
Fast Sparsity-Constrained Optimization for Everyone

skscope: Fast Sparsity-Constrained Optimization in Python

Zezhi Wang, Peng Chen1 {homura, chenpeng1}@mail.ustc.edu.cn

Xueqin Wang1 wangxq20@ustc.edu.cn

Huiyang Peng, Xiaoke Zhang1 {kisstherain, zxk170091}@mail.ustc.edu.cn

Anran Wang, Yu Zheng1 {wanganran, belzheng}@mail.ustc.edu.cn

Jin Zhu2, Junxian Zhu3 J.Zhu69@lse.ac.uk, junxian@nus.edu.sg
1 Department of Statistics and Finance/International Institute of Finance, School of Management,

University of Science and Technology of China, Hefei, Anhui, China
2 Department of Statistics, London School of Economics and Political Science, London, UK
3 Saw Swee Hock School of Public Health, National University of Singapore, Singapore

Editor:

Abstract

Applying iterative solvers on sparsity-constrained optimization (SCO) requires tedious
mathematical deduction and careful programming/debugging that hinders these solvers’
broad impact. In the paper, the library skscope is introduced to overcome such an obsta-
cle. With skscope, users can solve the SCO by just programming the objective function.
The convenience of skscope is demonstrated through two examples in the paper, where
sparse linear regression and trend filtering are addressed with just four lines of code. More
importantly, skscope’s efficient implementation allows state-of-the-art solvers to quickly
attain the sparse solution regardless of the high dimensionality of parameter space. Nu-
merical experiments reveal the available solvers in skscope can achieve up to 80x speedup on
the competing relaxation solutions obtained via the benchmarked convex solver. skscope is
published on the Python Package Index (PyPI) and Conda, and its source code is available
at: https://github.com/abess-team/skscope.

Keywords: sparsity-constrained optimization, automatic differentiation

1. Introduction

Sparsity-constrained optimization (SCO) seeks for the solution of

argmin
θ

f(θ), s.t. ∥θ∥0 ≤ s, (1)

where f : Rp → R is a differential objective function, ∥θ∥0 is the number of nonzero entries
in θ, and s is a given integer. Such an optimization covers a wide range of problems in
machine learning such as compressive sensing, trend filtering and graphical model. Due
to the natural reflect of Occam’s razor principle of simplicity, SCO is extremely important
for ML community. Nowadays, active studies prosper solvers for the SCO (Cai and Wang,
2011; Foucart, 2011; Beck and Eldar, 2013; Bahmani et al., 2013; Liu et al., 2014; Shen and
Li, 2017; Yuan et al., 2020; Zhou et al., 2021; Wang et al., 2023). In spite of the successful
progress, two reasons still hinder the application of SCO in practice. The first reason may
because recruiting these solvers for general objective functions requires tedious mathematics

*. Zezhi Wang and Jin Zhu contributed equally. Xueqin Wang is the corresponding author.

1

ar
X

iv
:2

40
3.

18
54

0v
1 

 [
st

at
.M

L
] 

 2
7 

M
ar

 2
02

4

https://github.com/abess-team/skscope


Wang, Zhu, Wang, Chen, Peng, Wang, Zhang, Zheng and Zhu

derivations that impose highly non-trivial tasks for board users. Next but even worse, users
have to program for the complicated mathematics derivations and algorithmic procedures
by themselves, which is another thorny task for general users. Finally and fatally, there is
no publicly available software implementing these solvers for general SCO problems.

In this paper, we propose a Python library for the SCO to fill this gap such that users
can conduct these solvers with minimal mathematics and programming skills. This library,
called skscope, implements the prototypical procedures of well-known iterative solvers for
general objective functions. More importantly, skscope leverages the powerful automatic
differentiation (AD) to conduct the algorithmic procedures without deriving and program-
ming the exact form of gradient or hessian matrix (Rall, 1981; Baydin et al., 2018). There
is no doubt that AD is the cornerstone of the computational framework of deep learning
(Paszke et al., 2017); and now, it is first used for solving SCO problems.

