Let
F be a forest on n vertices, with ∆pF q ď α

?
n and such that every component is non-trivial and

rooted or double-rooted. Suppose that d ě 0 of the components are double-rooted trees and for every
double-rooted component its roots are distant by at least 7. Then Waiter can force a copy F̄ of F in

20

Kn within at most epF q ` d ` 1 rounds, in such a way that all roots are mapped into vertices fixed at
the beginning.

Proof. Let α1 be the constant promised by Lemma 3.21, and set α “ α1

3 . Whenever needed, assume
that n is large enough. Note that d ď n

8 , since every double-rooted component is required to have
at least 8 vertices. If every component of F has less than epF q´d

3 edges, then the assertion follows
from Lemma 3.19. Hence, assume from now on that there is a component T in F which has at least
epF q´d

3 ě n
8 edges and put F 1 “ F ´ V pT q. Let R Ď V pT q be the set of roots of T , and note that

n ´ |R| ě vpF 1
q ` vpT q ´ 2 ě vpF 1

q `
n

8 ´ 2 ě vpF 1
q ` ∆pF 1

q

for n big enough. Let R̄ be the vertices in Kn that the roots in R need to be mapped to. Lemma 3.20
implies that Waiter can force a copy F̄ 1 of F 1 in Kn ´ R̄ such that the properties (a) and (b) from this
lemma hold. In particular, all roots of F 1 are mapped to the vertices fixed at the beginning, and no edge
in in V pKnqzV pF̄ 1q is colored yet. Moreover, it takes her at most epF 1q`d1 rounds, where d1 P td´1, du

is the number of double-rooted trees of F 1. Afterwards, Waiter plays on the board Kn ´ V pF̄ 1q.
In view of Lemma 3.21 she can force a copy of T , within at most epT q ` |R| rounds such that the
vertices of R are mapped to the fixed vertices in R̄. For this, note that ∆pT q ď α

?
n ă α1

a

vpT q.
In particular, Waiter forces a copy of F as required within epF 1q ` d1 ` epT q ` |R| “ epF q ` d ` 1
rounds. □

4. Forcing spanning trees with linear maximum degree

In this section we prove Theorem 1.2.
Let ε P

`

0, 1
3

˘

be given, set δ “ ε
3 , let α be the constant from Theorem 3.22, and let b “ 20ε´1α´1.

Whenever needed assume that n is large enough. Let T be a tree on n vertices with ∆pT q ď
`1

3 ´ ε
˘

n.
We set D “

εα
?

n
5 , and we say that a vertex of T is big if its degree in T is at least D. We denote

the set of all big vertices by BigT , and we let T 1 be the smallest subtree of T containing all vertices
from BigT . We say that a bare path in T 1 is special if each of its inner vertices does not belong to
BigT . Let P be the family of all maximal special bare paths of T 1 whose length is at least 11, and let
P 1 be the family of all the paths of P without their endpoints. Note that then the paths in P 1 are
vertex-disjoint and have length at least 9. With I 1 we denote the set of all inner vertices of the paths
in P 1. Moreover, we set

F1 :“

$

&

%

T 1, if vpT 1q ď εn
4 ,

T 1 ´ I 1, if vpT 1q ą εn
4 .

In the following, we first give a brief overview of Waiter’s strategy for a game played on B :“ Kn “

pV, Eq, and afterwards we provide more details on why Waiter can play as suggested and force a copy
of T as required.

Strategy description. Waiter’s strategy consists of three stages. Details of each stage will be given
in the strategy discussion.

21

Stage I.
By an application of Lemma 3.18, Waiter forces a red copy F̄1 of F1 within epF1q rounds such that
immediately afterwards the following holds:

(I.1) every colored edge has an endpoint in V pF̄1q.
(I.2) all blue edges in EBpV pF̄1q, V zV pF̄1qq form a star forest such that every star is centered at

a vertex u P V pF̄1q and has at most degF̄1puq edges.

Next, let f1 : V pF1q Ñ V pF̄1q denote the embedding of F1 into the red graph. Then Waiter proceeds
with Stage II.
Stage II.
Let C1, . . . , Cs be the non-trivial components of F 1

2 :“ T zEpF1q. For each i P rss, let Ri denote the set
of vertices of Ci that belong to V pF1q, and call these vertices the roots of Ci. Note that 1 ď |Ri| ď 2
for every i P rss. Furthermore, Ci has two roots ri, r1

i if and only if these vertices are connected in
Ci by a path from P 1. Let R :“

Ť

iPrss
Ri, B2 :“ BrpV zV pF̄1qq Y f1pRqs and t :“ n ´ vpF1q. We

distinguish two cases.

Case 1. If F1 “ T 1 and all components Ci have size at most
`1

3 ´ δ
˘

t, then Waiter finishes the
embedding of T within epF 1

2q ` 1 further rounds, by an application of Theorem 3.17 on the board B2,
and she skips Stage III.

Case 2. Otherwise, let F2 Ă F 1
2 be the star forest consisting of all edges incident with R in F 1

2. (This
includes the first and last edge of each path in P 1.) Let us assume that the vertices in R are the roots
of F2. Then, by an application of Theorem 3.17, playing on B2 for epF2q rounds, Waiter forces a red
copy F̄2 of F2 such that f1pRq is the set of roots of F̄2 and the following holds.

(II.1) For each r P R, the star with center r̄ :“ f1prq has size degF2prq.
(II.2) All colored edges from Stage II intersect V pF̄2q.
(II.3) Every vertex in V zpV pF̄1q Y V pF̄2qq is incident with at most one colored edge and the other

endpoint of such an edge is not a leaf of F̄2.

Afterwards, let f2 : V pF1 Y F2q Ñ V pF̄1 Y F̄2q denote the obtained embedding (an extension of f1) of
F1 Y F2 into Client’s graph. Then, Waiter proceeds with Stage III.
Stage III.
When Waiter enters this stage, Client’s graph contains a copy of F1 YF2. Let F3 :“ T zpEpF1qYEpF2qq.
Then, by an application of Theorem 3.22, within at most epF3q ` 4n

D
` 1 rounds, Waiter finishes a copy

of T .

Strategy discussion. We now explain, separately for each stage, why Waiter is able to play as
described above. The following properties of P 1, I 1 and F1 will be useful in the further analysis.

Claim 4.1. For large enough n we have the following.

