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Single-file diffusion is a paradigmatic model for the transport of Brownian colloidal particles in narrow one-
dimensional channels, such as those found in certain porous media, where the particles cannot cross each other.
We consider a system where a different external uniform potential is present to the right and left of an origin.
For example, this is the case when two channels meeting at the origin have different radii. In equilibrium, the
chemical potential of the particles are equal, the density is thus lower in the region with the higher potential, and
by definition there is no net current in the system. Remarkably, a single-file tracer particle initially located at the
origin, with position denoted by Y (t), exhibits an average up-hill drift toward the region of highest potential.
This drift has the late time behavior ⟨Y (t)⟩ = Ct1/4, where the prefactor C depends on the initial particle
arrangement. This surprising result is shown analytically by computing the first two moments of Y (t) through
a simple and physically-illuminating method, and also via extensive numerical simulations.

Single-file diffusion (SFD) is a model for the dynamics of
Brownian particles in a vast range of physical systems where
transport is effectively one dimensional. It describes parti-
cles with hard core repulsion that cannot bypass each other,
even in the point-like limit. SFD has been extensively stud-
ied from both theoretical [1–16] and experimental [16–23]
perspectives. Examples of applications include transport in
porous media [16] and along the cytoskeleton [17], motion of
colloids [18, 19], drug delievery devices [20], and even gene
regulation [21].

From a theoretical point of view, SFD is an important model
to understand the out-of-equilibrium dynamics of interact-
ing particle systems given its analytical tractability. For a
long time it has been known that a tracer particle in SFD ex-
hibits anomalous diffusion, having a mean-squared displace-
ment (MSD) which grows as t1/2 [1–3]. This dramatic slow-
ing down of dispersion is due to the dynamical caging effect
by the surrounding particles. SFD also exhibits a number of
fascinating statistical phenomena. For example, it shows an
everlasting dependence on the statistics of the initial condi-
tions [4, 5], as well as a dependence on how the two averages
over thermal noise and initial conditions are performed [6, 7].

Porous media are typically heterogenous and hence the
structure of the pores can vary within them. Shown in
Fig. 1(a) is a sketch of an interface between two porous me-
dia, where the cylindrical pore size decreases upon going from
the medium on the left (L) to the right (R). Ignoring other
possible interactions, given that there is more free volume in
medium L, the equilibrium concentration of colloids per unit
length will be also higher there. A simple free volume ar-
gument tells us that there is an effective potential acting on
the colloids in each of the regions R and L which is given by
ϕR/L = −2β−1 ln(RR/L − a), where β = 1/kBT is the in-
verse temperature, and a and RR/L are the radii of the colloid
and the corresponding part of the channel. In equilibrium, the
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FIG. 1. Derivation. (a) Illustration of an interface between two
particle-laden porous media at step-like equilibrium conditions. The
pores are so narrow that particles cannot overtake one another [16].
The pores within medium L (left) are wider than in medium R (right).
(b) The average one-dimensional concentration profile ρ(x) across
the interface. In equilibrium, the medium with the larger pores has
the larger particle concentration, according to the Boltzmann factor
e−β(ϕR−ϕL) = (RR − a)2/(RL − a)2, where RL/R and a are the
pores’ and the particles’ radii; see Eq. (1). The average number of
particles crossings from left to right, ⟨N+⟩, and from right to left,
⟨N−⟩, are equal in equilibrium.

mean densities on either side are related via

ρR
ρL

= e−β(ϕR−ϕL), (1)

as illustrated in Fig. 1(b). A variation in the composition of
the surrounding media will also lead to unequal effective po-
tentials, for example, via differences in the van-der-Waals in-
teractions. The local diffusion constants, denoted by DL/R,
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will also depend on the local environment, and in particular
on the pore radii. We will consider the case of arbitrary values
for ϕL/R and DL/R.

The problem of SFD for inhomogeneous initial conditions
but within homogeneous surroundings has been extensively
studied in the literature. For a step-like initial mean density
in a spatially homogenous system, the mean density of the
system evolves diffusively towards the region of low density,
thus generating a mean drift for a tracer particle in the same
direction [6, 24–26] which increases with time as t1/2. In the
system under study here, we ask the simple question of what is
the dynamics of a tracer when different average densities start
in equilibrium to the left and right of the origin, that is, when
Eq. (1) holds and there is therefore no net density current.

The striking result of this letter is that, for equilibrium step-
like initial condition, the position of the tracer particle Y (t)
at late times still has an average drift. Moreover, this drift
is towards the region with the higher potential, and scales as
⟨Y (t)⟩ ∼ t1/4. We prove this result by analytical calculation
and also confirm it numerically. We will also show how the
MSD of the tracer can be computed and find the familiar SFD
scaling ⟨Y 2(t)⟩c ∼ t1/2. The numerical prefactors for both
the drift and variance can be computed exactly; as in previ-
ous studies on SFD in homogeneous systems, they exhibit an
everlasting dependence on initial conditions.

Theory.— Theoretical approaches for the treatment of free
SFD (i.e., no interactions other than the hard-core repulsions)
include, e.g., the macroscopic fluctuation theory [7, 27–29]
and the Bethe Ansatz for the full joint probability density func-
tion [12, 30]. Another, simpler approach is based on a link
between SFD and two independent effusion problems [9, 31].
This approach was later used to treat SFD in the presence of a
periodic potential and local diffusivity [32], which had previ-
ously been studied numerically [33].

The key idea in the approach of Refs. [1, 9] is that when
single file particles cross, the hard core constraint can be im-
posed by relabelling the particles. This means that if all the
particles are assumed to be indistinct, the system appears as if
the particles do not interact with each other but only with the
externally applied potentials. Each particle in the noninter-
acting system has a probability density function p(x, t) which
evolves according to the Fokker-Planck equation

∂p(x, t)

∂t
=

∂

∂x

{
D(x)

[
∂p(x, t)

∂x
+ βp(x, t)

∂ϕ(x, t)

∂x

]}
.

(2)
D(x < 0) = DL, D(x > 0) = DR, ϕ(x < 0) = ϕL,
and ϕ(x > 0) = ϕR represents our model for diffusion of
noninteracting particles in two joined channels. Now, if the
single file tracer particle is started at Y (t) = 0, then at time
t the number of particles to its left is conserved. This can be
shown to give the condition [7, 31, 32, 34]∫ Y (t)

0

dxρ(x, t) =

∫ 0

−∞
dx[ρ(x, 0)− ρ(x, t)], (3)

where ρ(x, t) is the (stochastic) number density field.
We first simplify the right-hand side of Eq. (3). We sepa-

rate the number density field as ρ(x, t) = ρL(x, t) + ρR(x, t)

where, by keeping track of the particle identities, ρL(x, t)
[ρR(x, t)] corresponds to the particles that start in the left
(right) medium at t = 0. By definition, ρL(x > 0, 0) = 0
[ρR(x < 0, 0) = 0]. Therefore, N+(t) [N−(t)], the number
of particle that started from the left (right) of the interface at
t = 0 and appear in the right (left) medium at time t, is given
byN+(t) =

