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Abstract

Reinforcement Learning (RL) has shown remarkable success in solving relatively
complex tasks, yet the deployment of RL systems in real-world scenarios poses
significant challenges related to safety and robustness. This paper aims to iden-
tify and further understand those challenges thorough the exploration of the
main dimensions of the safe and robust RL landscape, encompassing algorith-
mic, ethical, and practical considerations. We conduct a comprehensive review of
methodologies and open problems that summarizes the efforts in recent years to
address the inherent risks associated with RL applications.

After discussing and proposing definitions for both safe and robust RL, the paper
categorizes existing research works into different algorithmic approaches that
enhance the safety and robustness of RL agents. We examine techniques such
as uncertainty estimation, optimisation methodologies, exploration-exploitation
trade-offs, and adversarial training. Environmental factors, including sim-to-
real transfer and domain adaptation, are also scrutinized to understand how
RL systems can adapt to diverse and dynamic surroundings. Moreover, human
involvement is an integral ingredient of the analysis, acknowledging the broad set
of roles that humans can take in this context.

Importantly, to aid practitioners in navigating the complexities of safe and robust
RL implementation, this paper introduces a practical checklist derived from the
synthesized literature. The checklist encompasses critical aspects of algorithm
design, training environment considerations, and ethical guidelines. It will serve
as a resource for developers and policymakers alike to ensure the responsible
deployment of RL systems in many application domains.

Keywords: reinforcement learning, safe Al, robust Markov decision process,
constrained Markov decision process



1 Structure

This paper provides a general overview of the definitions, approaches and practical
considerations for safe and robust reinforcement learning (RL). We intend to cover a
wide range of topics and approaches related to safe and robust RL, but fully accepting
that these are not only ambiguously defined and used, but fast evolving concepts.

Here, we start by introducing a basic formulation of RL framework in Sec. 2. We
collect the most common definitions of the terms — safety and robustness in Sec. 3.
Based on those, we propose two working definitions for the remainder of the work.

The following three sections (Sec. 4 to 6) introduce and categorize various safe and
robust RL approaches. Figure 1 shows the overview of RL framework and highlights
where the relevant categories introduced in these sections fit. We provide a summary of
the literature introduced in this paper in Appendix A. It includes two figures (Fig. Al
and A2) that show an overview of both the safe RL and robust RL literature, placing
the works in chronological order (from top to bottom).

Section 4 focuses on how to train the agent’s policy to achieve safety and
robustness. It has three main components — criteria, method and exploration. The
optimisation criteria related to the study of objective functions that are used
to achieve safety. The optimisation method provides a overview of approaches to
achieve the criteria. The exploration part focuses on methods for exploration that
count with a safety ingredient. Exploration is a key research topic because exploration
and safety are conflicting concepts — in practice, it is a hard trade-off to explore while
maintaining the safety.

Section 5 discusses approaches incorporating additional data/knowledge — data,
simulators and human knowledge. In principle, collecting more information about the
environment, the more likely to be able to improve on the safety front. We explore
the different solutions for adding these extra sources of information into the learning
process, while assessing its value. Section 6 deals specifically with human-in-the-Loop,
which usually sits in between the agent and environment, intervening, interfacing and
guiding the interactions. For example, we present alternatives for humans to give
feedback or shaping the reward, or humans changing the agent’s action altogether to
maintain safety.

In subsequent sections (Sec. 7 and 8), we explore a broad spectrum of topics rele-
vant to different aspects of safety and robustness of RL. For example, until this point,
the discussion is centered around the standard RL framework. Section 7 looks into
alternative RL paradigms, specifically multi-agent RL and hierarchical RL, as well as
other domains that are intrinsically linked to the concept of safe and robust RL. In
Sec. 8, we discuss ethical aspects of RL agents for real-world safety critical applica-
tions, as we argue that the definition of ethical requirements tailored to the target
application domain should be prevalent in any development and deployment.

In Sec. 9, we design and provide practitioners with a checklist for designing a safe
and robust RL system. It summarises important design choices and offers a workflow
to develop and deploy a safe and robust RL solutions in practice.

Each section of this paper is designed to be stand-alone, requiring no prior knowl-
edge from other sections. However, understanding a basic RL formulation, as outlined



in Section 2, is assumed. Readers may directly navigate to sections that align with
their interests.
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Fig. 1 Overview of the reinforcement learning setting (in black) with relevant components (coloured)
to the safe and robust RL introduced in Sec.4 to Sec.6

2 Reinforcement Learning

Here, we introduce a minimal formulation of RL paradigm. RL is an abstract
framework for any learning process that involves sequentially interacting with an envi-
ronment to achieve a certain objective [1]. The learner is called the agent. It interacts
with the environment, observes its consequences, and receives a reward (or a cost)
signal — a special numerical assessment the current situation. The agent outputs a
sequence of actions to maximise the cummulative reward (or minimise the cost) as
shown in Fig. 2.

More formally, the agent and environment interactions are discretised into a
sequence of time steps, t = 0,1,2,.... At each time step ¢, the agent observes the
state of the environment s;, then decides an action a;. In the next time step, the envi-
ronment updates the state based on the agent’s action — it becomes s;;1, and also
generates the reward r;; € R. The agent basically learns a mapping from the state
to the action that maximises the total amount of reward it receives over the long



run. The mapping is called policy denoted as 7 (a|s) that indicates the probability of
a; — a when the state is s; = s.
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Fig. 2 Overview of the reinforcement learning setting.

Reinforcement learning differs from traditional supervised learning. While the latter
learns from examples provided by experts, RL learns from its interactions with the
environment. RL is suitable when it is obvious what we would like to achieve (the
goal), but it is not so obvious how to achieve it. For example, it is clear what we
would like to achieve in the chess game (taking the opponent’s King and winning),
but it is not apparent how to achieve it. In general, RL learns how to achieve the goal
autonomously from the interactions (playing games) via a trial-and-error approach.

