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Abstract

The Gross-Neveu model is a quantum field theory model of Dirac fermions in two
dimensions with a quartic interaction term. Like Yang-Mills theory in four dimensions,
the model is renormalizable (but not super-renormalizable) and asymptotically free (i.e.
its short-distance behaviour is governed by the free theory). We give a new construction
of the massive Euclidean Gross-Neveu model in infinite volume based on the renormal-
ization group flow equation. The construction does not involve cluster expansion or
discretization of phase-space. We express the Schwinger functions of the Gross-Neveu
model in terms of the effective potential and construct the effective potential by solving
the flow equation using the Banach fixed point theorem. Since we use crucially the fact
that fermionic fields can be represented as bounded operators our construction does not
extend to models including bosons. However, it is applicable to other asymptotically
free purely fermionic theories such as the symplectic fermion model.
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1 Introduction

We give a new construction of the massive Gross-Neveu model on the plane based entirely
on the Polchinski flow equation. The Gross-Neveu model is one of the simplest barely-
renormalizable (i.e. scaling critical) and asymptotically free models of quantum field theory.
It is defined in terms of 2N € N Dirac fields
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For every n € {1,..., N} the fields ¢y = (@"@)ae{u}, Y™ = (YY) aeq1,2} transform under
rotations of the plane as two-component spinors. The fields take values in a Grassmann
algebra and, in particular, they all anti-commute. In what follows, we use the notation

Y=Y, Y=yt Y= (¥7)seq, where G := {—,+} x {1,..., N} x {1,2}, and
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where v; = (Vj Jar,ase{1,2}, J € {1,2}, are the Pauli matrices and 0;, j € {1,2}, denote
the derivatives with respect to the Cartesian coordinates of the plane. We first introduce a
Gross-Neveu model with cutoffs 7,e € (0,1] that is defined on a two-dimensional torus T2 of
size 1/7 in terms of Dirac fields containing only the Fourier modes with frequencies less than
1/e. Subsequently, we study the limit 7,e \, 0. The free part of the action takes the form

Ar () = W?/_)(ﬂﬂ)'1_/1(:E)d:c4r b(x) - (P¢) () dz. (1.1)
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The first term on the RHS of the above equality is called the mass term whereas the second
one is called the kinetic term. The interaction potential is given by

Urel) = [ 1/ome (50 0())? da+ [ roce) - (o) o (12)

The parameters 1/¢, ., 7, € R are called the bare coupling constant and the mass coun-
terterm, respectively. The Grassmann measure of the Gross-Neveu model with the infrared



cutoff 7 € (0,1] and the ultraviolet cutoff € € (0, 1] is defined by the formula

f F(ﬂs * w‘r,a‘) eXp( — A (1/17,8) + U-,—75(198 * w‘r,a‘)) dwr,a
feXP( —A; ("/)'r,s) + U’r,s (196 * "/)'r,s)) dw'r,s

for functionals of polynomial type F on Grassmann-valued Schwartz distributions on R2.

We use the notation [ F(¢;.)de,. for the so-called Berezin integral [Ber87]. The Berezin

integral can be viewed as a fermionic analog of the Lebesgue integral, even though it is not
an integral in the usual sense. The Grassmann field ¢, . = (1/;‘77 .)occ on R? appearing in the

fore(F) := (1.3)

above formula is periodic with period 1/7 and contains only Fourier modes with frequencies
smaller than 1/e. Since working with the sharp cutoff in momentum space would result in
slow decay of correlations in position space we convolve the Grassmann field ;. with a
Schwartz function 9. € .(R?) supported in Fourier space inside the ball of radius 1/e. We
denote by .7 the set of tuples (V*)rcx such that V¥ € 7 for all k € K. Now we are ready
to state our main result.

Theorem 1.1. Let N € {2,3,...}. There exist A\, € (0,1] and a choice of parameters
(gr.erTr.e)ree(o,1] such that for all X € (0, ] the following statements are true.
(A) For everym € Ny and ¢1,...,om € 7 (R?)C the limit

5™ e ® @) = lim [ 9e1). V) pneldd)

exists and defines the m-point Schwinger function S™ € ' (R*™)S™ | where pi, - is the
Grassmann measure of the Gross-Neveu model with cutoffs T, € (0, 1] defined in terms
of the parameters g, ., - € R.

(B) For every m € Ny the distribution S™ € #'(R*™)C" s invariant under Buclidean
transformations of the plane.

(C) For m € Ny let T™ € ' (R*™)®" be the m-point truncated Schwinger function
associated to the hierarchy (S™)men,. For every m € N, there exist a collection
(Tm’a’”)aeAmﬁgGGm of finite Borel measures on R2™=1) such that

Z Z/ Tma”dyl,...,dym,l)(aacp”)(z,szyl,...,erym,l)dx

a€A™ oceG™
for all o € S (R?>™)E™  where A := {0,1,2}2.
(D) The equalities
Z 1/)011/}02/ T2’O’U(dy) _ ’l_/) . 1/;,
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hold for all Grassmann-valued ¥ = (Y7 )gec = (V*°, V) ae{1,2},6€{1,....N}-



(E) The truncated Schwinger functions decay stretched exponentially, more precisely

Jim_exp(Jaf!/2) (747 0 914)| = 0

T|—00

for all myn € Ny and p € C(R>™)E" | ) € C(R?*™)C", where for x € R? we de-
fine o, € C(R*™)C™ by the equality 0 (Y1, .. Ym) = @Y1 — Ty ..., Ym — x) for all
Yis- - Ym € R2.

Proof. The theorem is an immediate consequence of Theorem 15.4. |

Remark 1.2. The precise definition of the Berezin integral and the Gross-Neveu measure with
cutoffs can be found in Sec. 4. The notion of invariance under Euclidean transformations
used in Item (B) of the above theorem is defined in Sec. 8.

Remark 1.3. The equalities stated in Item (D) of the above theorem should be viewed as
renormalization conditions that fix implicitly the bare coupling constant g,. and the mass
counterterm 7,. appearing in the expression for the measure ;.. We parameterize the
Gross-Neveu models in terms of numerical constants linked directly to the Schwinger functions
instead of using the parameters g, . and r; .. Note that Item (D) implies in particular that
the truncated four-point Schwinger function is non-zero. As a result, the construction yields
a non-trivial quantum field theory.

Remark 1.4. The result stated in Item (E) of the above theorem is not optimal. Actually,
the truncated Schwinger functions decay exponentially. However, the exponential decay does
not follow immediately from the construction presented in the paper and its proof requires a
separate argument.

Method of the proof

Our construction of the Gross-Neveu model, like the previous constructions [GK85a,
FMRS86], utilizes the Wilsonian renormalization group theory [Wil71]. The fundamental
object of this theory is the so-called effective potential U, ..; depending on the spatial scale
t € [0,1] and the cutoffs 7,e € (0,1]. The effective potential U, .., at the spatial scale ¢t = 0
coincides with the interaction potential U, . defined by Eq. (1.2). The goal is to construct
the effective potential U, .., at the spatial scale ¢ = 1, which coincides with the generating
functional of the so-called connected amputated Schwinger functions. To this end, one usually
solves a certain equation that relates the effective potentials at different scales. The previous
constructions [GK85a, FMRS86] of the Gross-Neveu model used the renormalization group
transformation that relates the effective potentials U, ..; at different discrete values of the
scale parameter t € {L™% |k € Ng} C (0,1], where L € (1, 00) is sufficiently big. In contrast,
the approach of this paper is based on the so-called Polchinski flow equation [WK74, Pol84]
that is a certain differential equation in the scale parameter ¢ € (0, 1].

It was recognized long time ago that the flow equation is a very powerful tool in per-
turbative quantum field theory. In fact, there is a short and general proof of perturbative
renormalizability of QFT models based on the flow equation [Pol84, Kop07, Mul03, Sal99].



The renormalization problem is solved using a simple inductive argument and amounts to
imposing appropriate boundary conditions for the flow equation. In particular, the proof
avoids the problem of overlapping divergences appearing in all approaches based on the Feyn-
man diagrammatical representations such as the BPHZ approach. However, the applicability
of the Polchinski flow equation in non-perturbative constructions is limited. For bosonic
theories it is generally believed that the flow equation is not useful non-perturbatively as
it does not allow to take advantage of the boundedness from above of the interaction po-
tential. The exception is the sine-Gordon model, which up to the second threshold was
constructed [BK87,BB21, GM24| with the use of the Polchinski equation. In quantum field
theory models with bosons the boundedness from above of the effective potential is usually
necessary to ensure that the interacting measure has finite total mass. This is the so-called
large field problem. It is possible to address this problem in the approach based on the renor-
malization group transformation but the problem seems intractable in the approach based on
the Polchinski equation. As an aside, let us mention that the large field problem can be solved
in the framework for singular stochastic PDEs developed in [Duc21,Duc22] based on a certain
flow equation that plays an analogous role to the Polchinski equation. In fact, this framework
was used recently to construct the bosonic fractional ®3 model in full super-renormalizable
regime [DGR23].

Since fermionic fields can be represented by bounded operators the large field problem
should be absent in purely fermionic models of quantum field theory and a construction of
such models based on the Polchinski flow equation should be feasible. Such a construction
is not straight-forward because the effective potential solving the Polchinski equation is nec-
essarily a highly non-local functional, which in particular is generically not of polynomial
type. A progress in this direction has recently been made by De Vecchi, Fresta, Gubinelli
in [DFG22], where a new approach to super-renormalizable fermionic theories was developed
based on a certain forward-backward stochastic differential equation (FBSDE). The main ad-
vantage of the FBSDE approach is the fact that in this approach one only needs to construct
an effective potential that satisfies the flow equation up to a sufficiently small error term.
In particular, for super-renormalizable models it is always possible to construct a suitable
effective potential in the space of functionals of polynomial type using a certain recursive
procedure. In principle the FBSDE approach can be also useful for barely-renormalizable
models. However, it is clear that in the case of such models a suitable approximate solution
of the Polchinski equation cannot be a functional of polynomial type. Consequently, allowing
for an error term in the Polchinski equation does not provide an obvious benefit.

The main obstacle in constructing an exact solution of the Polchinski equation was the
lack of a suitable norm in the space of functionals that is compatible with this equation. At
technical level, the problem seems to be related to the fact that the scale decomposition of
the free fermionic field, which behaves like a Grassmann cylindrical Wiener process, is not
Lipschitz continuous in the scale parameter but only 1/2 Hoélder continuous. We refer the
reader to [SW00] and Sec. 2 for more details and to [BW99, BWS88]| for an earlier unsuccessful



attempt at proving bounds for fermionic correlations using the flow equation. The important
contribution of the paper is a novel norm in the space of functionals in which the flow equation
can be solved. The norm is defined with the use of the filtered non-commutative probability
space constructed in [DFG22|. Using the new norm we rewrite the mild form of the Polchinski
equation as a fixed point problem posed in a certain complete metric space and solve it using
the Banach theorem. Finally, we express the Schwinger functions in terms of the effective
potential Ur .., at the spatial scale ¢ = 1 and prove their convergence as 7, ~\ 0.

Remark 1.5. The sign of the parameter X that appears in Item (D) of Theorem 1.1 plays a very
important role in our construction. The Gross-Neveu model with A > 0 and N € {2,3,...}
that we construct is asymptotically free — at high energies the Schwinger functions of the model
are well approximated by the Schwinger functions of the free theory. We refer the reader
to [GK89] for a discussion of the significance of the asymptotic freedom in constructions
of barely renormalizable models of quantum field theory. For A < 0 and N € {2,3,...}
the Gross-Neveu model is not expected to be asymptotically free and most likely does not
exist non-perturbatively. For NV = 1 the Gross-Neveu model coincides with the so-called
Thirring model. Even though the Thirring model is not asymptotically free it has some
special properties that allow its non-perturbative construction [BFMOT].

Remark 1.6. One of the manifestations of the asymptotic freedom of the Gross-Neveu model
is the fact that the bare coupling constant 1/g, . > 0 fixed by the renormalization condition
stated in Item (D) of Theorem 1.1 vanishes logarithmically in the limit £ ~\, 0. Thus, naively
one could expect that the construction yields a free theory. However, as we pointed out in
Remark 1.3 the hierarchy of the constructed Schwinger functions is non-trivial. The underly-
ing intuitive reason for the non-triviality is the fact that in the limit € ~\, 0 the fields become
genuine distributions and consequently the quartic interaction term involving a pointwise
products of the fields is very singular. See [Hai24| for a related phenomenon in the context
of subcritical singular stochastic PDEs.

Possible generalizations

The method developed in this work is applicable to other purely fermionic renormalizable
models of quantum theory such as for example the symplectic fermion model with N # 8. The
symplectic fermion model is a fermionic analog of the bosonic ®* model in four-dimensions.
The model is barely renormalizable. It describes N € {4,5,...} scalar fermionic fields. The
kinetic part of the action of the model contains the Laplacian and the quartic interaction po-
tential is invariant under symplectic transformation of the fields. See [GMR21] for a precise
definition of the model. The assumption N # 8 is probably not essential and is related to
the fact that the construction presented in the paper requires that the one-loop beta-function
B2 is positive. Our construction can be also applied to super-renormalizable models such as
the Gross-Neveu model or symplectic fermion model with modified propagators that are less
singular at the origin than the standard propagators. Even though our construction simplifies
drastically in the super-renormalizable regime the FBSDE approach developed in [DFG22],
which was discussed briefly above, seems advantageous as it allows to avoid the use compli-



cated norms in the space of functionals. Let us also mention that the method developed in
this paper should be applicable to the sine-Gordon model of quantum field theory up to the
second threshold.

Overview of the literature

The Gross-Neveu model appeared for the first time in the work [MW73| by Mitter and
Weisz who investigated the flow of renormalization group transformations in this model. In
the paper [GN74] Gross and Neveu introduced the same model as a toy model of Yang-Mills
theory in four dimensions. They studied the dynamical mass generation in a model with the
chiral symmetry. They presented an argument suggesting that despite the fact that the action
of such a model does not contain a mass term, which is prohibited by the chiral symmetry,
the truncated Schwinger functions decay exponentially, that is the model is massive. Note
that in this paper we construct the version of the Gross-Neveu model with a mass term.

The first mathematical construction of the Gross-Neveu model was given by Gawedzki
and Kupiainen in [GK85a]. Another construction was given shortly thereafter in [FMRS86]
by Feldman, Magnen, Rivasseau and Seneor. Both constructions rely on the discrete renor-
malization group method and the estimates for fermionic correlations derived with the use of
the Gram-Hadamard inequality and the cluster expansion. In [DR00] Disertori and Rivasseau
constructed the Gross-Neveu model by proving convergence of appropriately rearranged per-
turbation theory. Let us also mention the recent paper [DY23] by Dimock and Yuan who
studied the flow of the renormalization group transformations in the massless Gross-Neveu
model on a torus and established uniform boundedness of the partition function of the model
in the UV cutoff.

The above-mentioned works concerned the Gross-Neveu model with a mass term on the
plane or the model with the chiral symmetry on the unit torus. The problem of the dynamical
mass generation was addressed in [KMR95], where it was proved that the two-point Schwinger
functions of the chiral model with a fixed UV cutoff falls off exponentially. Some properties of
the Gross-Neveu model related to the particle interpretation and the asymptotic completeness
were established in [IM87,IM88a,IM88b|. The super-renormalizable Gross-Neveu model with
less singular propagator was studied in [SW02]. A construction of the Gross-Neveu model with
a more singular propagator, which is perturbatively non-renormalizable, was given in [GK85b)].

Let us discuss some related results. The two-dimensional Yukawa model was constructed
by Lesniewski in [Les87] using the technique developed in [GK85a]. The important contri-
bution of [Les87] is a new elegant proof of bounds for fermionic connected correlations based
on the Brydges-Battle-Federbush formula. An alternative approach to bounds for fermionic
correlations was given by Salmhofer and Wieczerkowski in [SWO00|. The infrared stable non-
Gaussian fixed point of the renormalization group transformation in the symplectic fermion
model with weakly relevant quartic interaction was constructed in [GMR21]. Let us mention
once again the stochastic quantization approach to fermionic models based on a FBSDE de-
veloped in [DFG22], which was used to construct the symplectic fermion model with N =4
in infinite volume in full super-renormalizable regime. First steps towards the construction



of fermionic quantum field theories using the parabolic stochastic quantization method were
made in [ABDG20, CHP23, DFGG23|, where the framework of non-commutative probabil-
ity suitable for fermionic stochastic analysis was developed and local well-posedness for the
parabolic stochastic quantization equation of the two-dimensional Yukawa model was proved.
We refer the reader to [FKT00] for a general overview of fermionic functional integrals with
applications to constructive quantum field theory.

2 Strategy of the proof

Definition 2.1. We fix N € {2,3,...} and a small parameter x := 1/1000.

Definition 2.2. Let 35 := 2(N — 1)/7. For t,A € (0,1] we define \; := (A= — Balogt)~ 1.
For t =0 we set A\ = 0.

Remark 2.3. We identify functions and distributions on the torus T2 with periodic functions
and distributions on R? with period 1/7.

In this section we describe in informal terms the main steps of the proof of Theorem 1.1
highlighting the most important ideas. We use the framework of non-commutative probabil-
ity. A non-commutative probability space is the pair (%, E) consisting of a unital Banach
subalgebra .Z of the algebra of operators acting on a separable Hilbert space and a contin-
uous normalized linear functional .# — C. Recall that the Grassmann measure (1.3) of the
Gross-Neveu model is defined with the use of the Berezin integral, which, like the Lebesgue
integral, is only well-defined in finite dimension. For this reason, it is advantageous to use
as a reference measure a certain Gaussian Grassmann measure, called the free field measure
with cutoffs 7,¢ € (0, 1], defined by the formula

_ f F(ﬂs * 1/17,5) eXp(fA'r (1/)7',6)) d"/)r,s

fexp(fAT ("/)‘r,s)) dw'r,s
for functionals F' of polynomial type. Note that the RHS of the above equality involves only
the free part of the action A;(r.), which is quadratic in the field ... We stress that
the above formula for the measure v, . is meaningful only if 7, € (0,1]. We would like to

vro(F) :

construct a collection of anti-commuting random variables (¥; ), -¢[0,1] in a non-commutative
probability space such that v, .(F) = E(F(¥,.)) for all 7, € (0,1]. To this end, we use
the so-called Osterwalder-Schrader construction [0S72,0873]. For all 7,¢ € [0,1] we define
W, . € .S (R? B(#))° as a certain linear combination of creation and annihilation operators
acting in a fermionic Fock space 52 with the vacuum state Q € 5. Let B(5¢) be the algebra
of bounded operators on #. The unital algebra .# is defined as the Banach subalgebra of
B(H) generated by (¥, ., ¢) with p € L2(R?)€. The expected value E : .# — C is defined
by the formula EF (¥, .) = (Q, F(¥;)Q) ¢, where (o, ¢) s denotes the scalar product in 7.
The fields ¥, . are defined in such a way that they all anti-commute,

E<WT_’€, ¢> =0, E<W‘r757 ¢> <W‘I’,€7 77> = <¢v G'r.,s * 77>



and higher moments of ¥ . can be expressed in terms of the covariance using an analog of the
formula valid for commuting Gaussian random variables. If 7 € (0,1], then ¥, . is periodic
with period 1/7. The propagator G- . with the IR cutoff 7 € (0, 1] and the UV cutoff ¢ € (0, 1]
is defined as a periodization of G, with the period 1/7, the propagator G. with the UV cutoff
g € (0,1] is defined by G, := . * G * Y. and the propagator G is the inverse of the differential

operator
1/9+1 0
2\ 0 @1

appearing in the free part of the action (1.1). The family of functions 9. € .7 (R?) parame-
terized by e € (0, 1] is chosen in such a way that it converges to the Dirac delta at the origin
as € \, 0 and for all € € (0, 1] the Fourier transform of 9. is supported in a ball of radius 1/e.
Moreover, if ¢ = 1, then 9. = 0 and we define 9. with € = 0 to be the Dirac delta at the
origin. If 7 =0, then G, . := G. and if € = 0, then G, := G. We call ¥, . the free field with
cutoffs 7,e € (0,1]. Using ¥, . one rewrites the formula (1.3) in the following way

E(F(WT7E)6UT,E(WT,E))
E(eUT,E(lpT,E))

pre(F) = (2.1)
Note that for all € € (0,1] the free field ¥, . belongs to C>(R?, B(#))¢. Consequently,
the RHS of the above equality is well-defined for all 7,¢ € (0, 1] (provided the denominator
is not zero). Since in the limit € \, 0 the free field ¥, . is not a function over R? but only
a Schwartz distribution the pointwise products in the expression (1.2) for the potential U- .
become meaningless. In the limit 7 N\, 0 the expression (1.2) for the potential U, . is ill-
defined due to unbounded domain of integration. Thus, the expression (2.1) for the measure
ltr.e becomes singular in the limit € N\, 0 or 7 N\ 0. Because of the presence of the unit mass
term in the free part of the action the proof of the existence of the limit 7 \ 0 is relatively
easy. The limit € N\, 0 is quite subtle as it only exists if the parameters g, . and r . of the
potential (1.2) diverge at particular rate as & \ 0.