∫∞
0
dxρL(x, t) [N−(t) =

∫ 0

−∞ dxρR(x, t)]. No-

tice that
∫∞
0
ρL(x, t) +

∫ 0

−∞ ρL(x, t) =
∫ 0

−∞ ρL(x, 0), with
which we relate the right-hand side of Eq. (3) to the number
of crossings [34],∫ 0

−∞
dx[ρ(x, 0)− ρ(x, t)] = N+(t)−N−(t). (4)

We now consider the left-hand side of Eq. (3) and make the
assumption that |Y (t)| becomes large with time. This means
that we can apply the central limit theorem (CLT) to the left
hand-side of Eq. (3) and replace it with its average [9]. Since
the average densities start with their equilibrium values, the
average value of ρ(x, t) does not evolve in time and we can
write∫ Y (t)

0

dxρ(x, t) ≃ ρ̄RY (t)Θ[Y (t)]+ρ̄LY (t)Θ[−Y (t)], (5)

where Θ is the Heaviside step function. The corrections to the
CLT are O[

√
ρ̄RY (t)] for Y (t) > 0 and O[

√
−ρ̄LY (t)] for

Y (t) < 0.
Inserting Eqs. (4) and (5) in Eq. (3), we find the late-time

relation between the motion of the single file tracer and the
number of crossings,

ρ̄RY (t)Θ[Y (t)]+ ρ̄LY (t)Θ[−Y (t)] = N+(t)−N−(t). (6)

Equation (6) implies that a positive displacement, Y (t) > 0,
arises from more crossing rightwards than leftwards,N+(t) >
N−(t), and vice versa. We use this to rearrange Eq. (6) so as
to express Y (t) explicitly in terms of the number of crossings,

Y (t) =
[N+(t)−N−(t)]

ρ̄R
Θ[N+(t)−N−(t)]

+
[N−(t)−N+(t)]

ρ̄L
Θ[N−(t)−N+(t)]. (7)

Using Eq. (7) we can obtain the statistics of Y (t) in terms of
the two, known, independent statistics of N±(t) [31].

In the asymmetric system under study here, it is the dif-
ference in ρ̄R and ρ̄L and the appearance of the functions
Θ[N+(t)−N−(t)] and Θ[N−(t)−N+(t)] that leads to a non-
zero value of ⟨Y (t)⟩. Namely, while the crossings to either
right [N+(t) > N−(t)] or left [N+(t) < N−(t)] occur with
the same statistics at equilibrium, the distance that the tracer
moves into each bulk per crossing is different (due to the dif-
ference in ρ̄−1

R and ρ̄−1
L ). This simple point is the key to the ap-

pearance of the non-zero tracer uphill drift which we report in
this letter. It succinctly explains the physical mechanism be-
hind the surprising generation of a drift without current. The
rest of the analysis relies on the straightforward computation
of the probability density functions forN+(t) andN−(t) [31].
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We note that a more general technique relating the statis-
tics of crossings and the tracer’s distribution can be found in
Ref. [35]. Alternative methods [36–40] can also allow one to
connect the single-file tracer’s statistics to the statistics of an
isolated particle with the Fokker-Planck equation (2) for sys-
tems that are symmetric about the origin (which is clearly not
the case here). Here we employ the approach of Ref. [9] for
its simplicity and because it renders particularly transparent
the physical mechanism leading to the uphill drift.

In what follows, we will consider two types of initial condi-
tions. The first is ideal-gas initial conditions, where the system
is in perfect equilibrium having identical and independent uni-
form distribution for all the particles according to each bulk’s
density (due to the zero range of the hard core repulsion). The
average over the full statistics of the equilibrium initial con-
figuration in this case will be denoted by ⟨⟩id. The second
is perfect crystalline initial conditions, where the particles are
set up with the equilibrium densities to the left and right of
the origin but are equally spaced in a lattice initial condition,
whose averages we will denote as ⟨⟩cr. In this case the ini-
tial average density takes its equilibrium value, but the system
is not in equilibrium due to its crystalline arrangement rather
than ideal-gas statistics. In both cases we write the average
initial densities to the left and right in the equilibrium form
ρL/R = ρ0e

−βϕL/R .
We shall compute the first two moments, ⟨Y (t)⟩ and

⟨Y 2(t)⟩c = ⟨Y 2(t)⟩ − ⟨Y (t)⟩2 of the single file tracer’s mo-
tion. For the ideal-gas initial conditions, we find [34]

⟨Y (t)⟩id = [eβ(ϕR−ϕL) − 1]

√
2

ρ̄0

√
D1

π
t1/4, (8)

⟨Y 2(t)⟩c,id =
2

ρ̄0

√
D2

π
t1/2, (9)

where

D1 =
DRDL

π2[eβ(ϕR−ϕL)
√
DL +

√
DR]2

, (10)

D2 = D1{[e2β(ϕR−ϕL) + 1](π − 1) + 2eβ(ϕR−ϕL)}2.(11)

On the other hand, for the hyperuniform initial conditions (and
the quenched statistics [34]) we find the simple relations

⟨Y (t)⟩cr = ⟨Y (t)⟩id/21/4, (12)

⟨Y 2(t)⟩c,cr = ⟨Y 2(t)⟩c,id/21/2, (13)

which generically appear in SFD problems [4–7]. We see that
the drift in both cases is in the direction of the higher poten-
tial, thus confirming the phenomenon of up-hill drift for pre-
equilibriated SFD in the model of connected pores presented
here. One should note that according to Eq. (7), in both ideal
gas and crystalline cases, ⟨sign[Y (t)]⟩ = 0, that is to say the
tracer is equally likely to move to the left or right. The effec-
tive drift seen is solely due to the lesser crowding in the region
of higher potential and thus excursions of the tracer into this
region typically go further.

Before proceeding to the simulation, we briefly examine
the case of a single isolated particle placed at the origin. The

Fokker-Planck equation Eq. (2) can be solved [34, 41] and the
first two moments computed,

⟨X(t)⟩ = 2
DR/DL − eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)

√
DLt

π
, (14)

⟨X2(t)⟩c = 2

{
(DR/DL)

3/2 + eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)

− 2

π

[
DR/DL − eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)

]2}
DLt. (15)

We note that ⟨sign[X(t)]⟩ = 0, so a single free particle is also
equally likely to go to the left or right. Equation (14) shows
that a free particle in an infinite system can also drift to the
right ifDR/DL−eβ(ϕR−ϕL) > 0, that is, ifDR is sufficiently
large. However, a single-file tracer will always drift toward
the region of higher potential at late times, regardless of the
values of the diffusivities [42].

Simulation.—Given the rather surprising nature of our ana-
lytical predictions, we have performed numerical simulations
of both the ideal-gas and crystalline initial conditions. First,
note that the relative error due to the CLT decays rather slowly
(as t−1/4), implying that the finite-time effects are significant.
One must thus perform extensive numerical simulations to at-
tain the late-time regime. In addition, the discrete nature of the
discontinuities in D(x) and ϕ(x) considered here render the
numerical simulation rather subtle. To deal with these issues
we carry out simulations based on a discrete model which con-
verges to the continuous model analyzed here when the lattice
spacing is taken to be small; see details in the Supplementary
Material [34]. To our knowledge, the method used here has
not been implemented before for the case of SFD. In fact, it
turns out to be significantly faster than the alternative method
of Ref. [41] which is based on the use of an effective under-
damped equation of motion.

