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Abstract— The Impulsive Goodwin’s Oscillator (IGO) is a
mathematical model of a hybrid closed-loop system. It arises
by closing a special kind of continuous linear positive time-
invariant system with impulsive feedback, which employs both
amplitude and frequency pulse modulation. The structure of
IGO precludes the existence of equilibria, and all its solutions
are oscillatory. With its origin in mathematical biology, the
IGO also presents a control paradigm useful in a wide range
of applications, in particular dosing of chemicals and medicines.
Since the pulse modulation feedback mechanism introduces
significant nonlinearity and non-smoothness in the closed-
loop dynamics, conventional controller design methods fail
to apply. However, the hybrid dynamics of IGO reduce to
a nonlinear, time-invariant discrete-time system, exhibiting a
one-to-one correspondence between periodic solutions of the
original IGO and those of the discrete-time system. The paper
proposes a design approach that leverages the linearization of
the equivalent discrete-time dynamics in the vicinity of a fixed
point. A simple and efficient local stability condition of the
1-cycle in terms of the characteristics of the amplitude and
frequency modulation functions is obtained.

I. INTRODUCTION

Most of the research in control theory deals with the
problem of steering a dynamical system to and stabilizing
it at an equilibrium point. Yet, there is an increasing interest
in oscillatory behaviors that are ubiquitous in physics, chem-
istry, biology, economics, engineering, and medicine [1].
Modeling and analysis of periodic and non-periodic oscilla-
tions is therefore a timely topic in nonlinear dynamics with
rich applications in science and technology.

A periodic oscillation describes a repeating (cyclic) pro-
cess. A standard example of the control actions that are
performed repeatedly according to a schedule is taking
prescription drugs. Under stationary conditions, taking the
right dose at the right time usually works well. When the
therapeutic effect is not sufficient, either the drug dose has
to be increased or the interdose interval has to be reduced.
Both regiment adjustments elevate the drug concentration in
the organism and lead to a higher effect according to the
dose-response relationship. Similar control mechanisms that
manipulate both the timing and magnitude of discrete actions
appear also outside medicine, e.g. in mechanical systems
with impacts [2] or in pest management [3].

A fast (relative to the plant dynamics) control action can be
approximated by an impulse, or the Dirac δ-function. A well-
developed framework to handle a continuous system with
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impulsive output feedback is pulse-modulated control with
amplitude and frequency modulation [4]. It was successfully
utilized in the Impulsive Goodwin’s Oscillator (IGO) devised
to model pulsatile endocrine regulation [5], [6]. The IGO has
found application in modeling biological data pertaining to
feedback (non-basal) testosterone regulation in the male [7]
and the multi-peak phenomenon in levodopa, a drug to treat
Parkinson’s disease [8].

Since the inception of the IGO, the research focus was
primarily on discerning the complex dynamical phenomena
exhibited by the model, namely periodic solutions of high
multiplicity, chaos [9], and entrainment of oscillations to
an exogenous periodic signal [10]. These studies can be
characterized as analysis of the IGO’s rich dynamics.

More recently, the design of the pulse-modulated feed-
back of the IGO to sustain a desired periodic solution was
addressed. Two problems were solved for a given continuous
plant and with respect to a so-called 1-cycle, a periodic
solution that is distinguished by a single firing of the
feedback in the least period. First, in [11], the problem of
obtaining a stable 1-cycle with a given period and weight
of the impulsive control sequence is solved. Second, output
corridor control of the continuous plant, i.e. the problem of
keeping the output within a predefined interval of values, was
worked out in [12]. In both cases, applications to dosing of
chemicals and drugs were envisioned.

This paper deals with stability analysis of the 1-cycle in
the IGO that is indispensable to obtain a sustained periodic
solution. A simple and efficient local stability condition for
the 1-cycle in the form of a linear inequality is obtained.
It allows to restrict the characteristics of the amplitude and
frequency modulation functions so that the designed closed-
loop solution is orbitally stable. Numerical experiments show
that, in fact, almost all solutions of the nonlinear IGO system
are attracted to a stable 1-cycle, if it exists [9].