In order to study the limit e \, 0 of p,-(F) we use the renormalization group the-
ory [Wil71,Pol84]. To this end, we introduce a certain scale decomposition of the propagator
G;. and the free field ¥, .. The scale decomposition [0,1] 3 ¢ — G,y € Ll(IRQ)‘G’2 of the
propagator G, is defined by Geyp := ¥ * G, x 9 for ¢ € [0,1]. Then G, is defined as the
periodization of G..;. The parameter ¢ € [0, 1] plays the role of an artificial UV cutoff. Note
that due to the properties of the function ¥ for every t € (0,1] and 7,¢ € [0, 1] the propagator
G+ is smooth and essentially constant at spatial scales smaller than ¢ and it captures the
behavior of G, . at spatial scales larger than ¢. The scale decomposition [0, 1] — ¥ .., of the
free field ¥, . is defined in a non-commutative probability space containing the probability
space of the free field as a collection of anti-commuting random variables such that for all
7,e € [0,1] the following conditions are satisfied:

(1) ¥, .. is Gaussian with mean zero and covariance G- ., for all t € [0, 1],
(2) ¥Ur e € C°(R2,B()) for all t € (0,1],



(3) ¥r.t is essentially constant at spatial scales smaller than ¢ € (0, 1],

(4) ¥, o4 captures the behavior of ¥, . at spatial scales larger than ¢ € (0, 1],

(5) t — ¥, 4 has independent increments.
Observe that the condition (1) implies, in particular, that Law (¥, c;—0) = Law(¥;.) and
U, =1 = 0. A scale decomposition satisfying the conditions (1)—(4) could be defined by
the formula ¥, ., = ¥, * ¥, . for all ¢ € [0,1]. However, with this definition, the process
t — ¥, ., does not have independent increments, a property that plays a crucial role in the
whole construction. In order to define a scale decomposition of the free field satisfying all con-
ditions (1)—(5) we follow the strategy proposed in [DFG22|. To this end, we use the so-called
Fermionic white noise ¢ € .%/(R? x [0, 1], Z())® on spacetime R? x [0,1]. The Fermionic
white noise is a anti-commuting Gaussian random variable in some non-commutative proba-
bility space (%, E) defined using a variant of the Osterwalder-Schrader construction described
above. The Hilbert space J# is a conveniently chosen Fermionic Fock space, the expected
value E is defined as above, £ is expressed as a certain linear combination of creation and
annihilation operators such that & has mean zero and its covariance coincides with the Dirac
delta on the diagonal in (R? x [0,1])? and .# is the sub-algebra of %(#) generated by
(&, f) with f € L*(R? x [0,1])®. We also introduce propagators Gf)a;t such that for all
t € (0,1] the Fourier transform of Gfs;t is contained in a shell of radius of order 1/t and
Gis;t * Gy = 0;Grcp. The scale decomposition [0, 1]+ ¥r .y = (Wr o4, Ur ct) Of the free
field ¥, . = (¥, ., ¥, ) satisfying the conditions (1)—(5) is defined by the formula

WT,EHS = / G;E;s(‘ - y) E(dyv dS), —Wﬂaﬂf = / G"ts;s(. - y) f(dy, dS)
T2 x[t,1] T2 x[t,1]

The free field is defined to be ¥, . := ¥, .o. For t,s € [0,1] such that s < ¢ the increment
U, ..+,s of the scale decomposition of the free field is defined by ¥, .+ s := ¥, ..o — ¥ .+ and
the algebra .%; s is defined as the Banach subalgebra of .# C #B() generated by &(f), where
f e L*(R? x [0,1]) is s.t. supp f C R? x [s,t]. Note that ¥, . s is supported in the Fourier
space in a shell of radii of order 1/t and 1/s and depends only on the white noise in the time
interval [s, t]. Hence, (Wy .t s,¢) € Fy s for all p € .#(R?)®. Observe also that for all ¢ € (0, 1]
the free field can be decomposed into the low and high frequency part ¥, . = ¥, .1+ + W7 .10,
where ¥, ..;; contains only the Fourier modes with frequencies in the ball with radius of
order 1/t and ¥, .1 o contains only the Fourier modes with frequencies outside the ball with
radius of order 1/t. Finally, let us mention that in the non-commutative probability space
(.7 ,E) of the white noise it is possible to construct [DFG22| the conditional expectation
E: : F — %, given the algebra .#;; that has the usual properties of the conditional
expectation. In intuitive terms, E; integrates out the high frequency part ¥, .., o of the free
field ¥, o = Vs o1t + Vs cr,0 and acts trivially on the low frequency part ¥; .1 4.

Now let us introduce the effective potential and the Polchinski flow equation that play
a central role in our construction. To this end, fix ¢ € (0,1] and let F' be a functional of
polynomial type such that F/(¥. ) = F(¥; c.1,4), that is F' depends only on the low frequency

10



part of the free field. For such functional the formula (2.1) for the interacting measure g, o
can be rewritten in the form

NT,&(F) S EEt(F(WT,E;l,t)eUT'E(WT'E)) = E(F(glr,a;l,t)EteUT’E(WT'EQI'H_WT'M’O))a (2.2)

where we used the tower property of the conditional expectation as well as the fact that
F(¥rc1,4) € Z14. Suppose that a functional U . satisfies the following equality

eXp(UT,a;t(¢)) = EeXp(U‘r,E(¢ + LZ/7',6;1570)) (2.3)

for all ¢ € C°°(T2) valued in the odd part of some Grassmann algebra ¢ independent of the
white noise £(f). The choice of the Grassmann algebra ¢ does not play an important role.
However, 4 has to have at least as many generators as the Grassmann algebra of the free
field with cutoffs 7,¢ € (0,1]. For this reason, it is convenient to assume that ¢ is infinite-
dimensional. We call a functional as above an effective potential at spatial scale ¢ € (0, 1].
Using an effective potential and Eq. (2.2) we conclude that

:LLT,E(F) S8 E(F('I/'r,s;l,t)eUT’E;t(WT’E;I’t))

for all functionals F' as above. Note that the RHS of the above equality involves only the
low frequency part ¥, .1 ; of the free field, which is smooth for all 7, € [0,1]. Consequently,
the above formula remains meaningful without cutoffs provided an effective potential U, ..
is well-defined. This suggest that the family of effective potentials (U c.t)ie(0,1) determines
the measure pr . completely and one can prove the existence of the limit 7, ~\, 0 of pr . by
studying the limit 7,6 N\, 0 of (Urc;t)se(0,1)- Actually, using the translational invariance of
the Berezin integral one shows the following formula

pire(exp((e, ) = exp({p, Gre * ©) /2 + Ur c.1(Gre * ) — Ur c:1(0)) (2.4)

for all ¢ € C°°(T?2) valued in the odd part of ¢4, which provides a direct link between
an effective potential U, .., at the spatial scale ¢ = 1 and a generating functional of the
Schwinger functions. The upshot is that in order to construct the Schwinger functions and
prove their convergence as 7,¢ N\, 0 it is enough to construct the family of effective potentials
and prove its convergence as 7,¢ N\, 0. The basic idea of the renormalization group theory is
to derive a certain equation that relates the effective potentials at different scales and then
use it to construct the effective potential. In the discrete renormalization group method one
studies an equation that relates the effective potential at different discrete values of the scale
parameter. Our construction uses instead the so-called Polchinski flow equation, which is a
Hamilton-Jacobi-Bellman type equation for the function (¢, ¢) — Uy c:t(¢). The mild form of
this equation is given by

Ur,s;t(¢) = EUT75(!pT7E;t,O + ¢)

1/t .
+ 5 / E<D¢U77€;S(Wﬂs;t,s + ¢)7 Ge;s * D¢U77€;S(Wﬂs;t,s + ¢)>T ds (2-5)
0
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for all t € [0,1] and ¢ € C°°(T2)® valued in the odd part of 4. In the above formula,
Geit := 0;G.y and Dy F stands for the functional derivative of F. The flow equation (2.5) is
well-posed provided 7, e € (0, 1]. Note that the first term on the RHS of Eq. (2.5) involves the
original potential U, . defined by Eq. (1.2), which depends on the parameters g, .,r,. € R.
Recall that these parameters are not given. Our task is to find (grc,7rc)rce(0,1) such that
the Schwinger functions converge as 7, \ 0. This is the so-called renormalization problem.

A comment on functionals is in order. We identify functionals U with collections of kernels
(U™)meny,cecm such that

U@ =U%+ > > (U™, ¢"®...0¢ "), (2.6)

meNy ceG™

for all ¢ € C°°(T2)® valued in the odd part of ¥, where U° € C and U™° € .#'(T?) is
antisymmetric for m € Ny, 0 € G™. We interpret the flow equation as an equation for the
hierarchy of kernels (U™7),,eny,0ceem. In order to study the infinite volume limit it is useful
to consider instead the hierarchy of kernels (V"7),,en, seem such that V™7 € ./(R?) for
all m € N, 0 € G™ and such that V" is related to U™7 by the equality

(U™,01®...0 bm)r = (V™7 X701 @2 ® ... ® dm) (2.7)

for all m € Ny,0 € G™ and ¢1,...,¢, € C°(T2), where x, € C>(R?) is such that its
periodization with period 1/7 coincides with the constant function equal to one. The paring
(e, ¢), is the paring between distributions and test functions on T2, whereas the paring (s, )
is the paring between distributions and test functions on R2. By the translational invariance
of V™? and the periodicity of ¢1, ..., ¢, the RHS of Eq. (2.7) is independent of the choice
of the function x,. In informal terms, U7 is obtained by the periodization of V"¢ in m —1
variables. Because of the assumption that V'™ is antisymmetric the choice of these m — 1
variables is not important. Note that the hierarchy (V™7),en, cegm contains no information
about UY, which is redundant. It turns out that if the flow equation (2.5) is satisfied up to a
constant, then it is possible to choose the constant such that the flow equation holds exactly.
The advantage of working with the kernels (V'™7),,,en, oegm rather than (U™7),eng ceem is
that the kernels (V") en +,0eGm are not periodic and decay rapidly in directions transversal
to the diagonal. Collections of kernels (V"7),,en, secm are identified with functionals V' by
the formula

Vigl= > Y (V™07 ®...0¢"™) (2.8)

meNL ceG™

for all ¢ € .7(R?)C valued in the odd part of 4. In order to introduce a topology in the space
of functionals V' = (V") en, oeem for all m € Ny, 0 € G™ it is convenient to make the
following ansatz

(V™7 01 @...Q0 @) = Z (V%7 0%p) @ ... Q 0% o) (2.9)
acAm™
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for all p1,...,pm € .7 (R?), where A = {0,1,2}? is the set of spatial multi-indices and for all
m € Ny, a € A™, o € G™ the distributions V"% € .#/(R*™) are measures such that the
following norm
V™7 | g = sup /|Vm’“"’(ac1,dx2, o da)|
x1 ER2
is finite. We also introduce the notation Jp = (9%¢)aecn vec € 7 (R?)A*C for the jet exten-
sion of the function ¢ € .7(R?)€. The representation (2.9) of V™ in terms of (V™%7),cam
is of course not unique. The fact that the potential of the Gross-Neveu model U, . does not
involve derivatives suggests that one could set V™% = 0 unless a = 0. However, it turns
out that another representation of V™7 in terms of (V"% ),cam is more convenient to solve
the renormalization problem. In what follows, we identify functionals V' with collections of
kernels (V"™%%),en, acam,oeqm such that Egs. (2.8) and (2.9) are satisfied. We also use the
notation V™ for the collection of kernels (V™ *7),cam segm. For 7,e € [0,1] and ¢, s € (0,1]
we introduce the following maps in the space of functionals
(Ar,a;t,sv)[(p] = Hov[JWT,E;t\/S,S + Qp]a (2 10)
Bes(V)[p] = Mo (D Vig] @ D Vg, (I @ J)Geys (o — #))

where T, V[p] := V]p] — V[0] and ¢ € .#(R?)**C is an arbitrary Schwartz function valued
in the odd part of 4. The above definitions should be interpreted as hierarchies of equations
for the kernels V = (V™%?),,en, acam,0ccm. Note that the map II, ensures that the func-
tionals (Ar .t sV)[p] and (Be,s(V))[p] vanish for ¢ = 0 and are of the form (2.8). We stress
that A, .,V is a functional taking values in .7 , C #(). We denote by A%V and
BZ:;»?(V') the kernels of the functionals A, ;¢ sV and B.s(V). The symbols A7, ; [V and
B, (V') denote collections of kernels.

Now we shall rewrite the flow equation (2.5) in a form that is suitable for studying the
infinite volume limit 7 N\, 0. To this end, let the functional V, . = (V;Z’a’a)meku,aeAm,aeGm
be related to the potential (1.2) of the Gross-Neveu model by Egs. (2.6), (2.7) and (2.9) and

let t = Vien = (VT’VZ7;(Z7U)mEN+,aEAm,UEGm be a solution of the following flow equation

t
Vr,a;t[J(P] = EAT,E;t,OVT,E[JSD] +/ EAT,a;t,sBa;s(Vr,a;s)[J@] ds (2-11)
0

for all ¢ € Z(R?)® valued in the odd part of &. The above equation is written using
the notation introduced in the previous paragraph. For t € [0,1] we define the functional
Uret = (U2 ) meng,ccem related to Voo by Egs. (2.7) and (2.9). This leaves U? ., € C
unspecified but for a suitable choice of ¢ — U?_; the function (t,¢) — Uy c.;(¢) satisfies the
flow equation (2.5). Hence, we are led to study the flow equation (2.11). The advantage of
Eq. (2.11) over Eq. (2.5) is that it is well-posed in the limit 7 \, 0. Let us stress that a
solution ¢ +— Vr oy = (V017 )men, acam oecm of Eq. (2.11) is not unique. Observe that a
solution of the following equation

t
V‘r,e;t[sﬁ] = EAT,s;t,OVT,E[Sﬁ] +/ EAT,e;t,sBs;s(Vf,s;s)[Sﬁ] ds (212)
0
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for all p € C>°(R?)**C valued in the odd part of ¢ is also a solution of Eq. (2.11). However,
the reverse implication is not true because of the non-uniqueness of the representation (2.9)
of V™7 in terms of (V™ *%),cam. We shall take advantage of this non-uniqueness in order
to solve the renormalization problem. In particular, a solution of Eq. (2.11) that we are going
to construct will not satisfy Eq. (2.12).

Let us now investigate the renormalization problem. To this end, we have to study the
limit € \, 0. First note that since for ¢ = 0 the increment ¥, ..; ¢ is not a function over R?
but only a distribution and the functional V; . involves pointwise products the first term on
the RHS of Eq. (2.11) becomes singular in the limit £ N, 0. We hope that the second term
becomes singular in this limit as well and for specific choices of the parameters g, ., 7, € R
of the original potential the singularities of both terms cancel out. We would like to rewrite
Eq. (2.11) in a form that exhibits the above-mentioned cancellation of singularities. To this
end, we have to come up with an appropriate space of functionals. The norm in this space
should control the dependence of the norm [[V"237|| zm of the kernels of the functional V; s
ont € (0,1 and m € Ny, a € A™, 0 € G™. Let us first concentrate on the dependence
on t € (0,1]. Using the fact that the perturbative corrections to the kernels V47 can be
expressed in terms of Feynman diagrams by naive power counting argument for all m € N,
a €A™, o € G™ the following bound

IV | S 721012 (2.13)

should hold uniformly in 7,¢ € [0,1] and ¢ € (0,1] up to logarithmic corrections, which
= 0 if m € N4 \ 2N by the charge conjugation
7 with m € 2N,. This suggest that for

we ignore for the moment. Since V277

invariance one can restrict attention to kernels V0%’
€ = 0 the norm of the kernel

(V2,070)06G2 )

7,65t

may diverge polynomially and the norms of the kernels

4,0 2
(V‘r,;;,ta)a'GG‘la (VT,g?t,a)aEAQ,\a\:LUGGQ

may diverge logarithmically as ¢t \, 0. We call the above kernels relevant and marginal,
respectively. The remaining kernels vanish in the limit £ \, 0 and are called irrelevant. Note
that the functional V; ., which is closely related to the original potential U, . defined by
Eq. (1.2), contains only relevant and marginal kernels. Using properties of the maps A, .1 s
and B..; as well as the bound (2.13) one shows that for all m € Ni, a € A™, 0 € G™ the
bound

[EATS  Bes (Vi) lam < sm/2Hlal=s

T,65t,8
holds uniformly in 7, & € [0, 1] and ¢, s € (0, 1] up to logarithmic corrections. By the Minkowski
inequality this implies the bound

| Jo BATE Bes (V) ds |y < Jy [EATE B (Vo) . ds

T,65t,5 ;8 T,65t,s
t om/2 -3 m/2 —2
< fo sm/2Flal=3 qg < ¢m/2+al (2.14)
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uniform in 7,¢ € [0,1] and ¢ € (0,1] up to logarithmic corrections unless m = 4 and a = 0, or
m = 2 and |a| < 1. Consequently, for the irrelevant kernels the bound (2.13) is consistent with
the flow equation (2.11). The relevant kernels require special treatment. Indeed, if m = 4
and a =0, or m = 2 and |a|] < 1, then the last estimate in (2.14) is false.

In order to address the above-mentioned problem with the estimates for the relevant
kernels we make the following ansatz

View = U(l/gT,E;tv T'reity Z‘r,s;t) + Wr et (2.15)

where gr e € (0,00), 7 e, 270 € R are some parameters, W, .. is a functional and for all
g,7,z € R the functional U(g,r, z) is defined by the equality

Ulg.r2)tl = [ (9 (@) - 9(@) +79(a) - b@) +26(0) - (B)(w) da
for all ¥ = (V%) e € -7 (R?)® valued in the odd part of ¢. Since the functional U(g,r, ) is
a linear combination of quartic and quadratic terms it holds V"217 = W27 unless m = 4
and a =0, or m =2 and |a| < 1.

In order to specify the relation between V; . and (grei, 'reits 2reit, Wrer) we have to
first introduce the notion of the local part of a kernel and the remainder. The local part of a

collection of kernels V! _., = (VH%7) cgs s is defined by the equality

T7

LV (g 9)? = ) o7 ...1/)“4/ VA0 (1), g, das, diy)
oceG* kS

for all Grassmann-valued numbers ¢ = (¢7)ycc = (1/_10‘5,@avg)ae{1,2}7ge{17._.71\f}. Note that

the RHS of the above formula does not depend on z; € R? because of the translational

invariance of the kernels of the functional V; .,;. It turns out that given a collection of kernels

Vvt = (V4*“*")GGA41(,€¢;,4 that posses certain symmetries there exists a collection of kernels
RV* = (RV*)*?),cpt yegs such that (RV*)*? =0 if a = 0 and

L /R W) - b)) de+ 3 S {RVH™7, 0907 @ ... 0 9"y)

acA? oceGH

=3 S (vter guyt @@ 0%y (2.16)

a€A* 0eG*

for all ¢ € .#(R)® valued in the odd part of &. Similarly, given a collection of kernels
V2 = (VQ’“’“)aeAz,aeGg that posses certain symmetries there exist numbers LV? LyV?2 € R
and a collection of kernels RV? = ((RV?2)%?),ca2 ;g2 such that (RV?)%? = 0if [a| < 1 and

LV? . P(x) - Y(z)de + LyV? . o(x) - (@) (z) dz
+ Z Z <(RV2>G’U,aa11/)Ul ®aa2,¢)02> _ Z Z <V2,a,a7aa11/}01 ®aa2,¢)02> (217)

a€A? oeG? ac€hA? oeG?
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for all ¢ € .7 (R)® valued in the odd part of ¢. The identities (2.16) and (2.17) are conse-
quences of the Taylor theorem and the form of the local terms

b(z) - ¢(x)dz, P(x) - (P¢)(2) da, (¥(z) - Y(x))* da
R2 R2 R2
appearing in these identities is dictated by the symmetries of the Gross-Neveu model. The
parameter 1/g, ., € (0,00) is called the effective coupling constant at spatial scale ¢ € (0, 1]
and is defined so that it satisfies the equation

t
1greu = LEAL Ve + [ LEALL, Bu (Vo) ds. (2.18)
0
The parameter r; .., satisfies the equation

7ot = LEA? c0.Vre + LEA378;1,15U(1/9T75;0 —1/gr.c,0,0)

T1

t
+/ LEA? | Beo(Vres)ds. (2.19)
0

The parameter z, .., satisfies the equation

t
Zr e = / LoEA2 | B (V;os)ds. (2.20)
0

Finally, the functional W ..; satisfies the equations

t
77'7715;15 - / EA:rr??s;t,sBaS(VT,E;S) dS, m e N+ \ {25 4}7 (221)
0

t
™, / REA™. | B..(Vse)ds — BC™ W, .0, me{2.4}, (2.22)
0

where Cr .1V = A, .1,V — V. Note that C'_; ,W; .,y depends only on (Wffa‘;k)keN+.
Hence, the RHS of Eq. (2.22) does not depend on W, ;. The functional V; .5 appearing in
Eqs. (2.18), (2.19), (2.20), (2.21), (2.22) is related t0 (gr.cis, Fr.cis, Zr.ciss Wr.eis) by Eq. (2.15).
In this way we obtain a closed system of equations for (gr.e.e,”rce; 2750y Wrew). Using
Egs. (2.16) and (2.17) one proves that given a solution (gr e.e, .10, 27,205 Wr o) 0Of this system
of equations the functional V. .. related to (gr c;e; T'rc50, 27,c505 Wr o) by Eq. (2.15) is a solution
of the flow equation (2.11). Let us mention that this solution does not satisfy Eq. (2.12).
The argument presented in the previous paragraph together with the fact that the relevant
kernels of the functional REA ; .1 sB..s(V; c.s) vanish identically by the definition of the map
R suggest that the integrands in Eqgs. (2.21), (2.22) are absolutely integrable also for € = 0.

Now let us study more closely Eq. (2.18) for the effective coupling constant. Noting that

atg'r,s;t = 793,8;75 at(l/gT,E;t) = 7972',5;t LEA?’,E;LtBE;t(V‘HEt)

16



and using the fact that LEAf_@t,OVﬂE = 1/gr e, where g, . is the parameter of the poten-
tial (1.2), we obtain

t
9reit = Jre — / gz,s;s LEA?’,E;LSBE;S(VREQS) ds.
0

We fix the parameter ¢, . = ¢r =0 implicitly by imposing the following renormalization
condition
reit=1 = L/, (2.23)

where A € (0,1] is assumed to be sufficiently small. Taking into account the above boundary
condition we rewrite the equation for ¢, ., in the following form

Grep =1/A+ /tl 93,8;5 LEAis;l,sBE;S(VT,E;S) ds. (2.24)
It turns out that the asymptotic behavior of
s 93,5;5 LEAi,s;l,sBE;S(Vf,E;S) = 93,5;5 LEA‘?’,E;l,SBE%S(U(]‘/g7'75§55 Treis: Zreis) + Wreis)
at s = 0 coincides with the asymptotic behavior of

PR gfvE;SLEA‘* B..s(U(1/grc.s,0,0)) = LEA? B...(U(1,0,0))

T,e;1,s T,e;1,s

The above claim is justified a posteriori by assuming that the tuple (gr.c.e, 7r.ci05 2rc10, Wreia)
belongs to the set %, . defined below. Moreover, a direct computation yields

LEA7 . B.s(U(1,0,0)) = 827!, fo=2(N —1)/m,

for 7 = 0 and e = 0. Consequently, for 7 = 0 and & = 0 the asymptotic behavior of t — 1/g- ¢,
at t = 0 coincides with the asymptotic behavior of t — \;, where \; was introduced in Def. 2.2.
Note that the asymptotic behavior of the effective coupling constant 1/¢, . is easiest to
determine by studying Eq. (2.24) for its inverse g, ;. This is one of the reasons why we
chose g . rather than the effective coupling constant 1/g, .+ to be one of the fundamental
variables. Note that by the above argument the effective coupling constant 1/g, .. with e = 0
vanishes logarithmically as ¢ N\, 0. Thus, at high energy the behavior of Schwinger functions
of the Gross-Neveu model without the UV cutoff should not differ much from the behavior
of the Schwinger functions of the free theory. This property is called in the literature the
asymptotic freedom and plays a crucial role in our construction. Let us remark that our scale
decomposition G..; of the propagator G. satisfies the condition G..; = 0 for t € (0,]. As a
result, Bei(e) = 0 and gr et = gree for t € [0,€]. Hence, the flow of the effective coupling
constant in the model with the UV cutoff € € (0, 1] halts when the scale parameter ¢ reaches
the value . In particular, the model with the UV cutoff is not asymptotically free and the
value of the parameter g, c = ¢r ;0 = gr.e;e 0f the potential (1.2) fixed by the renormalization

17



condition (2.23) vanishes logarithmically as ¢ N\, 0. As a side remark, we mention that the
assumption A > 0 is necessary for the asymptotic freedom of the model without the UV cutoff
as for A < 0 the function ¢t — \; blows up at the scale t = e!/(*%2) which is called in the
literature the Landau pole. Because of the asymptotic freedom the logarithmic corrections,
which were ignored in the bound (2.13), improve the asymptotic behavior of ¢ +— [|[V"237||_gm
at t = 0. Actually, taking into account the logarithmic vanishing of the effective coupling
constant a direct inspection of perturbative corrections yields the following bound

IV flgm S NGOV g2t lel =2

uniform in 7,e € [0,1] and ¢ € (0,1] for all m € N4, a € A™, 0 € G™. Using the above bound
one shows that
HEAm7a7UBE;S(V‘F7E;S)H%m 5 Agm/271)v2 Sm/2Jr|a|73

T,65t,8
uniformly in 7,¢ € [0,1] and ¢, s € (0,1]. Hence, using Lemma 2.4 (A) we obtain
H f(;5 EATrT}él;lﬁ(,TsBE;S(VT,E;S) dsH//gm N fot )‘gm/Qil)V2 sm/2tlal=3 4

5 )\gm/2_1)\/2 tm/2+|a|72 (225)

uniform in 7,¢ € [0,1] and ¢t,u € (0,1] unless m = 4 and @ = 0, or m = 2 and |a] < 1. By
Lemma 2.4 (D) applied with p = 1 we have
| Jo EAT% By (Ve is) ds|| o S Jo A2s71ds S A (2.26)

T,E3U,87 €]

uniformly in 7,e € [0,1] and t,u € (0,1] form =4 and a =0,or m =2 and |a| = 1. If m =2
and a = 0, then for ¢ = 0 the function s — EA”:% B..,(V;) is not integrable at s = 0.