3 Definitions

In this Section, instead of starting by providing the reader with a formal definition of
safe and robust RL, we collect and discuss definitions already present in the literature
for each concept. We aim to show the diversity and lack of consesus, while focusing
on the similarities among definitions.

3.1 Robust reinforcement learning

According to the Cambridge dictionary?!, the definitions of the word robust refer to “(of
a person or animal) strong and healthy, or (of an object or system) strong and unlikely
to break or fail.” Also, according to Wikipedia?, robustness “is the property of being
strong and healthy in constitution. When it is transposed into a system, it refers to
the ability of tolerating perturbations that might affect the system’s functional body.
In the same line robustness can be defined as the ability of a system to resist change
without adapting its initial stable configuration.”

Certain uses of robust RL are relatively consistent across the all RL literature. To
the best of our knowledge, the term robust RL is first introduced by Jun Morimoto
and Kenji Doya [2]. They define it as,

Lhttps://dictionary.cambridge.org/dictionary/english /robust
Zhttps://en.wikipedia.org/wiki/Robustness



“a new reinforcement learning (RL) paradigm that explicitly takes into account input
disturbance as well as modeling errors.”

Concurrently, G. Iyengar also proposed robust dynamic programming [3], a method
aimed to achieve robust RL. It defines the method as:

“Systematically mitigate the sensitivity of the dynamic programming optimal policy to
ambiguity in the underlying transition probabilities”

More recent survey papers suggest the following definitions, which align with the
above Moriomoto and Doya’s definition.

“Robust RL aims to learn a robust optimal policy that accounts for model uncertainty of
the transition probability to systematically mitigate the sensitivity of the optimal policy
in perturbed environments” [4]

“robustness—in the scope considered in this survey—refers to the ability to cope with
variations or uncertainty of one’s environment. In the context of reinforcement learning
and control, robustness is pursued w.r.t. specific uncertainties in system dynamics, e.g.,
varying physical parameters” [5]

In this paper, we slightly broaden the definition and consider uncertainty in all
information the agent receives (not just uncertainty in the environment). We propose
then to consider robust RL as follows.

Definition 1 (Robust RL). Robust RL methodologies are those than can cope with
(or systematically mitigate the sensitivity of) all the relevant sources of uncertainty of
the environment, taking into account any other information that the agent receives.

3.2 Safe reinforcement learning

Following a similar procedure, according to the Cambridge dictionary®, the general
definition of the word safe is “not in danger or likely to be harmed”. Also according
to Wikipedia®, the word safety is defined as “the state of being safe, the condition
of being protected from harm or other danger. Safety can also refer to the control of
recognized hazards in order to achieve an acceptable level of risk.”

While the concept of safety in RL is relatively clear, the terminology safe RL is
heavily overloaded. Roughly the following four aspects of safe RL are considered in
the literature.

I. Consistent performance.

II. Maintaining safety constraints.
III. Aligned with the true objective.
IV. Accepting human intervention.

I) Consistent performance. requires the agent to always perform well in various
conditions. This requirement is similar to the robust RL.

I1) Maintaining safety constraints. requires the agent to maintain certain constraints
defined by the system.

3https://dictionary.cambridge.org/dictionary /english/safe
*https://en.wikipedia.org/wiki/Safety



III) Aligned with the true objective. means that the agent’s objective must be aligned
with the task’s true objective (or human intention). The agent cannot be safe if the
given objective is not aligned with the true objective, no matter how good the agent
algorithm is.

IV) Accepting human intervention. indicates that the agent (or system) must have
a mechanism for human intervention (or “emergency stop”). We do not think this
feature alone makes the agent safe; rather, this feature is mandatory for all real-world
RL applications.

Below, we introduce several definitions of safe RL in literature with the Roman
numbers (I to IV) that indicate which category the definition belongs.

The most generic (and high level) definition of safe RL would be by Javier Garcia
et al. [6]

“the process of learning policies that maximize the expectation of the return in problems
in which it is important to ensure reasonable system performance and/or respect safety
constraints during the learning and/or deployment processes” I),IT)

The definition by Shangding Gu et al. [7] explicitly includes adversary attacks
while accommodating a broader sense of safety, which includes mitigating
undesirable situations and reducing risk.

“about optimizing cost objectives, avoiding adversary attacks, improving undesirable
situations, reducing risk, and controlling agents to be safe” II)

Yongshuai Liu et.al. [8] and Lukas Brunke et al. [9] employ the concept of cost
and define safety as controlling the cost. This definition is originated from a
constrained Markov decision process (CMDP) [10] framework.

“The safe RL agent’s objective is to maximise long-term reward while keeping certain costs
under their respective constraints.” 1I)

Dylan Hadfield-Menell et al. [11] argue from slightly different prospective and
define the safe RL as:

“Safe RL has a mechanism for a human to interfere the agent effectively.” IV)

This definition relates to the following note by Norbert Wiener [12] in one of the
earliest explanations of the problems that arise when a powerful autonomous system
operates with an incorrect objective.

“If we use, to achieve our purposes, a mechanical agency with whose operation we cannot
interfere effectively . . . we had better be quite sure that the purpose put into the machine
is the purpose which we really desire.” III) or IV)

Wiener’s notion could lead to two lines of approaches to the safety of the
autonomous system. One introduces an effective intervention mechanism, and the
other has the right reward function, and an algorithm can achieve the goal — indeed,
most safe RL approaches are belong to either of these lines.

In this paper, we define safe RL in the similar way as Javier Garcia et al. [6], but
also added aspects of III) and IV) as Dylan Hadfield-Menell et al. [11].



Definition 2 (Safe RL). Safe RL is the process of learning policies that mazimize
the expectation of the return in problems in which it is important to ensure reason-
able system performance and/or respect safety constraints during the learning and/or
deployment processes. Also, the system must have the right objectives (the reward
function aligned with the objective of the task) and a mechanism for humans to
intervene.