The skscope can run on most Linux distributions, macOS, and Windows 32 or 64-bit
with Python (version ≥ 3.9), and can be easily installed from PyPI and Conda1. We offer a
website2 to present skscope’s features and syntax. To demonstrate the versatility of skscope,
it has been applied to more than 25 machine learning problems3, covering linear models
(e.g., quantile regression and robust regression), survival analysis (e.g., Cox proportional
hazard model, competitive risk model), graphical models, trend filtering and so on. It relies
on GitHub Actions

for continuous integration. The Black style guide keeps the source Python code clean
without hand-formatting. Code quality is assessed by standard code coverage metrics. The
coverages for the Python packages at the time of writing were over 95%. The dependen-
cies of skscope are minimal and just include the standard Python library such as numpy,
scikit-learn; additionally, two powerful and well-maintained libraries, jax and nlopt (Frostig
et al., 2018; Johnson, 2014), are used for obtaining AD and solving unconstrained nonlinear
optimization, respectively. The source code is distributed under the MIT license.

2. Overview of Software Features
Solver Reference

OMPSolver Cai and Wang (2011)
HTPSolver Foucart (2011)
IHTSolver Beck and Eldar (2013)
GraspSolver Bahmani et al. (2013)
FoBaSolver Liu et al. (2014)
ScopeSolver Wang et al. (2023)

Table 1: Supported SCO solvers.

skscope provides a comprehensive set of state-of-the-
art solvers for SCO listed in Table 1. For each of im-
plemented solver, once it receives the objective func-
tion programmed by users, it would leverage AD and
unconstrained nonlinear solver to get the ingredients
to perform iterations until a certain convergence cri-
terion is met. The implementation of each solver has
been rigorously tested and validated through repro-
ducible experiments, ensuring its correctness and reliability. Detailed reproducible results
can be found on the public GitHub repository4.

Besides, skscope introduces two generic features inspired by the work of Zhu et al. (2022)
to broaden the application range. Specifically, skscope enables the SCO on group-structured

1. PyPI: https://pypi.org/project/skscope, and Conda: https://anaconda.org/conda-forge/skscope
2. https://skscope.readthedocs.io
3. https://skscope.readthedocs.io/userguide/examples
4. https://github.com/abess-team/skscope-reproducibility

2

https://pypi.org/project/skscope
https://anaconda.org/conda-forge/skscope
https://skscope.readthedocs.io
https://skscope.readthedocs.io/userguide/examples
https://github.com/abess-team/skscope-reproducibility


Fast Sparsity-Constrained Optimization for Everyone

parameters and enables pre-determining a part of non-sparse parameters. Moreover, skscope
offers flexible benchmark methods for selecting the sparsity level, catering to the urgent
needs of the data science community. In terms of computation, skscope is compatible with
the just-in-time compilation provided by the jax library. This enables efficient computing
of AD, resulting in the acceleration of all solvers. Finally, as a factory for machine learning
methods, the skscope continuously supplies scikit-learn compatible methods.

3. Usage Examples

An example of compressing sensing with GraspSolver is demonstrated in Figure 1. From
the results in lines 16-17, we witness GraspSolver correctly identifies the effective variables
and gives an accurate estimation. More impressively, the solution is easily obtained by
programming 4 lines of code.

1 import numpy as np
2 import jax.numpy as jnp
3 from skscope import GraspSolver ## the gradient support pursuit solver
4 from sklearn.datasets import make regression
5 ## generate data
6 x, y, coef = make regression(n features=10, n informative=3, coef=True)
7 print("Effective variables: ", np.nonzero(coef)[0],
8 "coefficients: ", np.around(coef[np.nonzero(coef)[0]], 2))
9 def ols loss(params): ## define loss function

10 return jnp.linalg.norm(y − x @ params)
11 ## initialize the solver: ten parameters in total, three of which are non−zero
12 solver = GraspSolver(10, 3)
13 params = solver.solve(ols loss)
14 print("Estimated variables: ", solver.get support(),
15 "estimated coefficients:", np.around(params[solver.get support()], 2))
16 >>> Effective variables: [3 4 7] coefficients: [ 9.71 19.16 13.53]
17 >>> Estimated variables: [3 4 7] estimated coefficients: [ 9.71 19.16 13.53]

Figure 1: Using the skscope for compressive sensing.

Figure 2 presents for filtering trend via ScopeSolver, serving as a non-trivial example
because the dimensionality of parameters is hundreds. From 2 shows that the solution of
ScopeSolver captures the main trend of the observed data. In this case, 6 lines of code help
us attain the solution.