T,E;U,S

However, by Lemma 2.4 (C) applied with p =2, o = —1 and X € (0, 1] small enough we have

| [ BATS Beio(Vecs) ds|| o S [ A2s72ds S A7t (2.27)

T,E;U,S

uniformly in 7, € [0,1] and ¢,u € (0,1] for m = 2 and @ = 0. The bound (2.26) suggests
that Eq. (2.20) for z; .. is well-posed for ¢ = 0. On the other hand, Eq. (2.19) for r, ., is
not expected to be well-posed for ¢ = 0. To address the problem with Eq. (2.19) we impose
the following renormalization condition

T'ret=1 = 0

that fixes implicitly the mass counterterm 7, . = r; +—¢ and rewrite this equation so that it
involves the integral appearing on the LHS of the bound (2.27). Using Eq. (2.19) we obtain
the following equation

1
Tret = —LEAZ | ,U(1/gr4,0,0) 7/ LEA?

T,651,8
t

Bs;s(v'r,s;s)ds- (2'28)
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Let us remark that since we do not impose any non-trivial renormalization condition for the
parameter z, . introducing this parameter in the ansatz (2.15) is not necessary and is done
mainly because it is convenient when proving estimates.

The claim is that the system of equations (2.24), (2.28), (2.20), (2.21), (2.22) for the
tuple (greie, Tr.e505 21,650, Wreio) Temains well-posed in the limit 7, N\, 0. Since we would
like to construct a solution of this system of equations using the contraction principle we
have to first find an appropriate complete metric space of tuples (gr.e.e; Tr 0, 2r.ei0, Wrese)-
We will define this metric space as a closed subset of a certain Banach space. The norm
in the Banach space has to control the dependence of ¢r ., Treit, 2r e € Roon t € (0,1]
as well as the dependence of |[W,277(|.4m on t € (0,1] and m € Ny, a € A", 0 € G™.
To this end, for «, 8 € [1,00) and v € [0,00) we introduce the Banach space of functionals
s = Wy = (W) men, aeam,oecm depending on the scale parameter s € (0, 1] equipped
with the following norm

|W.

yase = sup am W |yme,

meN_L

where

e

|ymiv i= sup Z Z )\S_”W‘(m) g2—m/2=lal [l WIS ym.
s€(01] yepm geGm

The weight w?" depending only on the relative coordinates and growing stretched exponen-
tially is needed to establish stretched exponential decay of truncated correlations as well
as to prove the desired estimates for the map R introduced above. The bound (2.25) sug-
gest that the kernels of a solution W ... of Egs. (2.21) and (2.22) should have finite norms
W |lym~ defined in terms of p, . (m) = (m/2—1)V2. In order to give oneself some wiggle
room when proving estimates we choose instead p., (m) := v+ 2xm with v = 2 — 80k, where
k = 1/1000 was fixed in Def. 2.1. It turns out the kernels of the functional V; ... related
t0 (Gr.e;es Trei0s 27,000 Wrero) by Eq. (2.15) have finite norms ||t — 0(t —¢) V'L,
v =1—40k. The presence of the function 6(¢ — ¢) in the above expression is needed because
in the model with the UV cutoff the flow of the effective coupling constant 1/g, ..; halts at
t = ¢ and consequently 1/g; . does not vanish in the limit ¢ \, 0 if ¢ € (0,1]. Recall that
Get = 0 and Boy(s) = 0 if t € (0,¢]. As a result, the RHS of Egs. (2.24), (2.28), (2.20),
(2.21), (2.22) depend only on ¢ — 0(t — &) V; c.4. The usefulness of the norm |[[¢]|4a,s~ comes
from the following estimates

o iy Wlth

||5 = SBa;S(VS)qua,B—l;zv < Clls = Vill5asm (229)

and
Ht = fOt H>4‘/S/S dSH“j/mb S C ||S = ‘/SH"I/%Bflw (230)

valid for @ € [1,00), B € (2,00), v € [0,00), where C € (0,00) is a universal constant
and given a functional V' = (V™%?),en, aeam,occcm we define the functional I1.4V by the
equalities (ITs4V)™®? = 0 if m < 4 and (IIs4V)™*? = V™% if m > 4. The presence of

19



the operator Il-4 in the second of the above estimates is related to the fact that the relevant
kernels of s — B..s(V5) are not absolutely integrable at s = 0 and need a special treatment.
Observe also that since the scale dependent functional s +— Vs — 154V} has only finitely many
non-zero kernels the parameters o and 3 do not play any role when estimating its ||s||ya.5:
norm. The estimates (2.29) and (2.30) imply in particular that

It fy T5aBess(Va) ds |l oy < Clls = Vallyaain (2.31)

The remarkable property of the above bound is the fact that the norms on both sides of
this bound have the same parameter o and . Recall that the RHS of Eq. (2.21) involves
EA; .. B.s(Vres). In particular, to be able to solve the above system in the space yenBiy
of functionals W ... the validity of an estimate of the form

||t —> fot H>4EAT75;t,S‘/;/S dSHy/a,B;'y S C HS — ‘/;Hy/a,ﬂ—lry (false) (232)

with a universal constant C' € (0,00) appears to be crucial. Indeed, the bounds (2.29)
and (2.32) imply the bound

[t = [) ToaBA, it Beis(Ve) || o say < Clls = Vil|2as  (false) (2.33)

with a universal constant C' € (0, 00), which would allow to control the [|¢||ya,5+ norm of
the RHS of Eq. (2.21). Recall that the definition of the map A, . s involves the increment
V- c.t,s Of the scale decomposition of the free field. Using the bound

|E(]pg,ls;t,s('r1) e W;Z;t,s(zk)” S Slelg H]p;'f,s;t,sH%
where [|¢[|¢ := sup,cg2 [|¢()]| (), as well as a similar bound for 0*¥7_, . one shows, with
some effort, that the bound (2.32) would be true for sufficiently small A € (0, 1] if the following
bound
|0°w7

,E3t,8

o <c(sV/2lel —g=1/27laly g s <t <1,  (false) (2.34)

with a universal constant ¢ € (0,00) was true. The above estimate would imply in particular
that the scale decomposition of the free field is locally Lipschitz continuous. However, the scale
decomposition of the free field should have similar regularity in the scale parameter, which
plays the role of time, to the Grassmann Brownian motion, which is only Hélder continuous
with exponent 1/2. In fact, the following bound

|0°w7

,E5t,s

¢ <ec(sTi72lal —p=1=2layl/2 0 g <5<t <1, (2.35)

holds true with a universal constant ¢ € (0, 00). This indicates that the bound (2.32) is false.
The above argument is obviously not conclusive. However, closer analysis reveals that it is
unlikely that the estimate (2.33) is true. We refer the reader to [SWO00] for related comments.
As an aside, we mention that as observed in [SW00] the proof of estimates for fermionic
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correlations given in [BW88, BW99] is not correct precisely because the scale decomposition
of the free field is not Lipschitz continuous. This suggest that, in a sense, the difficulty we
face is related to the fact that the scale decomposition of the free field is only 1/2 Holder
continuous. Note also that in the discrete renormalization group one studies scales ¢, s € (0, 1]
such that s = t/L with L € (1,00) fixed. For scales ¢, s € (0,1] satisfying the above relation
the estimates (2.34) and (2.35) with some constants ¢ € (0,00) are equivalent.

One of the novel ideas of this work is the use of the following norm

”W‘ WP = Sup ”S = AT,E;uVs,SWsH“t/ayBW
' u€[0,1]
in the space of scale dependent functionals s — Wy = (W™%?),en, acam occem. Since

Arcs,sVs = Vs the norm |||, a5 is stronger than [|e]|lyas,. We stress that the norm
||‘||"///:ff” depends on the cutoffs 7,e € (0,1]. We also note that the functional A ..,vs.s Vs,
which appears in the definition of the norm H'H"///,‘ffm takes values in F,vs s C F C B(IH).
For this reason we are forced to work with kernels that are measures valued in a Banach
space (). The main advantage of the norm |[[e||, a1 over [|s|ya.s- is the validity of the
following estimate

Ht — f(;H>4EAT,E;t,sB8;s(VYs) dSHWTL‘fE’L‘?;Zv S C ||S — VSH;;V&BW)

(2.36)

where C € (0,00) is some universal constant. As we argued above an analogous estimate is
almost certainly false if the norm [[¢[|,),a.s,» is replaced by the more standard norm [[e[|ya.s:.
Let us stress that the lack of a norm in the space of scale dependent functionals for which the
estimate of the form (2.36) holds true was the main obstacle in the construction of Grassmann
measures of fermionic quantum field theories with the use of the Polchinski flow equation.
Since the estimate (2.36) is of crucial importance let us sketch the main ideas behind its proof.
First, observe that in order to prove the estimate (2.36) we have to control the [|s||a 52, norm
of the functional A, ;EA; ;Bs(Vs) in terms of the ”'”“Vf‘féﬂ” norm of the functional A7’ V.
Next, note that for 0 < s <t <wu <1 it holds

AT,E;u,sV = AT,E;u,tAT,E;t,s‘/a AT,E;u,sBE;s(V) = BE;S(AT,E;u,sv)a
AT,&;u,tEAT,E;t,sV = AT,E;u,tEtAT,E;t,sV = EtAT,a;u,tAT,a;t,sV = EtAT,a;u,sV-
The identities in the first line above follow easily from the definition (2.10) of the maps A, s s
and B..s. The first equality in the second line is a consequence of the fact that the kernels of
the functional A, .. ;V take values in .%#; ; and on .%#; ; C .%o the expected value E coincides
with the conditional expectation E;. To prove the second equality in the second line we use
the fact that the conditional expectation E; act trivially on %, C #1;. As a result, the

following identity
AT,E;u,tEAT,s;t,sBs;s(V) == EtBs;s(AT,e;u,sV) (237)

holds true. We also note that |E;V|_zm < ||V .z~ and

[ = EeVillyasen < [t Vidl[yrassir- (2.38)
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Consequently, ignoring the presence of the operator IIs4 in the estimate (2.31) we obtain

Ht — ngAfrﬁg;t“ng;s(‘/s)dSHWTaéB;Q’Y = Sl(lp Ht = fO T,85U, tEA'rs it SBE S(VS)dSH«//a,B;Zw
’ 0,1

= Ssup Ht = fOEt € S(A‘r,s;u s dSHWQ B2+ < sup Ht = fO ;s A‘r,s;u,s s)dSHya,ﬂ;zw
u€(0,1] u€(0,1]
<C sup [[s— ArcusVill5asn —C”S’—)V”Wag-y
ue(0,1]

The first and the last equality above follow from the definition of the norm | Hch siv. The
second equality above follows from the identity (2.37). The first bound above follows from the
estimate (2.38). Finally, to prove the second bound above we used the estimate (2.31) with
the operator II-4 omitted. Since the presence of the operator Il in the estimate (2.31) is
crucial the above reasoning is of course not correct. However, a more complicated argument
not ignoring the presence of the operator Il-, in the estimate (2.31) allows to establish
rigorously the desired bound (2.36).

We are ready to define the complete metric space in which we will solve the system of
equations (2.24), (2.28), (2.20), (2.21), (2.22). Let us first introduce the Banach space of
tuples

X. = (o, 70,20, WL) € C((0,1],C) x C((0,1],C) x C((0,1],C) x #1780 = 2, .
equipped with the norm

lge| + sup A7 Ut |r 4+ sup AP
t€(0 1] te(0,1] te(0,1]

where K1, ko, k3 € (0,1) are certain small parameters. Next, for 7, € [0,1] we define the
complete metric space

Y, . ={X.e 2,

=Imr; =Imz; =0, Aeve gt > A"}

and a map
Dred X Xy et(Xe) 1= (8ret(Xo) Tr et (Xe), 2t (XL), W et (XL)), t € (0,1],

such that a fixed point of X ... coincides with a solution of the system of equations (2.24),
(2.28), (2.20), (2.21), (2.22). In particular, for all 7, € [0,1] it holds g, .1(X.) = 1/A
and rr..1(X.) = 0. We prove that there exists A, € (0, 1] such that for all A € (0, A,] and
T,€ € [0,1] the map X, ... : % . — %, . is well-defined and is a contraction. We denote by
X7.co the fixed point of X, .... We omit 7 and € if 7 = 0 and € = 0. In order to establish
convergence of the Schwinger functions as 7,¢ N\, 0 we have to control X. — X, .... To this
end, we introduce a certain norm |[[[| ;= in 2°U 2% . weaker than |[«[[2 V ||+| 2. and prove
that

li Xe—Xrcellge =0. 2.
TéIQOH el . 0 (2.39)
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The norm ||(g., 7., 2., W.)|| 5= _ is defined in terms of a norm [|W.
similar to the norm [|[W.||,232-s0x but involves a different weight. The use of a different
weight having some decay at infinity is crucial for the existence of the infinite volume limit

o 2:3:2— 80k that has a form
T,E

7 N\ 0. Let us also mention that the norm [[[|,;2s2-s0 is stronger than a certain norm
l|*]| 72.3:2—s0. independent of 7,e € (0,1] whose definition is very similar to the definition of
the norm |[[¢]|42,3:2-s0« but involves a different weight.

Finally, let us discuss the convergence of the Schwinger functions as 7, N\, 0. To this
end, first recall that the fixed point X; ... = (greie, 'rei0s 21,000, Wr o) Of the map X, ... is
related to a solution Vi oo = U(1/gr ci0, Tre505 2r,050) + Wr oo of the flow equation (2.11) and
View = (V207 )men, acam oeem is related by Egs. (2.6), (2.7) and (2.9) to a solution U ...
of the flow equation (2.5). We conclude that the functional U ., is an effective potential at
the scale t € (0, 1], that is U, ., satisfies Eq. (2.3), and U ,;=1 is related by Eq. (2.4) to the
generating functional of the Schwinger functions. The convergence of the Schwinger functions
as 7, \, 0 follows now from the existence of the limit (2.39).

Lemma 2.4. For all p,o € R and n € (0,1) there exists C' € (0,00) such that the following
statements are true for all X € (0,1] and ¢ € (0,1].

(A) If p > 0 and o > 0, then fot)\g’sgflds < Nte/p.

(B) If p> 0 and 0 > 0, then [} A0 s~ (1 — s/t)""ds < O\ 2.

(C) If p>0 and 0 < —Pa2p A, then ftl A se~lds < O N te.

(D) If p > 0, then [; Not! s~ ds < O\,

(E) If p< 0, then [ Mt s~ ds < C ..

Remark 2.5. Recall that A\; and §2 were introduced in Def. 2.2.

Proof. For p € [0,00) and g € (0,00) we have

t t
/ )\gsgfldsg)\f/ s ds = Mt2/p
0 0

as well as

1

t t
/ N 5@ (1 —s/t)ds < /\tp/ SO (1 —s/t)"Tds < M) tg/ 5971 (1 —5)""ds.

0 0 0

This proves the bounds (A) and (B). To prove the bound (C) we use the fact that for p € [0, 00)
and g € (—o0, —f32 p A) the following estimates

1 1
/ 2T ds < (—g—ﬂmrl/ (—0— B pAs) A2 s=2=1 ds
t t

1
< (—g—mA)*/ Du(— X 52)ds < N t2)(—g — o p )
t
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hold true. The bound (D) is a consequence of the equalities

t t
[ertstas=at [ xtan = 36
0 0

valid for p € (0,00) and the bound (E) is a consequence of the estimates

1 1
/ A s ds = 651/ AT S XY/ (=ep)
f t

valid for p € (—00,0). This finishes the proof. O

The rest of this article is organised as follows. In Sec. 3 we define the spaces of distributions
and functionals on a torus and introduce the notation used in the paper. Sec. 4 contains the
definition of the Berezin integral and the Grassmann measure jir . of the Gross-Neveu model
with cutoffs. In Sec. 5 we define the scale decomposition G ..; of the propagator G, . and
discuss its properties. In Sec. 6 we introduce the filtered non-commutative probability space
(.7 ,E) of the spacetime white noise ¢ and define the conditional expected value E; as well
as the scale decomposition of the free field ¥, ;. In Sec. 7 we present the equation for an
effective potential and examine its relation with the Polchinski equation. In Sec. 8 we discuss
the symmetries of the Gross-Neveu model. In Sec. 9 we define the weights. Sec. 10 contains
the definitions of the spaces ¥ 7, ¥ *87, 7/707‘5”6 7 of kernels and functionals in infinite volume.
In Sec. 11 we introduce the decomposition of kernels into the local part and the remainder
and discuss its properties. In Sec. 12 we establish bounds for the maps A ..; s and B.;. In
Sec. 13 we introduce the space 2. . and the map X, . and prove that the map X, . is a
contraction. In Sec. 14 we prove that the fixed point of the map X . yields a solution of the
Polchinski equation. In Sec. 15 we show that the effective potential at unit scale is directly
related to the generating functional of the Schwinger functions and prove Theorem 1.1 stated
in the introduction. The core of the proof of the main result is contained in Sec. 13, 14 and 15.

3 Distributions and functionals on torus

In this section we introduce the basic notation we use throughout the paper. In particular,
we define the spaces of distributions and functionals on a torus.

Definition 3.1. For m € N, we denote by . (R?*™) and .#/(R®*™) the space of Schwartz
functions and distributions, respectively. We denote by (V,¢) € C the standard paring
between a distribution V € .%/(R*™) and a test function ¢ € .#(R*™). By % we mean the
convolution in .#/(R?™). We use the following convention for the Fourier transform

ENE = [, (z)e de,  fla) = W /R2m (Ff)(p) e dp.
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Definition 3.2. Let 7 € (0,1]. We define T2 := (R/77!Z)%. Occasionally, we identify T?
with the set (—1/(27),1/(27))*> C R% For m € N; we denote by .#/(T2™) the subspace
of .#/(R?™) consisting of distributions that are 1/7 periodic. Given ¢ € L*(R?) we define
P.p € L1(T2) by the equality

Prpo= Y ¢(s+n/7).
nez?

For V € &/ (T2™) and ¢ € C>°(T2™) we write
(V,¢)r == (V.x$™9¢) € C,

where x, € C>°(R?) is such that P,x, = 1. By *, we mean the convolution in .%/(T2™). We
use the following convention for the Fourier transform

E-N):= [ fla)e ™ de,  fl@)=7" 3 (F.f)p)eP" dp.

2m
T2m pE(2mTZ)?2™

Remark 3.3. Using periodicity of V € .%/(T2™) and ¢ € C°°(T2™) one shows that the bracket
(V, @)+ does not depend on the choice of x.

Remark 3.4. Note that G * ¢ =P,G x, ¢ € C(T?) for all 7 € (0,1], G € L*(R?), ¢ € C(T?).
Remark 3.5. For 7 = 0 we identify T2 with R2.

Definition 3.6. Let K be a finite set and let .7 be a topological space. We denote by 7%
the set of maps K — 7. We identity elements V of 7% with tuples (V¥)rex and equip 7
with the product topology.

Definition 3.7. Fix 7 € (0, 1] and a finite set K. For m € N, U = (U*)pexm € .&/(T2™)K"
and ¢ = (PF)pexm € C®(TZ™X" we write (U, ), 1= >, (U*,¢")-. For m,n € Ny,
@ € C®(T2™)K™ and ¢ € C°°(T2")K" we define ¢ ® 1 € C°(TZ™ K™ Ly the equality

(p@y)FD = ok @yl keK™, | e K"
For G € L*(R2)¥ and ¢ € C°°(T2)¥ we define G * ¢ € C°°(T2)¥ by the equality

(G*qﬁ)k = ZGW @l

leK

We define *. in an analogous way.

Definition 3.8. Let 7 € (0,1], m € N, and K be a finite set. We say that U € ./(T2™)K"
is antisymmetric iff

<U7 1. ® (pm>7' = (_1)Sgn(ﬂ') <Ua Pr(1) ®...0 (pw(m)>7

for all ¢1,...,¢m € C(T2)¥ and all permutations 7 € P,.
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Definition 3.9 (Grassmann algebra). Let E be a vector space over C. By definition
the Grassmann algebra ¥(FE) is the exterior algebra of E. We define a unique grading
G =9t Y~ such that £ C ¥4~ and such that the exterior product satisfies the condi-
tions ¥*9* C ¥t and ¥TYT C 4—. We say that an algebra o is a Grassmann algebra if
o/ = 4 (FE) for some vector space E. A Grassmann algebra ¢ (F) is finite/infinite dimensional
if E is finite/infinite dimensional.

Remark 3.10. In what follows, the symbol ®,1, denotes the algebraic tensor product of vector
spaces (the linear span of the set of simple tensors).

Definition 3.11. Let 7 € (0,1], ¢4 be a Grassmann algebra and K be a finite set. For

m e N, U e Z(T?)K" 4,9 and ¢ € C(T?™)K" ®,, 9 we define (U, ¢), € 4 by the
equality

1 k 1
(U,0)r = (Uisj)r gihj €%, U= U®g, ¢=Y 6 h,
i=1j=1 i=1 i=1
for all k,1 € Ny, Uy,..., U, € L (T?™)X"  gi,....gr € G and ¢,...,¢ € C®(T2m)K"
hi,...,hy €¥9. Form,n € Ny and ¢ € C’OO(']E")Kn RalgY, Y € COO(TEm)Km Qalg 4 we define
oY E COO('H‘E(n+m))Kn+m Ralg 4 by the equality

k l k l
pRY=D D (pi®Y) @gihy;, =) wi®g, Y=y ¥;0h;,
i j =1 Jj=1

1=1 j=1

for all k,1 € Ny, @1,...,00 € C(T2)E" g1,...,gr € Z and ¥y, ..., € C®(T2m)K",
hi,....,h €Y.

Remark 3.12. The bracket (U, ¢), and the tensor product ¢ ® 1 do not depend on the choice
of a representations of U, ¢, ¢, 1) as sums of simple tensors.