This definition also covers the robust RL aspect as well, so we use it as our working
definition of safe and robust RL for the remainder of the paper.

4 Optimising a policy for Safe and Robust RL

This section outlines various training methodologies essential for developing a safe and
robust RL agent. Initially, we present helpful concepts such as Markov decision process
(MDP), robust MDP, and constrained MDP, which are foundational for understanding
different optimisation strategies. Subsequently, we explore diverse optimisation criteria
and techniques to fulfil these criteria to ensure a safe and robust RL.

4.1 Robust and Constrained Markov Decision Process

RL framework can be seen as a Markov decision process when the environment and
the agent hold the Markovian property. It can be extended to a robust Markov process
and a constrained Markov process. They are closely related to robust and safe RL,
and they are very useful concepts to define some of safe and robust RL algorithms, so
this section describes the definitions of these Markov processes.

A Markov decision process (MDP) is defined as a tuple (S, A, r, P, u,7) [1], where
S is the set of states, A is the set of actions, r : S X A X S + R is the reward function,
P:SxAxS —[0,1] is the state transition probability function, p : S — [0,1] is
the initial state distribution and v € [0,1] is the discount factor for the future reward.
A policy 7 : § — P(A) is a mapping from states to a probability distribution over
actions. A standard MDP aims to learn a policy m that maximises the discounted
cumulative reward:

argmaxJ] =E,;
s

Z'ytr (Stvatvst+1)] ) (1)

t=0

where 7 = (89, ao, $1,a1,--+) denotes a trajectory, and 7 ~ 7 denotes trajectories
sampled from the policy 7.

An robust Markov decision process (RMDP) extends the definition of the standard
MDP by introducing & an uncertainty set for the state transition probabilities. An
RMDP is defined as a tuple (S, A,r, Z,u,v). It guarantee the highest discounted
accumulative reward with the given uncertainty set:

oo
arg max Il = 7,12; Ervrp lz Y (Staata5t+1)‘| ) (2)
t=0



where 7 ~ 7, P denotes sampled trajectories from the policy 7 and the state transition
probability P. The uncertainty set &2 is typically for the state transition probabilities.
However, in general, it can be for any parameters in the target environment.

A constrained Markov decision process (CMDP) is also a concept that extends the
standard MDP by introducing cost functions C' in addition to the reward function. It
is defined as a tuple (S, A,r,C, P, u,7). The cost functions ¢; € C,¢; : S X A X S —
R are constrained suitably for the target application. The types of constraints are
discussed in the following section. A CMDP aims to learn a policy 7 that maximises
the discounted cumulative reward while it satisfies all of its necessary constraints.
Formally, the CMDP becomes the following conditional optimisation problem:

o0
argmgx.]f =E ur lZ’YtT(St,anStﬂ)] ;

t=0
s.t. J;: < GiVi7

3)

where J7 denotes a statistical measure over the i-th cost function values from the
trajectory sampled with the policy 7 and ¢; is the allowed upper bound for the measure.
Various types of constraints are realised by defining appropriate J .

4.2 Optimisation criteria

In this subsection, we will review two optimisation criteria commonly used for safe and
robust RL. For a normal RL setting, the optimisation criterion is to maximise the total
(discounted) reward. A safe and robust RL scenario requires slightly different criteria.
The first type is robust RL criteria, which aims to maximise the expected total reward
under some worst-case scenarios or distributional assumptions. The second type is
constrained RL criteria, which imposes additional constraints on the agent’s actions
or outcomes. We will describe these criteria in the rest of this section, and discuss
some approaches to achieve them in the following section.

Robust RL criterion

The former optimisation criterion indicates that the agent consistently achieves a
certain level of accumulated reward within a given uncertainty in the RL framework.
Often, it assumes a certain level of uncertainty in the environment and maximises
the expected total reward in the worst case. This category is equivalent to the robust
RL [2]. This task setup is also often referred to RMDP [3].

Constrained RL criterion

The latter definition is more common in the recent safe RL literature. Typically it
introduces a cost function in addition to the reward function, and the agent tries to
maximise the expected accumulated reward while maintaining particular constraints
regarding the cost. The constraints can be categorised as Fig.3 [8]. The cumulative
constraints require the sum or mean of a given cost to be within a specific limit. e.g.
for an electric car navigation task, the sum of energy consumption (cost) must be less
than the available battery (limit) before reaching a charging station (or home). The
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Fig. 3 Categories of constraints.

cumulative constraints are split into two categories — expectations and probability of
the costs. The former includes discounted cumulative constraints and mean-valued
constraints [10].

An expected discounted cumulative constraint is of the form

Jo =Eror lz ve; (Staata3t+1)‘| <. (4)
=0

An expected mean valued cumulative constraint is of the form

JI = ]ETNTK'

ci
t=0

1 T-1
T > cilsian, 3t+1)] <e€. (5)

While the probabilistic constraints [13] require the probability of the cumulative costs
exceeding a threshold (7) is less than e;.

Ji, =P (Z ci (St, at, Se41) > n) <. (6)

t

Instantaneous constraints are constraints on the actions, states or cost functions that
must satisfy for each time step. They can be further split into explicit and implicit
cases. An explicit constraint has a closed-form expression that can be numerically
checked. On the other hand, an implicit constraint does not have an accurate closed-
form formulation due to the complexity of the system. Hence it requires learning a
function that checks if a given state action pair satisfy requirements. The instantaneous
constraints form as

JE = ci(s¢,a1,5041) < €. (7)
It is hard to show a generic form of implicit constraints. However, instantaneous
probabilistic constraints are one of the implicit constraints and can be form of

JI, = P(ci (51, ai,8e41) > m) < €. (8)



4.3 Optimisation methods

Here, we explore strategies to achieve the criteria introduced in the previous section.
We begin by considering optimisation methods for exploitation policy, which solely aim
to achieve the optimisation criteria introduced in the above subsection. Subsequently,
we introduce methods for safe exploration, which aim to gather diverse training data
for training the exploitation policy while maintaining safety.