For the simulations, we will choseDR/DL and β(ϕR−ϕL)
to be something of a “worse-case scenario” for the uphill
(rightward) single-file drift. Namely, they will be such that an
isolated tracer starting at the origin would move to the left (or
downhill) according on Eq. (14) — see Fig. 3 below. Shown
in Fig. 2 is the late-time drift and MSD for a single file tracer
for both the ideal-gas and crystalline initial conditions with
DR/DL = 2 and β(ϕR − ϕL) = 1. The results of the simu-
lation are shown by points, while the analytical late-time pre-
dictions, Eqs. (8), (12), (9) and (13), are shown with lines. We
see a good agreement with the analytical results in both cases.
Most importantly, Fig. 2(a) unequivocally shows the existence
of a mean uphill drift.

In Fig. 3 we show the drift and MSD from simulations of
ideal-gas initial conditions with DR/DL = 3 and β(ϕR −
ϕL) = 3, over a large range of timescales. At late times, it
also demonstrates the convergence to the asymptotic analyt-
ical predictions [Eqs. (8) and (9)]. Figure 3(b) also shows
a short-time diffusive regime [which agrees perfectly with
Eq. (15), the free-particle MSD] before the interactions be-
tween diffusing particles become important. For the parame-
ters used here, the short-time (free-particle-like) drift should
be negative, and it is shown in Fig. 3(a) along with the theo-
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FIG. 2. Simulation. (a) Drift ⟨Y ⟩ and (b) mean-squared displace-
ment ⟨Y 2⟩c for the single-file tracer in the longest simulation, with
ideal-gas (‘id’, blue circles) and crystalline (‘cr’, empty green cir-
cles) initial conditions. The simulation results are depicted by the
labels indicated in panel (a), while the immediately adjacent lines
are the theoretical predictions [Eqs. (8), (12), (9) and (13)]. Parame-
ter values: DL = 1, βϕL = 0, ρ̄L = 1.59, and DR = 2, βϕR = 1,
and ρR = 0.584. Each data point arose from 4 · 104 samples.

retical prediction for a free particle given by Eq. (14), the two
also being in excellent agreement. Thus, the tracer particle
has a downhill bias at short times for these “worse-case sce-
nario” parameters. It is only later that the uphill bias kicks in,
at which point the single file nature of the problem becomes
dominant.

Conclusions.—We have shown that, within SFD, a tracer
particle at the junction between two channels having differ-
ent potentials and diffusion constants will exhibit an effective
late-time drift towards the channel of higher potential. This
drift occurs without any associated net density current and the
probability that the particle moves in either direction is 1/2.

In previous studies spontaneous local drift without flux has
been seen for individual Brownian particles with a spatially-
varying diffusion coefficient, where the so-called spurious
drift has been experimentally measured [43–45]. However,
the effective local drift reported in these studies does not lead
to any global drift and is a purely single-particle effect. A phe-
nomenon also referred to as uphill diffusion can occur in in-
teracting particle systems when there is a net current towards
the region of higher density [46] (corresponding to a nega-
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FIG. 3. Simulation. (a) Drift ⟨Y ⟩id and (b) mean-squared displace-
ment ⟨Y 2⟩c,id for single-file tracer with ideal-gas initial conditions
across many timescales. The transition from the independent normal
diffusion to single file is clearly seen in the drift turning positive after
starting with a negative value. The blue points are given by the sim-
ulations, while the black lines are the theoretical predictions for the
asymptotic single-file motion [Eq. (8) and (9)] and the black dashed
lines are the theoretical predictions for the diffusion of an isolated
particle [Eq. (14) and (15)]. Parameter values: DL = 1, βϕL = 0,
ρ̄L = 2.515, and DR = 3, βϕR = 3, and ρR = 0.125. Eachdata
point arose from 2 · 104 samples.

tive diffusion constant in Fick’s law). The effect seen here
is the opposite — an effective motion of particles towards di-
lute regions — and our use of the term uphill concerns the hill
given by the potential. We also note that for SFD in a peri-
odic [47, 48] potential but driven by a constant applied force,
a constant drift against the direction of the applied force has
been observed in simulations. However the effect seen in this
letter is a purely equilibrium one and the temporal dependence
of the drift is very different.

In our treatment we have neglected the finite size of the
particles and hydrodynamic effects [10] and so it would be in-
teresting to see if this effect is present in an experimental con-
text [19]. It would also be interesting to compute the finite-
time corrections to the effects seen here as they are of con-
siderable interest from a theoretical and experimental point of



5

view. We have that an intriguing reversal of the drift can occur
as time increases and a better understanding of this effect as
well as an experimental verification present future challenges.
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SUPPLEMENTARY MATERIAL: UPHILL DRIFT IN THE ABSENCE OF CURRENT IN SINGLE-FILE DIFFUSION

In this Supplementary Material, we provide additional technical details for the analytical results in the main text and explain
the simulation method adopted for single-file (SF) diffusing particles on the two sided system studied here.

SI. ANALYTICAL CALCULATIONS

A. Single-file diffusion as an effusion problem

We follow the standard method to relate the SF motion of a tracer, Y (t), to the number of particle crossings through its initial
position, Y (0) = 0 [31]. First, since particles are nonpassing, the number of particles to the left of the tracer at t = 0 and t must
be the same, ∫ Y (t)

−∞
dxρ(x, t) =

∫ 0

−∞
dxρ(x, 0), (S1)

where ρ(x, t) is the (stochastic) number density field. This can then be rewritten as∫ Y (t)

0

dxρ(x, t) =

∫ 0

−∞
dxρ(x, 0)−

∫ 0

−∞
dxρ(x, t). (S2)

Equation (S2) is Eq. (3) of the main text.
In the main text, we have defined N+(t) [N−(t)] — the number of particle that started from the left (right) of the interface

at t = 0 and appear in the right (left) medium at time t. Separating the density field as ρ(x, t) = ρL(x, t) + ρR(x, t), where
ρL(x, t) [ρR(x, t)] is the density of the particles that started from the left (right), we express the number of crossings as

N+(t) =

∫ ∞

0

dxρL(x, t), N−(t) =

∫ 0

−∞
dxρR(x, t). (S3)

Since ρL(x > 0, 0) = 0 by definition, number conservation implies
∫∞
0
ρL(x, t) +

∫ 0

−∞ ρL(x, t) =
∫ 0

−∞ ρL(x, 0), so N+(t) =∫ 0

−∞ dx[ρL(x, 0)− ρL(x, t)]. With that we relate the right-hand side of Eq. (S2) to the number of crossings,

N+(t)−N−(t) =

∫ 0

−∞
dx[ρL(x, 0)− ρL(x, t)− ρR(x, t)] =

∫ 0

−∞
dx[ρ(x, 0)− ρ(x, t)]. (S4)