Remark 3.13. Let m € Ny and E be a vector space of dimension grater or equal to m.
An antisymmetric distribution U € .&/(T2™)¥" is uniquely determined by the map

C®(T2)* ®ag 9™ 2 o> (U, %™, € 9, (3.1)

where & := 4(E). Indeed, given 1, ..., ¢, € C(T2)* we choose ¢ = 7", 1; ® g;, where
J1s--+,gm € 4 are such that g = g1...gm # 0. Then m! (U, 1 @...@Um)r @ g = (U, &™) .
Note also that if ¢ is an infinite-dimensional Grassmann algebra, then for every m € Ny an
antisymmetric distribution U € .%/(T?™)X™ is uniquely determined by the map (3.1).

Definition 3.14. Let 7 € (0,1] and K be a finite set. We call a functional a collection
U = (U™)men, such that U° € C and U™ € .7/ (T?™)K™ is antisymmetric for m € Ny. We
denote the vector space of functionals by

H(CH(TH) cCx X (T

meN_L
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and endow it with the product topology. Let ¢4 be an infinite-dimensional Grassmann algebra.
For U € 4 (C*(T2)X) and ¢ € C°(T2)X ®,1, 4~ we define

U(g)=U"+ Y (U™ ¢, €. (3.2)
meN

For U € A4 (C>(T2)¥), an entire function f € C — C and ¢ € C®(T2)X ®,1, 9~ we define
f(U(#)) by

fU()) :== Z anU(9)", f(z)= Z anz", 2€C, a, eC, neN.

n€Np n€No
For k € N, U € A(C°°(T2)¥) and ¢ € C(T2)X @41; 4~ the antisymmetric distribution
k
DEU(¢) € ' (T2F)S ®ag 4
is uniquely defined by the equality

(DEU(6), 6%y, = 0LV () + )],
for all ¢, € C(T2)X @41, Y.

Remark 3.15. The assumption that ¢ is an infinite-dimensional Grassmann algebra is only
needed to ensure that for all £k € Ny the antisymmetric distribution D’;U (¢) is uniquely
defined, cf. Remark 3.13. Moreover, observe that given U = (U™)en, € A (C(T2)X) for
all k € Ny it holds D’;U(q§)|¢:0 =K\ U".

Remark 3.16. Note that for all ¢ € C°(T2)X ®,, 9~ there are only finitely many non-zero
terms in the series on the RHS of Eq. (3.2) and in the series defining f(U(¢)). Indeed, if
o =31 0:®g € C®T2) @ay ¥, then ¢ = 0 and U(¢)™ = 0 for m > n. Note
that the unique functional W = (W™),,en, € A (C*(T2)¥) such that f(U(¢)) = W(¢) for
¢ € C°(T2)X R4, 9~ is defined by the equations W := Df;f(U(qb))|¢:0 for all k € N.
Remark 3.17. As an example, let us consider a functional U € A4 (C°°(T2)) of the form
U(¢) = ¢(x1)p(x2) for some fixed z1, 29 € R2. Then DyU(¢) = —¢(22)ds, + ¢(21)d, and
D2U(¢) = 0y @ Oz, — 02y @ 0y, where &, € /(T2) is the periodization of the Dirac delta
at € R%  Furthermore, we have (DyU(¢), %), = ¥(x1)¢(xa) + ¢(z1)Y(z2) as well as
<D3§U(¢)a w®2>‘r = 2¢($1)¢($2)

4 Gross-Neveu model with cutoffs

In this section we introduce the Grassmann algebra of the Gross-Neveu model and use it to
define the Berezin integral and the Grassmann interacting measure i, . of the Gross-Neveu
model with cutoffs 7,¢ € (0,1]. We also state the conditions for the bump function 9. used
to implement the UV cutoff.
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Definition 4.1. Let F:= {1,..., N} x{1,2}, G := {—, +} xF, A := {0,1,2}2. Wecall¢c € F
and o € G spinor indices and a € A a spatial multi-index.

Definition 4.2. The so-called gamma matrices are defined by

1

0 1 0 —i .
wi= (1 o) m= () D= ()P el

Remark 4.3. Note that 1, y2 are complex 2 x 2 matrices and I'1, 'y are complex block diagonal
2N x 2N matrices. It holds

Bre=-1,  Ymr=1,  rrr=1x4,

where A" denotes the transposition of the matrix A. The matrices I'1, 'y satisfy the same
identities.

Definition 4.4. For ¢ = (¢°)cer € CF and ¢ = (¢°)cer € CF we write ¢ -9 = YR OV

Definition 4.5. Let 7,¢ € (0,1], w(p) := (|p|> + D2, A, . = {p € (277Z)?|cw(p) < 4}
and Cr. = (Span{z — eP|p € A, .})® C C*(T?)®. The Grassmann algebra of the
Gross-Neveu model ¢, . is the unital complex algebra whose generators

{(F-7)(p) | p € Are} (4.1)

satisfy the conditions

(Fr7) (p1) (Fr97%) (p2) + (Fr97%) (p2) (F-47L) (p1) = 0

for all p1,p2 € Ar - and 01,02 € G. We define a unique grading ¢, . = g;fg D g;,a such that
(Fy7 )(p) € 9. for all p € A ., 0 € G and such that the product in &; . satisfies the
conditions ¥ ¢* C &1 and 9147 C 4 .. Moreover, we define the free Grassmann field

VYre = (7/13,5)666 €Cre® gr_,s ce (T3>G ® gr_,s

by the following equality

7o) =72 Y (Fg ) (p)e ™ dp (4.2)

PEAL e
for all z € R? and 0 € G. For ¢ € F we set 7/_’55(5”) =75 () and Y5 _(x) = P (x).

Remark 4.6. For all 7, e € (0, 1] it holds ¢, . = 9(E- ), where the vector space F . coincides
with the span of the set (4.1). In particular, ¢, . is a finite-dimensional Grassmann algebra
in the sense of Def. 3.9.

Remark 4.7. Observe that for every 7,¢ € (0,1] it holds 2" = 0 for all m € N, provided
m > |G| |Ar |, where |S| denotes the number of elements of a set S.
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Definition 4.8. Let 7,e € (0,1]. The Berezin integral is a linear map

Gre s g /gdwm eC

such that
Jodvie=1. g= T TIE-3200) €.0300), (4.3)
PEA; - cEF

and such that it vanishes on any other monomial in the generators of ¥, ..

Remark 4.9. Note that the order in the product in Eq. (4.3) is unimportant because the
elements of the set {(F 1% ,)(p) (Fr¢5.)(p) |p € Are, ¢ € F} commute. For a discussion of

T,E

properties of the Berezin integral see for example [CSS13, Appendix A].

Remark 4.10. Let ¢,% be Grassmann algebras. We denote by ¥ ®as % the algebraic
graded tensor product of graded algebras ¢; and %. Note that ¥ ®as % is a Grassmann
algebra. Given g1 € ¢4 and g2 € % we define g1 + g2 := g1 ® 1 + 1 ® g2 € Y1 Ralg %o.

Remark 4.11. Let ¢ be a Grassmann algebra. We define the Berezin integral on ¥, . ®a1; 4
as a linear map

g‘r,e ®algg BN s /gdw‘r,e €Y

[ v, = ( / gdwm) h

Lemma 4.12. Let 7,¢ € (0,1] and & be a Grassmann algebra. For all F € A (C>(T?)¥)
and ¢ € Cr. @9~ C C=(T2)® @ 9~ it holds

such that

forallge ¥, . and h € 9.

/ F(tbre + ¢) dipre = / F(tbre) dipr.c,

where Yre + ¢ € C*(T2)° @ (4. ©Y)".

Proof. The lemma follows from the invariance under translation of the Berezin integral,
cf. [CSS13, Proposition A.12]. O

Definition 4.13. Let {, € (4/5,1) and 9 € C*°(R) be a function belonging to the Gevrey
class of order 1/¢, such that ¥(t) = 1 for t € (—o0,1/2] and J(t) = 0 for ¢ € [1,00). For
e € (0,1] we define 9. € C=(R?) by Fi.(p) = 9(2cw(p))*/?.

Remark 4.14. Recall that the class of Gevrey functions of order s € [1,00) on R? consists of
¢ € C(R%) such that for some C € (0, 00) the bound

sup [0%¢(p)| < 1o (al)®
pER

is satisfied for all a € N¢.
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Remark 4.15. For an explicit construction of a function ¢ satisfying the conditions stated in
the above definition see [GMR21, App. A.1].

Definition 4.16. The free action functional A, € A4 (C*(T2)®) and the interaction term
Ure = Ui(gre,rre) € N (C®(T2)®) with cutoffs 7,& € (0,1] are defined uniquely by
Egs. (1.1) and (1.2) for all ¢ = (¢, ¢) € C®°(T2)® @, ¥~ = (C°(T2)F x C°(T2)F) ®ag ¥,
where ¢ is an infinite-dimensional Grassmann algebra. The free and interacting measures
with cutoffs 7, e € (0, 1] are defined with the use of the Berezin integral introduced in Def. 4.8

by the equations
_ f F(ﬂa * w‘r,a‘) eXp(_AT ("p‘r,a‘))) dwT,E

f exp(*AT (7/)75)) dipr e

vre(F):

and
_ f F(ﬂs * 1/17,5) eXp(fA'r (1/17,5) + U'r,e(ﬂs * 1/17,5)) d"/)r,s

f eXP(*Ar ("/)‘r,s) + U‘r,s (196 * "/)‘r,s)) dw'r,s '
respectively, for all functionals F' € A4/ (C>(T2)®), where ¢, . € C>°(T?)¢ @ ¢ is defined
by Eq. (4.2).

Hr,e (F) :

Remark 4.17. Note that by [CSS13, Proposition A.14] it holds
/eXP(*Ar(i/fr,e))di/fr,e = [T det((—=2 ) wer) = [[ (DY @+ p»HN #0,
peAr,s PEAr,s

where =152 (p) 1= 1502 — Zje{l 2} iI‘;I’ij for ¢1,62 € F. As a result, the free field measure
is well-defined for all 7, € (0,1]. The interacting measure with cutoffs 7, € (0, 1] is well-
defined provided

f eXp(_AT (1/]7',8) + Ur,a(ﬂa * wr,a)) dwT,E
fexp(—A.,- (Vr,e)) dipr e

This is proved in Remark 14.4 for a specific choice of parameters g, ., rr . fixed as in Theo-

= vre(exp(Ure(e))) # 0.

rem 1.1.

5 Scale decomposition of propagator

In this section we define the scale decomposition G, ..; of the propagator G .. We also
introduce auxiliary propagators Gif’g that will be used in Sec. 6 to construct the scale
decomposition ¥, ..; of the free field that satisfies the conditions discussed in Sec. 2.

Definition 5.1. For ¢;,¢0 € F and p € R? let Evs2(p) = 1002 — 3
w(p) := (|p|*> + 1)/2. The free field covariance

ier1.2) ir5**p/ and

G =(G"),eqm € L' (RA)
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is defined by

G*(2) = Gz [ (PG w)e™ dp,

where

(FGTsot2)(p) :=0,  (FGT72)(p) := 2 (p)/(w(p))?,
(BG9)(p) =0, (FG™5)(p) = (PG %)(—p)

for all ¢1,¢2 € F. For g,t € [0,1] we define
G = (G7)secs, Gar = (GZy)rect, Cew = (CZ)rece € LR,
by the equalities
(FG2)(p) :=9(2ew(p)) (FG7)(p), (FGZ,)(p) :=0(tw(p)) (FGI)(p), GZ,:= G
For e € [0,1], t € (0,1] and o € G2, 5, € F we define Gif’g € L'(R?), by the equalities
FGLF)p) = (PG5 p),  (FGLE)(p) = 0(=/20) 9t (p) /2) 155,

For 7 € (0,1] the periodizations of the kernels G7,G7,G?,,, G, Gif’i are defined with the

use of the operator P, introduced in Def. 3.2 and are denoted by GZ,G9 ., G2 .., G% .., G55

7,6 YTty Y Tet) Y Tet o

respectively. We use the symbols G7, G5 to denote G2 G:f’<~ with € = 0.

gty
Remark 5.2. The kernels introduced in the above definition have the following properties.
A) If t € (0,¢], then ¥(2ew(p))d(tw(p)) = ¥(2ew(p)) and G, = G, Gg;t =0.
B) If t € (0,&/2], then Gif’i = 0. Moreover, supp FTGf,j;f CA;.forallte(0,1]
C) If t € [4¢, 1], then 9(2ew(p))d(tw(p)) = (tw(p)) and GZ, = G7, G = G,
D) If t € (0,1/2), then J(tw(0)) = 0 and [, GZ, = 0.
(E) Since 9(g/2t) 9(tw(p)/2) = 1 on the support of p — 9(2ew(p)) I(tw(p)), it holds

o O

36, =, +36,¢ =3¢, +36, =S +36,¢ —3$,¢
GE;% = Zée]F Ga;;ﬁ ok GE;% ’ ’ GT,:&‘;’t = ZQE]F G‘r,;;‘;;f *r GT,:&‘;% .

Note also that G;f’_’i(x) = —G;;G’Jr’g(—x) as well as G;fﬁ’f =0 and G;,’f;_’g =0.
(F) Since G.;; =0 it holds G. = — f: Geidt and G — G, = — 04E(Gt — Goy)dt.

Lemma 5.3. For all a € N3 there exist § € (0,1) and C € (0,00) such that for all ¢ € [0, 1],
t € (0,1], s1,52 € F and x € R? it holds

exp(§t~% [2|%) |0°GLi (x)| < C'¢lal=2,

where ¢, € (4/5,1) is the parameter introduced in Def. 4.13.
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Proof. We first note the following identities

{lal=1p] . ,
2 OGLT () = e /R 9 (p" D(2ew(p)) O(tw(p)) E°2 (p)/w(p)) e”tdp (5.1
and
{lal=1p] ,
POG (x) = o /R K (pa 9(e/2t) 9(tw(p)/2) 1%2) &P dp. (5.2)

Note that the composition of a Gevrey function of order s € [1,00) with an analytic function
is a Gevrey function of order s € [1,00), cf. [Rod93, Prop. 1.4.6]. Consequently, since the
function ¥ is flat in the vicinity of the origin the function

R x R*3 (e,p) = #((e* +p°)"/%) € R

belongs to the Gevrey class of order 1/(,. As a result, there exists C' € (0,00) such that for
all € € [0,1] and a € NZ it holds

sup |9y 9(ew(p))| = el sup l029((e? + p2)V?)| < otHlal (gt e glal,
pER pER?

By a similar argument, there exists C' € (0, 00) such that for all ¢ € [0,1] and a € NZ it holds

sup [0 0(tw(p)/2)| = t1* sup [G59((¢2 + p*)1/2/2)] < Ol (at) /o tlel,

pERC peRI
sup |6§19(tw(p))| = tlol sup |8;;19((t2 + pH)V )| < ctHlal ()6 lal,
pER? pER?

Since the function p — Z°2(p)/w(p) € R is analytic in a strip of size one around the real
axis there exists C' € (0,00) such that for all @ € N2 it holds

sup |95 (212 (p) /w(p))| < C*F1elal.
peERY

Noting that ¥(2ew(p)) d(tw(p)) vanishes unless tw(p) € (1/2,1) and ¢t > & and ¥(tw(p)/2) van-
ishes unless tw(p) € [0, 2] and using the general Leibniz rule we show there exists C' € (0, 00)
such that for all € € [0,1], ¢t € (0,1] it holds

0p (1 9(220(p) Dt (p) % (p) f(p) ) < CH1 )/ 17191 11 5 (100(p))

and
Y (p" V(e/2t) V(tw(p)/2) 1°0°2) < CHHIL (p1) M/ P11l 116 oy (to (p) ).

Using Egs. (5.1) and (5.2) we obtain that there exists C' € (0, 00) such that for all € € [0, 1],
t € (0,1] and k € Ny it holds

(|£L'|/t)k |aaG;|:;£<1,<2(z)| < ClJrk (k!)l/gb ti‘a‘72/2
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We conclude that there exists C' € [e,00) such that for all € € [0,1], ¢ € (0,1] and | € N4 it
holds
(|.T|/t)<bl |aaGZE;£§1,§z (.T)| < Cl—i—k (k/,!)ucb t—\a\—2/2 < Cl+3l/Cb I t—|a|—2/2

where k = [(,1] < 1A (¢1+1). The second of the above bounds follows from the estimates
(ENYG < ER/G < [H1/G < /6] This implies that the bound stated in the lemma holds
true for 6 = C=3/% /2. O

6 Scale decomposition of free field and coupling

In this section we introduce the scale decomposition of the free field ¥ .., satisfying properties
listed in Sec. 2. The scale decomposition of the free field is defined in the non-commutative
probability space (%, E) of the fermionic spacetime white noise {. We also introduce a
filtration (.%)sep,1] in # as well as the conditional expected value E; that will play an
essential role in the proof of the estimates stated in Sec. 12.

Definition 6.1. Let b be a Hilbert space. We denote by I',(h) the antisymmetric Fock space
built on h. We denote by IN the number operator and by P := (—1)N the parity operator.

Definition 6.2. Let 5 = I',(L?([0,1] x R? x F))®2. The creation and annihilation operators
in I, (L%([0,1] x R? x F)) are denoted by a*(f,<) and a(f,s), where f € L?([0,1] x R?) and
¢ € F. The vacuum state in 7 is denoted by . Let # := () be the Banach algebra of
bounded operators on . The fermionic white noise is defined by

£ (f) = / f(s,2) &% (ds, dz) := (P @ a™(f,¢) —a(f%,¢) @ 1),
[0,1] x R2

E7°(f) E/ fs,2) €7%(ds, dz) = (a* (f.¢) @ L+ P @ a(f,<))
[0,1]xR2

for all f € L%([0,1] x R?), ¢ € F, where f¢ denotes the complex conjugate of the func-
tion f. We define .# to be the unital Banach subalgebra of % generated by &5<(f),
where f € L2([0,1] x R?), ¢ € F. We define a unique grading .# = .#+ @& .%~ such that
€5<(f) € #~ and such that the product in .Z satisfies the conditions .Z*.#* C .#* and
FEFFT C F~. Forse|0,1]and t € [s, 1] we define .Z;; to be the unital Banach subalgebra
of .7 generated by ¢+<(f), where f € L?([0,1] x R?), ¢ € F, supp f C [s,t] x R%. For t € [0,1]
we we set Fy 1= Fq 4.

Remark 6.3. We note that that .% is an infinite-dimensional Grassmann algebra. One shows
that elements of .# ~ anti-commute with each other and elements of .# T commute with all
elements of ..

Remark 6.4. It what follows, the following bound

2
HdeF §i<(f<)H33 < 2de]}?‘ ||f<||2L2([071]X]R2)
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valid for all f = (f*).er € L?([0,1] x R?)F will play an important role. The above bounds is
an immediate consequence of the identity

12 cer el )l = | Xoger @™ (f*5 )2 = Xcer I1F° 122 (0,11 xR2)

which follows easily from the anti-commutation relations of the fermionic creation and anni-
hilation operators, for details see for example [BR97, Proposition 5.2.2].

Definition 6.5 (Expected value). We define a continuous linear functional E : .# — C by
the equality EF := (Q, FQ) for all F € %

Remark 6.6. Note that it holds

E(E () 7)) = £lec (f, Prrqonxrz),  EBET(F)EES(f) =0
for all f, f € L2([0,1] x R?), ¢, € F.

Definition 6.7 (Conditional expected value). A family of continuous linear functionals
(Et 1 . — F)ie0,1] is called the conditional expected value if

F — Fy for all t € [0, 1],

E,F =EF for allt € [0,1] and F € F 4,

) E
)

2) E; =EE;: % — % for s€[0,1] and t € [s, 1],

3) E.(GFH)=GE{(F)H for allt € [0,1] and G, H € %, F € F,
)

(4) |E+F ||z < ||F||g for all t € [0,1] and F € .Z.
Remark 6.8. For the construction of the conditional expected value see [DFG22, Appendix A].
Remark 6.9. Note that the condition (1) implies in particular that E; = E.

Remark 6.10. Let ¢ be a Grassmann algebra. We define . ®a15 4 to be the algebraic
graded tensor product of graded algebras . and 4. We introduce the family of functionals
(Bt 1 F @ag Y — Ft Qatg 9)teo,1) defined uniquely by the equality Ei(F @ g) = (E:F) ® g
for all F € .Z#, g € 4 and t € [0,1]. The functional E : .7 @, ¥ — ¢ is defined in an
analogous way.

Definition 6.11. Let 7,e € [0,1], s € [0,1] and t € [s,1]. We define operator-valued
distributions

Ureit,s = (]pT_a,t,s?]p:,_a;t,s) = (@T,E;tysv'*—p'r,atys) = (Wg,s;t,s)UGG € y’(Ti, s N 357)([}

by the equation

W ) =S /[ G W e
ZEF s, t]x T2

for all ¢ € F and ¢ € .7 (R?). We call ¥, . := ¥, .1 o the free field with IR cutoff 7 € [0, 1]
and UV cutoff € € [0, 1]. We also define ¥; .5 := ¥, .1 ;. We omit 7 and € if 7 = 0 and € = 0.
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Remark 6.12. Observe that by Remark 5.2 (B) for 7,e € (0, 1] it holds

wo . 2 Z FWU 1px.

PEA; -

In particular, #¥™ = 0 for all m € Ny provided m > |G| |A; .|, where |S| denotes the number
of elements of a set S.

Remark 6.13. Let ¢ be a Grassmann algebra. For ¢ € C™(T2)¢ ®,1, 4 we define the paring
(Ur eit,s, O)r € F Qalg 9 by the equality

n

<W‘r,8;t,sa ¢>T = Z(Wr,a;t,sa ¢z>7’ & 9i, ¢ = Z ¢z X i,
i=1 i=1
for all n € Ny, ¢1,...,0, € C°(T2)® and g1,...,9, € . We identify A € .Z and g € ¢
with
A®1€y®a]gg and ]l®g€:gz®algg,

respectively, and use these identifications to make sense of A+ g, Ag € F ®a1p 9.

Remark 6.14. Let 7, € [0,1], s € [0,1] and ¢ € [s,1] be such that ¢ > 0 or s > 0. Using
Remark 6.4, the fact that G:f’g =0 for ¢ € (0,£/2] by Remark 5.2 (B) and Lemma 5.3 one
shows that ¥, .., s € C°(T2,.%, 5)®. Note that it holds E¥.