Optimising exploitation policy for robust RL criterion

For the robust RL criterion, the most straightforward approach would be maximising
the reward in the worst case. There are three lines of approaches to achieving empiri-
cally robust performance — i) robust adversarial approaches, ii) domain randomisation
approaches and iii) approaches employing a statistical measure.

i) The robust adversarial approaches combine RL with adversarial learning that
learns a policy to control the environment’s parameters to minimise the reward that
RL agent obtains while the RL learns a policy maximises it [14, 15]. These two poli-
cies are updated alternately (each is updated while fixing the other), attempting to
progressively improve the robustness of the RL agent’s policy and the strength of its
adversary. The difficulty of the approach is that it requires a balance between the
ability of RL agent and its adversarial agent. If the adversarial agent possesses too
much control ability, RL agent fails to learn any helpful policy, while too little control
results in not robust RL policy.

ii) The domain randomisation approaches learn a policy that empirically gener-
alises to a broader range of tasks or environments. Instead of considering the worst-
case, it learns from an environment with randomly perturbated parameters [16, 17].
These parameters often have pre-specified ranges.

iii) The approaches employing a statistical measure. Some of the approaches for
maximising the worst case scenario may end up with a too-pessimistic solution and
performs poorly in the typical condition. An alternative approach would consider
a soft worse case, which employs a statistical metric instead of the worst reward
such as CVaR [18] or certain percentile point. These statistical measures can be
obtained by employing distributional reinforcement learning approaches [19-21] (such
as implicit quantile networks (IQN) [21]) that learn the distribution of the value
function. However, IQN alone does not capture the Epistemic uncertainties, which
is the uncertainty due to lack of knowledge. Epistemic uncertainty can be captured
by employing an ensemble approach. This approach is proposed as ensemble quantile
networks (EQN) [22] that combines IQN and the ensemble approach to capture Epis-
temic and Aleatoric uncertainties and learn an appropriate value function distribution
for computing the statistical measures like CVaR.

Optimising exploitation policy for constrained RL criterion

For the constrained RL criterion, Lagrangian relaxation is the most straightforward
approach to address the constraints [10, 23, 24]. The general form of Lagrangian relax-
ation is to reduce the problem to an unconstrained problem with Lagrange multipliers.

10



These adaptive Lagrange multipliers are then used to penalise constraint violations as

min max L(m, \) = J — Z i (J:L - ei) ) (9)

)\'LZO ™

However, this approach is sensitive to the initialisation of the Lagrange multipliers and
the learning rate. Moreover, the Lagrangian multipliers are solved on a slower time
scale, making it difficult to optimise in practice [25, 26]. Another alternative approach
employs a particular function to incorporate the constraints and merge them into
a single objective without Lagrange multipliers. One such example is interior point
optimisation (IPO) [27], a first-order constrained method inspired by the interior-
point method [28]. TPO employs logarithmic barrier functions as penalty functions to
accommodate the constraints as Eq. 10. It shows the log term go to minus infinity as
J getting closer to ¢;.

max J; + Z tl log (—J7 +¢€), (10)

where t; is a hyperparamter.

For methods based on strong theoretical justifications, a line of works [29, 30]
guarantees performance improvement for each policy update. Trust region optimiza-
tion (TRPO) [31] adopted it to deep neural network (DNN) parameterised polices, and
its successor proximal policy optimization (PPQO) [32] established better empirical per-
formances with a much simpler algorithm. Constrained policy optimization (CPO) [25]
is inspired by TRPO, and it guarantees keeping the constraints and performance
improvement for each iteration. However, CPO is computationally expensive as it
uses conjugate gradients for approximating the Fisher Information Matrix, whose
approximation error affects the overall performance. Furthermore, CPO only sup-
ports constraints that satisfy the Recursive Bellman Equation (i.e. discounted sum
constraints), and it is difficult to accommodate multiple constraints.

Exploration policy

In the standard RL setting, the training dataset, or trajectory, is generated through
interaction with the environment. This means that the quality of the training data is
determined by the policy guiding these interactions. In essence, the exploration policy
has a direct impact on the quality of data available for training the agent. It’s critical
that the policy not only seeks out new states and actions to enrich the training data
but also ensures safety. As further elaborated in this paragraph, striking a delicate
balance between safety and exploration is essential.

Common RL exploration strategies often rely on some stochasticity in the action
choices, such as the e-greedy algorithm. Although they are simple and yet effective in
many RL tasks, it does not consider any risk. Hence it might cause many catastrophic
failures during the learning process. Moreover, it may result in constant failures even
after the learning process due to the randomness in the action choices. Hence, some of
the safe RL approaches pay special attention to the exploration process, considering

11



some form of risk. Unfortunately, it is impossible to avoid undesirable consequences
completely without accessing a certain amount of external knowledge (or prior knowl-
edge) of the environment. One possible safe exploration strategy is employing Bayesian
approaches (e.g. GP [33]) for the environment modeling. It can take prior knowledge
and predict future trajectories with uncertainties. It allows the agent to explore a
region that might result in high reward while maintain constraints by considering the
predictive uncertainties [34, 35]. The limitations of these GP based approaches are
difficult to extend to high-dimension state space.

The approaches that do not rely on external knowledge, can not avoid catastrophic
failures completely, but they attempt to minimise the failures by considering the risk of
the exploration. For example, Moldovan & Abbeel [36] consider safety using ergodicity,
where an action is safe if it is still possible to reach every other state after having
taken that action. These methods are limited to small, discrete MDPs where exact
planning is straightforward. For the algorithms can be applied to complex and high-
dimensional tasks, Wachi et al. propose MASE [37] — algorithm employs an uncertainty
quantifier for a high-probability guarantee that the safety constraints are not violated
and penalises the agent before safety violation, assuming that the agent has access to
an “emergency stop” authority — namely a human intervention. Han et al. [38], and
Eysenbach et al. [39] propose approaches that learn two policies — one is for maximising
the reward (standard RL policy), and the other is for bringing the state back to the
initial state (reset policy). Then, they use the reset policy to recover from a potentially
unsafe state to maintain their safety. These approaches could fail before they learn
when it should use the reset policy and the reset policy itself. Other simpler approach,
Gehring and Precup [40] define the risk as a magnitude of temporal difference error for
the value function. It discounts an expected future reward with the risk to discourage
taking risky actions.