Equation (S4) is Eq. (4) of the main text.
We proceed to the left-hand side of Eq. (S2). We are dealing with average densities that correspond to the equilibrium average

densities, and thus do not evolve with time. Denote ρ(x > 0, 0) = ρ̄R and ρ(x < 0, 0) = ρ̄L where, as we will define in Sec. SI B
below, · · · denotes the average over initial conditions. We make the assumption that Y (t) increases with time in such a way that
limt→∞ |Y (t)| = ∞. As such, after sufficiently long time, if the particle goes to the right (left), Y (t) > 0 [Y (t) < 0], by the
the central limit theorem we find ∫ Y (t)

0

dxρ(x, t) ≃ ρ̄RY (t)Θ[Y (t)] + ρ̄LY (t)Θ[−Y (t)], (S5)

where Θ is the Heaviside step function. The corrections to the right-hand side are O[
√
ρ̄RY (t)] and O[

√
−ρ̄LY (t)] . Eq. (S5)

is Eq. (5) of the main text.
Inserting Eqs. (S4) and (S5) in Eq. (S2), we find Eq. (6) of the main text,

ρ̄RY (t)Θ[Y (t)] + ρ̄LY (t)Θ[−Y (t)] = N+(t)−N−(t). (S6)

which can be inverted to become an explicit relation for Y (t) [Eq. (7) of the main text],

Y (t) =
[N+(t)−N−(t)]

ρ̄R
Θ[N+(t)−N−(t)] +

[N−(t)−N+(t)]

ρ̄L
Θ[N−(t)−N+(t)]. (S7)

Equation (S7) is useful as it allows us to determine the statistics of Y (t) in terms of the statistics of the two independent effusion
problems for N±(t) [31].
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B. Annealed versus quenched averages

We recall that SF systems possess two types of averages [6]. First is the average over thermal noise which acts on the individual
particles during the dynamical evolution from the starting configuration, ⟨· · · ⟩, and the second is an average over the particle’s
initial configuration, · · ·. While this only produces a single first cumulant for a function Q,

⟨Q(t)⟩a = ⟨Q(t)⟩q ≡ ⟨Q(t)⟩, (S8)

there are two possible definitions for the second cumulant [6] — annealed

⟨Q2(t)⟩c,a ≡ ⟨Q2(t)⟩ − [⟨Q(t)⟩]2, (S9)

and quenched

⟨Q2(t)⟩c,q ≡ ⟨Q2(t)⟩ − [⟨Q(t)⟩]2. (S10)

If we start from equilibrium initial conditions , the particles are uniformly distributed within each bulk with densities ρ̄L and
ρ̄R = e−β(ϕR−ϕL)ρ̄L. The quenched average is rather difficult to obtain from simulations. But, we will see later that a quenched
average applied to the ideal gas case corresponds to the annealed average for perfect crystalline (or hyperuniform [49]) initial
conditions [5, 7].

C. Annealed and quenched generating functions for crossing statistics

Assume the number of particles initially to the left of the interface on [−L, 0] isNL, where ρL = NL/L. Additionally, assume
that the distribution is uniform, so one has ideal gas initial conditions. The number of particles that have crossed to the right at
time t is given by

N+(t) =

NL∑
n=1

Θ[Xn(t)]. (S11)

We define the moment-generating function (MGF) dependent on the initial conditions as

GN+
(µ, t|{Xn(0)}) =

〈
exp

{
−µ

NL∑
n=1

Θ[Xn(t)]

}〉
, (S12)

where we have only averaged over realizations of the thermal noise, not the initial configuation {Xm(0)}.
The annealed MGF is given by

gN+,a(µ, t) = GN+
(µ, t|{Xn(0)}), (S13)

and the quenched one by

gN+,q(µ, t) = exp{ln[GN+
(µ, t|{Xn(0)}])}. (S14)

It is easy to see that by taking derivatives with respect to µ, Eq. (S14) generates the quenched second moment, while Eq. (S13)
gives the annealed second moment.

Using e−µΘ(x) = 1−Θ(x) + e−µΘ(x), we find

GN+
(µ, t|{Xn(0)}) =

NL∏
n=1

[1 + (e−µ − 1)f(Xn(0), t)], (S15)

where

f(Xn(0), t) = ⟨Θ[Xn(t)]⟩ (S16)

depends on Xn(0) only since the thermal averages over each particle trajectory is independent.
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D. Solutions to Fokker-Planck equation

We denote the probability density function for an isolated particle, started at y, around the point x as pX(x, t|y, 0) which
obeys the forward Fokker-Planck equation (FPE)

∂pX(x, t|y, 0)
∂t

= Ĥ(x)pX(x, t|y, 0) (S17)

Ĥ(x) =
∂

∂x

[
D(x)

(
β
dϕ(x)

dx
+

∂

∂x

)]
=

∂

∂x

[
e−βϕ(x)D(x)

∂

∂x

(
eβϕ(x)

)]
, (S18)

with the initial conditions pX(x, 0|y, 0) = δ(x− y), and

ϕ(x) =

{
ϕL, x < 0,

ϕR, x > 0,
(S19)

D(x) =

{
DL, x < 0,

DR, x > 0.
(S20)

Note that we can write f(y, t) of Eq. (S16) as

f(y, t) =

∫ ∞

0

dxpX(x, t|y, 0), (S21)

which is an identical function to all particles and obeys the backward FPE [50],

∂f(y, t)

∂t
= Ĥ†(y)f(y, t), (S22)

Ĥ†(y) = eβϕ(y)
∂

∂y

(
D(y)e−βϕ(y) ∂

∂y

)
, (S23)

with the initial conditions f(y, 0) = Θ(y). We define

f(y, t) =

{
fL(y, t), y < 0,

fR(y, t), y > 0,
(S24)

and Laplace transform it as f̃(y, s) =
∫∞
0
dte−stf(y, t). This yields the equations

sf̃L(y, s) = DL
∂2f̃L(y, s)

∂y2
, (S25)

sf̃R(y, s)− 1 = DR
∂2f̃R(y, s)

∂y2
, (S26)

while ensuring continuity: f̃L(0−, s) = f̃R(0
+, s) and DLe

−βϕL(∂f̃L/∂y)|0−,s = DRe
−βϕR(∂f̃R/∂y)|0+,s. Upon solving

these equations and inverting the Laplace transform, we find

fL(y, t) ≡ F

(
y√
t

)
=

√
DR/DL

eβ(ϕR−ϕL) +
√
DR/DL

erfc

(
−y√
4DLt

)
, (S27)

where erfc(u) = (2/π1/2)
∫∞
u

exp[−t2]dt is the complementary error function.

E. Tracer statistics for ideal-gas initial conditions

This is the case of an ideal-gas initial condition considered in the main text. Each particle is independently distributed in space
with a probability density function given by pX(x, t) = (ρL/N)Θ(−x) + (ρR/N)Θ(x), where N = NL +NR.