‘rst( ):O and
EW7L, () V7% (y) = G257 (x — ), (6.1)

where G, . € C"O(RQ)G2 was introduced in Def. 5.1. Using the equality ¥, ¢y s = Uy c.s—Wr oy
one shows that it holds E¥?_, (z) =0 and

T,65t,8

B0 s (@) U720 (1) = BO(P7L(2) = U754 (2)) (U72(y) — ¥724(v))

T,65t,s T,65t,s T,E;8 7,65t T,E;8 7,65t
01,02 01,02
(Gras o GT,E;t )(:ny)

The expected values of products of more than two fields ¥, ..+ s can be expressed in terms of
the covariance with the use of the generating functional

COO(TE)G ®@alg 9™ 2 ¢ Eexp((Ureits, §)r) = exp(— (@, (Ge;s — Geyt) * 9)-/2) €9, (6.2)

where ¢ is an infinite-dimensional Grassmann algebra. In order to prove (6.2) one decomposes
U, ¢+, into a sum of two terms LT/T( 8)t s involving only the creation and annihilation operators,

applies the Baker—Campbell-Hausdorff formula
v — Lp(JF) Lp(*) W(JF =) 92
€Xp(< T,8;t,8) ¢>T) eXp(( T,e5t,89 ¢>T) eXp(( T,6;5t,8? ¢>T) eXp( [( T,6;5t,8? ¢>T’ < T,65t,8? ¢> ]/ )

where [e, o] denotes the commutator, and uses the fact that the vacuum state  belongs to

)

the intersection of the kernels of the annihilation operators.
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Lemma 6.15. Let 7,¢ € (0,1]. For all F € A (C>(T2)®) it holds

_ S FWe * ¢re) exp(—=Ar (¥r,e)) dipr e
B fexp(fAT(w'r,e)) dw'r,s

Remark 6.16. Note that in particular it holds

vr(F)

= EF(V,.).

/ B @02 (y) v e (i) = GIL (& — ).

Proof. In view of Remarks 4.7 and 6.12 it suffices to prove the stated equality for func-
tionals F' = (F™)pen, € A (C™(T2)®) such that F™ # 0 only for finitely many m € Nj.
In consequence, it is enough to prove the stated equality for functionals F' = F;, for all
n € C°(T2)€ @a1g 4, where the functional F,, € A4 (C°°(T2)€) is defined by the equality

F,(9) := exp((¢,n).) for all ¢ € C°°(T2)¢ ®a, ¥~ By [CSS13, Theorem A.16] it holds

Lol oo s — exp(c (G e 2,

where F.G.(p) := 1A, . (p) FG(p). Note that

Fn(ﬂs * ’l/)T,E> = Fﬂg*n(i/}T,s)'
Using the fact that supp F.P.9¥. C A, . we show that
198*67,5*195 =0 %G 0. =G,

and

f Fn(ﬂe * wr,a) GXP(—ATWT,&)) dwTaa
f eXp(_A‘r (’lp‘r,a‘)) dwr,a
On the other hand,

= eXp(_<77a GT,E *r 77)7'/2)'

EFU(WT,E) = exp(—(n, GT,E *r 77>T/2)
by Eq. (6.2) and Remark 3.4. This finishes the proof. O

Lemma 6.17. Let 7, € (0,1], s € [0,1] and t € [s,1]. For all F € A (C>(T2)®) and
¢ € C®(T2)C @14 G~ it holds

EF(W‘F,E;t,s +¢) = (exp(DT75;t,s/2)F)(¢),

where the map D, ..+ s is defined by the equation

(Drcit, s F')(¢) = <D2F(¢)v (Grieis — Gret)(o—*))r

for all F € A (C®(T2)®) and ¢ € C=(T?)C R4, 9.
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Proof. By the argument from the proof of Lemma 6.15 it suffices to prove the statement for all
functionals of the form F' = F,, for some n € C*(T2)® ®,, %, where F,(¢) := exp({¢,7),)
for all ¢ € C°(T?2)C ®a, 4. By direct computation we obtain

D'r,s;t,an = <777 (G‘r,s;s - GT,E;t) *r 77>'r Fn-

Since (1, (Gre.s — Gren) %+ )7 € YT we arrive at

exp(Drt,s/2) Fy = Z ﬁDr,E;t,an = Z o (0, (Greis = Gree) - m)7 1y
n=0 ’ n=0 ’

= exp(—(n, (GT,E;S - GT at *r 77> /2)

On the other hand,

EE,(Urets + ¢) = BEF)(Uren,s) Fy(9) = exp(— (1, (Greis — Gret) %7 1)1 /2) Fy(9)
by Eq. (6.2) and Remark 3.4. This finishes the proof. O

Definition 6.18. The vector space ¢ consists of continuous functions ¢ : R? — % such
that the following norm

¢l = sup [|o(z)]
TER2

is finite. For ¢ € € we define ||¢||; := ||@ @||«, where w € C>(R?) is defined by the equality
w(z) = (1+ |z[)~/2 for all x € R2.

Lemma 6.19. There exists A\, € (0,1] such that for all X € (0, ], 7, € [0,1], t € (0,1],
s € (0,t] and a € A =1{0,1,2}?, 0 € G it holds

‘rsts

H(g < AR S—l/2—|a|’ Hw(aawtas — 9w

T,5t,s

e < AT XS ATE 5712l

Proof. Suppose that o = (£,¢) for some ¢ € F. By Remark 6.4 we obtain

0%

2 = sup |02, (@))% < 2sup 3 / / 109G (2 — y)|? dy du.

T a,t,s|
r€eR2 r€eR2 ceF

Using Lemma 5.3 and the fact that for all y € T2 = (—1/(27),1/(27))? and n € Z? such that
[n]oe > 2 it holds |y + n/T|oo > |Y|oo + |70 /(27) one shows that

/ 0°GE S (@ *y)IQdy:/ 0G5 ()] dy
T2 T2

< Z/ |6aGi“ (y +n/7)|?dy < Cu=272al,

neNg
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As a result, we conclude that there exists C' € (0, 00) such that for all € € [0,1], t € (0, 1],
s € (0,t] and a € A, o € G it holds

T,65t,8

e < Cs/27lal, (6.3)

Next, we observe that

|oewg, — o"wg

e;t,s

=+, =+,
1% = sup, 1079, % (x) — "Wy, ()12
e

t
<2sup Y [ [ 1006w -y - 06 o - ) dydu
rER2 cer Vs R2

The integrand on the RHS of the above equality vanishes identically if u € [4e,1] by Re-
mark 5.2 (C). As a result, by the bound (6.3) we obtain

lomwg, — 0w,

g < C N ATR s~ /2 lal, (6.4)

Next, note that

- - +, +,
||w(aawg;t,s - aawgs;t,s)”% = Su]}% ’LU(.’L')2 ||aaws;t,§s($) - aaw'r,sft,s(‘r)"g@
xTE
t
<2swp Py [ [ 10062 @ - 9) - 0°6E @ - 0) 1y () dy
z€R? cer Vs R2

where 1p2 is the characteristic function of the set T2 = (—1/(27),1/(27)). Observe that
w(z)? < w(y)? w(x —y)~ 2. Consequently, it holds

sup (o) [ |0°GE o~ y) - 9°GES e — ) 1y () y
z€R? R2

< swp [ 10°GE @ —y) - 0°GEES @ — )y

z€T3

4 osup (@) / 109G (2 — y) — 0°GESS (2 — )| dy
CER\TS, 2 -

T sup / B()? 6 — y)~? |0°GES (x — y)[* dy.
z€R? JR2\T2
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Using the fact that @(x) = (1 + |z|)~'/? we obtain

sup (2)° / 109G (2 — ) — 0°GESS (1 — ) L () dy
r€ER?2 R2

< sup / 109G (1 — y) — 0°GESS (x — )| dy
T2

T,E5U
2
zeT3,

T (2n) / 107G (y) — 9°GESS (y) 2 dy
T2
b7 / ()2 |0°GES (y) dy.
RQ

Since for all z € T3, y € T2 and n € Z? \ {0} it holds |x — y + n/T|ec > |n|oo/(47) by
Lemma 5.3 we obtain that there exist ¢, C' € (0,00) such that for all ¢ € [0,1], u € (0,1] and
a €A, ¢, el it holds

sup sup |9°GESS (v — y) — 0°GESS (x — y)| < Cu? 1 exp(—c/7%)
z€T2_ yeT2 ' Y

This implies the bound

sup |8GG§§15(ZE _ y) _ aaG:t;c,é(x _ y)|2 dy < C y—22lal

T,E;U
zeT2_ JT2 Y
27 T

with a possibly different constant C' € (0, 00). Moreover, by Lemma 5.3 we have
[ o) 2 eGP dy < Cun2,
RZ

Consequently, we obtain

0w, . — 0"WZ _,; o < C7/2s71/27lal, (6.5)
The lemma follows now from the bounds (6.3), (6.4), (6.5). O

7 Effective potential and Polchinski equation

In this section we introduce the notion of an effective potential and prove that a solution of
the mild form of the Polchinski equation (7.3) satisfies the equation for an effective potential.
A solution U, .. of the Polchinski equation will be constructed in Sec. 14 in terms of the
fixed point X ... of the map X ... constructed in Sec. 13. Then by the results of this section
such U, ..; is an effective potential at the scale ¢. Using this fact in Sec. 15 we will show that
U; cit—0 is the generating functional of the connected amputated Schwinger functions.
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Lemma 7.1. Let 7,e € (0,1]. Suppose that Eexp(U; o(¥:.)) # 0. The interacting measure

satisfies the equality
E(F (¥ ) exp(Ure(¥re)))

re(F) = eC

pre(F) Eexp(Ur (¥ .))

for all functionals F € A (C™(T2)%).

Proof. The lemma is a consequence of Def. 4.16 of the measure pr . and Lemma 6.15. O

Definition 7.2. Let 7,¢ € (0,1] and U, . = U,(gre,7rc) € A (C®(T2)®) be defined as
specified in Def. 4.16. We call a functional U, ..; € 4 (C°°(T2)®) an effective potential at
the spatial scale ¢ € [0,1] (of the Gross-Neveu model with the parameters g, o, 7- . € R) if it
satisfies the following equality

exp(Ur c;t(¢)) = Eexp(Ur c(Ureit0 +0) €Y

for all ¢ € C,. ®%~, where C, . = (Span{z +— eP* |pc A, })¢®%™ C C®(T2)* @9~ was
introduced in Def. 4.5 and ¢ is an infinite-dimensional Grassmann algebra.

Remark 7.3. Note that for s <t it holds
exp(Ureis(Ureit,s + ¢)) = Es exp(Urc(Ureir0 + 9))-
Consequently, for s < t an effective potential fulfills the following identity
exp(Ur,;t(9)) = Eexp(Ur ;s (Ur cit,s + ¢))-
Remark 7.4. For all 7, e,t € (0,1] we have
Gret(s—¢) €Cre®Cre C C°(R?* x R?),
where the function G, ..;(¢ — ¢) € C(R? x R?) coincides with the map (z,y) — Gr4(z — y).

Lemma 7.5. Let 7,e € (0,1] and ¢ be an infinite-dimensional Grassmann algebra. Suppose
that the function [0,1] 3 t + U, oy € N (C>(T2)C) satisfies the Polchinski flow equation

%<D¢Ur,a;t(¢)a Ga;t * D¢>U‘r,5;t (¢)>T (71)

with the initial condition Uy c.0(¢) = Ur (@) for all ¢ € C®(T2)C ®u,9~. Then for every
t € [0,1] the functional Uy o.; € N (C®(T2)€) is an effective potential at the spatial scale t.

atUTaa?t((b) = _%<D%¢UT7E;75(¢)’ GT,&;t(‘ - .)>T +

Proof. Let us first observe that for every U € 4 (C>(T?2)®) such that U(¢) € ¥+ for all
¢ € C°(T2)® Ry, 9~ it holds

Dy exp(U(¢)) = exp(U(¢)) DyU(¢) € &' (T2)® Rz G,
D2 exp(U(¢)) = exp(U(¢)) D3U(¢) — exp(U(¢)) (DsU(¢) @ DU (9)) € ' (THE @ty .
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In consequence, the function [0,1] > ¢ = U, .4 € A (C>(T?)®) satisfies the Polchinski flow
equation (7.1) for all ¢ € C°°(T2)€ ®,1, ¥~ if and only if it satisfies the equation

1

O exp(U‘BE;t (¢)) = 2 <D§> eXp(UT,a;t(¢))a Gr,a;t(‘ - ‘))‘r

for all t € (0,1] and ¢ € C(T?2)® ®4,4 9. Note that by Lemma 6.17 the equation

1 .
OE eXp(U'r,s (w'r,s;t,o + ¢)) = 75 <D§>E eXP(U‘r,E (w‘r,s;t,o + ¢))a G‘r,s;t(' - ')>‘r

holds true for all ¢ € (0,1] and ¢ € C®(T2)® ®a ¥~. The statement follows now from
Lemma 7.6. O

Lemma 7.6. Let 7,e € (0,1] and ¢ be an infinite-dimensional Grassmann algebra. Suppose
that the function [0,1] 3t~ Z, .4 € N (C®(T2)®) satisfies the equation

- *%<D1Z775;t(¢); G‘r,s;t(' - ')>T (72)

with the initial condition Z; ..o(¢) = 0 for all ¢ € Cr. @ Y~. Then Z;.4(¢) = 0 for all
tel0,1] and p €Cre @Y.

atZ‘r,s;t(d))

Proof. Recall that a functional Z, ., € A (C®(T2)®) is a collection Z, .y = (Z™.,)men,

7,65t

such that Z%_, € C and Z",, € /(T?")®" is antisymmetric for m € Ny. Next, set
Mmre = |Arc]|G| = dim(Crc) and let {e1,...,en,  } be a basis of C;.. For m € Ny and
i1y yim € {1,...,m.c} define

Ulgenny Tm 1 n(mw m
Zi,é;t ) = _m' E : (_1)58 ( )<Z,,_7€;t,e7r(il) ®R...R0 e,r(im)> eC,
" wEPm

where P,,, is the set of permutations of {1,...,m}. Observe that Zg;’;"im) vanishes identically
if m > m; .. Hence, by Remark 7.4 Eq. (7.2) implies that the finite collection

{Zg,s;o} U {Z‘I('fé;’;wim) | My 01, € {15 cee 7m7',8}}
satisfies a first order linear ODE with a trivial boundary condition. This proves the claim. O

Lemma 7.7. Let 7,e € (0,1] and ¢ be an infinite-dimensional Grassmann algebra. Suppose
that a continuous function [0,1] 3 t = Uy oy € A (C®(T2)®) satisfies the integral form of
the Polchinski equation

UT,E;t(¢) = EUT75(!pT7E;t,O + ¢)
1 t .
+ 2 / EDyUrc;s(Urest,s + 0), Geys * DpUr e;s(Urest,s + @) ds (7.3)
0

for all ¢ € C°(T2)® @41, 9~. Then for every t € [0,1] the functional Uy o, € N (C(T2)%)
is an effective potential at the spatial scale t.
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Proof. Tt holds

atUT,E;t(¢) = atEUT,E;O(WT,E;t,O + ¢)

1/t .
+ 5 / atE<D¢UT,8;S('I/T,€;t75 =+ ¢)a Gs;s * D¢UT,€;S('I/T,€;LS + ¢)>'r ds
0

1 .
+ §<D¢Ur,s;t(¢)a Gs;t * D¢UT,€;t(¢)>T'

Lemma 6.17 implies that
1 .
atEF(WT,‘E;IZS + ¢) = _§<D3§F(Wr,a;t,s + ¢)a Gr,a;t(‘ - ‘)>7—

for all F € .4 (C*(T?2))C. Hence, we obtain

1 .
atUT,s;t(¢) - 7§<D2EUT,E;O(WT,E;LO + ¢)7 G'r,e;t(' - .)>7‘
1 [t i .
1 / <D?¢E<D¢UT,E;S(WT,E;&S +¢), Geys * D¢U77€;S(Wﬂs;t,s +é))r, GT,E;t(' —))rds
0
1 .
+ §<D¢U'r,a;t(¢)a Gs;t * D¢Ur,a;t(¢)>r-

Using Eq. (7.3) the sum of the first two terms on the RHS of the above equation can be
rewritten as

1 .
_5 <D%¢Ur,a;t(¢)a GT,&;t(‘ - ‘)>T-

This implies that the function [0,1] > ¢ = U, ..; € A (C°°(T?)®) satisfies the Polchinski flow
equation (7.1) with the initial condition U; ..0(¢) = Ur (¢). The statement follows now from
Lemma 7.5. O

8 Symmetries

In this section we discuss the symmetries of the Gross-Neveu model that are instrumental in
the decomposition of kernels of functionals into the local part and the remainder, which is
defined in Sec. 11. As we mentioned in Sec. 2 the form of the local terms that appear in this
decomposition is restricted by the symmetries of the kernels.

Definition 8.1. The jet prolongation of ¢ € C>(R?)® is defined by
J 1 C®(RY)E — 0 (R?)A*C, (Jp)¥? =Jp®7 = 9%, acA, c€G.

Definition 8.2 (Symmetries of plane). Let € R? and let R : R? — R? be a matrix of a
rotation around the origin or a reflection with respect to a line passing through the origin.
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For every R = (R7"); 1c(1,2) as above we choose a complex invertible 2 x 2 matrix (R) such
that

YRy y(R) = D R,
ke{1,2}

where 71,72 are the gamma matrices introduced in Def. 4.2. We set I'(R) = v(R)®V. For
= (p,¢) € S (R*)C we define

T(z,R)¢ = (T(z, R)p, T(z, R)p) € & (R*)®
by the equalities
(T(z, R)@)(y) =T(RT)' @R (y—=),  (T(x,R)p)(y) =T(R)p(R"'(y — )

for all y € R?. Let m € N. We say that a Schwartz distribution V' € .#/(R?>™)®" is invariant
under the symmetries of the plane iff

Vo1 @ ... @ om) =(V,T(x,R)p1 @...T(x, R)pm) (8.1)
for all 1,...,0m € Z(R%)® all x € R? and all R as above. The action of T(z, R) on
S (R?)A%C s defined in such a way that

T(z, R)(Jop) := I(T(z, R)p)

for all p € .7 (R?)¢, where J is the jet prolongation introduced in Definition 8.1. We say that
a Schwartz distribution V € ./(R?™)A" *E™ is invariant under the symmetries of the plane
iff the condition (8.1) is satisfied for all ¢1,...,¢m € F(R?)A*C all 2 € R? and all R as
above.

Remark 8.3. Tt is possible to choose the assignment R +— (R) such that (z, R) — T(z, R) is
a projective representation of the Euclidean group on . (RQ)G. The choice of the assignment
R +— v(R) does not play a role in what follows.

Definition 8.4 (Symmetries of torus). A Schwartz distribution V € .#/(R?™)A™*xC™ jg
invariant under the symmetries of the torus iff the condition (8.1) is satisfied for all z € R?
and all R : R? — R? that are a rotation by a multiple of 7/2 or a reflection with respect to
the line 2! = 0 or 22 = 0.

Definition 8.5 (Internal rotations). Let ¢ = (¢,¢) = (7, ¢") € (R*)**® and a permu-
tation m € Py. We define T(7)¢ € .7(R?)€ by the equality

(T(W)@)m(i’n’a) (:C) = (Pa,(:l:,ﬂr(n),a) (x)

foralla € A, ne{1,...,N}, a € {1,2} and = € R%. Let m € N,. We say that a Schwartz
distribution V' € .#/(R?™)A" *E™ ig invariant under the internal symmetries iff

(V1@ ...0om) = (V. T(m)p1 @ ... T(7)pm)
for all 7 € Py and all ¢1,. .., ¢, € & (R?)AXC,
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Definition 8.6 (Charge conjugation). For ¢ = (¢,¢) € S (R2)A%G we define we define
Cyp = (Cp, Cp) € Z(R%)® by the equalities

(Co)*(x) = Tap(z),  (Cp)*(z) =T2p"(x)

for a € A, x € R%. Let m € N,. We say that a distribution V € ./ (R?™)A" 6" is invariant
under the charge conjugation symmetry iff

V,p1®...Q0 pm) =(V,Cp1 ® ... Cpp)
for all p1,...,pm € .7 (R?)C,

Remark 8.7. One shows that if m € N \ 2N and V € .#/(R?™)A"*E" is invariant under
the charge conjugation symmetry, then V = 0.

Remark 8.8. The only local functionals of degree two in 1) € S(R?)® ®a1, 4 with up to one
derivative compatible with all of the above symmetries are of the form

[ 5@)-v@de, [ 3 (10 + Tt (o) de (52)

The only local functionals of degree four in ¢ € S(R?)® ®,1, %4 without derivatives compatible
with all of the above symmetries are of the form

O v@Pdn Y [ @@ Te@)Pde [ @) Twe)Rd (653)

2
R’ jef1,2}

For the proof of the above claims we refer the reader to [MWT73, Appendix| or [DY23, Ap-
pendix CJ.

9 Weights

In this section we define the weights that are used in the definitions of various norms and
establish some of their properties. The use of weights growing stretched exponentially allows
to prove stretched exponential decay of truncated correlations. This choice of the weights will
also play a role in the proof of the estimates for the map R presented in Sec. 11.

Definition 9.1. The diameter of the set of points {x1,..., 7, } C R? is defined by

D(z1,...,2m) == max |z; — x|

Let ¢ :==4/5. For m € Ni, v € [0,1/2] and ¢ € (0, 1] we define the weights w, € C(R?) and
wi, € C(R*™) by w, (z) = (14 |z[)7 and

W (@1, ) = (1 [21)) (L4 D@1, -, 2m)) /2 exp(t=D(ar, .. ., 2m)°).

We set w := w2, wi" := wily, wi" := wy} p and G, := —2(1/¢—7/8) = —-3/4.
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Remark 9.2. Note that the upper index m € N of wy’;,, does not denote the power.

Remark 9.3. We will frequently use the fact that @} (x1,...,2m) < w*(z1,...,2,) for all
m € Ny, t € (0,1] and 1, ...,2,, € R%. The weights @™ will be used to study the infinite
volume limit. Observe that the weight w appeared already in Lemma 6.19.