As we discussed in the previous section, approaches like TRPO, PPO and CPO are
based on a theoretical guarantee that each policy update improves the performance.
Hence, they can be seen as safe exploration approaches. However, they do not have
built-in mechanisms to ensure avoiding catastrophic failures. Furthermore, PPO has
been found to suffer from a lack of exploration [41]. So, they might need additional
mechanisms to ensure safe exploration.

5 Incorporating additional data and knowledge

In reinforcement learning, an agent learns from its own interactions with the environ-
ment. However, the agent may sometimes have access to additional knowledge sources
or data that can help it improve its performance. For example, the agent may use
expert demonstrations, human feedback, or prior knowledge about the task or the
environment. This section will explore how to incorporate such knowledge or data into
reinforcement learning algorithms. We contrast this approach with the one we dis-
cussed in the prior sections, where the agent only uses data (trajectory) obtained by
itself. However, some approaches in the prior sections can also be used here. There are
various forms of external knowledge — trajectory dataset, a computer model (simula-
tor) of the environment and a person with knowledge of the environment. Each form

12



of knowledge holds different characteristics and hence requires a different approach
to extract and incorporate the information. We discuss each of them in the following
subsections.

5.1 Trajectory dataset

If the trajectory dataset is obtained from the interactions between a target environ-
ment and an expert human (or an algorithm), then we could rely on a behaviour
cloning (BC) type of approach that simply learns a mapping from a state to an action
from the dataset. If the dataset is obtained from interactions between a target envi-
ronment and non-expert, we could employ one of offline RL approaches [42], which
learns an optimal policy from the dataset while avoiding actions out of the dataset
distribution. In case of the dataset is sampled from a similar but not target environ-
ment, it requires robust RL approach, which takes into account the unknown difference
between these environments. It learns a policy that performs well in the worst case of
given uncertainty in the environment [2, 3]. Alternatively, we can utilise meta-learning
to acquire a prior for the target environment. An important note in meta-learning is
that the learned prior should cover the actual environment [43, 44]. Achieving this
requires a dataset that encompasses diverse realisations of the environment. If such
diversity is lacking, we may need to relax the prior distribution to ensure it adequately
covers the true environment.

The quality of a trajectory dataset is a crucial factor. Ideally, an expert demonstra-
tion dataset should encompass all states an agent will likely encounter. If the dataset
is obtained from non-experts, ideally, it includes all state-action pairs [45]. Even when
a single trajectory does not encompass the entire optimal path, RL algorithms are
capable of learning optimal behaviour from these suboptimal trajectories. This capa-
bility, known as stitching, is a vital attribute of offline RL algorithms [46]. Without the
stitching ability, an RL algorithm would require a dataset that contains the complete
optimal trajectory [47].

5.2 Simulators

Computer models can simulate the environment for many applications and can be
used to train an RL agent or create a training dataset. Computer models are often
more accessible and less risky than the actual environment, as they do not incur any
costs or consequences for failing a task. Therefore, they are useful for pre-training
the agent before deploying it to the real environment [48]. However, a naive approach
may not work well due to the discrepancy between the computer model and the real
environment. A possible solution to the issue would be a robust RL approach. This
problem is known as ”sim-to-real” and has been studied extensively [49, 50].

5.3 Human knowledge

Human knowledge can be a valuable source of guidance for safe reinforcement learning,
but it also poses some challenges. How can we obtain human knowledge in a way that
is efficient, reliable and scalable [51]? We could use different methods of human input,
such as demonstration (where humans provide examples of desired behaviour) [52],
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feedback (where humans evaluate the agent’s actions) [53] or intervention (where
humans correct the agent’s actions) [54, 55]. Owing to the diverse strategies available
for incorporating human knowledge, a dedicated section (Sec. 6 human-in-the-loop) is
available for further details.

6 Human-in-the-loop

A human-in-the-loop approach is another possible approach for achieving safe RL.
The most robust approach of this category would have a mechanism for a human to
intervene in the agent action [54, 56]. When the human finds that the agent’s action
violates constraints, the human takes over the system and applies alternative action
instead of the agent. This method guarantees zero violation of the constraints assuming
the human can always provide the right actions. However, it is hard to scale to complex
environments because the human cost would be prohibitively high. Alternatively, some
works propose having a machine-learning model for intervening and replacing unsafe
actions with safe ones [55, 57], yet they still require the model to be reliable. Other
approaches are that humans advise which actions to take or give feedback regarding
the actions the agent just took (i.e. right or wrong) [53, 58, 59]. The advice or feedback
will guide the agent’s learning process and help achieve a good policy quickly.

Reinforcement learning with human feedback is a research area that has gained
renewed attention in recent years, especially with the application of ChatGPT [60, 61],
a conversational agent trained with human preferences. This approach addresses
the challenge of defining a suitable reward function for complex tasks by learning
from the feedback of human evaluators. This line of research is primarily based on
preference-based reinforcement learning (PbRL) [62-67], which learns human pref-
erence through relative feedback, such as pair-wise comparisons and rankings. They
model human feedback with the Bradley-Terry model [68] for the pair-wise compar-
isons and Plackett-Luce model [69, 70] for the rankings. The Bradley-Terry model is
a special case of the Plackett-Luce model, and it was first introduced by Zermero [71]
and heavily studied in the years since, particularly following its rediscovery by Bradley
and Terry [68]. It learns a reward function from the human feedback and then train an
agent with the learned rewards, or the agent learn a policy directly from the human
feedback.