The rest of the paper is composed as follows. In Sec-
tion II, the IGO model is briefly introduced for the reader’s
convenience. In this section, the dynamics of the IGO are
discussed and a discrete map propagating the state vector
of the continuous part of the model through the firings of
the pulse-modulated feedback is given. The latter is used to
derive an explicit expression for the 1-cycle. In Section III,
the main result of the paper is formulated yielding a linear
inequality that provides a necessary and sufficient condition
of a 1-cycle with given parameters. Finally, a numerical
example is given in Section IV to illustrate the developed
theory.
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II. IMPULSIVE GOODWIN’S OSCILLATOR
Consider a third-order linear time-invariant system

ẋ(t) = Ax(t), y(t) = Cx(t). (1)

Here matrices A,C are as follows:

A =

−a1 0 0
g1 −a2 0
0 g2 −a3

 , C =
[
0 0 1

]
, (2)

where a1, a2, a3 > 0 are distinct constants, and g1, g2 > 0
are positive gains. The scalar function y is the measured
output, and the state variables are x = [x1, x2, x3]

⊤. It
follows that the matrix A is Hurwitz stable and Metzler.

Impulsive feedback
Continuous-time system (1) is controlled by a pulse-

modulated feedback where the impulse weights and their
timing are determined by the continuous plant output y(t):

x(t+n ) = x(t−n ) + λnB, tn+1 = tn + Tn, (3)

Tn = Φ(y(tn)), λn = F (y(tn)), B =
[
1 0 0

]⊤
,

where n = 0, 1, . . .. The minus and plus in a super-
script in (3) denote the left-sided and a right-sided limit,
respectively. Notice that the jumps in x(t) lead only to
discontinuities in x1(t), whereas x2(t), and y(t) = x3(t)
remain continuous. The instants tn are called (impulse) firing
times and λn represents the corresponding impulse weight.

In theory of pulse-modulated systems [4], F (·) is called
the amplitude modulation function and Φ(·) is referred to as
the frequency modulation function. The modulation functions
are assumed to be continuous and monotonic, F (·) be non-
increasing, and Φ(·) be non-decreasing.

These monotonicity assumptions imply that controller (3)
implements a negative feedback from the continuous output
to the amplitude and frequency of the pulses. Namely, an
increased value of y(tn) results in a decreased lower (or
unchanged) weight λn for the next impulse fired at tn+1.
Furthermore, the interval between the impulses can only
increase, which means that the sequence of pulses becomes
sparser. This feedback mechanism prevents the controlled
output from diverging. Notably, the negative feedback action
is implemented by means of positive signals only.

To explicitly restrict the domain where the solutions of
closed-loop system (1), (3) ultimately evolve, boundedness
of the modulation functions is required

Φ1 ≤ Φ(·) ≤ Φ2, 0 < F1 ≤ F (·) ≤ F2, (4)

where Φ1, Φ2, F1, F2 are positive constants. Under these
limitations, all solutions eventually arrive at an invariant 3-
dimensional box, which can be computed explicitly [9].

Definition 1: The IGO is a hybrid system arising as a
feedback interconnection of the continuous LTI block in (1)
and the impulsive feedback in (3).

The class of design problems that captures our interest
involves guaranteeing certain desired properties of the IGO
through the selection of modulation functions F (·), Φ(·).
These functions serve as the designer’s degrees of freedom
in the impulsive controller tuning.

The discrete-time representation and 1-cycles

The hybrid dynamics of the IGO can be reduced to the
discrete-time equation by noticing that the sequence of state
vectors Xn = x(t−n ) obeys the recurrence formula [6]

Xn+1 = Q(Xn), (5)

Q(ξ) ≜ eAΦ(Cξ) (ξ + F (Cξ)B) .

Since the plant is autonomous in between the impulsive feed-
back firings, the continuous state trajectory on the interval
(tn, tn+1) is uniquely defined by Xn as

x(t) = e(t−tn)A(Xn + λnB), t ∈ (tn, tn+1). (6)

In this sense, the properties of the IGO (being a hybrid dy-
namical system) are completely determined by the properties
of impulse-to-impulse map Q, defined in (5).

As known [9], discrete-time system (5) and, therefore, the
IGO, can exhibit a wide range of periodic and non-periodic
oscillation, including deterministic chaos. In this study, only
the simplest periodic solution of (1), (3) with one firing of the
impulsive feedback in the least solution period is treated. It is
termed 1-cycle, see e.g. [13], and, by definition, corresponds
to the periodic instants of pulses tn+1 = tn +T , T > 0 and
the constant sequence of amplitudes Xn = X(t−n ) ≡ X ,
where X is the fixed point of map Q:

X = Q(X), (7)

The characteristics of the 1-cycle, i.e. the (least) period and
the impulse weight, are then defined by the fixed point as
T = Φ(y0), λ = F (y0), y0 = CX .