We take the average over initial conditions, and use the fact that the particles are identically and independently distributed,

gN+,id(µ, t) =
[
1 + (e−µ − 1)f(X(0), t)

]NL

, (S28)
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where each particles that has started from the left has the uniform conditional distribution, ρ̄L/NL,

f(X(0), t) =
ρ̄L
NL

∫ 0

−∞
dyf(y, t). (S29)

Upon changing variables y → ut1/2,

f(X(0), t) =
ρ̄L

√
t

NL

∫ 0

−∞
duF (u). (S30)

Thus,

gN+,id(µ, t) =

[
1 + (e−µ − 1)

ρ̄L
√
t

NL

∫ 0

−∞
duF (u)

]NL

NL→∞−−−−−→ exp

[
ρ̄L

√
t(e−µ − 1)

∫ 0

−∞
duF (u)

]
. (S31)

Now, when t becomes large, only small µ contributes. As such, we expand

gN+,id(µ, t) = exp

[
−µρ̄L

√
t

∫ 0

−∞
duF (u) +

µ2

2
ρ̄L

√
t

∫ 0

−∞
duF (u) +O(µ3)

]
. (S32)

This is exactly the MGF of a Gaussian distribution and it is in fact the manifestation of the central limit theorem in our compu-
tation. The probability distribution of N+, pN+,id(n, t), is thus normal and given by

pN+,id(n, t) =
1√

2πσ2
id+t

1/2
exp

[
− (n− αid+t

1/2)2

2σ2
id+t

1/2

]
, (S33)

with

αid+ = σ2
id+ = ρ̄L

∫ 0

−∞
duF (u). (S34)

Notice that Eq. (S31) is the MGF of a Poisson distribution, which required no assumption regarding the dynamics (as was
found generically in Ref. [31]). Indeed a Poisson distribution with a large mean can be approximate by a Gaussian. Notice
that upon inverting L ↔ R, we obtain the equilibrium condition αa+ = αa− so long as the initial average densities satisfy the
equilibrium condition, ρ̄R = ρ̄Le

−β(ϕR−ϕL). In our case, denote ρ̄0 = ρ̄Le
βϕL = ρ̄Re

βϕR , and use Eq. (S27) in Eq. (S34) to find

⟨N±(t)⟩id = ⟨N2
±(t)⟩c,id =

2ρ̄0

eβϕR/
√
DR + eβϕL/

√
DL

√
t

π
. (S35)

F. Crystalline initial configuration statistics

On the left of the origin (the same argument applies to the right) we assume that the particles are initially placed on a grid,
Xn(0) = −(U0 + n)/ρ̄L. Here, U0 ∈ [0, 1) is some uniform-distributed offset applied to all particles, ensuring a truly uniform
particle density ρ̄L (rather than a Dirac comb). This crystalline arrangement implies that the initial configuration is not the
equilibrium one, as the particles are strongly correlated with one another [49]. Nevertheless, the average density is equal to the
equilibrium one. At late times the choice of U0 will be unimportant, too, as we shall soon see. The annealed MGF for these
initial conditions is given by

gN+,cr(µ, t) =

NL∏
n=1

[
1 + (e−µ − 1)f

(
−U0 + n

ρL
, t

)]
. (S36)

Rearranging it as

gN+,cr(µ, t) = exp

{
NL∑
n=1

ln

[
1 + (e−µ − 1)F

(
−U0 + n

ρ̄L
√
t

)]}
(S37)
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and taking the limit of large t, such that u = −n/(ρ̄L
√
t) becomes a continuous variable [with U0/(ρ̄L

√
t) → 0 as well], we

find

gN+,cr(µ, t) = exp

{
ρ̄L

√
t

∫ 0

−∞
du ln

[
1 + (e−µ − 1)F (−u)

]}
. (S38)

Observe that Eq. (S38) is exactly the MGF for the quenched statistics given in Eq. (S14) with ideal-gas initial statistics. Thus
the two types of statistics indeed coincide, and give rise to the same behavior for the SF tracer. Henceforth, we will only refer to
the annealed average over crystalline initial conditions, but the same results also apply to the quenched statistics of the idea gas
initial conditions.

For large t we can expand for small µ and inverse Laplace transform to find the distribution of number of crossings,

pN+,cr(n, t) =
1√

2πσ2
cr+t

1/2
exp

[
− (n− αcr+t

1/2)2

2σ2
cr+t

1/2

]
, (S39)

where

αcr+ = ρ̄L

∫ 0

−∞
duF (u), (S40)

σ2
cr+ = ρ̄L

∫ 0

−∞
du[F (u)− F 2(u)]. (S41)

Inserting Eq. (S27) in Eqs. (S40) and (S41) and using the L ↔ R permutation, we find the following two moments for the
number of crossings:

⟨N±(t)⟩cr =
2ρ̄0

eβϕR/
√
DR + eβϕL/

√
DL

√
t

π
, (S42)

and

⟨N2
+(t)⟩c,cr =

2ρ̄0[e
βϕR/

√
DR + (

√
2− 1)eβϕL/

√
DL]

(eβϕR/
√
DR + eβϕL/

√
DL)2

√
t

π
, (S43)

⟨N2
−(t)⟩c,cr =

2ρ̄0[(
√
2− 1)eβϕR/

√
DR + eβϕL/

√
DL]

(eβϕR/
√
DR + eβϕL/

√
DL)2

√
t

π
. (S44)

It is noteworthy that ⟨N2
+(t)⟩c,cr + ⟨N2

−(t)⟩c,cr = 2−1/2[⟨N2
+(t)⟩c,id + ⟨N2

−(t)⟩c,id].

G. Drift and mean-squared displacement

Now that we are equipped with the results for both the ideal-gas (annealed statistics) and crystalline initial conditions
(quenched statistics), we can compute the first (drift) and second (mean-squared displacement) cumulants of the tracer motion,
Y (t). To this purpose, we define ∆N(t) = N+(t) − N−(t) and recall ρ̄0 = ρ̄Le

βϕL = ρ̄Re
βϕR . Then, using Θ2(u) = Θ(u),

Θ(−u) = 1−Θ(u), and Θ(−u)Θ(u) = 0, we rewrite Eq. (S7) as

Y (t) =
eβϕR − eβϕL

ρ̄0
∆N(t)Θ[∆N(t)] +

eβϕL

ρ̄0
∆N(t), (S45)

Y 2(t) =
e2βϕR − e2βϕL

ρ̄20
∆N2(t)Θ[∆N(t)] +

e2βϕL

ρ̄20
∆N2(t). (S46)

Taking the convolution of pN+,j and pN−,j gives the probability distribution for the difference between the number of cross-
ings, ∆N(t) = N+(t)−N−(t), with j = id, cr,

p∆N,j(δn, t) =
1√

2π[⟨N2
+(t)⟩c,j + ⟨N2

−(t)⟩c,j ]
exp

{
− δn2

2[⟨N2
+(t)⟩c,j + ⟨N2

−(t)⟩c,j ]

}
, (S47)
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where the mean difference in number of crossings is zero in equilibrium, and the variance is the sum of variances since the
number of crossings to the right is independent of the number to the left. Thus, integrating Eqs. (S45) and (S46) with respect to
the ith distribution, we find

⟨Y (t)⟩j =
eβϕR − eβϕL

ρ̄0

∫ ∞

0

d(δn)p∆N,j(δn, t)δn+
eβϕL

ρ̄0

∫ ∞

−∞
d(δn)p∆N,j(δn, t)δn

=
eβϕR − eβϕL

ρ̄0

√
⟨N2

+(t)⟩c,j + ⟨N2
−(t)⟩c,j

2π
, (S48)