Furthermore, human feedback can help RL agents overcome some of their chal-
lenges, such as sparse rewards, misaligned objectives or unsafe exploration [58, 72]. Tt
provides additional guidance, correction, or evaluation of their behaviour through feed-
back. Therefore, RL with human feedback is an important research area for developing
safe and robust RL systems that align with human values and preferences.

7 Related problems and formulations

7.1 Complex reinforcement learning paradigms

This paper primarily focuses on the standard RL setting. However, in this section, we
touch on safety and robustness issues on other RL settings — namely, multi-agent RL
and hierarchical RL settings.
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7.1.1 Multi-agent RL

Multi-agent reinforcement learning (MARL) is a sub-field of RL that focuses on inves-
tigating the behaviour of multiple learning agents that coexist in a shared environment.
Each agent is motivated by either the global rewards or its own rewards, developing
interesting behaviours that can be characterized as collaborative [73]. In some envi-
ronments, these individual rewards may be opposed to other agents’ rewards, resulting
in complex group dynamics.

Safe MARL works often define a multi-agent version of CMDP. We found three
types of the definitions. Some works define the multi-agent version of CMDP as a
tuple (S,{A;}jen, . {Cj}tjen, P, pt,7y). Where N = [1,...,n] is a set of agents, A; is
the action space for the agent j and Cj is the set of cost functions for the agent j.
With this formulation, the rewards are common to all agents, while the cost functions
and constraints can be different between agents. Hence, the agents try to maximise
the common rewards while maintaining each of their constraints. Each agent’s policy
7; is optimised as the following equations [74, 75].

o0
t
argrr;axEmﬂj lg ~ T(St,at,3t+1)‘| )
J
t=0

s.it. JI < Vi, where ¢; € C.

(11)

The second formulation define it as (S, {A;}jen {rj}jen, {Cj}jen, P, it,7), where
r; is the reward function for the agent j. This formulation assumes different reward
functions amongst agents. The agents try to maximise their own rewards and maintain
their constraints. So, each agent’s policy 7; is optimised as the following equations [76].
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The last definition is for a distributed scenario, and it defines their CMDP as
(S, {A; Yjen {rjtien: G, {C}}iens P, 1, y), where G = (N, €) indicates available com-
munication link between agents. Each agent receives its own rewards and it tries to
maximise the average rewards across all agents [77].
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where m = {m;};=1.n, is a set of all agents’ policy.

Multi-agent constrained policy optimisation (MACPO) [74] is the multi-agent ver-
sion of CPO algorithm [25]. It is the first model-free safe MARL algorithm and
guarantee monotonic improvement in reward, while theoretically satisfying safety
constraints. However, it is computationally expensive and the algorithm has some
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approximations which causes some errors and troubles in practice [7]. Multi-agent
proximal policy optimisation (MAPPO) [74] is also model free safe MARL algorithm
which simplify the MACPO algorithm. However, MACPPO does not provide a guar-
antee for the constraints. Safe decentralized policy gradient (Safe Dec-PC) [77] is
decentralised algorithm for safe MARL. It uses the third multi-agentCMDP model in
above and assumes each agent has communication link to other (neighbour) agents.

7.1.2 Hierarchical RL

Hierarchical reinforcement learning (HRL) is a method that decomposes a reinforce-
ment learning problem into a hierarchy of subproblems or tasks. The most common
HRL agent structure consists of two layers of hierarchy. The higher layer invokes the
lower-level agents by giving them a sub-goal to achieve or selecting a policy from mul-
tiple lower-level policies. The higher layer is trained to maximise the rewards from
the target environment, while the lower level policies are trained to maximise intrinsic
rewards generated by the high-level agent.

There are some works have been done for safe HRL, however they are quite lim-
ited. Hierarchical safe reinforcement learning (HiSaRL) [78] is a two-level hierarchy
method; the high-level agent generates a safe and efficient path, and the low-level
agent ensures runtime safety with a Lyapunov function-based approach. Hierarchical
program triggered reinforcement learning (HPRL) [79] employs a structured program
for the high-level agent, and it triggers one of the low-level policies that are trained
for a specific movement (car manoeuvres, i.e. turn left/right). The structured program
in the high-level agent defines rule-based safety specifications, and formal verifica-
tion is used to ensure safety. The authors of [80] propose a two-level hierarchical RL
algorithm with the high-level agent providing a sub-goal to the low-level agent. The
low-level agent is trained to maximise the intrinsic rewards that the high-level agent
generates. It also has a safety layer that replaces a potentially risky action generated
by the low-level agent with a safe action. The high-level agent is trained to produce
effective sub-goals that maximise the rewards and minimise the safety layer interven-
tion. Limitations of this approach are: i) The safety layer only looks one time-step
ahead; hence, it cannot effectively intervene for long time horizon constraints. ii) Its
safety guarantee is heavily dependent upon the accuracy of the one-step-ahead cost
prediction model. It might be hard to assess the reliability of the DNN model.

7.2 Beyond reinforcement learning

In what follows below, we discuss problems in fields that are closely related to the
robust and safe RL space. Some of these areas are too large to be properly described
in here, so we just touch the each of them and highlight the similarities and differences
to the robust and safe RL approaches mentioned above.

7.2.1 Control theory

The relationship between control theory and RL is that both fields share similar goals,
i.e. coming up with a good sequence of actions to achieve desired outcomes. Control
theory starts with a known model dynamics (environment’s state transitions), while
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RL assume they are unknown and learn them from interacting with the environment.
Control theory can provide insights, methods and guarantees for safe and robust RL.
Meanwhile, RL can extend the applicability and scalability of control theory to more
complex and data-driven scenarios. Although the difference of the assumption about
the model dynamics, they are closely related and idea developed in one field often
can be applied to the other field e.g. model predictive control (MPC) was originally
proposed and developed in the control theory society, is commonly used in RL field
especially for the model-based RL planning approaches. Likewise, Lyapunov functions
are widely used in control theory to prove the stability of a system, and they can also
be applied to reinforcement learning to provide its stability [81] and safety [82, 83].