Remark 9.4. Tt holds 1/w(x) < 1/w(y) 1/w(x — y) for all z,y € R

Lemma 9.5. There exists C € (0,00) such that for all I € {0,1}, v € [0,1/2], t € (0,1],
€(0,t), ke {l,...,m} and &1, ..., Tm, Y1, Ym, Y, 2 € R? it holds

(a) wf;‘l,(xl,..., )<wft1(x1,...,xk,y)wt2(y, z)wy"™ k1 (2, kt1y ey Tm),
(b) Wit (Tm, ... 1) <wi"” M Ty 1) wE(Y, )wtl, (Y, ey ..y 1),
(c) wity (1, m) S Wi (Y15 Ym) WE (Y1, 21) - 0 (Y T,

(d) wtl,(xl, k) S W (L1, Ty Thg 15+ -5 Tin),s

(e) ww(xl, ) S WP (T, o ey Ty Ty« -+ 3 Tin ) Wy (X)),

(f) fo (L—=w)'D(x1,. . @) Tl (uzy, . udy,) du < C s (1 —s/t) wil (@1, ..., Tm).
Remark 9.6. The above lemma will be only used with v € {0,1/2}.
Proof. Ttems (a) and (b) follow from the bounds
D(z1,...,2m) <D(x1,...,25,y) + |y — 2| + D(2, Thg1, -« o, T )y
lyl < ly =21+ D(z 241, -, 2m) + [2m],
which are consequences of the triangle inequality, and the bounds
(a+b+ )t <at+ b+, I4+a+db+c) <(I4+a)*(1+bH1+c)*

valid for o € (0,1] and a,b, ¢ € [0,00). Item (c) is proved along the same lines with the use
of the bounds

D@1, 2m) <D, ym) +lyr =zl + - fym =2, o] < fyn — 2]+ faa |-
To prove Item (d) one uses the fact that the function
[0,00) 2 d— (1+d)Y27" exp(t—¢d°) e R

is monotonic. Item (e) follows from Item (d), the bound |2,,| < |z1] +D(21, ..., 2, ) and the
inequality (1 +a+ b)* < (1 + a)*(1 4 b)* valid for p € (0,1] and a,b € [0,00). We proceed
to the proof of Item (f). Let D(z1,. ..,z ) = d. Observe that it holds

g1 P (ux, . uTy,) _ (14 [z1])” (1 + Ud)l/%ydlﬂ
we Y (T1, .y Tm) (1 +ulzi|)r (1+d)/2v
< e an exp((uqt_q _ S—C)dC) < Cu? (S—C _ uct—c)—(m)/c’

exp((ust™¢ — s7%)d°)
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where C' € (0,00) is such that d't! exp(—d¢r) < Cr= D/ for all 1 € {0,1}, r € (0, 00) and
¢ € (0,1]. Consequently, it holds

1 m;v . 1 +1,,—v (1 _ u)l
1— lD T 1+1 Wy .(U,Tl,...,ul'm)d <C/ s u d
R oo RSl B e o s

Note that for 0 < s <t <1 and 0 < u < 1 it holds 1 —u¢ > ¢(1 —u) and
(1—u<(s/t)<)(l+1)/< > /¢ (1—u(s/t))(l+1)/< > ¢UHD/C (1—u)<ﬁ(l) (1—s/t)(l+1)(1/<_7/8),

where (¢(1) := ({+1)/¢(—({1+1)(1/¢—7/8) > 0. Since [ € {0,1} and | — 4(I) > —1 the bound
stated in Item (f) holds true with
. 1, -1/2 1— l
C = max C_Q/CC/ udu<oo.
1€{0,1} o (1 —u)s®
This finishes the proof. |

10 Spaces of kernels and functionals

In this section we define the spaces of kernels and functionals in infinite volume that are used
in Sec. 13 to solve the system of equations (2.24), (2.28), (2.20), (2.21), (2.22) introduced in
Sec. 2 using the Banach fixed point theorem. We also define the map A, ..; ; and analyse its
properties. We refer the reader to Sec. 2 for the motivation behind the definitions stated in
this section.

Definition 10.1. Let m,n € Ny and & be a unital Banach algebra. We denote by
(R?™, o) the space of Schwartz test functions valued in &/ equipped with the usual family
of semi-norms. The space of &7-valued Schwartz distributions is denoted by ./ (R?™, /) and
by definition coincides with the space of continuous maps .#(R?>™) — o/ equipped with the
topology of pointwise convergence. We denote by

(o,0) 1 S (R*™ of) x S (R*™, of) — of

the unique bilinear map such that (V,pA) := (V,p) A for all V € &' (R?™, &), p € S (R?™)
and A € o, where (V, ) is the standard paring between a distribution and a test function.
We denote by

e®@e: S(R*™ &) x SR &) = SR o)

the unique bilinear map such that pA® B 1= (p @) AB for all p € . (R*™), ¢ € . (R?")
and A,B € o/, where p ® 1) € (R?"*2") is the standard tensor product of Schwartz

functions. Let K be a finite set. The maps
(s,0) : SR, /¥ x (R, ) = o,
c@e: SR A x SR, A - SR )

K7n+n

are defined in analogy to Def. 3.7.
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Remark 10.2. In what follows, we assume that ¢ is an infinite dimensional Grassmann algebra.
It is important ¢ is infinite dimensional as we shall frequently use the fact that for every
n € N there exist ¢g1,...,9n, € ¢ such that ¢g1...¢9, # 0. We do not equip ¥ with any
topology.

Remark 10.3. Let & = o/ @® &/~ be a graded unital algebra. We define &7 ®,1, 4 to be the
algebraic graded tensor product of graded algebras &7 and ¢. In particular, the product in
A @a1g 9 satisfies the condition (A ® g)(B® h) = (—1)de8@) dee(B) AB @ gh for all A, B € o
and gh € ¢ of definite parity. We identify A € & and g € ¥ with

ARl e d Qg9 and 1®ged ®ag¥9,

respectively. We use these identifications to make sense of A+ g, Ag € & ®a15%9. Let m € N4
and K be a finite set. We define the paring

(o,0) + 'R /)K" % (LR, D) @uig b)) = T Ra1g Y

as the unique bilinear map such that (V¢ ® g) := (V,p) ® g for all V € #'(R*™ oK,
¢ € .7 (R*)K and g € 4. We denote by

Km,+n,

c@e i (SR A @ug D) x (SR, S Qug 9) = SR, ) ®alg 4

the unique bilinear map such that (¢ ® ¢) ® (¢ ® h) := (—1)de8@) dee(¥)(y @ ) ® gh for all
o € SR )K" e SR )K" and g, h € G of definite parity.

Definition 10.4. Let m € N, and &/ be a unital Banach algebra. We denote by P,
the group of permutations of the set {1,...,m}. The antisymmetric part of a distribution
Ve S (R, o7 )A" *E™ i the distribution SV € ./ (R?*™, &7 )A" %" defined by

1 -
SV,018...Q on) = poo Z (=1 NV, 01y @ - - . @ P (m))
-TI'EPWL

for all ¢1,..., 0, € Z(R?)2*C. We say that a distribution V € .7/ (R?>™, o)A *C" is
antisymmetric iff V = SV.

Remark 10.5. Recall that B = B(J) is the algebra of bounded operators acting on the
Hilbert space . introduced in Def. 6.2

Definition 10.6. Let m € N, and &/ be a unital Banach subalgebra of 4. We denote by
AM™ (/) the vector space of Schwartz distributions V € .#”(R?>™, .&7) such that there exists
a kernel Vi : R? x Borel(R2"~1)) — o satisfying the following conditions:

(1) for every A € Borel(R?(m=1)) the map z + Vi(x, A) is Borel measurable,

(2) for every x € R? the map A — Vi (z, A) is a Banach space valued measure,

47



(3) the following norm

Vgm = sup / Vic(z1,dzs ... dam)|l o
R2(m—1)

x1 ER2
is finite, where ||Vk(21,d2s ... da, )|l % denotes the variation of Vi (x1,dxs ... dz,y,),

(4) for all ¢ € .(R*™) it holds

(V,p) = Vi (21,dzs .. day) (@, ... 2m) dey. (10.1)
R2m

We write 4™ := 4™ (C).
Remark 10.7. Note that it holds .#™(C) C 4™ (/) C M (B).
Remark 10.8. Let K : R?*™ — % be measurable such that

| K| m := sup / |K(z1,...,2m)||lzdes. .. d2e, < oo
z1ER2 JR2(m—1)

Then V € ./ (R?*™, %) defined by Eq. (10.1) with
Vk(z1,dxs ... day,) = K(z1, ..., 2m) des .. day,

belongs to #™(AB) and ||V||.gm = || K| xm.
Remark 10.9. Let 6™ € .#/(R*™) be the Dirac measure on the diagonal, i.e.

0 01®...® pm) ::/

o1(x) .. om(x)da
RZ

for all p1,...,¢m € .Z(R?). Then 6™ € ™ and |60 4m = 1.

Remark 10.10. It follows from the definition of the variation of the vector measure and the
properties (0) and (4) of the conditional expected value introduced in Def. 6.7 that

E.V e ™ F),  |EV|am <|VI.am

forall Ve 4™ (%) and ¢ € [0,1].

Remark 10.11. Recall that w]" and w}" are weights introduced in Def. 9.1.

Definition 10.12. Let m € Ny and &/ be a unital Banach subalgebra of %4. The vector
space " (o) C M (e A" XC" consists of Schwartz distributions

V= (Vaﬁ)aeAm,aeGm c yI(R2m7JZ{>AmXGm

such that the following norm

Vil = > D 0PV g

acA™ ceG™
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is finite. We define the norm ||V'[| .. in an analogous way with w{" replaced by w{*. We de-
note by A4 (7) the subspace of Jl/ﬁm(sz{ ) consisting of antisymmetric Schwartz distributions,

cf. Def. 10.4. The vector space A (&) := Xomen, A™(gf) consists of tuples

V= (Vm)mEN+ = (Vm7a7a)mEN+,aeAm',UeGm-

We endow .4 (e7) with the product topology. The subspace .4 (o) C A (/) consists of
tuples V such that V™ = 0 for all but finitely many m € N;. We set II"V := V"™ and
oy .= Vmes For V € A () and k € Ny we define IV = (V)™ ) men, € A ()
by the equalities (II;V)™ := 0 for all m € Ny \ {k} and (II;V)™ := V™ for m = k.
We also define 15,V = (1T V)™)men, € A (/) by the equalities (I, V)™ := 0 for all
me{l,...,k} and (Il=xV)™ := V™ for m € Ny \ {1,...,k}. For V € #f(&/) and
¢ € S (R?, )A€ @,, 9 we write

V] := Z (V™ 0®™) € of Ra1g Y.

meNL

For k € Ny we define D’;V[go] in analogy to Def. 3.14. We set 4™ = A4™(C), #™ 1=
N™(C), N = (C) and A" .= _#fin(C).

Remark 10.13. Let V € A4;™ (/). Since the norm [[V[|_y» < oo involves a weight of stretched
exponential growth it holds XV*? € # for all a € A™, 0 € G™ and all translationally-
invariant polynomials X € C°°(R?™).

Remark 10.14. Using the fact that V' € A4 (&) is antisymmetric one shows that it is
uniquely determined by the map

FRP>*C R, 972 0> (V%) € of @aig 9.
Actually, given 11, ..., ¢, € .7(R?)**C we choose ¢ = Z;nzl Vjgj, where gi,...,g9m € ¢ are
such that g = g1...gm # 0. Then m! (V11 @ ... @ y,) @ g = (V, p®™).

Definition 10.15. Let m € Ny, a € (0,00), 8,7 € [0,00) and p,,.(m) := v + 2km. For
continuous maps
0,1] 3 s = V" = (V") yeam gegm € N (H)

we define

V.m

[y = sup S S ATewelm) g2om/all yryma L (10.2)
5€(0,1] acA™m oeGm™

The vector space ¥ consists of continuous maps
(0,1] 2 s = V" = (V) gepm gegm € N = A™(C)

such that ||V™||ym~ < co. The vector space ¥ consists of continuous maps

(0,1] 38— Vs e &/ =4(C)
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such that V™ = II™V, € 7™ for all m € N,. The vector space ¥ ™7 consists of continuous
maps

(0,1] 3 s+ V, € A0 = yfin(C)

such that V/* = IV, € #™" for all m € N;. We denote by #*%7 the closure of
iy« 7 with respect to the norm

V. A

‘/.m”“t/mw. (103)

ya8y = sup a’'m
meNL

For V" € 77 we define [|V""|| ., in an analogous way to |
@™ in Eq. (10.2). For V. € 7% we define ||V.
with ||e[|ym: replaced by ||*||7m., in Eq. (10.3).

V|| ymsy with w?* replaced by
Vi lyemn

Jap i an analogous way to |

Remark 10.16. Since @ < wy* the norms |[¢||.7,.., and ||*[|;a 5., are weaker than the norms
[|¢]|wm: and |[¢||y a0, respectively. The norms |||, and [[[|7a s will be used to study
the infinite volume limit. Observe that we did not define the spaces ¥ and ¥ *57.

Remark 10.17. Note that the weight @w;" used in the definition of the norms |[¢||,7,.., and
l|*]| 7a.5:- is not invariant under permutations of its arguments. For a permutation 7 € P,
define S,w™ € C(R?*™) by the equality (S,w/)(z1,...,2Tm) = W (Tr(1)s - -+ Tr(m)). Using
the fact that

VM= (Vm’a’a)aeAm,aeGm c Wm(%) C y/(RQm’M)AmXGm

is antisymmetric one shows that

Yo D ISV g = Y Y @V | g

a€A™ oceG™ a€A™ oceG™

Remark 10.18. For all o, & € [1,00), B,B,7,5 € [0,00) and V. € 7P such that & < a,
B < 8,7 <~ it holds

Remark 10.19. For all o, 3,&, 3 € [1,00), k € N, there exists C' € (0,00) such that for all
v € [0,00) and V. € ¥ 57 it holds

V. V. V.

V.

W&, B < | YoaBiv, | &, B < | o, Biy

|TT*V. V.

Y ki S C|

Ya,Biy ||Hk‘/.

7/&,5;7 < C |

V.

o By .

Lemma 10.20. For all m € Ny and o € (0,00), 8,7 € [0,00) the spaces (¥, ||o||yms)
and (VP ||o|| a5+ ) are Banach spaces.

Proof. We first observe that for every m € N, the space (.#"(C), ||¢||.4=) is a Banach space
and given a Banach space 7 the spaces Cy((0,1],.7) and [5°(.7) are also Banach spaces.
Using the fact that Ag () g2=m/2al w™ # 0 for all s € (0,1], a € A™ we conclude that
the space (#™7, ||e||4m:~) is a Banach space. Similarly, since o™ m” # 0 for all m € N, the
space (757 |||y a6~ ) is a Banach space. O
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Remark 10.21. Recall that .% is the Banach subalgebra of 8 = () generated by the
white noise, cf. Def. 6.2.

Definition 10.22. Let 7, € [0,1] and ¢, s € (0, 1]. The maps
Ascits; Cres JVﬁn(gz) - JVﬁn(gz)
are defined by the equalities
ArcisVIel = Vip+ IWrcivss] = VIWrcvssl, 9 € SR)PC @a,97,

CT@%SVH::AWﬁﬂJVI_‘C

where ¥, .., s was introduced in Def. 6.11 and J is the jet prolongation introduced in Def. 8.1.
We also set AT, o= II"A; s, ALY = TI"™A; oy s and A7 = TI"™% A .y s and

T,65t,8 t,s
analogously for the map C; ..+ s. We omit 7 and ¢ if 7 = 0 and € = 0.

Remark 10.23. The equation defining the map A, ... s should be interpreted as

<AT78;t,sV’ 90@ )= Z Tk (v +ka90® ®Jw§§tVs,s> (10.4)

keNy
for all m € Ny. The map A, .. is well defined thanks to Remark 10.14 and the fact that
| Jwl2 le < oo for all 7, € [0,1], t,s € (0,1] and a € A, 0 € G, which follows from

T,e5tVs,s

Lemma 6.19.
Remark 10.24. Let t,s € (0,1] be such that t > s and let V € 4 f%(%,). Then we have

}&nsﬁﬁvr€</Vﬁn(3a)a Ehjxnsﬁﬁxlzz:Efxﬂsﬁﬁ‘c Ekzxﬂemsvfzzfxﬂsﬁﬁfﬂ/

by Def. 6.11 of ¥, ., and the properties (1) and (3) of the conditional expected value
introduced in Def. 6.7.

Remark 10.25. Let t,u, s € (0,1] be such that t > u > s and let V € .4"(C). Then we have
(A) Arcit sV =ArctuBArcusV,
(B) ArctuBA; cu sV = EuAs ot uArcu sV = EBuAs oy sV,
(C) EA; et uEBA; 0w sV =EA, .4 sV
by Remark 10.24 and the tower property (2) of the conditional expected value introduced in
Def. 6.7.

Lemma 10.26. There exists A, € (0,1] such that for all X € (0, \,] the following is true. Let
méeNL, a,B € [l,00), v€[0,00), 7,6 € [0,1] and V. € ¥, For all t € (0,1] the map

(0,1] 3 s — AT

T,€5t,8

Vi € N ) (10.5)

is continuous and it holds
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(A) [|s = Ar it s Vsl parzsn <
(B) |Is = Creit,s Vsl yarz-14 S )\ |
(C) lIs = Arcit s Vil ooy

(D) s = Cf,s;t,sVslla,/a/z,B,lw
(E) |Is = (Ats — AT,E;t,S)VSHy/a/Q,B—l;W < /\"i

In particular the map (10.5) is well-defined for all V. € 7/0"[377.

Remark 10.27. Note that the parameters o of the norms ¥ %7, #®P that appear on both
sides of the bounds stated in the above lemma are different. As we discussed in Sec. 2 the
bounds of this type appear to be false if the parameters « of the norms are the same on both
sides of the bounds. This is the main reason why we work with the space (V/T?‘éﬁw, [l e8:)
introduced below. One of the consequences of the above lemma is the relation between the
norms ||¢[|,, a0y and [|s][y2a.5:, stated in Remark 10.35.

Proof. First recall that Ay < A\ by Def. 2.2 and

13027, Jle <AV @@ — I, e < ATENE AR s

T,e3t,s T,65t,8

by Lemma 6.19. Noting that p., .(m) = py.x(m+k)—2kk and using Lemma 9.5 (d) we obtain

S ST aeslm) g2omalal m Ty
a€A™ oceG™

(m+k)!
pry o (Mm+k)+rk 2 m/2—k/2—|a m-+k yym+k,a,o
Sy oy oy e S A A P
k€No acAm+k geGm+k

Using Definition 10.15 of the norms ||e||ym+rr and ||e||ya.6 we estimate the expression on
the RHS of the above bound by

(m+k)!
Z m!k!
keNg kENo
<a mm TP 1=\

m+k) rkk —mk

<2Ma ™m~

The last bound above is true of A* < 1/5. This proves the bound (A). Using analogous
estimates as above with the sum over k € Ny replaced by the sum over k € N, we obtain
Do D ATl el (AT = V)

a€A™ occG™
o (1) (1= =)

<AP2Ma

where again the last bound above is true of A* < 1/5. This implies the bound (B). To prove
the bounds (C) and (D) we use exactly the same strategy but with the weight w2 replaced
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by wl". Let us turn to the proof of the bound (E). By Lemma 9.5 (e¢) we have

AR N\TE Z Z )\S—p%,@(m) 82—m/2—\a\ H,J];n(A:LS,a,U Amaa ‘/;H//[m

TVe T,65t,s
a€A™ ceG™

ST Y Y B s

keNy qecAm+k JGG"I*"

Using again Definition 10.15 of the norms ||e||ym+#:+ and ||¢||ya.s:» We estimate the expression
on the RHS of the above bound by

(m+ k)!
k%\% m!l(k —1)!
<N (m+1Da™m+1)"7 (1 -\~

‘2 W%Mi) MR eI + R

yasn < A2 QM

Yo, By .
The last bound above is true of A* < 1/5. This proves the bound (E). O

Definition 10.28. We say that a distribution V' € 4™ C A;™ is compatible with the flow
of charge iff V' =0 for m € N \ 2N} and otherwise it holds V' = SW for some W € .4
such that:

(@) (Wp1®...0pm)=(W,Cp1 ®Cp2@p3®...R® pm),

() W, 01 ®...0 om) = (W, 02r(1)=1 @ P2r(1) @ -+ - @ Par(m/2)—1 @ P2r(m/2))5

(C) <Wa901®-..®§0m> = _<W,902®(P1®(,03®---®(Pm>
for all ¢1,...,¢m € L (R*)® and 7 € Py, /2.

Remark 10.29. We say that V' € .4 is invariant under a certain symmetry or compatible
with the flow of charge iff V'™ € 4™ C .#/(R?>™)A"*C™ is invariant under this symmetry or
compatible with the flow of charge for all m € Ny.

Remark 10.30. The map C was introduced in Def. 8.6. Note that if V' € A4 is compatible
with the flow of charge, then it is invariant under the charge conjugation. If m € {4,6,...},
then generically the reverse implication is false. Observe also that the second and the third of
the functionals (8.3) are not compatible with the flow of charge. Hence, there are only three
relevant or marginal local functionals invariant under all the symmetries listed in Sec. 8 and
compatible with the flow of charge: the quadratic functionals (8.2) and the first of the quartic
functionals (8.3). The reduction of the number of relevant or marginal local functionals that
have to be investigated is the main reason behind introducing the notion of the compatibility
with the flow of charge. See [GK85a, Sec. 5.B] for a simple argument showing that perturbative
corrections to an effective potential are compatible with the flow of charge.

Definition 10.31. Let m € N;. We denote by .#™ the subspace of .4/ consisting of
Schwartz distributions invariant under the symmetries of the torus and the internal sym-
metries and compatible with the flow of charge. We denote by .45™ the subspace of 4™
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consisting of Schwartz distributions invariant under the symmetries of the plane. The closures
of A" and AG™ in A are denoted by (A,™)¢ and (A5™)¢, respectively. Let sgn(7) := 0
if 7 =0 and sgn(r) := + if 7 € (0,1]. For 7 € (0,1] we set A" := A | and

NI =V € /I Ve, V™ € MY,
VI = (V. € ¥ Vo0, Ve € A1)

Definition 10.32. Let «, 5 € [1,00), v € [0,00) and 7,e € [0, 1]. The vector space V/T?‘éﬁw is
the closure of ¥fin7 C %7 with respect to the following norm

| V. “/V,.agﬂw = sup ||S = AT,&;t\/s,sVYsH“t/a,ﬁw- (106)
' te[0,1]
For V. € #2:P7 we define ||V. wen i an analogous way to [|[Vel[,apn with [le]lyass

replaced by ||¢|| ;a5 in Eq. (10.6).

Remark 10.33. By Remark 10.16 the norm |[[s||,;0.5:4 is weaker than the norm |[e|, a.5:~. The
former norm will be used to study the infinite volume limit. 7

Remark 10.34. Note that

V. V. V. V.

| W, Biy S | Wffgﬁw? | o, By S | Wﬁ‘;ﬂ”'
Thus, in particular %?‘éﬁw C b,
Remark 10.35. Observe that by Lemma 10.26 (A), (C) it holds

|‘/. WTaéBw < |‘/o Y 20,857y |‘/. W”Taéﬁw < |‘/- 2,85y

Remark 10.36. Note that 4™, 7 € [0, 1], is not a closed subspace of .#™. It is easy to see
that the invariance under the symmetries of the torus/plane, the internal symmetries and
the charge conjugation symmetry are preserved under limits. However, this is not the case
for the compatibility with the flow of charge. Hence, in general, it need not be true that for
V. e 7//70,‘8’5” it holds V™ € 4™ for m € Ny and s € (0,1]. Nonetheless, V. € (A™)° for
all m € Ny and s € (0,1].

Lemma 10.37. For allo, 8 € [1,00), v € [0,00) and 7,& € [0,1] the space (#;22%7, ||s||0.0:)
is a Banach space. Y

Proof. Let (PV'),en, be a Cauchy sequence in 7/7‘?‘8*[3?7. Then, (PV),en, is a Cauchy sequence
in 7 %P7 Consequently, there exists V' € ¥ *#7 such that

Vo—(*V).

hm | Yo, By — 0
p—00

By Lemma 10.26 (A) it holds

s — AT, ((PV)s = Vo)|ymn < 2™a™m™ P ||(PV). — V.

T,65t,s

Yo, By .
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Let ¢ € (0,00). There exists P € N such that for all p,q € Ny, p,q > P it holds

1(°V)e = (*V).

o <
wepn S0

and for every m € N there exists p(m) € Ny, p(m) > P, such that

s = A™ ., (P"™V)g = Vo)||ymn < a ™m 6.