⟨Y 2(t)⟩c,j =
e2βϕR − e2βϕL

ρ̄20

∫ ∞

0

d(δn)p∆N,j(δn, t)δn
2 +

e2βϕL

ρ̄20

∫ ∞

−∞
d(δn)p∆N,j(δn, t)δn

2 − ⟨Y (t)⟩2j

=
1

2ρ̄20

[
(e2βϕR + e2βϕL)

(
1− 1

π

)
+

2

π
eβ(ϕR+ϕL)

]
[⟨N2

+(t)⟩c,j + ⟨N2
−(t)⟩c,j ]. (S49)

Upon inserting the variances of the number of crossings, Eqs. (S35), (S43) and (S44), we find the central results of our
letter — the ideal-gas (annealed) and crystalline (quenched) drift and mean-squared displacements. Namely,

⟨Y (t)⟩id = (eβϕR − eβϕL)

√
2

ρ̄0

√
D1t

π
, (S50)

⟨Y 2(t)⟩c,id =
2

ρ̄0

√
D2t

π
, (S51)

where

D1 =
1

π2(eβϕR/
√
DR + eβϕL/

√
DL)2

, (S52)

D2 = D1[(e
2βϕR + e2βϕL)(π − 1) + 2eβ(ϕR+ϕL)]2, (S53)

and

⟨Y (t)⟩cr = (eβϕR − eβϕL)

√√
2

ρ̄0

√
D1t

π
, (S54)

⟨Y 2(t)⟩c,cr =

√
2

ρ̄0

√
D2t

π
. (S55)

These are Eqs. (8)–(13) of the main text.

H. Late-time probability density of tracer

We conclude this section by finding the complete probability density function of the tracer’s displacement. We do so by
computing the characteristic function of Y (t) for ideal gas (j = id) or perfect crystalline (j = cr) statistics,

ψj(q, t) = ⟨e−iqY (t)⟩j . (S56)

Using Eqs. (S7) we rewrite the characteristic function as

ψj(q, t) =

〈
exp

[
−iq

(
∆N(t)

ρR
Θ[∆N(t)] +

∆N(t)

ρ̄L
Θ[−∆N(t)]

)]〉
j

, (S57)

which, using eαuΘ(u)+βuΘ(−u) = eαuΘ(u) + eβuΘ(−u), becomes

ψj(q, t) = ⟨e−i(q/ρR)∆N(t)Θ[∆N(t)]⟩j + ⟨e−i(q/ρ̄L)∆N(t)Θ[−∆N(t)]⟩j . (S58)

With the aid of Eq. (S47), we find

ψj(q, t) =
1

2
exp

(
−
Σ2

jq
2t1/2

2ρ2R

)
erfc

(
iΣjqt

1/4

√
2ρR

)
+

1

2
exp

(
−
Σ2

jq
2t1/2

2ρ̄2L

)
erfc

(
− iΣjqt

1/4

√
2ρ̄L

)
. (S59)
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where Σ2
j ≡ σ2

j+ + σ2
j−.

An inverse Fourier transform yields an anticipated result,

Prj [Y (t) = y] =


1√

2πVjL(t)
exp

[
− y2

2VjL(t)

]
, y < 0,

1√
2πVjR(t)

exp

[
− y2

2VjR(t)

]
, y > 0,

(S60)

where, upon inserting Σ2
j , the bulk-dependent “variances” are Vid,L/R(t) = (4e2βϕL/R/ρ̄0)

√
πD1t in the ideal-gas case and

Vcr,L/R(t) = Vid,L/R(t)/
√
2 in the crystalline case, and D1 is given in Eq. (S52).

Observe how the reported effect is manifested in Eq. (S60). The chances to go right (Pr[Y (t) > 0]) or left (Pr[Y (t) < 0]) are
both 1/2 (due to the equilibrium condition and the resulting equal number of crossings to either side). However, the range into
which the tracer penetrates [VjR(t) versus VjL(t)] is larger within the bulk with the higher energy.

SII. SIMULATION

Based upon the non-crossing interpretation of SF diffusion of Ref. [9], we propose the following procedure. The N particles
undergoing SF diffusion will be described byN independent simulations of a normally-diffusing, isolated particle which, in each
of the N simulations, has started from each of the initial positions of the N SF particles chosen positions. At any time when
wish to record the positions of the SF particles, we sort the array of the normally-diffusing particle across the N (“phantom”)
simulations, thus achieving the sought after relabeling. Using the independent simulations, we are also able to confirm the
scheme for the diffusion of non-interacting particles and as well as verify the number crossings statistics for these particles.

At this point, we develop a simulation method for the two-sided discontinuous system under study here. Typically, one con-
siders potentials and diffusivities that vary smoothly in space, so one can resort to simple overdamped Langevin dynamics for the
individual particles. However, the literature on simulation methods of diffusion processes across discontinuities is limited [41].

To our knowledge, the lattice method derived below has not been implemented before in the context of SFD. For the case
considered here, this method turns out to be significantly faster than the continuous method of Ref. [41]. The latter is based on
the use of an effective underdamped equation of motion where, intricately-structured potentials are be properly sampled with
a sufficiently fine temporal discretization at the scale where ballistic motion dominates. As such, the potential discontinuity
is addressed by smoothing it out and properly sampling it. Likewise, our lattice method is, in theory, restricted to a spatial
discretization which is much finer that the spatial variability of the potential and diffusivity. As a lattice method, however,
discontinuities do not require special attention compared to smooth potentials. Combined with the self-similarity of diffusion
through a single interface [see Eq. (S71) below], there is, in fact, no limitation on the discretization (see Sec. SII B). Thus, a
very coarse discretization for long-time simulations in the following method turns out to be faster by orders of magnitudes than
Ref. [41].

A. Derivation of the single-particle simulation

Our method is a simulation of a particle on a lattice. When the particle is at site n, it attempts to move to the right with rate

Wn→n+1 = λn
e−βϕn+1

e−βϕn + e−βϕn+1
, (S61)

while the reverse move to the left occurs with rate

Wn+1→n = λ′n+1

e−βϕn

e−βϕn + e−βϕn+1
. (S62)

In order to satisfy detailed balance, Wn→n+1/Wn+1→n = e−βϕn+1/e−βϕn , we require λ′n+1 = λn. The resulting master
equation is

∂pn(t)

∂t
= −pn(t)λn

e−βϕn+1

e−βϕn + e−βϕn+1
− pn(t)λ

′
n

e−βϕn−1

e−βϕn−1 + e−βϕn

+pn−1(t)λn−1
e−βϕn

e−βϕn−1 + e−βϕn
+ pn+1(t)λ

′
n+1

e−βϕn

e−βϕn + e−βϕn+1
(S63)
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or, solely in terms of λn using detailed balance (λ′n+1 = λn),

∂pn(t)

∂t
= −pn(t)λn

e−βϕn+1

e−βϕn + e−βϕn+1
− pn(t)λn−1

e−βϕn−1

e−βϕn−1 + e−βϕn

+pn−1(t)λn−1
e−βϕn

e−βϕn−1 + e−βϕn
+ pn+1(t)λn

e−βϕn

e−βϕn + e−βϕn+1
. (S64)

We next introduce a lattice spacing ϵ and a continuous coordinate x = nϵ. We rewrite Eq. (S64) as

∂p(x, t)

∂t
= −p(x, t)λ(x) e−βϕ(x+ϵ)

e−βϕ(x) + e−βϕ(x+ϵ)
− p(x, t)λ(x− ϵ)

e−βϕ(x−ϵ)

e−βϕ(x−ϵ) + e−βϕ(x)

+p(x− ϵ, t)λ(x− ϵ)
e−βϕ(x)

e−βϕ(x−ϵ) + e−βϕ(x)
+ p(x+ ϵ, t)λ(x)

e−βϕ(x)

e−βϕ(x) + e−βϕ(x+ϵ)
. (S65)

An expansion to order ϵ2 gives

∂p(x, t)

∂t
=
ϵ2

2

∂

∂x

[
λ(x)

(
β
dϕ

dx
p(x, t) +

∂p(x, t)

∂x

)]
. (S66)

Thus, we identify λ(x) as

λ(x) =
2

ϵ2
D(x), (S67)

where D(x) is the diffusion constant, and obtain exactly the FPE we wish to simulate, Eq. (S17).