(a) |P 1| ă 4n
D

.
(b) If vpT 1q ą εn

4 , then |I 1| ą vpT 1q ´ 52n
D

.
22

(c) vpF1q ď εn
4 .

Proof. Note that by the definition of BigT we have | BigT | ă 2n
D

. Clearly ∆pT 1q ď |LpT 1q| ă 2n
D

, since
every leaf of T 1 is a big vertex of T . Define a set GoodT “ tv P V pT 1qz BigT : degT 1pvq “ 2u. Next,
observe that the number of vertices of T 1 which belong to BigT or have degree at least 3 in T 1 is
less than | BigT | ` |LpT 1q| ă 4n

D
. Hence, | GoodT | ą vpT 1q ´ 4n

D
. Since every endpoint of a maximal

special bare path is either a big vertex (including all leaves of T 1) or it has degree more than 2 in T 1,
the number of maximal special bare paths in T 1 is less than 4n

D
. Thus |P 1| ď |P | ă 4n

D
, and the first

part of the claim follows.
For the second part, we assume that vpT 1q ą εn

4 and we denote by I the set of all inner vertices of the
paths in P . We already verified that |P | ă 4n

D
, hence the number of inner vertices of maximal special

bare paths of length at most 10 is less than 40n
D

. Therefore

|I 1
| “ |I| ´ 2|P | ą | GoodT | ´

40n

D
´

8n

D
ą vpT 1

q ´
52n

D
.

In the last inequality we used the fact | GoodT | ą vpT 1q ´ 4n
D

proved above.
In order to prove the third part of the claim, we assume that vpT 1q ą εn

4 and F1 “ T 1 ´ I 1, since
otherwise vpF1q “ vpT 1q ď εn

4 . Then, based on (b), we infer that vpF1q “ vpT 1q ´ |I 1| ă 52n
D

ă εn
4 for

large enough n. □

Stage I analysis. In view of Claim 4.1(c), we know that vpF1q ` epF1q ă εn
2 ă n. Thus, by

Lemma 3.18 (with B :“ Kn), Waiter can force a red copy of F1 as described.
Stage II analysis. When Waiter enters Stage II, she has already forced a red copy F̄1 of F1, and the
roots of the non-trivial components Ci of F 1

2 have fixed images f1pRq on the board B2.
We start with the discussion of Case 1. For each component Ci we have epCiq ď

`1
3 ´ δ

˘

t and
|Ri| “ 1, i.e. there is exactly one root ri, since F1 “ T 1. Now, we put F2 “

Ť

iPrss
Ci and consider the

game played on B2, which is a complete graph on t ` s vertices, with some edges colored. Note that
t “ epF2q and the properties (I.1) and (I.2) imply that the blue edges in B2 form a star forest with
f1pRq being the set of centers of the stars. Moreover, the number of these edges is bounded by the
number of previous rounds, which is epF1q ď εn

4 ă δt. Thus, by Theorem 3.17 with q “ 0, Waiter can
force a red copy F̄2 of F2 in B2 within epF2q ` 1 rounds and such that all vertices in R are mapped to
their fixed images under f1. Then, the union of F̄1 and F̄2 is a copy of T obtained within a total of
epF1q ` epF2q ` 1 “ epT q ` 1 rounds.
Next, we consider Case 2. First we will verify that

vpB2q ´ vpF2q ą
εn

5 . (4.1)

If F1 ‰ T 1, then vpT 1q ą εn
4 , so by Claim 4.1(c) we get

|I 1
| ą vpT 1

q ´
52n

D
ą

εn

4 ´
52n

D
ą

εn

5
for large enough n. Thus, in this case (4.1) holds, since vpB2q ´ vpF2q ě |I 1|.

23

If otherwise F1 “ T 1, but there is a component Ci such that epCiq ą
`1

3 ´ δ
˘

t, then for the unique
root ri of Ci we have

epCiq ´ degF2priq ą

ˆ

1
3 ´ δ

˙

t ´

ˆ

1
3 ´ ε

˙

n “

ˆ

1
3 ´ δ

˙

pn ´ vpF1qq ´

ˆ

1
3 ´ ε

˙

n ą
εn

5 ,

where in the last inequality we put δ :“ ε
3 and use Claim 4.1(c). Since vpB2q´vpF2q ě epCiq´degF2priq,

we obtain (4.1) again.
Observe that each of the components of the rooted star forest F2 has size at most ∆pT q ď

`1
3 ´ ε

˘

n ă
`1

3 ´ δ
˘

t, and has only one root. Therefore, by the analogous argument as in Case 1, using Theo-
rem 3.17, Waiter can force a red copy F̄2 of F2 on B2 such that all roots are mapped to their fixed
images under f1. As vpB2q ą vpF2q, Waiter needs only epF2q rounds of Stage II. The properties (II.1)
– (II.3) follow from the properties (a) – (d) in Theorem 3.17.
Stage III analysis. It follows from (4.1) and the definitions of F3 and B2, that epF3q ą εn

5 . Let
C 1

1, . . . , C 1
s1 be the non-trivial components of F3. In view of the description of Stage I and Stage II, for

every vertex u P V pF1q we have degF̄1YF̄2pf2puqq “ degT puq, so there are no vertices of F1 in
Ť

iPrs1s
C 1

i.
For each i P rs1s let R1

i denote the set of vertices of C 1
i that belong to V pF2q, and call these vertices the

roots of C 1
i. Note that 1 ď |R1

i| ď 2 for every i P rss and, if C 1
i has two roots, then these vertices are

connected in C 1
i by a special bare path of length at least 7 (i.e. a path from P 1 minus its endpoints).

Let R1 :“
Ť

iPrss
R1

i. Since all big vertices were embedded during Stage I, and since epF3q ą εn
5 , we

know that every vertex in F3 has degree at most D “
εα

?
n

5 ă α
a

vpF3q. Let d be the number of
double-rooted components of F3. Then d ď 4n

D
, since the number of paths in P 1 is at most 4n

D
, as we

know from Claim 4.1(a).
Consider the board B3 :“ BrpV zpV pF̄1 Y F̄2qq Y f2pR1qs. Because of (II.3), the vertices in R1 are
leaves of F2, so by (II.2) we know that all edges in EpB3q are still free at the beginning of Stage
III (except, perhaps, irrelevant edges between vertices in f2pR1q). Therefore we can apply Theorem
3.22, provided n is big enough. Hence Waiter can force a red copy F̄3 of F3 on B3 within at most
epF3q ` d ` 1 rounds such that each vertex in R1 is mapped to its image under f2.
Summing up, the union of F̄1, F̄2 and F̄3 is a copy of T , and Waiter played at most

epF1q ` epF2q ` epF3q ` d ` 1 ď n `
4n

D
ď n ` b

?
n

rounds. l

5. Avoiding trees with linear maximum degree

In the following we prove Theorem 1.3. Indeed the statement immediately follows from the result
below, by considering e.g. a spanning tree consisting of two large stars connected by a bare path.