7.2.2 Transfer learning

Transfer learning is a technique that aims to improve the learning efficiency of a
machine learning model on a target task by transferring the knowledge contained
in different but related tasks [84-86]. Much work has been done to apply transfer
learning for RL [87-90]. The main benefit of transfer learning for RL is that it can
reduce the dependence on many interactions with the target environment, which may
be expensive, scarce, or unsafe to obtain. By exploiting the similarities between tasks,
transfer learning can improve the learning efficiency and the quality of the learned
policies.

7.2.3 Meta-learning

Meta-learning, or learning to learn, is the science of systematically observing how
different machine learning approaches perform on a wide range of learning tasks and
then learning from this experience, or meta-data, to learn new tasks much faster
than otherwise possible [91-93]. Meta-learning also benefits safe and robust RL by
exploiting knowledge from a wide range of tasks and provides a good starting point [94]
for the agent or priors to the model parameters [43, 95]. Both can significantly reduce
the risk of unsafe explorations.

7.2.4 Sim-to-real

Sim-to-real is a research area that investigates how to transfer reinforcement learning
(RL) agents from simulated environments to real-world settings [49, 50, 96]. This
is especially relevant for robotics applications, where RL can enable agents to learn
complex and adaptive behaviours but also possess difficulties due to the large amount
of data needed to learn. Employing the target environment simulator can reduce the
cost and risk of training RL agents, but it also introduces a discrepancy between
the simulation and the reality, known as the sim-to-real gap. This gap can cause the
agent to fail or unpredictable behaviour when deployed in the real world. Sim-to-real
techniques aim to develop learning algorithms to produce robust models that can
handle the gap and ensure safe and reliable performance.
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8 Ethical considerations of safe and robust RL

RL poses significant ethical challenges, especially when applied to real-world tasks that
involve human or environmental impacts [97]. For an in-depth review of the ethical
implications of artificial intelligence in general, we refer the reader to [98, 99] and
the references therein. Additionally, [100] and similar efforts, provide guidelines to
address such ethical considerations for practical applications. In this section, we will
focus specifically in some of the main ethical risks that arise from safe and robust RL
applications, such as safe rewards, accountability and transparency.

Reward misspecification

RL agents learn a policy that maximises the expected sum of the future rewards.
So, if the reward function does not match the true objective of the task (reward
misspecification), then the learned policy can be useless or even harmful for people
around the agent or the environment (reward hacking [101]). For example, an RL agent
that controls a self-driving car may learn to drive recklessly if the reward function
only considers speed and not safety. Therefore, designing reward functions that align
with the desired outcomes and values of the stakeholders is a crucial ethical challenge
in RL. To mitigate the risk, we can consider CMDP framework to properly model
various constraints of the task — if the task is complex and needs to consider various
conditions to maintain its safety and fairness. The challenges for CMDP are that it
often requires high computational power to train the agent, and also, it is hard to
guarantee to satisfy all the constraints all the time. CMDP requires humans to specify
all the constraints and rewards correctly, and it is hard to specify all the constraints for
some applications. To mitigate the risk, we could rely on human feedback to estimate
the reward function. However, human feedback can be sparse and inaccurate. So, it
is required to make the algorithm robust against the sparsity and inaccuracy of the
feedback.

Transparency and accountability

Because RL tasks involve a sequence of multiple decisions for the agent’s action, it
is more difficult to explain the reason behind the decisions than in standard machine
learning settings. Also, RL agents learn from their own interactions with the environ-
ment. It means that the agent’s performance could vary depending on its previous
policy. That makes it difficult to guarantee its performance and provide accountabil-
ity to the agent [102, 103]. One possible workaround for the issues is to use the RL
agent as a decision support system. In this case, the RL agent provides suggestions for
the human action, and then the human makes a final decision about which action to
take [104]. The human is accountable for the decision. To make such a system work,
the RL agent must provide a reason behind its suggestions so that the human makes
a good final decision. The limitation of this approach is that, for many applications,
it is not feasible to accommodate human intervention.

Overall, the ethical issues of RL has two aspects — a risk of misspecified reward and
lack of transparency (explainability) of the agent. Safe and robust RL can mitigate the
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first issue, but not so much for the latter one directly. However, the uncertainty esti-
mation algorithms, that is a important component of safe RL, helps the transparency
of the agent. So, safe and robust RL approaches should be able to help making ethical
algorithms. However, it is still requires attention to these ethical issues.

9 A checklist for safe and robust RL

This section provides practitioners with a list of items and actions to check in order
to design safe and robust RL agents. Some of these elements are general princi-
ples that apply to any RL problem with particular implications around safety and
robustness, while others are specific to certain domains or scenarios. These are organ-
ised in four parts, namely, specification, additional sources of information,
optimisation and safety. We expect practitioners to navigate through the list on a
sequential manner.

Specification

First of all, we need to clarify the requirements of the task at hand. In addition to the

normal RL setting specifications, we should consider the following items:

S1) Ethical requirements. For real-world applications, it is important to comply
ethical requirements which is often specific to a target application. As the first
step in a specification stage, we must list up all ethical requirements. They might
be related to its transparency (explainability), its fairness (no discriminatory
behaviour) or its privacy (protecting user privacy).

S2) Reward function. If the reward (or cost) function is defined, ensure it is well
aligned with the true objective of the task, and there is no space of reward hacking.
If the reward function is hard to define, consider relying on human feedback
approaches discussed in Sec. 6.

S3) Variations. If the environment can potentially be non-stationary over the fore-
seen deployment period, the agent must be robust against such variations. We
need to specify how much variation could happen (specify uncertainty set) and
make the agent robust against the variations with approaches discussed in Sec. 4.3
for robust RL criteria.