As previously demonstrated in [11], the solution to non-
linear equations (7) can be analytically expressed using the
parameters of plant (1) and the characteristics of the 1-cycle
λ, T . This explicit solution of (7) is conveniently formulated
in terms of divided differences (DDs). The first DD of a
function h : R → R is defined as

h[x1, x2] ≜
h(x1)− h(x2)

x1 − x2
, ∀x1 ̸= x2,

and higher-order divided DDs are introduced recursively by

h[x0, . . . , xk] =
h[x1, . . . , xk]− h[x0, . . . , xk−1]

xk − x0
.

For the sake of simplicity, only pairwise distinct sets of
values x0, . . . , xk are considered here.

Denote µ(x) ≜ 1
e−x −1 . Using the standard definition of

an analytic function on matrices [14], µ(M) = (e−M −I)−1

for an arbitrary matrix M with non-zero eigenvalues. The
special structure of matrix A allows to compute µ(TA), T >
0, through DDs of the function µ by means of the Opitz
formula [14], [15] and leading to the following proposition.

Proposition 1: [11] If IGO (1), (3) exhibits a 1-cycle of
the period T with the weight λ, then the fixed point satisfying
(7) is uniquely determined as

X = λµ(TA)B = λ

 µ(−a1T )
g1µ[−a1T,−a2T ]

g1g2µ[−a1T,−a2T,−a3T ]

 . (8)



The availability of an analytic expression for X ensures
one-to-one map between the pair (λ, T ) and the fixed point.
This fact has enabled the design of the IGO whose 1-cycles
have predefined parameters λ, T [11], [12], [16]. In order to
guarantee the existence of such a 1-cycle, one has to find the
(nonlinear) modulation functions Φ, F such that

λ = F (y0), T = Φ(y0), where

y0 ≜ CX = λg1g2µ[−a1T,−a2T,−a3T ].

The problem is, however, that the resulting 1-cycle can turn
out (orbitally) unstable and thus fail to pertain in the face of
perturbation.

In the next section, the main result of this paper is
presented, offering a simple analytic stability criterion.

III. STABILITY OF 1-CYCLE

The 1-cycle in closed-loop system (1), (3) corresponding
to the fixed point X is known to be (locally exponentially)
orbitally stable [6], [9] if only only if

Q′(X) = eAΦ(y0) (I + F ′(y0)BC) + Φ′(y0)AXC,

is a Schur stable matrix1. As pointed out in [11, Proposi-
tion 3], the Jacobian can be written as

Q′(X) = eAΦ(y0) +
[
J D

] [F ′(y0)
Φ′(y0)

]
C, (9)

where J = eAT B > 0, D = AX < 0.
Since plant (1) is Hurwitz, stability of the 1-cycle is always

guaranteed for zero slopes of the modulation functions, for
instance, when F (y) = const, Φ(y) = const. However, this
essentially eliminates the output feedback, at least in the
vicinity of the fixed point. To improve the convergence to
the stationary solution under perturbation, the spectral radius
of the Jacobian has to be minimized.

Insufficiency of standard stabilization methods

The right-hand side of (9) has apparent similarity to the
problem of stabilization of a discrete time-invariant linear
system by a static output feedback, see e.g. [17]. This is the
problem of finding such gain matrix Kd that the system

xd(t+ 1) = Adxd(t) +Bdud(t),

yd(t) = Cdxd(t),

is (asymptotically) stabilized by the control law ud(t) =
Kdyd(t). Equivalently, one is looking for a Kd that makes the
matrix Ad+BdKdCd Schur-stable. For the reasons described
above, the largest possible set of such controllers is sought,
despite the existence of the trivial solution Kd ≡ 0. Although
the static output feedback stabilization problem appears to
be simple, a complete characterization of the gains solving
it is missing. For instance, the pole placement problems
via static feedback are usually considered in the situation
where the total number of scalar entries dim yd dimud in
Kd is not less than the state dimension dimxd [18], which

1Recall that a matrix is Schur stable, or Schur, if all its eigenvalues are
less than 1 in modulus.

inequality is, obviously, violated in the present case (cf.
dimxd = 3,dimud = 2,dim yd = 1).