Theorem 5.1. Let n be a large enough integer. In a Waiter-Client game on Kn, Client has a strategy
to avoid two disjoint red stars of size at least 0.499n each.

Proof. We will describe a randomized strategy for Client and we will show that, against any strategy
of Waiter, this strategy asymptotically almost surely prevents Client from occupying two disjoint

24

stars of size 0.499n. Note that this is enough to prove the statement above, as it implies that Waiter
does not have a strategy to always force such stars, and hence Client has a deterministic strategy as
desired.
We begin by ordering the vertices tv1, v2, . . . , vnu of the board Kn arbitrarily, say, by their indices. In
each round Waiter offers two free edges. For p “ 0.4, Client’s strategy is as follows:

‚ If Waiter offers a cherry vivkvj, that is edges vivk and vjvk with i ă j, then Client colors red
the edge vivk with probability p, and the other edge – with probability q “ 1 ´ p.

‚ If Waiter offers a pair of disjoint edges, that is edges vivj and vkvℓ with ti, ju X tk, ℓu “ H,
then Client colors red any of them with equal probability.

Notice that since p ă 1{2, in the first case Client prefers “elder” vertices, and intuitively larger red
stars should appear at vertices with higher indices. Our task is to show that asymptotically almost
surely at the end of the game there are no two disjoint red stars of size at least cn each, where we set
c :“ 0.499.
In order to analyze large disjoint stars in C, we will focus first on two vertices, say x and y. Without
loss of generality we may assume that x ă y in the ordering considered at the beginning of this proof.
Observe that in order to get two disjoint stars in C of size at least cn each, and centered at x and y,
we need to have

$

’

’

&

’

’

%

degCpxq ě cn,

degCpyq ě cn,

degCpxq ` degCpyq ´ |NCpxq X NCpyq| ě 2cn.

(5.1)

Note that at the end of the game we have

degCpxq ` degCpyq ´ |NCpxq X NCpyq| ` |NW pxq X NW pyq| “ n ´ 2,

and for any vertex v we have degCpvq ` degW pvq “ n ´ 1. Hence, a condition necessary for (5.1) is
$

&

%

degW pxq ă p1 ´ cqn,

|NW pxq X NW pyq| ă p1 ´ 2cqn.
(5.2)

at the end of the game.
We will show that (5.2) holds with probability opn´2q, so that later a union bound over all pairs x, y

will finish the argument. To this end we will introduce three random processes (by defining certain
sets V1, V2, V3), partially describing the course of the game, which enable us to show that a.a.s. the
blue degree degW pxq or the common blue neighborhood NW pxq X NW pyq is larger than what (5.2)
indicates. Before we proceed, we introduce a couple of additional definitions. During the game, a
vertex v R tx, yu is called:

‚ inactive, if both edges xv, yv are free;
‚ active, if exactly one of the edges xv, yv has been colored so far.

25

In order to analyze Client’s randomized strategy, we consider vertex sets V1, V2, V3 while the game is
proceeding, where initially all these sets are empty. We update these sets after each move, depending
on the following four types of moves performed by Waiter.

(1) Suppose that in some round Waiter offers a cherry xvy (and hence v was inactive before this
round), then we put v into V1.
For the i-th move of this type, let Xi denote a random variable which indicates whether Client
has colored the edge yv red or blue, that is

Xi “

$

&

%

1, yv is red pxv is blueq;
0, yv is blue pxv is redq.

Note that the random variables Xi are independent and PpXi “ 1q “ q for every i “ 1, 2,
Let T1 “ |V1| at the end of the game. Then T1 ď n ´ 2 and T1 is a random variable which
may depend on Client’s moves, that is T1 may depend on random variables X1, X2,
Furthermore, and at the end of the game

degW pxq ě

T1
ÿ

i“1
Xi. (5.3)

(2) Suppose that in some round Waiter offers two edges which do not form a cherry as in (1), and
such that one of them is an edge between tx, yu and some inactive vertex v, and the other is
some edge uw. We then add v to V2 with the following restrictions. If Waiter offers two edges
between tx, yu and distinct vertices z, z1, where both z and z1 are inactive vertices, then we
let v be any of these vertices, say z, and we let uw be the other edge, say incident with z1. In
this case we add v “ z to V2, but we do not add z1 to V2. Moreover, if Waiter offers two edges
between tx, yu and distinct vertices z, z1, such that exactly one of z and z1 is inactive, and the
other is an active vertex in V2, we treat it as a move of type 3 described below, i.e. we do not
add any vertex to V2.
Having v fixed for a move of type 2, we let Yv denote a random variable which indicates
whether Client has colored the other edge uw red or not, that is

Yv “

$

&

%

1, uw is red;
0, uw is blue.

This time the random variables pYvqvPV2 do not have to be independent, but we know that for
every v P V2 we have

PpYv “ 1q ě p.

(3) Suppose that in some round, Waiter offers two edges neither of type 1 nor of type 2, and such
that one of them is an edge between tx, yu and some active vertex v P V2, and the other is
some edge uw. Then we add v to V3 with the following restriction. If Waiter offers two edges
between tx, yu and distinct vertices z, z1, where both z and z1 are active vertices in V2, we

26

then let v be any of these vertices, say z, and we let uw be the other edge, say incident with
z1. In this case we add v “ z to V3, but we do not add z1 to V3.
Having v fixed for a move of type 3, we let Y 1

v denote a random variable which indicates
whether Client has colored the other edge uw red or not, that is

Y 1
v “

$

&

%

1, uw is red;
0, uw is blue.

Again, the random variables pY 1
vqvPV3 do not have to be independent, but for every v P V3 we

have

PpY 1
v “ 1q ě p.

Moreover, the event tYv “ 1, Y 1
v “ 1u implies that xv, yv are blue or, equivalently, v P

NW pxq X NW pyq.
(4) Suppose that Waiter makes a move which is not of type 1, 2 or 3, then we do not update any

of the sets V1, V2, V3.