B. Simulation walkthrough

1. Initial conditions

We pick a large number of “background” particlesN , so that we simulateN+1 particles in total that diffuse with free boundary
conditions. Their positions are stored in an array. Following notation established earlier, denote the number of particles that are
initially placed to the left of the interface (at x = 0) as NL, and to the right as NR = N −NL. Choose a final running time tf .

In the annealed case. the particles are placed with a uniform distribution with mean densities ρ̄L on the left and ρ̄R on the left.
Due to the free boundary conditions, the particles on the outermost edges may escape, and so the system will become diluted
over time far from the interface. However we do not want the tracer to be affected by this finite-size dilution effect. A particle
beginning at the origin will typically go as far as

√
2DLt to the left and

√
2DRt to the right. Thus, so that it would be very

unlikely for the tracer to reach the ever-diluting boundary, we chose NL ≫ ρ̄L
√
2DLtf and NR ≫ ρ̄R

√
2DRtf .

We will perform both annealed ideal-gas and crystalline (mimicking quenched) simulations, so now we present how to create
the initial configuration.

We begin with the ideal-gas case. Since we put two open systems in contact, the equilibrium condition requires to have the
correct fluctuations in the number of particles. Namely, were we just to choose NL = Ne−βϕL/(e−βϕL + e−βϕR) and NR =
Ne−βϕR/(e−βϕL + e−βϕR), this would describe two closed systems that were suddenly placed in contact — a nonequilibrium
state. Our theory assumes pre-equilibration of the two bulks. Coupled with the very slow approach to our late-time asymptotics,
this leads to an underestimation of the drift and mean-squared displacement. This has also manifested in the number of crossings
being undersampled (especially the ones from high to low potential).

Therefore, we choose N = 5 × (ρ̄L + ρR)
√
2max(DL, DR)tf . Then, starting from NL = NR = 0, via a loop starting

at 1 and ending at N , we change NL → NL + 1 with probability e−βϕL/(e−βϕL + e−βϕR) or NR → NR + 1 with the
complementary probability e−βϕR/(e−βϕL + e−βϕR). Through this random assignment of NL and NR, we mimic a case where
we first waited for the two separate closed systems (with a total number of particles N ) to equilibrate and thus have the right
fluctuation statistics for the number of particles on either side (in a grand-canonical ensemble). Once this is done, for the purpose
of a faster simulation, we ‘truncate’ the number of particles Nj:Dj=min(DL,DR) in the bulk of the smaller diffusivity by a factor√

min(DL, DR)/max(DL, DR) (as the resulting number of particles will suffice to address the dilution problem). Lastly, within
each bulk, we randomly place theNL andNR particles in a uniform distribution within [−NL/ρ̄L, 0) and [0, NR/ρ̄R), and assign
the remaining N + 1th position at 0 for the SF tracer. Their sorted positions in increasing order will be inserted in a positions
array {Xn(t)}, such that {X1≤n≤NL

(0)} < 0, XNL+1 = 0, and {XNL+1≤n≤NL+NR+1(0)} ≥ 0.
To simulate the quenched case, in theory, one must choose an initial configuration generated according to the above prescrip-

tion, and perform many noise realizations over any initial configuration. This is not practical. Instead, as we saw in Sec. SI F, we



15

will emulate the quenched statistics by performing an annealed simulation with crystalline initial conditions while suppressing
any number-of-particles fluctuations. Namely, we simply choose NL = 5 × ρ̄L

√
2DLtf and NR = 5 × ρR

√
2DRtf . Then, we

initially place the NL +1+NR particles on the grid −n/ρ̄L (1 ≤ n ≤ NL), 0, and m/ρR (1 ≤ m ≤ NR), and save these initial
positions within the array {Xn(t)}.

With the so prepared initial conditions of N + 1 positions {Xn(0)}, we now propagate the particles as if they are diffusing
independently.

2. Parallel isolated-particle simulation

First, we must pick a discretization ϵ. Since this simulation scheme does not require the evaluation of derivatives of potentials
and diffusivity, it is expected to work perfectly well for problems with potential and diffusivity discontinuities without needing
to, e.g., smooth out the potential [41]. So to accurately sample external potentials and diffusivities, in theory, the lengthscales
over which these quantities vary must be much larger than ϵ. This does mean, however, that in the present problem of a single
interface, owing to its self-similarity x/t1/2 [see Eq. (S71) below], ϵ can be arbitrarily big for large tf — it should simply be
much smaller than the typical length that the particles traverse by tf ,

√
2max(DL, DR)tf . In a multilayered systems [51], again

ϵ should be smaller that the distance among interfaces. Thus, for the range of tf chosen below, with each 10-fold increase in tf ,
one may increase ϵ by

√
10 without affecting the accuracy at all. We will specify the values of ϵ later.

Upon choosing an ϵ, with the givenD(x) and ϕ(x) [Eqs. (S20) and (S19)], one determinesλ(x) [Eq. (S67)] andW (x→ x±ϵ)
[Eqs. (S61) and (S62), where λ′(x + ϵ) = λ(x)]. Since the particles are not initially distributed on lattice (or, in the quenched
case, not necessarily on the lattice set by ϵ-spaced jumps), while a normal-diffusing tracer will appear as if it jumps on a lattice,
the SF tracer will move on a continuum.

Now, for each particle n = 1, . . . , N+1 independently, we perform the following. Define a timer variable τn which is initially
set to τn = 0. Each single-particle simulation itself consists of a series of time-steps indexed by k = 1, 2, . . .. (The total number
of time-steps for each particles may be different.) By the end of the kth time-step, the particle is positioned at xkn and its timer
has reached τn = τkn . Now, the k + 1 time-step goes as follows: Given the particle’s latest position, xkn, pick a waiting time
∆τk+1

n from an exponential distribution with the rate parameter Wtot(x
k
n) = W (xkn → xkn + ϵ) +W (xkn → xkn − ϵ), the total

jump rate. [This can be done using, e.g., the inverse transform sampling method, ∆τk+1
n = −[1/Wtot(x

k
n)] ln(1−uk+1

n ), where
uk+1
n is uniformly distributed within [0, 1).] Then, its timer will be changed to τn = τk+1

n = τkn + ∆τk+1
n , and its position

will be modified to either xk+1
n = xkn + ϵ [with probability W (xkn → xkn + ϵ)/Wtot(x

k
n)] or xk+1

n = xkn − ϵ [with probability
W (xkn → xkn − ϵ)/Wtot(x

k
n)]. Once τn > tf , the simulation ends for this particle.