Another idea suggested by the similarity between the
problem of stabilizing the fixed point of a 1-cycle in (1),
(3) and solving the static output feedback problem is to
reformulate the stability condition as a system of bilinear
matrix inequalities (BMI)

(AΦ +WKE)⊤P (AΦ +WKE)− P < 0, P > 0, (10)

where

AΦ = eAΦ(y0),W =
[
J D

]
,K =

[
F ′(y0) Φ′(y0)

]⊤
,

and P , K are the decision variables. Again, one may notice
that the inequality is feasible since it is always satisfied for
K = 0 and some P . However, the non-convexity of (10)
makes it difficult to find the optimal (with respect to some
performance index) solution; all known methods, in general,
return only local solutions [19].

Main result: a linear stability condition

Although the expression for the Jacobian matrix is compli-
cated, a necessary and sufficient analytic criteria for Q′(X)
being Schur stable can be obtained in terms of a linear
inequality in the slopes F ′(y0),Φ

′(y0). This makes the result
here quite different from the standard Schur stability criteria,
such as the Schur-Cohn stability test, the Jury criterion,
and the Liénard-Chipart criterion (all of them lead lead to
nonlinear stability conditions, see, e.g., [11, Lemma 1]). The
next theorem is our main result.

Theorem 1: Assume that 0 < a1 < a2 < a3. If F ′(z0) ≤
0 and Φ′(z0) ≥ 0, then the Jacobian matrix Q′(X) is Schur
stable if and only if

det(−I −Q′(X)) < 0, (11)

or, equivalently, the following linear inequality holds

C(I + eΦ(y0)A)−1 (F ′(y0)J +Φ′(y0)D) > −1. (12)

Furthermore, the Jacobian matrix Q′(X) always has a pos-
itive real eigenvalue, lying in the interval [e−a3T , e−a1T ].
Hence, the spectral radius of Q′(X) is not less than e−a3T .

The proof of Theorem 1 is given in Appendix.
Final remarks. Two insights can be gained from the

analysis above. First, since JF ′(y0) +DΦ′(y0) ≤ 0, for all
feasible values of F ′(y0),Φ

′(y0), the feedback stabilizing the
fixed point in (9) is negative, in a well-defined sense. This
is despite the fact that all the signals comprising closed-loop
system (1), (3) are positive. Then, the IGO explains how
negative feedback is implemented in nature (e.g. endocrine
systems [20]) by impulsive regulation when negative signals
are not available. Second, existing design methods for (dis-
crete) linear time-invariant systems can be adopted to the
framework of IGO design in 1-cycle by applying them to
the fixed point instead of the equilibrium.



IV. NUMERICAL EXAMPLE

To illustrate the theoretical results of Section III, consider
the pharmacokinetic-pharmodynamic model of the muscle
relaxant atracurium used under general closed-loop anes-
thesia. The model originates from [21] and has been used
for investigating the performance of the IGO as a feedback
dosing algorithm in [12]. The linear part of the model is of
third order (see (1) with the state matrix

A =

−0.0374 0 0
0.0374 −0.1496 0

0 0.0560 −0.3740

 .
The fixed point X⊤ =

[
136.4461 44.9637 7.4309

]
cor-

responds to the 1-cycle with the parameters λ = 415.8412,
T = 37.3834. Then,

J =

0.47330.1410
0.0221

 , D =

−10.0829
−2.5705
−0.3633

 ,
and inequality (12) gives the stability condition for the 1-
cycle

0.0138 · F ′(y0)− 0.1933 · Φ′(y0) > −1. (13)

In Fig. 1, one can compare the numerical calculation of the
spectral radius of Q′(X) with the result of applying the
stability criterion in (12). It can be seen that the inequality
in (13) correctly describes the values of F ′(y0) and Φ′(y0)
yielding a stable 1-cycle.

Notice that the slopes of the frequency and amplitude
modulation functions control the convergence to the 1-cycle
under perturbation, whereas the parameters of the stationary
solution (defined by X) remain the same. Multiple numerical
studies of the IGO’s dynamics (see e.g. [9]) indicate that
a stable 1-cycle attracts almost all biologically feasible
(positive) solutions.

Fig. 1. Spectral radius of Q′(X) and condition (12) as function of Φ′(y0)
and F ′(y0). Green and light blue surface – spectral radius of the Jacobian.
Dark blue surface – the left-hand side expression of inequality (12). Grey
plane – stability border, i.e. −1.