We can now move on to the final position analysis. Let T2 “ |V3| at the end of the game. We claim
that

T1 ` 4T2 ě n ´ 2. (5.4)

Indeed, among n ´ 2 ´ |T1| vertices v which have not been offered in a move of type 1, at most half
were ignored in moves of type 2 and not included in V2 (in case were Waiter offered two edges between
tx, yu and distinct vertices z, z1 where both z and z1 where inactive) and at most half of the remaining
ones were ignored in moves of type 3 and not included in V3 (in case where Waiter offered two edges
between tx, yu and distinct vertices z, z1 where both z and z1 were active vertices of V2, and also in
case where one of them was active and the other not).
Next, we define the following coupling. For v P V3, let Dv be a random variable such that

tYvY 1
v “ 0u ùñ tDv “ 0u,

and with probability distribution given by

Dv “

$

&

%

1, with probability p2,

0, with probability 1 ´ p2.

Hence

|NW pxq X NW pyq| ě
ÿ

vPV3

YvY 1
v ě

ÿ

vPV3

Dv, (5.5)

the random variables pDvqvPV3 are independent, and they have the same probability distribution. Our
task now is to estimate the probability that the events in (5.2) hold simultaneously. By a slight abuse

27

of notation, i.e. changing the indexing of random variables pDvqvPV3 to pDjq
T2
j“1, we can bound this

probability from above by

P pdegW pxq ď p1 ´ cqn, |NW pxq X NW pyq| ď p1 ´ 2cqnq ď P

˜

T1
ÿ

i“1
Xi ď p1 ´ cqn,

T2
ÿ

j“1
Dj ď p1 ´ 2cqn

¸

.

(5.6)

Let E1 and E2 denote the events
řT1

i“1 Xi ď p1 ´ cqn and
řT2

j“1 Dj ď p1 ´ 2cqn, respectively.
Next, let us define the events

F1 :
T1
ÿ

i“1
Xi ě T1q ´ 2

a

n log n and F2 :
T2
ÿ

j“1
Dj ě T2p

2
´ 2

a

n log n.

Suppose that the events E1, E2 and F1, F2 occur simultaneously. Then we get that

T1q ´ 2
a

n log n ď p1 ´ cqn and T2p
2

´ 2
a

n log n ď p1 ´ 2cqn,

which in turn implies that for some positive constant δ ă 0.0001 and n sufficiently large we have

T1 ` 4T2 ď
p1 ´ c ` δqn

q
`

4p1 ´ 2c ` δqn

p2 .

Recall that p “ 0.4, q “ 0.6 and c “ 0.499. Hence we get

T1 ` 4T2 ď
p1 ´ c ` δqn

q
`

4p1 ´ 2c ` δqn

p2 ă 0.89n.

This contradicts (5.4). Therefore, if the events E1 and E2 hold, then one of the events F1, F2 cannot
hold. By Lemma 2.1, this in turn happens with probability opn´2q. Hence, the probability in (5.6) is
bounded from above by opn´2q. Finally, taking the union bound over all possible pairs x, y, we get
that the probability that Client’s graph contains two disjoint stars of size at least cn each is op1q. □

6. Client-Waiter spanning tree game

6.1. Auxiliary games. The main goal of this subsection is to prove that Waiter can force Client to
build a graph in which every small vertex set has a large common neighborhood. We start with the
following lemma.

Lemma 6.1. Let n be large enough. Let H “ pX, Fq be a hypergraph with |X| “ n, |F | ď nlogpnq and
such that every hyperedge contains at least log3

pnq vertices. Then in the Waiter-Client game on H,
Waiter has a strategy such that at the end of the game, the set C of Client’s elements satisfies

|C X f | ě
|f |

100 for every f P F .

Proof. Consider the family

F 1 :“
"

fzA : f P F , A Ď f, |A| “

Z

|f |

100

^*

.

28

If Client claims an element in each set of F 1, then we are done. To verify that Waiter can force this,
we only need to check that the condition from Theorem 2.2 holds:

ÿ

F PF 1

2´|F |
ď

ÿ

kPN
kělog3pnq

ÿ

fPF:
|f |“k

ÿ

AĂf :

|A|“t
|f |
100 u

2´0.99k
ď

ÿ

kPN
kělog3pnq

ÿ

fPF:
|f |“k

ˆ

k

0.01k

˙

2´0.99k

ď
ÿ

kPN
kělog3pnq

ÿ

fPF:
|f |“k

p100eq
0.01k2´0.99k

ď
ÿ

kPN
kělog3pnq

ÿ

fPF:
|f |“k

e´0.5k

ď
ÿ

kPN
kělog3pnq

ÿ

fPF:
|f |“k

e´0.5 log3pnq
ď nlogpnqe´0.5 log3pnq

“ op1q. □

In the following lemma we consider a Waiter-Client game played on a graph G, i.e. the players select
edges from EpGq. We denote by NGrAs the set of common neighbors of vertices in A Ď V pGq in a
graph G; more precisely, NGrAs :“ p

Ş

vPA NGpvqq zA.

Lemma 6.2. Let β P p0, 1q. Then for every large enough integer n and every t P N such that
t ď 0.1 log2pnq the following holds. Suppose G is a graph on n vertices and for every set A of t

vertices we have a set YA Ă NGrAs of at least βn common neighbors. Then in the Waiter-Client game
on G, Waiter has a strategy such that at the end of the game, Client’s graph C satisfies the following:

|NCrAs X YA| ě
βn

200t`1 for every A Ă V pGq such that |A| “ t.

Proof. Before the start of the game fix an orientation of the edges of G such that

|N`
rAs X YA| ě p1 ´ op1qq

ˆ

1
2

˙t

βn ě pβ ´ op1qqn0.9

holds for every A Ă V pKnq of size |A| “ t ď 0.1 log2pnq, where N`rAs denotes the set of all vertices
which are common outneighbors of the vertices in A. The existence of such an orientation can be
proven with a simple probabilistic argument. Moreover, fix any ordering of the vertices v1, . . . , vn.
Waiter now plays the game in n stages, where in the ith stage, she offers all the outgoing edges at the
vertex vi in a suitable way. Set N`

0 rAs :“ N`rAs X YA for every A Ď V of size t. After Stage i, let

N`
i rAs :“

$

&

%

N`
i´1rAs, if vi R A

tv P N`
i´1rAs : viv is claimed by Client in Stage iu, if vi P A .