1 import numpy as np
2 import jax.numpy as jnp
3 import matplotlib.pyplot as plt
4 from skscope import ScopeSolver
5 np.random.seed(2023)
6 # observed data, random walk with normal increment:
7 x = np.cumsum(np.random.randn(500))
8 def tf objective(params):
9 return jnp.linalg.norm(data − jnp.cumsum(params))

10 solver = ScopeSolver(len(x), 10)
11 params = solver.solve(tf objective)
12 plt.plot(x, label=’observation’, linewidth=0.8)
13 plt.plot(jnp.cumsum(params), label=’filtering trend’)
14 plt.legend(); plt.show()

Figure 2: Using the skscope for trend filtering.

4. Performance

We conducted a comprehensive comparison among the solvers employed in skscope and two
alternative approaches. The first approach utilizes the ℓ1 relaxation of (1), implemented

3



Wang, Zhu, Wang, Chen, Peng, Wang, Zhang, Zheng and Zhu

using the open-source solver, cvxpy (Diamond and Boyd, 2016). The second approach
solves (1) by recruiting the widely-used mixed-integer optimization solver, GUROBI5. These
comparisons covered a wide range of SCO problems and were performed on a Ubuntu plat-
form with Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz and 64 RAM. Python version is
3.10.9. Table 2 reveals that all solvers in skscope consistently outperformed cvxpy in terms
of support-set-selection accuracy. GUROBI may have a higher accuracy, but its runtime
far exceeds others. Furthermore, skscope still works when f(x) is non-convex or non-linear
where cvxpy or GUROBI may fail. In terms of computation, skscope demonstrated sig-
nificant computational advantages against cvxpy and GUROBI, exhibiting approximately
1-80x speedups on cvxpy and 30-1000x speedups on GUROBI. Among the solvers in skscope,
ScopeSolver and FoBaSolver have particularly promising results in support set selection,
with ScopeSolver achieving speedups of around 1.5x-7x compared to FoBaSolver.

Method
Linear regression Logistic regression Robust feature selection

Accuracy Runtime Accuracy Runtime Accuracy Runtime

OMPSolver 1.00(0.01) 2.45(0.68) 0.91(0.05) 1.66(0.67) 0.56(0.17) 0.73(0.14)
IHTSolver 0.79(0.04) 3.42(0.88) 0.97(0.03) 1.06(0.67) 0.67(0.07) 0.89(0.22)
HTPSolver 1.00(0.00) 4.14(1.25) 0.84(0.05) 2.37(0.92) 0.91(0.05) 5.00(0.94)
GraspSolver 1.00(0.00) 1.16(0.38) 0.90(0.08) 12.70(8.20) 1.00(0.00) 0.50(0.25)
FoBaSolver 1.00(0.00) 11.70(2.90) 0.92(0.06) 6.31(2.15) 0.98(0.08) 3.37(0.66)
ScopeSolver 1.00(0.00) 2.11(0.70) 0.94(0.04) 3.24(2.67) 0.98(0.09) 1.86(0.55)

cvxpy 0.83(0.17) 14.59(5.60) 0.83(0.05) 69.45(53.47) ✗ ✗

GUROBI 1.00(0.00) 1009.94(0.66) ✗ ✗ ✗ ✗

Method
Trend filtering Ising model Nonlinear feature selection

Accuracy Runtime Accuracy Runtime Accuracy Runtime

OMPSolver 0.86(0.03) 1.77(0.57) 0.98(0.03) 2.86(0.86) 0.77(0.09) 11.53(3.61)
IHTSolver 0.08(0.00) 0.76(0.28) 0.96(0.05) 3.24(1.43) 0.78(0.09) 6.37(2.32)
HTPSolver 0.47(0.03) 0.71(0.23) 0.97(0.03) 5.26(2.03) 0.78(0.09) 10.82(7.86)
GraspSolver 0.78(0.12) 0.95(0.38) 0.99(0.01) 1.02(0.44) 0.78(0.08) 7.34(2.75)
FoBaSolver 1.00(0.00) 8.27(1.66) 1.00(0.01) 11.59(3.55) 0.77(0.09) 31.26(8.80)
ScopeSolver 0.98(0.02) 4.73(1.13) 1.00(0.01) 1.69(0.67) 0.77(0.09) 8.60(2.70)

cvxpy 0.21(0.04) 19.75(9.57) 0.94(0.04) 32.26(17.88) 0.74(0.09) 534.49(337.72)
GUROBI 1.00(0.00) 1013.16(0.62) ✗ ✗ 0.79(0.08) 1003.88(1.53)

Table 2: The numerical experiment results on six specific SCO problems. Accuracy is equal
to | supp{θ∗}∩supp{θ}|/| supp{θ∗}| and the runtime is measured by seconds. The
results are the average of 100 replications, and the parentheses record standard
deviation. Robust (or nonlinear) variable selection is based on the work of Wang
et al. (2013) (or Yamada et al. (2014)). GUROBI: version 10.0.2; cvxpy: version
1.3.1; skscope: version 0.1.0. ✗: not available.