V. CONCLUSIONS

Stability of the 1-cycle in the Impulsive Goodwin’s Os-
cillator (IGO) is examined. A linear inequality specifying
the stability domain of the stationary solution in terms

of the slopes of the frequency and amplitude modulation
functions is derived. The result is instrumental in optimizing
the convergence rate of perturbed solutions to the 1-cycle
under stability guarantee, which topic is saved for future
works. The IGO gives rise to a class of simple feedback
controllers that implement administration of discrete doses
to a continuous plant according to a desired schedule. The
presence of the pulse-modulated feedback allows the IGO to
manipulate both the doses and their timing to achieve the
control goal.
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APPENDIX: PROOF OF THEOREM 1

Throughout this section, all the assumptions of Theorem 1
are supposed to hold, in particular, 0 < a1 < a2 < a3.
Consider the matrix

Q(T, ξ, η) = eAT +(ξJ + ηD)C,

D ≜ A(e−AT −I)−1B, J = eAT B,
(14)

where A,B,C are matrices from (1).
We first prove a technical lemma.
Lemma 1: Suppose that T > 0, ξ ≤ 0, and η ≥ 0. Then

matrix Q ≜ Q(T, ξ, η) has the following spectral properties:

1) Q has no eigenvalues on the interval (e−a1T ,∞);
2) there exists a real eigenvalue z1 ∈ [e−a3T , e−a1T ];
3) the product of two remaining eigenvalues z2z3 does

not exceed e−(a1+a2)T < 1.
4) Q is not Schur stable if and only if z2, z3 are real and

min(z2, z3) ≤ −1;
Proof: The characteristic polynomial χ(z) ≜ det(zI −

Q), thanks to the Schur complement formula, is written as

χ(z) = det(zI − eAT )w(z), where

w(z) ≜
χ(z)

det(zI − eAT )
=

= 1− C(zI − eAT )−1(ξJ + ηD).

(15)

Notice that w(z) ≥ 1 whenever z is real and z > e−a1T ,
because 1− w(z) can be decomposed into the series

C(zI−eAT )−1 (ξJ + ηD) = z−1
∞∑
k=0

z−kCekAT (ξJ + ηD) ,

whose coefficients are non-positive matrices, because J >
0 and D < 0 [11, Proposition 3]. Furthermore, from the
triangular structure of A, the characteristic polynomial

det(zI− eAT ) = (z− e−a1T )(z− e−a2T )(z− e−a3T ) (16)

is positive for all z > e−a1T , which entails that χ(z) > 0.
This completes the proof of statement 1).

To prove statement 2), a more subtle argument is needed
that requires us to compute the residual of rational function



w(z) at z = e−a3T0 . To this end, consider the diagonalization
of matrix A. It can be checked that

S−1AS =

−a1 0 0
0 −a2 0
0 0 −a3

 , where

S =

 1 0 0
g1

a2−a1
1 0

g1g2
(a2−a1)(a3−a1)

g2
a3−a2

1

 and

S−1 =

 1 0 0
− g1

a2−a1
1 0

− g1g2
(a3−a2)(a3−a1)

− g2
a3−a2

1

 .
Denote for brevity B̄ ≜ S−1B, C̄ ≜ CS, that is,

B̄ =

 1
− g1

a2−a1

− g1g2
(a3−a2)(a3−a1)

 , C̄ =

 g1g2
(a2−a1)(a3−a1)

g2
a3−a2

1

⊤

Considering the function

ρz(s) = (zI − eTs)−1
(
ξ eTs +η(e−Ts −1)−1s

)
,

one obtains the relation

ρz(A) = Sρz(S
−1AS)S−1 =

= S

ρz(−a1) 0 0
0 ρz(−a2) 0
0 0 ρz(−a3)

S−1

Hence, the rational function w from (15) can be written as

w(z) = 1−
3∑

i=1

c̄ib̄iρz(−ai).

It can now be noticed that the residual of w at z = e−a3T

is non-positive. Indeed, c̄3 = 1 > 0, b̄3 < 0, and hence

lim
z→e−a3T

(
z − e−a3T

)
w(z) =

= −c̄3b̄3 lim
z→e−a3T

(
z − e−a3T

)
ρz(−a3) =

= −c̄3b̄3
(
ξ e−a3T −ηa3(ea3T −1)−1

)
≤ 0.