We claim that Waiter can play in such a way that for every i P rns Y t0u, and after Stage i we have

|N`
i rAs| ě

|N`
0 rAs|

100k
if |A X tv1, . . . , viu| “ k (6.1)

for every A Ď V of size t. To prove this, we apply induction.
The induction start (i “ 0) is trivial. So, let i ě 1 and assume that (6.1) is correct after Stage i ´ 1
for all sets A of size t. Note that then for every A of size t we have

|N`
i´1rAs| ě

|N`
0 rAs|

100|A|
ě

pβ ´ op1qqn0.9

1000.1 log2pnq
ą n0.1.

29

For Stage i notice the following. Claiming edges between vi and N`pviq can be represented by
claiming vertices in N`pviq; and then claiming a certain amount of elements in some set N`

i´1rAs

represents claiming the same number of edges between vi and N`
i´1rAs. We thus can apply the

strategy from Lemma 6.1 with the hyperedges being the sets N`
i´1rAs for which vi P A holds. We

claim that Property (6.1) for i follows from the lemma. Indeed, assume that |A X tv1, . . . , vi´1u| “ k.
If vi R A, then by definition of N`

i rAs and induction, we have |N`
i rAs| “ |N`

i´1rAs| ě
|N`

0 rAs|

100k while
k “ |A X tv1, . . . , vi´1, viu|. If otherwise vi P A, then |A X tv1, . . . , vi´1, viu| “ k ` 1, and by induction
and because of Lemma 6.1, we have |N`

i rAs| ě
|N`

i´1rAs|

100 ě
|N`

0 rAs|

100k`1 . Hence, the induction is complete.

To finish the argument, note that by the end of the game we have

|N`
n rAs| ě

|N`
0 rAs|

100|A|
ě

p1 ´ op1qq
`1

2

˘t
βn

100t
ě

βn

200t`1

for every A of size t, and observe that the vertices in N`
n rAs Ď YA belong to the common neighborhood

of A in Client’s graph C at the end of the game. □

6.2. Proof of Theorem 1.4. In the following we prove Theorem 1.4 with c :“ 20. Given any large
enough n P N, consider a tree T on n vertices with a vertex v of degree degT pvq “ t :“ t0.1 log2pnqu

such that each vertex of T has a neighbor in NT pvq, and such that each vertex in NT pvq has roughly
the same degree, i.e. about n

0.1 log2pnq
ă cn

logpnq
. By switching the roles of the colors blue and red, and

by applying Lemma 6.2 (with β “ 1
2 and NA :“ V zA for every set A of size t), Waiter can make sure

that the final graph of blue edges satisfies that every vertex set of size t has a common neighbor. But
then, in the red complement there cannot be a copy of T . l

7. Concluding remarks

We studied the asymptotics of the the function Dpnq, where Dpnq is the largest integer t such that
for every tree T with vpT q “ n and ∆pT q ď t Waiter has a winning strategy in WCpn, T q. Our linear
lower and upper bounds on Dpnq differ by a multiplicative constant. It would be interesting to now if
any “proper” constant exists.

Conjecture 7.1. There exists a constant c such that Dpnq “ cn ` opnq.

Going further, we could ask about the above constant c, however we do not dare to guess. Theorems 1.2
and 1.3 imply that 1{3 ď c ă 1{2.

7.1. Maximum of maximum degrees of spanning trees. A related problem is to determine
D̄pnq, where D̄pnq denotes the largest t with the property that there exists a tree T with vpT q “ n and
∆pT q “ t such that Waiter has a winning strategy in WCpn, T q. A result of Beck [2] on discrepancy
games mentioned in the introduction implies that D̄pnq ď n{2 ` Op

?
n log nq. On the other hand, one

can show that D̄pnq ě n{2 ` ε
?

n log n for a positive constant ε and big enough n in the following
way.
The above mentioned theorem of Beck is much stronger than we state it. In fact the second term
order

?
n log n is optimal. More precisely, there exists a positive constant ε1 such that for every big

30

enough t Waiter, playing on Kt,t, can force Client to build a red star of size t{2 ` ε1
?

t log t ([2],
Theorem 18.4). Let us apply it to a spanning tree game on Kn. We begin by partitioning V pKnq

into two roughly equal sets A, B. First Waiter offers the edges EpA, Bq of the complete bipartite
graph so that she forces creating a red star of size n{4 ` ε

?
n log n. We can assume that this star has

the centre u P A. Then Waiter forces greedily a red star of size tp|A| ´ 1q{2u with its centre u, by
selecting edges from Epu, Aq. In the next stage, she applies Lemma 3.2 to force a red path on the
vertex set Aztuu. Finally, again by Lemma 3.2, she can force a red path on the vertex set B. Thereby
Waiter forces Client to build a spanning connected graph in Kn, with the maximum degree at least
n{2 ` ε

?
n log n.

Summarizing, D̄pnq does not differ much from the size of the greatest red star Waiter can force in Kn.
We conclude that there exist positive constants ε, ε1 such that for every sufficiently big n we have

n

2 ` ε
a

n log n ď D̄pnq ď
n

2 ` ε1
a

n log n.

7.2. Maximum degrees of spanning trees in Client-Waiter games. We can define functions
analogous to Dpnq and D̄pnq, for Client-Waiter games. More precisely, let DCW pnq be the largest
integer t such that for every tree T with vpT q “ n and ∆pT q ď t Client can build a red copy of T

in Kn. By D̄CW pnq we denote the largest maximum degree of a spanning tree Client can build in
Kn. Theorem 1.4 implies that DCW pnq “ Opn{ log nq. The key idea behind this estimation is the
fact that Waiter can play so that for every vertex set A of roughly log n vertices there is a vertex
connected with blue edges with all elements of A. This idea cannot be applied for sets A of order
greater than log n, what can be verified for example by the analogue of the Erdős-Selfridge Criterion
for Client-Waiter games (where Client plays the role of Breaker). We believe that the order n{ log n

of our upper bound for DCW pnq, supported also by the probabilistic intuition, is optimal.

Conjecture 7.2. There exists a constant ε ą 0 such that DCW pnq ě ε n
log n

for every sufficiently
large n.