T,€5t,8

As a result, for all p € Ny, p > P it holds

l[s = ATt s (Vs = (V) [[yrmen

< s = ATy (Vs = PV lymin + s = ATy ((PUIV)s = (PV)o) yrmsn
<a ™mm A5+ amm P |(PV). — (V). <2a"™m A,

”///chgﬁ Hal

Vo= (PV).

Hence, V., € 7/7?2[3;7 and lim,_, | e = 0. 0

11 Local part and remainder

In this section we introduce operators L, Ly and R and establish their most important
properties. The operators L, Ly and R are used to decompose kernels of functionals into the
local part and the remainder. As we discussed in Sec. 2 the above-mentioned decomposition
is crucial for the solution of the renormalization problem.

Definition 11.1. The distributions
2 2
U2 = (U27a70)aeA2,aeG2a Ug = (Ugyayg)aeA%aEGQ c %2 c y/(R4)A xXG ,

such that for all @ € A% and ¢ € G? it holds U>* = 0 unless |a| = 0 and U>™" = 0 unless
|a| = 1 are defined by the equalities

W, @)% = [ () v,
- (11.1)
U3.@0)%) = [ 5@ (0101 + T202)0)(w) do

for all ¢ € .7 (R?)€ ®ale ¥, where J is the jet prolongation introduced in Def. 8.1. The
distribution
4 4
U4 = (U47a70)aeA4,aeG4 c %4 c y/(RS)A xG

such that for all @ € A* and o € G* it holds U%*? = 0 unless |a| = 0 is defined by the
equalities

(U, (3 = / (P(z) - (@) da (11.2)

RZ
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for all ¢ € S (R?)® @414 4~ For g,7,2 € C we define U(g,r, 2) € A by the equation
U(g,r, 2)[9] == g (UL, %) + 7 (U?,9%%) + 2 (U3, 9%?)
for all 1 € .7 (R?)® @, 9.

Remark 11.2. Note that U(g,r,z) = gU(1,0,0) +rU(0,1,0) + zU(0,0,1).

Remark 11.3. Recall that by Def. 10.31 distributions belonging to the space Ay™ C A C
S (R#™)A"XE™ are invariant under the symmetries of the plane and the internal symmetries
and compatible with the flow of charge. Moreover, distributions belonging to .4 are an-
tisymmetric. Using the above-mentioned properties one proves that U?2, Ug, U* are uniquely
defined by the equalities stated in Def. 11.1. In particular, by the charge conjugation invari-
ance and Remark 4.3 it holds

V3,052 = Z / (6°(2) - T30 () — $% () - T (2) da

for all ¢ = (¥, 9 4en € S (R2)A*C @,, 9~ and a1 = (1,0) € A, ap = (0,1) € A.
Remark 11.4. It holds

e ifo=((—,1,1),(+,1,1)) € G?, then U>70 = §(2) /2,

e if a = ((0, 0) (1,0)) € A%, 0 = ((—,1,1),(+,1,2)) € G2, then U>7* = §(2) /4,

o ifo=((—1,1),(+,1,1),(—,1,1),(+,1,1)) € G*, then U0 = §(*) /6,
where (™) ¢ Y’(RQ’”
Remark 11.5. In the definitions stated below we use the fact that for every distribution
V e #™ C ' (R?™) there exists a kernel Vi in the sense of Definition 10.6 such that
Eq. (10.1) holds. Note that the maps introduced in the definitions below do not depend on
the choice of the kernel Vik associated to a distribution V.

is the Dirac measure on the diagonal introduced in Remark 10.9.

Definition 11.6. Let V2 = (V2%7),cp2 yeg2 € A2 and V* = (VH%) cpa yega € A be
translationally invariant. We define LV?2 € C by the equality

LV2 = 2/ V2’O’a($1,d$2)
R2
with o = ((—,1,1), (+,1,1)) € G2. We define LyV? := LyV?2 + LyV?2 € C by the equalities

f;aVQ =4

\

(g — 21) T2 V209 (1) day), LoV? .= 4/ V3T (21, dag),
R2 R2

with a = (a1, a2) = ((0,0),(1,0)) € A% and 0 = ((—,1,1), (+,1,2)) € G2. We define LV* € C
by the equality

LV* = 6/ VA9 (21, day, das, day)
R6

with o = ((—,1,1), (+,1,1),(—,1,1),(+,1,1)) € G~
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Remark 11.7. By translational invariance the above definitions of LV?2 LsV?,LV* do not
depend on the choice of z; € R2.

Remark 11.8. Note that the following equalities LU? = 1, LyU3 = 1, LU* = 1 hold true.

Lemma 11.9. Let v € [0,1/2]. There exists C € (0,00) such that for all t € (0,1] and
all translationally invariant VZ = (V3%%) cp2 yegz € A2, V= (V4*“*")aeA4,aeG4 Nt
holds:

(A) [LV?| < sup,cpe SUPgege [[wh, V37| g2,

(B) |LoV?| < C't sup,epe supyege w7, V2572,

(C) |LV* < SUP,ept SUD gt wawV‘l’“"’H//ﬂ.
Proof. By Remark 11.7 we can set 21 = 0 in the equations defining LV?2,LyV? LV*, which
are given in Def. 11.6. The bounds follow now immediately from Def. 10.6 of the norm ||e||_zm

and the fact that there exists C' € (0,00) such that |zo — 21|/w}, (21,22) < C't for ;3 = 0
and all zo € R? and ¢ € (0,1]. O

Lemma 11.10. Let V2 = (V3%9) cp2 segz € (A2)S, V= (V599 cpa gegs € (A
Then we have
LV2 LyV2 LyV2 LyV* e R (11.3)

and the following equalities

LV (U2, (30)%) = 3 [ VA0 01, de) 67 (@) 0% ) dar,
R4

oceG?

LoV (U3, (39)*?)

=> > /R (w2 =) TR VIO (24, dag) ()7 (21) (J9) ™7 (1) dany,

achA? oceG?
la|=1

LoV? (U3, (3)®) = > > /R V299 (g1 day) (Jh)47 (1) (Jh) 272 (21) dy,

acA? 0eG2
la]=1

LVH U, (J)®) = > / VST (@1, darg, dars, dara) Y7 (1) 72 (1) 7 (21) 7 (1) day
RS

oceG*

hold true for all ¥ € ./ (R?)C ®,, 9.

Remark 11.11. Recall that Jy? = (J1))%7 is the jet prolongation. In particular, 17 = J)%.
The space 4™ was introduced in Def. 10.31 and (.47")¢ denotes its closure in 4.
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Proof. By Lemma 11.9 without loss of generality we can assume that V2 € </V+2 ,Vie (/Vf.
The conditions (11.3) follow from the charge conjugation invariance. It is clear that the
equalities listed in the statement of the lemma hold for some distributions U?, U, ;, U* such
that: (1) they satisfy all of the conditions stated in Def. 11.1 possibly with the exception of
the equalities (11.1) and (11.2), (2) are proportional to the Dirac measures on the diagonal,
(3) are invariant under the symmetries of the torus and the internal rotations and (4) are
compatible with the flow of the charge. By Remark 10.30 the conditions (2-4) imply that
the equalities (11.1) and (11.2) hold up to a constant. To conclude it is enough to use the
properties stated in Remark 11.4. O

Definition 11.12. Let

V2= (VQ,a,G)GEAQ,G'GGQ c N2 c y’(R4)A2XG2
be such that XV?2 € 42 for all translationally invariant polynomials X € C°°(R*) of degree
two. We define W? € 4> C S (RHAXC and W2 € 7/ (RY)A ¥4 %C" by Eq. (10.1) with

. 1 1
W2 (x1,dxg) == —'(:cl — 1) (22 — 1) / (1 —w)u=2 (V") (u™ ey, utdas) du
al o

and
1
W}Q{,b,c,a(zl, d:L'2> = (xl _ zl)bl (1'2 — x1>b2 / u72 (Vé’c’a)(uilxl,uildSCQ) du
0

if l[a] =2, [b] = |¢| = 1 and W27 = 0, W27 = 0 otherwise. We define W2 e A2 by the
equality
W?,a,a :WQ,a,a+ Z W?,b,c,a.

b,cEA?
b+c=a

We define RVZ = (RV?)*7),cp2 peg2 € A2 by the equalities

(RV?)%7 =, la] <1,
(RV2)a,a _ V2,a,a + (SW2>Q’U, |a| _ 2,
(RV2)2o = y2ae, ja| > 3.

Let
V4 — (V41aﬁg)a€A4,a€G4 c JV4 c yI(RS)A4XG4

be such that XV* € 44 for all translationally invariant polynomials X € C°°(R®) of degree
one. We define W* € A* € #/(R)* ¥ by Eq. (10.1) with

Wé’a’g(zl, dzo,das,dxy) = (1 — 1) (2 — 1) (23 — x1)* (x4 — 21)™

1
x/ w8 (V") (u ey, u e, utdas, u day) du
0
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if [a| = 1 and W7 = 0 otherwise. We define RV* = (RV4)%%),cp1 geet € A4 by the
equalities

’ = ) a/ = )
(RVH™7 =0 la| =0
(Rv4)a,o' — V4,a,a + (Sw4)a,a’ |a| — 1,
(RVH)27 = Vi, o] = 2.

Remark 11.13. Recall that SV, introduced in Def. 10.4, denotes the antisymmetric part of V.
Note that Wf(’a’” = 0 unless a; = 0, VVVIQ(’Z”C’” = (0 unless b; = 0 and Wé’a’” = (0 unless a; = 0.

Remark 11.14. It follows from Def. 9.1 of the weight w™ that if V> € #*7, then XV2 € 42
for all translationally invariant polynomials X € C*°(R*) and all s € (0,1) and if V* € 747,
then XV € 4 for all translationally invariant polynomials X € C*°(R®) and all s € (0,1).

Remark 11.15. The map R is compatible with the symmetries. More precisely, let 7 € {0, +}
and suppose that V2 € (#2)¢ C A2 is such that XV?2 € 42 for all translationally invariant
polynomials X € C*°(R*) of degree two and V* € (A47*)° C A is such that XV* € 4 for
all translationally invariant polynomials X € C°°(R®) of degree one. Then RV? € .42 and
RV* e 42

Lemma 11.16. There exists C' € (0,00) such that it holds

[wi, RV2)®7 | g2 < C (1= s/t) sup sl [lwd, VA7) 2,
beA2

lwi,, RV || g < C (1= s/t) sup 5!~ |wl, VAP 4a.
beA*

for allv €10,1/2], t € (0,1], s € (0,¢) and all V* € N2, V* € N such that the RHS of the
above bounds are finite.

Remark 11.17. Recall that ¢, = —3/4 was introduced in Def. 9.1. See also Lemma 9.5 (£).

Proof. Since by assumption V2, V% are antisymmetric it suffices to prove that for all a € A2,
la| = 2, 0 € G? it holds

[w?, W g2 < C (1 = 5/t)% sl sup lwsy V222,
oc

for all b,c € A%, |b| = |c| =1, 0 € G? it holds

[wi, WP g2 < C (1= s/t)% sl sup wl, V37| 4
oceG?

and for all a € A%, |a| = 1, 0 € G* it holds

lwit, W[t < C (1= s/) 51 sup [Jwy, VA7 g0,
oeG*
The above estimates follow easily from Def. 11.12 and Lemma 9.5 (f). O

99



Lemma 11.18. Let V2 € (AN 2)¢ C A2 be such that XV? € A2 for all translationally invari-
ant polynomials X € C*(R*) of degree two and V* € (A*)° C A be such that XV* € A4
for all translationally invariant polynomials X € C*(R®) of degree one. Then it holds

<(R + U2L + UEQ?LB)VQa (J’l/))®2> = <V25 (J’l/))®2>7
(R+UILVE (I9)®) = (V4 (Jp)®1).
Proof. By Lemmas 11.9 and 11.16 both sides of the identities listed in the statement of the
lemma depend continuously on V2 € 42, V4 € 4. Thus, without loss of generality we

can assume that V2 € </V+2 ,Vie JVf. The rest of the proof is an application of the Taylor
theorem. We first note that the equality

(((R+ UL+ UBL) V), (39)°7 @ (J9)272) = (V202, (1) & (3y)°)
holds for all a € A2, |a| > 2, and o € G? and the equality
(R+ULVH™?, (J)™7t @ ... @ (Jih) ) = (VIS (JP)* 7 @ ... @ (Jp)*+7)

for all a € A%, |a| > 1, and o € G*. In general the above equalities are false but we will prove
that the sums of both sides over a and o coincide. This follows from Def. 11.12 of the map R
as well as Eq. (11.4), (11.5) and (11.6) established below. We first observe that by the Taylor
theorem the following identity

G (1) P72 (w2) = Y7 (@1) Y72 (1) + Y (w1 —1)™ (w2 — 1) (T) 7 (1) (J4p) 27 (21

ach?
laj=1

+ ﬁ(fcl —x1)" (22 — 1) / (1 —u) (J)471 (21) (J) 4272 (21 + u(xy — x1)) du

ach? 0
=2

is true for 0 € G2. As a result, by Lemma 11.10 and Def. 11.12 of W29 we obtain

Z <V2’O’U, 1/}01 ® 1/}02>

oceG?

_ Z Z <U2,a,aLV2 + Ug,a,a]iav2 + WQ’G’U, (Jq/))al’dl ® (Jw)a2702>. (114)
a€hA? 0eG?

Next, we note that

(JY) ot (1) (Jp) 272 (22) = (J)“ 7" (21)(JP) 272 (21)
+ Z (w1 — @1)" (22 — 71)" /0 (J)PrHeot (@) (Jh) 072 (21 + u(my — 21)) du.

beA?
[b|=1
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for ¢ € A? and o € G2. Consequently, by Lemma 11.10 and Def. 11.12 of W2*%? we have

Z Z V2ca J’l/))cl’al ®(J1/) cg,ag Z Z U;aUL V2 (J¢)a1,a1 ®(J’l/))a2’02>

ceA? ceG? a€h? oeG2
le[=1

Y (WP (Jg)Prenat @ (Jy)eaoz). (115)
b,ceA2 ocG?2
Finally, using the identity
4 4
[Tv7 @) =11v"
Jj=

j=1 1

ZH = [ TT@0) ™ e+ uay =) du,

Lemma 11.10 and Def. 11.12 of W*%° we get

> (VAT e @)

ceGt

= D ULV W (JY) 7 @@ (Jg)*7). (11.6)

a€ht oG

This finishes the proof. O

12 Useful maps

In this section we study properties of the operators that appear on the RHS of the equa-
tions (2.24), (2.28), (2.20), (2.21), (2.22) introduced in Sec. 2. Recall that our goal is to solve
this system of equation by rewriting it as a fixed point equation of a certain map X ..., which
is defined in Sec. 13. The estimates we establish below play a crucial role in the proof that
the map X, ... is well-defined and is a contraction.

Definition 12.1. For 7,¢ € [1,0] and ¢ € (0, 1] we define
H‘r,s;t = (Hf,gt)aeA2,aeG2 eC™ (R2 X ]R2)A2XG2

by the formula
HyZy(n,y) = 031 952Gy (w — )

7,65t

for all a = (a1,a2) € A% = {0,1,2}2, 0 € G? and x,y € R?. We omit 7 if 7 = 0 and we omit ¢
ife =0.

Remark 12.2. The function H, ..; € C™(R? x RQ)AQXGZ is antisymmetric and invariant under
the symmetries of the torus, the internal symmetries and the charge conjugation symmetry.
The proof of the invariance under the symmetries of the torus and the internal symmetries
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is straightforward. To prove the invariance under the charge conjugation symmetry one uses
Remark 4.3. If 7 = 0, then the above function is also invariant under the symmetries of the
plane.

Lemma 12.3. There exists A« € (0,1] such that for all X € (0,\,], € € [1,0], t € (0,1], and
a € A%, o € G? it holds

WP HEY || < A7 271, WP (H" — HE )L < ATEAENT ¢l

where the weight w} was introduced in Def. 9.1. Moreover, the map (0,1] >t — H.y € N>
is continuous for all € € [0,1].

Proof. Observe that w?(x1,x2) = (14 |x1 — x2|)/? exp(t |z — 22|¢) and ¢ = 4/5 < ¢,. As
a result, by Lemma 5.3 and Remark 5.2 (E) there exists a universal constant C' € (0, 00) such
that ||w2H“ 7|2 < Ct~1el. This proves the first of the estimates stated in the lemma. The
second of the estimates follows from the above bound and Remark 5.2 (C). O

Definition 12.4. Let m € Ny, ¢ € [0,1], s € (0,1]. The map BT, : A (F) = A" (F) is
defined by

<Bm( — li m k k+1)(m k+1> <Vk+1®vm k+1 90®k®H ®<P®(m k)>
k=0

(\}

for all ¢ € 7 (R?)A*C @4, 4~. The map BT, : A (F) x N (F) = N ™(F) is defined by

The maps B.;s : A — A, By + A x A — A are uniquely defined by the condition
"B.,s = Bl for all m € Ny. We also set B;* := [I"™“B. s and B{;*7 := [I"™*7B .
We omit ¢ 1f5 =0.

Remark 12.5. Using the antisymmetric property one shows that for V, W € .4 it holds
Beis(V,W)[g] = (D, V[p] @ Do W(e], Ha;8> — (D, V[0] @ D, W10], HE;5>-
The above identity implies that

BE;S(‘/a W)[SD + JWT,E;t\/S,S] - BE;S(V) W)[JWT,E;tVS,S]
= <D¢V[QD + Jw‘r,s;t\/s,s] ® DLpW[Sﬁ + Jg/‘r,s;tVs,s]; H5;5>
- <DapV[Jg/7',s;tVs,s] & DAPW[JWT,E;t\/S,S]v Hs;s>-

Taking into account Def. 10.22 of the map A ..; s we obtain

Ar,a;t,sBa;s(Va W) = BE;S(AT,E;t,S‘/a AT,E;t,sW)- (12'1)
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Lemma 12.6. Let a € [1,00), 8 € (2,00), 71,72 € [0,00). There exists Ay € (0,1] such that
for all X € (0,\], T, € [0,1] and V. € #2557 W, € #2572 the map s — s Beys(Ve, W)
belongs to 7/0‘”6_1”1*‘72 and for oll V., € 7/%5;% W. € 7P2 it holds
(4) s v s Beyw (Va, W, Moy -1t
(B) s = 5 Beya (Vs W) | -0

(C) HS = s (BS(V% WS) - BE;S(VS; Ws))llwaﬂ B=1ivi+72

QB’H aﬁwz,

ﬂﬂ’72;

Proof. Let v € {0,1/2}, s € (0,1] and V;, W, € A (F). By Def. 12.4 of the map B..,
Def. 10.6 of the norm .#™, Lemma 9.5 (a), (b) and Remark 10.17 we obtain

Z Z |wgr, BIES (Vs, We)|lagm < sup sup Hw2H‘“’H//Zz

2 2
WEA™ 0eGm ach2 oeG

xik—i—l Ym—k+1) Y > wE VR e
k=0

a€Akt+l geGh+1
X Z Z ||w;n_k+1WSTn_k+1’a’U||J/{m7k+1 (122)

acAm—k+l geGm—Fk+1

and

Yo D lwl, BT (Ve Wo) =B (Ve, W) |uarm < sup sup wi(HE" —HED)| a2

acEA™ ceG™ a€A? G2

(k+1)(m—k+1) Z Z JwEftvELaT) .

0 acAk+1 o.eGk+l

x> S fwpER W) e, (12.3)

acAm—ktl geGm—k+l

X

NE

B
Il

Note that
Pritr2,n (M) = Py (K + 1) + pyp (m — k + 1) — 4k

Moreover, observe that for all 5 € (2,00) there exists A\, € (0, 1] such that for all a € [1,00),
m € Ny and A € (0, \] it holds

—m

(kD) o (m—k+1)

<A ——.
Zok—i—lﬂlm kE+1)-1 — mP-1

Recall also that A\ < \* for s € (0, 1]. Consequently, by Def. 10.15 of the norm ||s||ya.8:» and
Lemma 12.3 the bounds (12.2) and (12.3) imply that

(Ao) lIs = s Beys(Ve, We) |l yras-tim+2 <
(Bo) [Is = s Beys (Ve, Wo) [l pas—rivt2s < A" |
(CO) HS =S (Bs(Vs; Ws) - Ba;s(Vsa WS))H%Q,B*Wﬁw < )‘?
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The bounds (A) and (B) follow from Def. 10.32 of the norm #,%%7, the bounds (Aq)
and (Bg) and the identity (12.1). The bound (C) is a consequence of the bound (Cy) and
Lemma 10.26 (C).

It remains to prove that the map s — sBg,s(Vs, W) belongs to 7/707‘5'6_1””‘72. By the
bound (A) and the fact that /%7 is a dense subset of V/T?‘E’ﬁ ¥ it suffices to establish the above
claim for V. € #finm and W, € #fin72. It follows from Lemma 12.8 that B..,(V;, W) € #/fin
for all s € (0,1]. Recall that the map (0,1] 3 s — H.., € 42 is continuous by Lemma 12.3.
Hence, by a bound similar to the bound (12.2) the map (0,1] > s + B, (Vs, W) € A™ is
continuous. Using the above fact and the bound (A) we infer that the map s — s B, (Vs, W)
belongs to ¥finm+72 C y/f=1m+32_ This finishes the proof. O

Lemma 12.7. Let a € [2,00), B € [1,00), v € [0,00). For 1,e € [0,1], v € (0,1] and
V. € 7B we define 1.,V = (I Vo) men, € A by the equalities 17", V. = 0 for
m € N+ \ 2N+,

TR T,E;U,S

I V::/ EA™ . Vi/sdse /™
0

for m € {6,8,...} and

. v..= /0 REAT. , Vi/sdse /™
for m € {2,4} provided the integrands appearing above are absolutely integrable. We set
e v =1L ., V. Moreover, we omit T and € if 7 = 0 and € = 0. There exists a
constant C' € (0,00) such that for all T,e € [0,1] and V. € V/To,‘a’ﬁ;'y the map u + I .., V.
belongs to 7/7072,64-1;7 and for all T, € [0,1] and V. € ¥ 57 it holds

(A) |lu— 10 Ve V.

Wfaéﬁ+l;’v S C | Wf‘gﬂw’
(B) HU — IT,E;uV: «/ﬁf(‘jéﬁ+l;’v S C| ‘/- Wﬁ‘;ﬂ"’”
(C) ||u = (Iu - IT,S;u)V' e 4By < CAfy. | Vellya.se -

Proof. We shall prove the following bounds
(A1) [Ju= Hly cuVellyasn < C VL
(Bl) Hu = HkIT,a;uV- Ao, By <C | V. %ﬂ_ﬂ;ﬂ;w,
(Cl) ||’LL = Hk(Iu - IT,E;u)V: Ya/2.8-1y < C)‘i\/a |
with k € {2,4} and

(A2) Jlu = TIsa1; o0 Ve V.
(Ba) |lu+ Iy, o0 Ve Vellyzooiv

(Ca) flum Moa(ly = Lr ) Vallyjosamn < CARy Vel yasn.