S4) Constraints. If there are any constraints the task needs to maintain, we need to
specify them explicitly and persist them rigorously. Several forms of constraints
are explained in Sec. 4.2 Constrained RL criterion. Then, the agent must have a
method in place to satisfy the constraints.

Additional sources of information:

Next, we consider what kind of additional knowledge we can exploit. As it is always
challenging to maintain safety at the early stage of training, we must exploit any
knowledge available prior to the agent interacting with the environment.

Al) Data. If there are any trajectory data available, we could exploit them with
offline RL, meta-learning or simple BC algorithm to learn an initial policy, and
then we train it online further. If the trajectory data is obtained from interactions
between an expert and the target environment, BC would be fine. However, it is
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A2)

A3)

A4)

not from an expert, we use offline RL algorithm to recover the best policy within
the data distribution. If it is not from the actual target environment but from
many environments containing the target environment, then we could rely on a
meta-learning approach to learn the distribution of environment parameters.
Simulator. If there is a computer simulator for the target environment, we can
rely on it to train the agent. However, it is important to note that there are
always some differences between the simulator and the real world. We can employ
sim-to-real algorithms (touched in Sec. 7.2) or robust RL approaches (Sec. 4.2)
to overcome the gap.

Expert. If there is anyone who knows the task well, obtaining demonstration
data or annotations on existing trajectory data is worth considering. Although
extracting helpful information from a human is difficult, such data from experts
is valuable, especially when the reward is sparse. The expert data directly gives
information about the best action at every time step. With the demonstration
data, we can rely on offline RL or BC algorithm to obtain the initial policy. With
the expert annotations on the existing dataset, we can rely on a human feedback
algorithm to extract the expert’s policy.

Non-experts. Obtaining demonstration data or annotations on existing trajec-
tory data from many non-experts is very useful. It is not as data efficient as the
expert’s data. However, it is possible to work out the best policy from it. Again,
we can use the offline RL approach with the demonstration data and one of the
human feedback approaches with the annotations. They could work out good
policy from the data with mixed quality.

Optimisation criteria/method

We now consider algorithms for optimising/training the agent (policy). We consider
three aspects below. They are not mutually exclusive; you likely need to guarantee
these three aspects.

01)

02)

03)

Robustness. To maintain a certain level of robustness, we need to employ
approaches introduced in Sec. 4.3 For robust RL criterion. Under given uncer-
tainties of the environment, these approaches maximise the minimum (the worst
case) rewards.

Safety. For keeping the specified constraints, several approaches are discussed in
Sec. 4.3. For constrained RL criterion. Some of them are strong theoretical justi-
fications but computationally expensive. Others are relatively simple algorithms
but only empirically proven.

Exploration. Exploring while maintaining safety (constraints) is probably the
most challenging objective in RL tasks. Exploring tries something unknown
(uncertain); hence, it always has a risk of failure. However, there are some
approaches for safe exploration introduced in Sec. 4.3.

Safety layer

Finally, we consider applying an extra safety mechanism (safety layer) to guaran-
tee/improve the safety and robustness. The possible approaches are:
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L1) Human intervention. If the task is feasible to have a human intervention to
prevent a failure, this would be the best mechanism to guarantee safety (Sec. 6).
Still, it is important to reduce the number of human interventions by employing
some of the abovementioned approaches. Also, it is crucial to show the current
status of the environment in an easy-to-understand way so that the person can
decide when to intervene.

L2) Shielding (formal verification). Suppose the constraint violation can be
detected from the current state of the environment and the agent’s action, and
there is an action (or sequence of actions) to recover from such a possibly danger-
ous state. In that case, we can implement a safety layer that detects the constraint
violation and replace the action with recovery action.

L3) Shielding (adaptive). Ifit is difficult to have the safety layers mentioned above,
it is still possible to have a safety layer that learns when it should intervene and
what action to take to recover from the potentially risky states. These approaches
cannot guarantee safety, especially during learning. However, it could improve
safety if it can learn from a trajectory dataset offline.

L4) Traceability and explainability. When the agent fails a task, it is essential to
understand why it fails. Such post-mortem examination will help understand the
failure mechanism and improve the agent algorithm to prevent similar failures in
the future. Therefore, traceability (how the agent failed the task) and explain-
ability (why the agent took actions that led to the failure) are important. They
do not prevent failures in the current task, but they are essential for preventing
similar failures in the future.

The basic level of traceability can be achieved simply by recording all trajecto-
ries (state, action and reward for every time step). However, further information
on the agent’s internal states might be required to understand the reason for
the agent’s action choices. These internal states are also required for explain-
ability. Explainability can be achieved by tracing internal states combined with
a mechanism to provide a human-understandable explanation. The mechanism
to generate a human-understandable explanation can be challenging, especially
when the agent utilises DNN, and itself is still a significant research area.

10 Conclusion

This paper explored the various aspects of safe and robust reinforcement learning
(RL), delving into algorithmic frameworks, ethical implications, and practical con-
siderations. The domain of safe and robust reinforcement learning is extensive and
multifaceted, covering all relevant literature would be far beyond the scope of any sin-
gle review. Our aim was to illustrate various dimensions of this vast field, providing
a foundational understanding upon which readers can build. By categorizing existing
safe RL algorithms, we have provided a structured overview that summarises the cur-
rent state of this field. Our aspiration is that this work serves as a resource for a diverse
audience, ranging from researchers new to safe and robust RL seeking to understand
the overall structure of the field to practitioners aiming to implement safe and robust
RL systems in real-world scenarios.
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Appendix A Summary of literature and the

timeline

Figure A1l and A2 show a summary of the safe RL and robust RL literature, respec-
tively. They categorise the literature into groups and place it in chronological order
(from top to bottom). Major categories are highlighted in colour-coded boxes with the
relevant sections of this paper, while sub-categories are denoted by black boxes. The
black arrows indicate that the paper inspires the other paper in a different category.
It is important to note that this summary is not comprehensive; it focuses primarily
on significant, recent contributions to the field.
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