As for D̄CW pnq, we have an upper bound D̄CW pnq ď n{2`Op
?

nq, due to Beck’s results on discrepancy
games in the Client-Waiter version (where Waiter plays int the role of Balancer; see Theorem 18.5(a)
in [2]). We do not have any interesting lower bound on D̄CW pnq. We wonder if it differs much from
the size of the greatest red star Client can build in Kn.

7.3. Star forest games. Finally, let us comment on star forest games on Kn. In Section 3 we proved
that if F is a forest with m ď n edges such that every its component has less than m{3 edges, then
Waiter can force a red copy of F in Kn. In Section 5 we proved that if F is a forest consisting of two
stars of size, roughly, 0.499n each, then Client can avoid building a red copy of F in Kn. It would
be interesting to study the relation between the degree sequence of stars in a star forest F and the
outcome of Waiter-Client or Client-Waiter games such that a player tries to obtain a red copy of F in
Kn. Lemma 3.14 is a step in this research direction.

31

References

1. József Beck, Positional games and the second moment method, Combinatorica 22 (2002), 169–216. 1
2. , Combinatorial games: Tic-Tac-Toe theory, vol. 114, Cambridge University Press Cambridge, 2008. 1, 1,

2.3, 7.1, 7.2
3. Małgorzata Bednarska-Bzdęga, On weight function methods in Chooser–Picker games, Theoretical Computer

Science 475 (2013), 21–33. 2.2
4. B. Bollobás, Random graphs, no. 73, Cambridge University Press, 2001. 1
5. Dennis Clemens, Pranshu Gupta, Fabian Hamann, Alexander Haupt, Mirjana Mikalački, and Yannick Mogge, Fast

strategies in Waiter-Client games, The Electronic Journal of Combinatorics 27 (2020), no. 3, 1–35. 1, 1, 3.1, 3.4, A,
A.1, A, A, A, A

6. András Csernenszky, C. Ivett Mándity, and András Pluhár, On Chooser-Picker positional games, Discrete Mathe-
matics 309 (2009), no. 16, 5141–5146. 1

7. Asaf Ferber, Dan Hefetz, and Michael Krivelevich, Fast embedding of spanning trees in biased Maker-Breaker
games, European Journal of Combinatorics 33 (2012), no. 6, 1086–1099. A

8. Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó, Positional games, vol. 44, Springer, 2014. 1,
2.3

9. Svante Janson, Tomasz Łuczak, and Andrzej Ruciński, Random graphs, John Wiley & Sons, 2011. 2.2
10. János Komlós, Gábor Sárközy, and Ednre Szemerédi, Spanning trees in dense graphs, Combinatorics, Probability

and Computing 10 (2001), no. 5, 397—-416. 1
11. Michael Krivelevich, Embedding spanning trees in random graphs, SIAM Journal on Discrete Mathematics 24

(2010), no. 4, 1495–1500. 1, A
12. Douglas B. West, Introduction to graph theory, vol. 2, Prentice hall Upper Saddle River, 2001. 2.1

Appendix A. Forcing trees with at most two roots and bounded maximum degree

In this section we show how to modify the proof of Theorem 5.2 in [5] in order to obtain Lemma 3.21.
For this, we first state a useful lemma from [5], which is a variant of Lemma 2.1 in [11], and a simple
corollary of it.

Lemma A.1 (Lemma 5.1 in [5]). For every µ1 P p0, 1
2q there exists α ą 0 such that the following

holds for every large enough integer n. If T is a tree on n vertices such that every vertex is adjacent
with at most α

?
n leaves in T , then T contains a leaf matching of size at least µ1

?
n or a bare path of

length at least µ1
?

n.

Corollary A.2. Let µ P p0, 1
10q. Then there exists a constant α ą 0 such that the following holds for

every large enough integer n. If F is a forest without isolated vertices such that vpF q ě p1 ´ µqn and
∆pF q ď α

?
n hold, then F has a leaf matching of size at least µ

?
n or a bare path of length at least

µ
?

n.

Proof. Given µ, we set µ1 “ 4µ and apply Lemma A.1 to obtain a constant α as output. Whenever
needed, we assume that n is large enough.
Let a forest F be given as described by the statement of the lemma. Construct a tree T from F by
adding one new vertex v which is made adjacent to exactly one vertex of each component of F . Note

32

that then no leaf of T is a neighbor of v. Hence, by Lemma A.1 and since ∆pF q ď α
?

n, T has a leaf
matching of size µ1

a

vpT q or a bare path of length at least µ1
a

vpT q. Note that

µ1
a

vpT q ě 4µ
a

p1 ´ µqn ě 2µ
?

n.

Hence, after removing v, there must be a leaf matching of size at least µ
?

n or a bare path of length
at least µ

?
n. □

Let T be a tree as given by the assumption of Lemma 3.21. In order to force a copy of the desired
tree T fast, the main idea will be to first embed everything of T except from a special structure, i.e. a
long bare path or a large leaf matching, in a careful greedy way, and then to finish the tree by forcing
this remaining structure. Now, in case that there are r “ 2 roots x, y with some path Px,y between
them, we also need to make sure to claim an appropriate copy of Px,y between the fixed images of x, y.
Depending on the structure of Px,y, we may first create this copy of Px,y and then continue as in [5],
or find a long bare path contained in Px,y which can be used as the special structure to be embedded
last. Because of this, we will deal with different cases in the proof of Lemma 3.21, but in each of
these cases at some point the main part of the strategy will be purely identical with the strategy
presented in [5]. In the proof of Lemma 3.21, at the end of this section, we will mostly discuss our
modifications and how to deal with Px,y, while the following preparatory lemma will be used to cover
those parts of the main strategy which are identical with [5].

Lemma A.3. For every µ ą 0 there exists α ą 0 such that the following holds for every large
enough integer n. Let a Waiter-Client game on Kn be in progress. Let T be a tree on n vertices with
∆pT q ď α

?
n, and let F Ă T be an induced subgraph of T . Assume that the following holds:

(a) F consists of at most two components, and if the number of components is two, then in T

they are connected by a bare path of length at least µ
?

n.
(b) If F is a tree, then T0 :“ T zEpF q contains at least one of the following:

(b1) a bare path of length µ
?

n which uses no vertex of F ,
(b2) a matching of size µ

?
n such that each of its edges intersects LpT q.

(c) So far, Waiter forced a copy F̄ of F such that every colored edge is contained in V pF̄ q. Let
f : V pF q Ñ V pF̄ q be the embedding of F into Client’s graph.