Suppose we wish to record the position of the nth particle. Then, its position at a time t which is bounded by τkn and τk+1
n

will be taken as Xn(τ
k
n ≤ t < τk+1

n ) = xkn, up to errors of order ϵ.

3. Data handling

In the simulations below, we will report the system configuration at a few equidistant times between 0 and tf . First, to verify
our method, we report the position XNL+1(t), i.e., the isolated particle that started from XNL+1(0) = 0. This particle will
diffuse normally (according to the results of Sec. SII C below). Next, we export the number of crossings to either side —N+

by counting the number of X1≤n≤NL(t) ≥ 0 and N− by the number of XNL+1≤n≤NL+NR+1(t) ≤ 0. Lastly we also report the
positions of the SF tracer. For this purpose, we sort the array {Xn(t)} into a separate array, {Yn(t)} (rather than overwriting
{Xn(t)}), and export the position of the NL + 1th particle from the left, that is, YNL+1(t).

C. Normal diffusion of an isolated tracer

We briefly recall the solution to the diffusion of an isolated tracer starting at the origin [41]. The probability distribution to
find its position, pX(x, t|0, 0), obeys the FPE [Eq. (S17)] with initial conditions p(x, 0|0, 0) = δ(x). First, separate

pX(x, t|0, 0) =

{
pX,L(x, t|0, 0), x < 0,

pX,R(x, t|0, 0), x > 0,
(S68)

Again it is convenient to Laplace transform: p̃X(x, s|0, 0) =
∫∞
0
dte−stpX(x, t|0, 0) and obtain the equations

sp̃X,L(x, s|0, 0) = DL
∂2p̃X,L(x, s|0, 0)

∂x2
, (S69)

sp̃X,R(x, s|0, 0) = DR
∂2p̃X,R(x, s|0, 0)

∂x2
, (S70)



16

〈X
〉

0.01 10 10
4

10
7

-0.1

-10

-10
3

(a)

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

t

〈X
2
〉 c

0.01 10 10
4

10
7

0.01

100

10
6

(b)

●
●●
●●●
●●●●
●●●●●●●
●●●

●
●●
●●●
●●●●
●●●●●●
●●●●

●
●●
●●●
●●●●●
●●●●●●●
●●

●
●●
●●●
●●●●
●●●●●●
●●●●

●
●●
●●●
●●●●
●●●●●●●
●●●

●
●●
●●●
●●●●
●●●●●●●
●●●

●
●●
●●●
●●●●
●●●●●●
●●●●

●
●●
●●●
●●●●
●●●●●●
●●●●

●
●●
●●●
●●●●
●●●●●●
●●●●

●
●●
●●●
●●●●
●●●●●●●
●●●

●
●●
●●●
●●●●●
●●●●●●●
●●

t

FIG. S1. Simulation. The (a) drift ⟨X⟩c and (b) mean-squared displacement ⟨X2⟩c of an isolated (and hence) normal-diffusing tracer particle
whose initial position was the interface, X(0) = 0. The blue points are given by the simulations, while the black lines are the theoretical
predictions [Eq. (S72) and (S73), respectively]. Parameter values: DL = 1, βϕL = 0, ρ̄L = 2.515, and DR = 3, βϕR = 3, and ρR = 0.125,
as in the rest of the figures.

while ensuring continuity, eβϕL p̃X,L(0
−, s|0, 0) = eβϕR p̃X,R(0

+, s|0, 0) and DR(∂p̃X,R/∂x)|0+,s = 1 +DL(∂p̃X,L/∂x)|0−,s

(the 1 comes from the delta initial conditions). Inverting the Laplace transform then gives

pX(x, t|0, 0) =


e−βϕL

e−βϕR
√
DR + e−βϕL

√
DL

1√
πt

exp

[
− x2

4DLt

]
, x < 0,

e−βϕR

e−βϕR
√
DR + e−βϕL

√
DL

1√
πt

exp

[
− x2

4DRt

]
, x > 0.

(S71)

From this, we find the drift and mean-squared displacement of an isolated tracer,

⟨X(t)⟩ = 2
DR/DL − eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)

√
DLt

π
, (S72)

⟨X2(t)⟩c = 2

{
(DR/DL)

3/2 + eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)
− 2

π

[
DR/DL − eβ(ϕR−ϕL)

(DR/DL)1/2 + eβ(ϕR−ϕL)

]2}
DLt. (S73)

These are Eqs. (14) and (15) of the main text.

D. Results

We show the simulation results for the normally-diffusing tracer and ideal-gas (annealed) and crystalline (quenched) number
of crossings. The results concerning the ideal-gas and crystalline SF tracer were shown in Figs. 2–3 of the main text. For the
graphs below, we pick the parameters DL = 1, βϕL = 0, and ρ̄L = 2.515 for the left bulk, and DR = 3, βϕR = 3, and
ρR = 0.125 for the right one, and made 2 · 104 samples.

We perform a set of simulations of varying final times, tf ∈ {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106, 107, 108}. During
each simulation, we export the above data at 20, equispaced times. We separated these simulations as we may accelerate
the longer ones without loosing precision by choosing the following, increasing lattice spacings, respectively to the finl times
tf : ϵ ∈ {10−3, 10−3, 10−2, 10−2, 10−1, 10−1, 1, 1, 10, 10, 100}. (Notice the incredibly course discretization for tf = 108 —
ϵ = 100.) As a result of the increasing tf , the total number of particles also increases as

√
10 between each tf (so to address the

dilution problem, see Sec. SII B 1).
Figure S1 shows the results for the above mentioned separate simulations for the isolated tracer that was initially positioned at

the interface,X(0) = 0. In the notation of Sec. SII B, we show the drift [Fig. S1(a)] and mean-squared displacement [Fig. S1(b)]
of the NL + 1th entry in the unsorted array of positions {Xn(t)}. Indeed the simulation is very accurate despite the large ϵ at
later times, owing to the self-similarity of the problem. In the context of Fig. 3 of the main text, notice that the particle drift is
leftwards for these parameters, in contrast to the rightwards (uphill) drift reported for the SF tracer.
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FIG. S2. Simulation. Ideal-gas (‘id’) and crystalline (‘cr’) (a) mean ⟨N±⟩c and (b) second cumulant ⟨N2
±⟩c of the number of crossings right-

(‘+’) and leftwards (‘−’) at late times. The simulation results are depicted by the labels indicated in panel (a), while the immediately adjacent
lines are the theoretical predictions [Eqs. (S35) and (S42)]. Parameter values are as in Fig. S1.

Figure S2 shows the ideal-gas and crystalline means [Fig. S2(a)] and second cumulants [Fig. S2(b)] of the number of crossings.
Once again, the simulation produces the anticipated results with a high precision even with ϵ = 100 used for the presented times.
With that, we verified the validity and accuracy of the proposed simulation method. The results for the SF tracer are presented
in the main text in Figs. 2–3.
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