5. Conclusion and Discussion

skscope is a fast Python library for solving general SCO problems. It offers well-designed
and user-friendly interfaces such that users can tackle SCO with minimal knowledge of
mathematics and programming. Therefore, skscopemust have a broad application in diverse
domains. Future versions of skscope plan to support more iterative solvers for the SCO like
Zhou et al. (2021) so as to establish a benchmark toolbox/platform for the SCO.

5. TimeLimit is set to 1000. Note that optimization may not stop immediately upon hitting TimeLimit.

4



Fast Sparsity-Constrained Optimization for Everyone

Acknowledgments

Wang’s research is partially supported by NSFC (72171216, 71921001, 71991474), The Key
Research and Development Program of Guangdong, China (2019B020228001), and Science
and Technology Program of Guangzhou, China (202002030129). We thank to Kangkang
Jiang and Junhao Huang for their insightful discussions.

References

Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. Greedy sparsity-constrained opti-
mization. Journal of Machine Learning Research, 14(25):807–841, 2013.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine
Learning Research, 18:1–43, 2018.

Amir Beck and Yonina C Eldar. Sparsity constrained nonlinear optimization: Optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013.

T Tony Cai and Lie Wang. Orthogonal matching pursuit for sparse signal recovery with
noise. IEEE Transactions on Information theory, 57(7):4680–4688, 2011.

Steven Diamond and Stephen Boyd. CVXPY: a python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on numerical analysis, 49(6):2543–2563, 2011.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning pro-
grams via high-level tracing. Systems for Machine Learning, 4(9), 2018.

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2022. URL https://www.
gurobi.com.

Steven G Johnson. The nlopt nonlinear-optimization package, 2014.

Ji Liu, Jieping Ye, and Ryohei Fujimaki. Forward-backward greedy algorithms for general
convex smooth functions over a cardinality constraint. In International Conference on
Machine Learning, pages 503–511. PMLR, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

Louis B Rall. Automatic differentiation: Techniques and applications. Springer, 1981.

Jie Shen and Ping Li. A tight bound of hard thresholding. Journal of Machine Learning
Research, 18(1):7650–7691, 2017. ISSN 1532-4435.

5

https://www.gurobi.com
https://www.gurobi.com


Wang, Zhu, Wang, Chen, Peng, Wang, Zhang, Zheng and Zhu

Xueqin Wang, Yunlu Jiang, Mian Huang, and Heping Zhang. Robust variable selection
with exponential squared loss. Journal of the American Statistical Association, 108(502):
632–643, 2013. doi: 10.1080/01621459.2013.766613. PMID: 23913996.

Zezhi Wang, Borui Tang, Xueqin Wang, Jin Zhu, Junxian Zhu, and Hongmei Lin. Sparsity-
constrained optimization via splicing iteration. Submitted, 2023.

Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi Sugiyama.
High-dimensional feature selection by feature-wise kernelized lasso. Neural Computation,
26(1):185–207, 2014.

Xiaotong Yuan, Bo Liu, Lezi Wang, Qingshan Liu, and Dimitris N. Metaxas. Dual iterative
hard thresholding. Journal of Machine Learning Research, 21(1), jan 2020. ISSN 1532-
4435.

Shenglong Zhou, Naihua Xiu, and Hou-Duo Qi. Global and quadratic convergence of newton
hard-thresholding pursuit. Journal of Marchine Learning Research, 22(12):1–45, 2021.

Jin Zhu, Xueqin Wang, Liyuan Hu, Junhao Huang, Kangkang Jiang, Yanhang Zhang,
Shiyun Lin, and Junxian Zhu. abess: a fast best-subset selection library in Python and
R. Journal of Machine Learning Research, 23(1):9206–9212, 2022.

6


	Introduction
	Overview of Software Features
	Usage Examples
	Performance
	Conclusion and Discussion