Then Waiter can force a copy T̄ of T within epT0q ` 1 further rounds such that for every v P V pF q

the copy of v in T̄ is the fixed vertex fpvq.

Proof. Without loss of generality assume that µ ď 1
3 . Lemma A.3 can be proven along the lines of

Theorem 5.2 in [5]. In particular, we choose α ă
µ
20 as in the proof of Theorem 5.2 in [5]. Moreover,

we will use the notation from [5, 7], similarly to the proof of Lemma 3.20. Let T 1 Ă T be any subgraph
of T , and let S Ď V pT 1q be an arbitrary set. Then an S-partial embedding of T 1 into some graph
G Ă Kn is an injective mapping f : S Ñ V pGq such that fpxqfpyq P EpGq holds if xy P ET 1pSq. We
call a vertex v P fpSq closed with respect to T 1 if all the neighbors of f´1pvq in T 1 are embedded by
f . If v P fpSq is not closed with respect to T 1, then we call it open with respect to T 1, and moreover,

33

we write OT 1 “ OT 1pSq for the set of all vertices that are open with respect to T 1. The vertices not
used for the embedding are collected in the set A :“ V pKnqzfpSq, and they are called available.
We consider two cases, depending on the number of components of F .
Case 1. Assume that F has two components. Then by (a) there is a bare path P in T of length at
least µ

?
n which connects these two components.

Denote with u and w the endpoints of P , and let u1 and w1 be the neighbors of u and w in P ,
respectively. Note that T ´ pV pP qztu, wuq is a forest with two tree components T1 and T2. We let
T 1 Ă T be the forest induced by EpT1q Y EpT2q Y tuu1, ww1u, and note that F Ă T 1.
The main idea of Waiter’s strategy now is to (1) first extend F̄ to a copy T̄ 1 of T 1 without wasting
any move and then (2) to obtain T̄ by forcing an appropriate copy of P ´ tu, wu while wasting at
most one move. Such a strategy is already given in Case A of the proof of Theorem 5.2 in [5], and the
same strategy can be applied here. During part (1) of this strategy, Waiter maintains a set S with
V pF q Ď S Ď V pT 1q as well as an S-partial embedding f of T 1 into Client’s graph, which represents
the subgraph of T 1 which has been forced so far. Moreover, Waiter makes sure that at any time
fpvq “ gpvq holds for every v P V pF q.
Initially, we have S “ V pF q and the S-partial embedding f is given by property (c). For step (1),
Waiter can play the same strategy as for Stage II in Case A of the proof of Theorem 5.2 in [5], where
the only modification is that epT 1q ´ epF q rounds get played; and for step (2), she can play exactly
as in the strategy of Stage III in Case A of the proof of Theorem 5.2 in [5], where only one round
gets wasted. For this note that the heart of this strategy is Observation 5.3 in [5]. This observation
lists two properties (i) and (ii), that can be guaranteed as long as Waiter can follow the strategy
of Stage II, provided these properties were true at the beginning of this stage. Moreover, in the
discussion afterwards in [5] it is shown that, as long as these properties are maintained, Waiter can
follow the strategy of Stage II and then also succeed with Stage III, until a copy of T is forced as
required.
It thus follows that, in order to guarantee that the same strategy can be used here, we only need to
verify that the properties (i) and (ii) from Observation 5.3 in [5] hold at the beginning, i.e. when
Waiter starts to extend the embedding of F towards T 1. The property (i) requires that |A| ě µ

?
n ´ 2

and eCYW pAq “ 0 hold. The first part is satisfied at the beginning, since then A “ V pKnqzV pF̄ q and
hence |A| “ n ´ |V pF q| ě |V pP q| ´ 2 ě µ

?
n ´ 2; the second part holds because of (c). Moreover,

property (ii) requires that degW px, Aq ď degCpxq for every x P fpSq, which holds since by (c) there
are no colored edges incident with A.
Case 2. Assume that F has exactly one component. Then by (b) we know that T0 “ T zEpF q

contains a bare path as described in (b1) or a matching as described in (b2).
In the first case of having a bare path Waiter can play essentially the same way as in Case 1. So, we
may assume from now on that in T0 there is a matching M of size µ

?
n such that each of its edges

intersects LpT q. In particular, there is matching M 1 Ă M of size at least 1
2µ

?
n such that its edges

have pairwise distance at least 2. Let L1 :“ V pM 1q X LpT q, set T 1 “ T ´ L1 and note that F Ă T 1.

34

The main idea of Waiter’s strategy now is to (1) first extend F̄ to a copy T̄ 1 of T 1 without wasting
any move and then (2) to obtain T̄ by forcing an appropriate copy of M 1 while wasting at most one
move. Such a strategy is already given in Case B of the proof of Theorem 5.2 in [5]. During part
(1) of this strategy, Waiter again maintains a set S with V pF q Ď S Ď V pT 1q as well as an S-partial
embedding f of T 1 into Client’s graph, which represents the subgraph of T 1 which has been forced so
far. Moreover, Waiter makes sure that at any time fpvq “ gpvq holds for every v P V pF q.
Initially, we have S “ V pF q and f is given by property (c). For step (1), Waiter can play exactly the
same strategy as for Stage II in Case B of the proof of Theorem 5.2 in [5], where the only modification
is that epT 1q ´ epF q rounds get played; and for step (2), she can play exactly as in the strategy of
Stage III in Case B of the proof of Theorem 5.2 in [5], where only one round gets wasted. For this note
that the heart of this strategy is Observation 5.4 in [5] (where α is replaced with ε). This observation
lists four properties (i)–(iv), that can be guaranteed as long as Waiter can follow the strategy of Stage
II, provided these properties were true at the beginning of this stage. Moreover, in the discussion
afterwards it is shown that, as long as these properties are maintained, Waiter can follow the strategy
of Stage II and then also succeed with Stage III, until a copy of T is forced as required. The first two
properties are the same as in Case 1 above, and they can be verified analogously. Properties (iii) an
(iv) consider the set S 1 :“ S X NT pL1q, and they are satisfied if degW px, fpS 1qq ď 1 for every x P A

and eW pfpS 1q, Aq ď α
?

n. Both inequalities are guaranteed at the beginning, since by (c) all colored
edges are contained in V pF̄ q. □