Here we used the fact functions ρz(e−a1T ), ρz(e−a2T ) are
analytic in z in a vicinity of e−a3T , and also ξ ≤ 0, η ≥ 0.
On the other hand, recalling the definition of w(z) and (16),
the latter residual can be computed as

lim
z→e−a3T

(
z − e−a3T

)
w(z) =

=
det

(
e−a3T I −Q

)
(e−a3T − e−a2T )(e−a3T − e−a1T )

,

entailing that

det(zI −Q)|z=e−a3T ≤ 0.

At the same time, it has been already proven that

det(zI −Q)|z=e−a1T ≥ 0,

which implies that second statement.

To prove the remaining statements, it suffices to notice
that

detQ = det eAT
(
1 + C e−AT (ξJ + ηD)

)
=

= det eAT
(
1 + ξCB + ηCA(I − eAT )−1B

)
Obviously, CB = 0. It can be shown that the function

z 7→ ψ(z) ≜
z

1− ez

is concave on the interval z ∈ (−∞, 0).
Using the Opitz formula (see, e.g., Step 2 in the proof

of [15, Lemma 11]), one obtains that

CA(I − eAT )−1B = T−1Cψ(TA)B =

= T−1ψ[−a1T,−a2T,−a3T ].

The generalized mean-value theorem [15, Lemma 10] en-
tails now the existence of ζ ∈ (−a3T,−a1T ) such tha
ψ[−a1T,−a2T,−a3T ] = ψ′′(ζ)/2. Thanks to the concavity
of τ , one thus has CA(I − eAT )−1B ≤ 0, whence

z1z2z3 = detQ ≤ det eAT = e−(a1+a2+a3)T .

This implies statement 3) in virtue of z1 ≥ e−a3T .
To prove statement 4), it suffices to notice that a pair

of complex-conjugate eigenvalues z2 = z∗3 should have
the modulus |z2| = |z3| ≤ e−(a1+a2)T/2 < 1. Hence, if
Q has one real and two complex-conjugate eigenvalues, it
is automatically Schur stable. The only reason for being
unstable is thus the existence of a real eigenvalue whose
modulus is not less than 1. In view of statement 1), Q cannot
have eigenvalue at 1. Hence, one of z2, z3 does not exceed
−1 (in which case the remaining eigenvalue is, obviously,
also real).

Corollary 1: Let the assumption of Lemma 1 apply. Then,
the following three statements are equivalent:

1) Matrix Q ≜ Q(T, ξ, η) is Schur stable;
2) The inequality holds as follows

χ(−1) = det(−I −Q) < 0, (17)

3) ξ, η obey the inequality

C(I + eTA)−1 (ξJ + ηD) > −1. (18)
Proof: To prove that conditions (17) and (18) are

equivalent, it suffices to substitute z = −1 into (15) and
notice that

det(−I−eAT ) = −(1+e−a1T )(1+e−a2T )(1+e−a3T )) < 0.

Hence, (18) holds (equivalently, w(−1) > 0) if and only if
χ(1) < 0, i.e., statements 2) and 3) are equivalent.

Obviously, 1) implies 2), because χ(z) → −∞ when z is
real and z → −∞. If one has χ(−1) ≥ 0, then matrix Q has
an eigenvalue on (−∞,−1] and is thus not Schur stable.

To prove that 2) (and 3)) implies 1), consider a one-
parameter family of matrices Qε ≜ Q(T, εξ, εη) and the
corresponding characteristic polynomials χε(z) ≜ det(zI −
Qε). Notice that if (18) holds, then it remains valid by
replacing ξ, η by εξ, εη, where ε ∈ [0, 1]. Hence, χε(−1) < 0
for all ε ∈ [0, 1]. Obviously, χ0 is a Schur polynomial and the



coefficients of χε continuously depend on ε. Hence, either
χε is Schur for all ε ∈ [0, 1], or there exists ε0 such that χε0

has a root on the unit circle S = {z ∈ C : |z| = 1}. The
second alternative is, however, impossible: Lemma 1, applied
to Q(T, ε0ξ, ε0η), states that the only possible eigenvalue on
S is z = −1, whereas χε0(−1) < 0.

The proof of Theorem 1

The proof is straightforward from Corollary 1. Applying
the latter Corollary 1 to T = Φ(y0), ξ = F ′(y0), η =
λΦ′(y0), one easily checks that Q′(X) = Q(T, ξ, η), where
the matrix-valued function Q is defined in (14).
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