Proof of Lemma 3.21. Let µ P p0, 1
20q. Apply Corollary A.2 and Lemma A.3 with input 2µ to

obtain outputs αA.2 and αA.3, and let ε ą 0 be such that Theorem 5.2 in [5] holds. We set
α “ mintαA.2, αA.3, ε, µ

3 u.
If r “ 1 then the statement of Lemma 3.21 follows directly from Theorem 5.2 in [5]. Hence, from now
on we may assume that r “ 2. Denote the roots of T with x and y, and let Pxy be the unique xy-path
in T . Moreover let vx and vy be the vertices in Kn to which x and y must be mapped, respectively.
We distinguish three cases.
Case 1. Assume that at least µ

?
n inner vertices of Pxy have degree at least 3 in T . Then set F :“ Pxy

and notice that T0 :“ T zEpF q consists of at least µ
?

n non-trivial components. In particular, T0

must contain a matching of size µ
?

n such that each of its edges intersects LpT q; i.e. property (b)
from Lemma A.3 holds.
In this case Waiter plays as follows: let V1 Ă V pKnq be any subset with vx, vy P V1 and |V1| “ vpPxyq.
Then playing the first epPxyq ` 1 rounds on KnrV1s according to Lemma 3.2, Waiter forces a Hamilton
path Hxy with endpoints vx and vy. Afterwards, Waiter follows the strategy from Lemma A.3 for
epT0q ` 1 rounds, applied with F :“ Pxy and F̄ :“ Hxy. This way, Waiter forces a copy of T as
required.
Case 2. Assume that 7 ď vpPxyq ă µn. Then Waiter plays analogously to Case 1 with F :“ Pxy. In
order to make sure that this is possible, we only need to argue that T0 :“ T zEpF q satisfies property
(b) from Lemma A.3.

35

To do so, consider first the forest T 1
0 :“ T ´ V pPxyq, and note that vpT 1

0q ą p1 ´ µqn. If T 1
0 contains

at least αµn isolated vertices (which are leaves in T0), then since ∆pT0q ď α
?

n, we find in T0 a leaf
matching of size at least µ

?
n, and (b2) is satisfied. So assume otherwise, i.e. that are less than αµn

isolated vertices, and let T 2
0 be the forest obtained from T 1

0 by deleting all isolated vertices. Then
vpT 2

0 q ą p1 ´ 2µqn. Hence, by Corollary A.2 it follows that T 2
0 contains a bare path P 1 or a leaf

matching M 1 of size at least 2µ
?

n. If we find such a bare path P 1, then in T at most one vertex of P 1

can be in the neighborhood of V pPxyq. Hence, there must be a path P Ă P 1 with epP q ě
epP 1q

2 which
is a bare path in T , and (b1) follows. So, assume from now on that we find a leaf matching M 1 as
described above. We then consider all the components C1, C2, . . . of T 2

0 and denote with vi the unique
vertex in Ci which is a neighbor of V pPxyq in T . Note that from each component Ci we can take at
least one edge for a leaf matching M in T (this edge does not need to belong to M 1). Moreover, if for
a component Ci we have |M 1 X EpCiq| ě 2, then at most one edge in M 1 X EpCiq contains vi, and
hence we can take all the remaining edges in M 1 X EpCiq for a leaf matching M in T . It thus follows
that there is a leaf matching M in T with |M | ě

|M 1|

2 ě µ
?

n, and thus (b2) is satisfied.
Case 3. Assume that less than µ

?
n inner vertices of Pxy have degree at least 3 in T , and that

vpPxyq ě µn. Then we can split Pxy into at least µ
?

n edge-disjoint intervals each of length at least
µ

?
n, and hence, by the assumption of this subcase, at least one of these intervals must form a bare

path P 1. Label the endpoints of P 1 with x1 and y1. Let F be the forest obtained from T by removing
all inner vertices of P 1, and note that F has two components such that each of them contains one of
the roots x, y. Moreover,

vpF q ` ∆pF q ď n ´ pvpP 1
q ´ 2q ` ∆pT q ď n ` 2 ´ µ

?
n ` α

?
n ă n .

Waiter now plays as follows. At first she plays according to the strategy of Lemma 3.20 (with d :“ 0
and B :“ Kn) until after epF q rounds a copy F̄ of F is forced such that x, y are mapped to vx, vy, and
such (b) and (c) from Lemma 3.20 hold. Let vx1 and vy1 be the images of x1 and y1. Waiter continues
as follows: in the next two rounds, Waiter first forces an edge x1x2 with x2 R V pF̄ q (by offering two
such edges), and then forces an edge y1y2 such that y2 R V pF̄ q Y tx2u (by offering two such edges).
This is possible by (c) from Lemma 3.20 and since |V pKnqzV pF̄ q| ě µ

?
n ´ 1 ą α

?
n ` 4 ě ∆pT q ` 4.

Afterwards, notice that by property (b) from Lemma 3.20, all edges in V pKnqzV pF̄ q are still uncolored.
Now, playing only on V pKnqzV pF̄ q according to Lemma 3.2, Waiter forces a Hamilton path between
x2 and y2, and finishes a copy of T as desired. □

Department of Discrete Mathematics, Faculty of Mathematics and CS, Adam Mickiewicz University,
Poznań, Poland

Email address: grzegorz.adamski@amu.edu.pl, sylwia.antoniuk@amu.edu.pl, mbed@amu.edu.pl

Institute of Mathematics, Hamburg University of Technology, Hamburg, Germany.

Email address: dennis.clemens@tuhh.de, fabian.hamann@tuhh.de, yannick.mogge@tuhh.de

36

	1. Introduction
	Organization of the paper

	2. Preliminaries
	2.1. Notation
	2.2. Probabilistic tools
	2.3. Positional games tools

	3. Forcing forests
	3.1. Forcing Hamilton paths and perfect matchings
	3.2. Rooted forest-tuples
	3.3. Shrinking operations
	3.4. Forcing rooted forest-tuples
	Forcing forests with double-rooted components

	4. Forcing spanning trees with linear maximum degree
	Strategy description.
	Strategy discussion

	5. Avoiding trees with linear maximum degree
	6. Client-Waiter spanning tree game
	6.1. Auxiliary games
	6.2. Proof of Theorem 1.4

	7. Concluding remarks
	7.1. Maximum of maximum degrees of spanning trees
	7.2. Maximum degrees of spanning trees in Client-Waiter games
	7.3. Star forest games

	References
	Appendix A. Forcing trees with at most two roots and bounded maximum degree