Recall that the operators II; and II.; were introduced in Def. 10.12. Note that by Re-
marks 10.35 and 10.19 the bounds (A1), (By), (C1) imply analogous bounds with the norms
as in the bounds (A), (B), (C) and some universal constant C' € (0, 00). Hence, to prove the

WTQE,BW 9

V.

Yo, By .

WTG:E,B+1;W S C| “///chgﬁw’

WTaéB+1;W S C|
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lemma it is enough to establish the bounds (A1), (B1), (C1) and (Az), (B2), (Cz2). In order to
verify the bound (A;) note that by Lemma 11.16 and Remark 10.10 for m € {2,4} it holds

mym,a,o
[[wy TV

u
Hm S / S_l Hw”unREAm7a7o. VS”.//[”L ds
0

T,E;U,S

T,E;U,S

u
< sup / sl =IPI=1 (1 — 5 /u)S [[w™ A™57 V|| gm ds.
0

By Def. 11.12 of the map R it holds [Jw; ' I7.% V.| gm = 0 if |[a| < 1 and m = 2, or |a| =0

and m = 4. Using Def. 10.32 and 10.15 as well as Lemma 2.4 (B) we obtain

mym,a,o m
(|wy T Ve

Vi

m=P |

u
<o e / AP m) glal+m/28 (1 _ 116 g
T,E O

< Cammm=B N Wl 22 VL

with some universal constant C' € (0,00) for m = 2 and |a| > 1, or m = 4 and |a| > 0.
This proves the bound (A;1). The proof of the bound (B;) is the same only the wight w!" is
replaced with the weight @w?". In order to verify the bound (C;) note that by Lemma 11.16
and Remark 10.10 for m € {2,4} it holds

u
[y (W57 = L7 )Vellam < / s i RE(ATLT, — AT Vallgn ds
0

T,85U T,E;U,S

u
< sup / slal=lbl=1 (1-— s/u)c* Hw;"(Am’b’U - Aﬂ;b’a)%||/ﬂnL ds.

T,E3U,S
beA™ Jo

By Def. 11.12 of the map R it holds [w} (I7:%7 — I *7)V.||gm = 0 if |a| < 1 and m = 2,
or la| = 0 and m = 4. Using Lemma 10.26 (E) and Def. 10.15 as well as Lemma 2.4 (B) we
obtain

lwi" (77 = L7 )Vallam

S (a/2)7mm17ﬁ HS = (AT,E;u,s - ‘Au,s)V;||“l/“/2v5*1?“Y / )\gn,,n(m) S|a|+m/273 (1 - S/U)C* ds
0
< C(a/2) MmNy (M ylaltm 22 Y s

with some universal constant C' € (0,00) for m = 2 and |a| > 1, or m = 4 and |a| > 0.
This proves the bound (C;). Let us turn to the proof of the bounds (Az), (Bz2), (C2). By
Def. 10.32 of the norm ||'||4///Tc’vé6w and the triangle inequality it suffices to show that

(A3) Hu = HkA'r,s;t,uH>4IT,s;uV- V.
(Ba) [Ju = HpArcp oIls gl o Ve V.

o< .
Yoo, B+1y C| Wﬂ_ﬂféﬂﬂa

o, B+1y < C| WT‘*;B%’H

(CB) ||’LL = HkA'r,s;t,uH>4(Iu - I'r,s;u)‘/- o /4,B;y S C,Af—:\/e | ‘/- Yo, By
for k € {1,2,3,4} and
(A4) Hu — H>4A71€;t7uﬂ>41718;uv. o, bty < C| V. W2
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(B4) Hu = H>4Ar,s;t,uH>4I'r,s;uV- o, B+1y < C| V. “/i,ff;ﬂw?

(04) Hu = H>4AT,€;t,uH>4(Iu - IT,E;u)‘/' Y a/4,B8iv < CA?\/E | V. Y By

with some constant C' € (0,00) independent of 7,e,¢t € [0,1]. Actually, the bounds (Ay),
(B4), (C4) with t = u together with Lemma 10.26 (A), (C), (E) and Remark 10.19 imply
the bounds (As), (Bs), (C3). Hence, it remains to prove the bounds (A4), (B4), (C4). Using
Def. 10.22 of the map A, .., and Remark 10.25 (B) we obtain

H>4AT,€;t,uH>4IT,s;u‘/- = H>4A‘r7s;t,u1‘r,5;u‘/.
= H>4A‘r,8;t,uE/ AT,&;u,sVYs/S ds = 1_[>4:Eu/ AT,E;t,S‘/;/S ds.
0 0

As a result, using Def. 10.32 and 10.15 as well as Remark 10.10 and Lemma 2.4 (A) we obtain

m,a,o
m A, a, I‘r,s;u‘/-

u T,&5t,u

u u
o < / S AT Vg ds < / s ATV, | g ds
0 0

[[w

<a mmP

Vi

u
W&,Bw/ /\/;»y,m(m)s\a\er/QfB ds
T,€ 0
—m,  —pB—1 w(m al+m/2—2
<10« m B )\,ﬁw ( )U‘ | / HV:HW,_",‘E'BW

for m € {5,6,...}. This implies the bound (A4). The proof of the bound (By) is the same
only the wight w™ is replaced with the weight @”. In order to verify the bound (C,) we first
note that by Lemma 10.26 (C) it holds

Hu = H>4AT,E;t,uH>4(Iu - IT,E;U)‘/:

Fa/4,Biy < HU — AT,E;t,uH>4(Iu - IT,E;U)‘/:
< ||u = H>4(Iu - I‘r,s;u)‘/-

Wo/4,B8y

/2,8

Using Def. 10.32 and 10.15 as well as Lemmas 10.26 (E) and 2.4 (A) we obtain

([t (TG = LT Ve

T,E5U

T,E;U,S

u
am < / st wg (AL — AT Vell.am ds
0

< (a/2>7mm17ﬁ HS = (Au,s - AT,E;u,s)‘/s|‘7/a/2,B—1w / /\gq,ﬁ(M) S\a\+m/273 ds
T, 0

<10 (/2)7"m NG N a2
for m € {5,6,...}, which implies that

s Toa(Ly — L) Ve V.

o/2,B5 S C| Yo, Biy .

This finishes the proof of the bound (Cy).

It remains to prove that the map w — I, .., V. belongs to %f‘éﬂ“?"’. By the bound (A)
and the fact that 7,7 is a dense subset of 7/&15” it suffices to establish the above claim
for V. € 7. It follows from Lemma 12.8 that I, .., V. € A8 for all u € (0,1]. By the
bound (A) the map u — L. ., V. belongs to ¥/ C #,%AT17 This finishes the proof. [
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Lemma 12.8. Let 7,¢ € [0,1] and t,s € (0,1]. If V € A48 then B.4(V) € A and
EA. ..V € #fn

Proof. We have to prove that if V € 4% is invariant under the symmetries of the torus/plane
and the internal symmetries and compatible with the flow of charge, then B. (V) and
EA ... sV have the same properties. First, note that the invariance of B.4(V) and EA; ., sV
under the symmetries of the torus/plane and the internal symmetries is a simple consequence
of Def. 10.22 and 12.4 of the maps A, ..; s and B, as well as Remarks 12.2 and 6.14. The
non-trivial part of the proof is the verification of the compatibility with the flow of charge
of B.,,(V) and EA, ., V. For an argument based on the analysis of Feynman diagrams we
refer the reader to [GK85a, Sec. 5.B]. Let us give a direct proof of the above claim. Since by
assumption V € A4 is compatible with the flow of charge for every m € N, there exists
wm e Jl/ﬁm such that V™ = SW™ and W™ satisfies the properties listed in Def. 10.28. Our
goal is to prove that:
(1) for all m € Ny there exists U™ € 4™ such that B,V = SU™ and U™ satisfies the
conditions listed in Def. 10.28 and
(2) for all m € Ny there exists U™ € 4;™ such that EAT"., |
the conditions listed in Def. 10.28.
To prove (1) is enough to observe that U™ := B[}, (W) satisfies the above-mentioned condi-
tions by Remark 12.2. The proof of (2) is more involved. Let us set %—1 = Jl/ﬁo = C. For
n € Ny and 4, j € Ny such that i < j we define the operators

V = SU™ and U™ satisfies

D(Za]) D‘r,s;t,s; f)‘r,s;t,s . (/Vung)(/i/un—Q

T,65t,87

by the equalities D) v =0 for j>n,

T,65t,8

(DY) Vo1 ®...® pn)
= E<V; 1 X...Q ©i—1 & Jw'r,s;t\/s,s & Pi+1 K...Q Pi—1 & Jw'r,s;t\/s,s & Pj41 .- & Sﬁn>

for j <n and

Dreits i= 22 Z D" D.oisi= (DY) +n(n—2)DEY) ).

T,63t,89 T,65t,8 T,65t,8
=1 j=i+1

Note that by Remark 6.14 and Def. 12.1 the expected value appearing in the equation defining

DS;?56 can be expressed in terms of the function H; .,s — H; c1vs. We observe that for all

V € " and m € N, it holds
EAT,&;t,sV = eXp(DT,E;t,s/Q)V = eXp(]jT,a;t,s/2)‘/a

=1 =1 =
EAZ?E;t,SV = Z E(DT,E;t,S/Q)n v = Z E(DTaa;t,s/Q)n VerQna
n=0 '

n=0
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where we used the fact that V'™ is antisymmetric for all m € N,. The series on the RHS
of the second equation above are actually finite sums due to the assumption V € 4 fi*. For
m € Ny we define

Um = ZO %(Dm;t,s/m" pmtan,
Recall that (W™),,en, satisfies the properties (a), (b), (c) stated in Def. 10.28. Using the
properties (b) and (c) we prove that EA”'_, .V = SU™ for all m € N. Using the property (a)
of (W’")meN+ and the invariance of H, ..s — H; .+vs under the charge conjugation symmetry
we show the property (a) of (U™)men, . The properties (b) and (c) of (U™)en, follow from
the properties (b) and (c) of (W"™),,en, and the fact that H, .. — H; o1y, is antisymmetric.
This finishes the proof. O

13 Fixed point problem

In this section we construct a solution Xr oo = (Gr.ejes 7 e505 2,050, Wreio) Of the system of
equations (2.24), (2.28), (2.20), (2.21), (2.22) introduced in Sec. 2. To this end, we rewrite
this system of equations as a fixed point equation of a certain map X ... acting in a complete
metric space %; . and prove that the map X, .. is a contraction provided the parameter
A € (0,1] is sufficiently small. As argued in Sec. 2 and proved in Sec. 14 using X, ... it is
possible to construct a solution U ... of the flow equation (7.3).

Definition 13.1. For 7,¢ € [0, 1] and

X. = (gey7e, 20, Wa) € C((0,1],C) x C((0,1],C) x C((0,1],C) x w5527%0"

we define
|IX.]| & := sup )\%er“ lg:] + sup A?6“71t|7"t|+ sup )\§6“71|zt|,
te(0,1] te(0,1] te(0,1]
HX. X = ||X. @+ ||W. w8 4280k, HX. Z . = ||X. @+ HW. 231280k .

By definition the vector space 2 . over C consists of maps X. of the above form such that
| X.||2,. < co. We also define the set

Y. = {X. € Z..||X.

2. <1, P(X.) >\, Vigo)Imgs = Imry = Im 2z, = 0},

where Z.(X.) = infic(0,1) Aeve g We omit 7,e if 7 =0, ¢ = 0.

Lemma 13.2. For all 7, € [0,1] the space (2, ||*|| 2,..) is a Banach space. Moreover, the
set % . is a closed subset of Z- .

Proof. The statement follows from Lemma 10.37. O

Lemma 13.3. Let 1,¢ € [0, 1].
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(A) For all X. € 27 it holds
(B) For all X. € Z it holds

Proof. Ttem (A) follows from Def. 10.32 and Remark 10.18. To prove Item (B) observe that

by Remark 10.33, 10.35, 10.18 and 10.34, respectively. O

Definition 13.4. Let 7,¢ € [0,1]. For X. = (g.,7., 2., W.) € %, . and t € (0, 1] define

t
W2 () = [ BAZL Bl (V) dse 4™ me N\ (2,4},
'ret /REATsls (V)dS_ECTeltWte'/Vm’ m€{274}’

as well as

1
grea(X) =X+ [ (0P LBAL, B (Vo) ds € B,
t
rre(X.) :=—LEAZ _, ,U(1/g:,0,0) — / LEA? ., ;B (V,)ds €R,
t

ZT,E;t(X') / LBEA‘T e s (VTS) ds € R,
0

where

Vs =Vi(X.) =U(1/gs, 75, 25) + Ws € N, s € (0,1].
For A € (0,1] small enough the map X, ... : % . — 2, . is defined by

Xreie 7= Briee X Tre X Zrge X Wr i, Wire = X W,
meNL

Remark 13.5. The fact that the map X, ... is well-defined is non-trivial and is a consequence
of the estimates established below. We also point out that W'_,(X.) = 0 for m € N \ 2N,
by Remark 8.7.

Remark 13.6. We call the parameter g, ..; the inverse of the effective coupling constant. Note
that we fixed g, .+ at unit scale t =1 to be g 1—1 := A~', where A € (0, ] and A, € (0, 1]
is a small constant.

Remark 13.7. The parameter r; ..; is the correction to the effective mass due to the interac-
tion. Note that we fixed r,.,; at unit scale t =1 to be 7, .+—1 = 0. Recall that that the free
part of the action contains the unit mass term. Hence, the above condition implies that the
effective mass at unit scale equals one.
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Remark 13.8. The fact that g, .4(X.),rrc4(X.), 27 4(X.) € R follows from Lemma 11.10
and the symmetry properties of functionals U(g,r, z) and W € V/Tofgg .

Theorem 13.9. There exists A\, € (0,1] and C € (0,00) such that for all A € (0, )], all
T,e €[0,1] and all X.,Y. € % ., Z. € ¥ it holds:

(A) ||Is = Xres(Xo) |2, < CA* and P (s ’—>er5( ) >1/C,

(B) s = (Xres(Xe) = Xreis (Vo)) 2. < CA
(C) lls = (Xres(Xe) = Xrei6(Z1))

I <X
(D) ||s = (Xs(Z.) = X;e16(Z0)) <C>\n

TVE"

7'57

E’

Proof. The theorem is an immediate consequence of Lemmas 13.18, 13.26, 13.27, 13.28. O

Corollary 13.10. There exists A\, € (0,1] and C € (0,00) such that for all X € (0,\.] and
all 7,e € [0,1] the map Xr o @ %re — Y7o is well-defined and has the unique fized point
denoted by X; c.o = (Groeies T 0y 276500 W e3) Such that

[Xe = Xrewll gz . < CALe, (13.1)
where X, := X, ... with =0, =0, and
|| T,€; 1” am < C H‘/lm - V‘rﬁ}e;l”(/m < CA?\/E ) (132)

where Ve e = (V% ) men, = U(1/gre1,Tre51, 2r,e1) + Wren € A for all T,¢ € [0,1] and

T77

Vi = V; e with 7 =0, € = 0 and the norms ||*||_ym, ||| s were introduced in Def. 10.12.

Proof. The fact that for all sufficiently small A € (0,1] the map X, .. : % . — % . is
well-defined and is a contraction follows from Theorem 13.9 and Remark 13.8. The existence
and uniqueness of the fixed point X ... is then a consequence of Lemma 13.2 and the Banach
fixed point theorem. In order to prove the bound (13.1) note that

Xe = Xrc = Xa(Xe) = Xy (Xrc)
Consequently, by the triangle inequality we obtain

IX. ~ Xrew

7'1€§’(X’) o X7'1€§’(X7'1€§‘)

Since X. € #, X, ... € %, . by the bounds (C) and (D) stated in Theorem 13.9 it holds

Lr e < ||X°(X°) - XT,E;-(X-)

LT,e

||X7'1€§’(X’) o X7'1€§’(X7'1€§’)

7. <CNXe— Xrc

‘gg‘r,z
and
1Xe(Xo) = Xren(Xo) [l g, . SO N
Consequently, we have
X = Xr il g . S CNige + C N [ X = Xr il -
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This proves the bound (13.1). By Def. 13.1, Remarks 10.34, 10.18 and the fact that \;=1 = A

we have

1,00 < 2,

+4/1,0;0 < C A}

TVE

A3/ |1/9'r,€;1| + |7"'r,8;1| + |ZT,€;1| + HWT,E;-
\3/2 lg1 — g'r,s;l| +[r1 — 7’7,5;1| + 21 — ZT,€;1| +[[We — Wi e

for all 7,e € [0,1]. As a result, in particular

11/91 = 1/greal < C N,

for all 7,¢ € [0,1]. The bounds (13.2) follow now from Def. 10.15, 11.1. This finishes the
proof. O

Definition 13.11. For € € [0,1] and ¢ € (0, 1] we define 6., := \¢/Acve € [0,1].

Lemma 13.12. For all T,e € [0,1] and

Xe=(gey 70,20, WL) € % Y. = (g, 7,2, W) € %, Z = (§orTe, 20, W) €Y

it holds
(A) SupsE(O,l] )‘iQH_l |9§,5/gs| S 1’

(B) SupsE(O,l] )‘iQH_l |9§;5/gs - eg;s/§5| < ||X' - Y. Xrer
(C) supse (o, A1 02,5/ 95 = 025/ 95| < |1 X = Zull 5, -

Proof. First observe that Aoyvs02., < As, A2,,02, < A2 and A\; < A. The above bounds and
Def. 13.1 imply that

(A1) sup,e(o NS 102,/9s| < A/ Z=(X.),

(B1) supueion N2 102 /95 — 02, /s < Ni/ Po(X.) N/ 2o(Ya) | X — .
(C1) SUPyeqoy M2 162, /05 — 02,./d.] < X2/ P2(X0) Xo/ P (X.) | X, — Zu] .

The lemma follows now from Def. 13.1. O

P

Lemma 13.13. Let o, € [1,00), v € [0,00). There exists C € (0,00) such that for all
T,€ € [0,1] it holds:

(A) lls = 27773 U(1,0,0)[|pe0 < C,

(B) || =+ A774 5T (0,1,0)[| s < C,

(C) s = A7=15 00,0, 1)|| e < C.

Moreover, analogous bounds with %Oféﬂw replaced by 7/&15” are true.

Proof. From Def. 11.1 of the functional U(g,r,z) and Def. 10.15 of the norms |||y a.s:
and [[¢||.7a.s., it follows that the bounds

(Al) HS = /\;77&{ U(la 07 0>H41/2“,L‘3;7 S Ca
(Bl) HS = /\;774KSU(07150)”7/2“’L3;7 S Ca
(Cl) HS g /\;774K U(anvl)HV/%‘,ﬁw < C

71



as well as the bounds with %257 replaced by ¥2%#" hold true. The bounds (A), (B), (C)
are consequences of the bounds (A1), (B1), (C1) and Remark 10.35. O

Remark 13.14. Tt follows immediately from Def. 10.15 of the norm |||y a.6~ and Def. 10.32
of the norm ||e||,, a5 that for all continuous functions h. : (0,1] — R it holds

I8 = hs Vsllyepn <

HS — hg ‘/SHW,%BW >

where ||h./oo 1= SUPge(0,1] |hs]. The analogous bounds with ¥ B replaced by Y B and
%‘?‘gﬁ 7 replaced by 7/;?2[3;7 hold true as well.

Lemma 13.15. For 7,e € [0,1], X. = (go, 7., 2., W.) € 27 . and s € (0,1] define

V(X)) =U0,rs,2),  VEI(X.):=U(02,/95,0,0),  VE(X.):=W,

bl 1‘5 1‘5

and
VX = VEN(X.) + VEI(X.) + VENX.) = U602,/ 95,75, 25) + W

We omit ¢ if e = 0. There exists Ay € (0,1] and C € (0,00) such that for all X € (0, \.], all
T,e €10,1], all X.,Y. € % ., Z. € % and all i € {1,2,3} it holds:

(A) |ls = VELX)ysa00 < C,

(B) |ls = (VEA(X.) = VEA(Y.)

(C) lls = (VEUX.) = VEUZ))I| g2 Foo
where ¥(0) = v(1) =1 — 40k, v(2) = 1— 20k and 7(3) = 2 — 80k.

TE’

[PPEXE

Proof. Fori = 1the bounds (A), (B), (C) follow from Lemma 13.13 applied with v = (1), Re-
mark 13.14 and Def. 13.1. For i = 2 the bounds (A), (B), (C) follow from Lemma 13.13 applied
with v = v(2), Lemma 13.12, Remark 13.14 and Def. 13.1. For ¢ = 3 the bounds (A), (B), (C)
follow immediately from Def. 13.1. For ¢ = 0 the bounds (A), (B), (C) are consequences of
the bounds (A), (B), (C) with ¢ € {1,2,3} and the triangle inequality. O

Lemma 13.16. For 1,e € [0,1], X. € 27, 1,7 €{0,1,2,3} and s € (0,1] define

Gg’sj)(X°> = BE;S(Vgi) (X-)vng)(X-))v GE;S(X-) = Gg(;)s’o) (X.),

where the maps VE s, 1 € {0,1,2,3}, were introduced in Lemma 13.15. We omit ¢ if ¢ = 0.
There exists A\, € (0,1] and C € (0,00) such that for all X € (0,\], all T,e € [0,1], all
X Y. €% ., Z.€ ¥ and alli,j € {0,1,2,3} it holds:

(A) [ls+—sG ”)( X.) 8,37+ () <N,

(B) ||s s (GE(X.) — Gé’;”( YOy s a0 < CAF
(C) |ls = s (GEP (X.) = GE(20))]] j2zairmm < C A"
(D) |ls = s(G(2.) - GEY (2 >>||T st < CAL,

Ta)

%T,z’
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where ¥(0) = (1) =1 — 40k, v(2) = 1 — 20k and v(3) = 2 — 80k.
Remark 13.17. Observe that for X, = (g.,7., z., W.) € 27 - it holds
BE;S(U(l/gsar5a25)+WS) = G: é( )= G(OO)( .
=GLY(X.) +2GLY(X.) +2GLY (X)) + GEY(X.) +2GEY(XL) + GEA(XL).

Proof. Note that since H.., = 0 if s € (0,¢] it holds B..s(+) = 0 if s € (0,¢]. Consequently,
since 02, = 1 if s € (0, ] we obtain
GUY(X.) = Beo(VEL(X.), VE (X))

£;8

and
G (Z,) - GUD(Z,) = By(V(2.), VI (Z.)) — B, (V) (2.), V) (2.)).

Moreover, it holds
QP (X.) ~ GUP(Y.) = By (VEL(X.), VE)(X.) — VE) (V)
+ Beis (VE(Y.), VL
and
G (X.) - G (Z.) = Boo(VEL(XL), VEL(X.) = VEL(2.))
+ B (VE(2.), VIL(X.) = VEL(Z.)).

The application of Lemma 12.6 with v1 = (i) and 5 = v(j) yields

(A) lls = s GED (X)L m0000 < X* [ls = VEL(X.) DX ys000,
(B) Hs»—)s(G(Z’])( .)—Ggs])( Y. H“fﬂff"”“””(”
<X s VLX)l o0 s o (V) = VEI )] m000
£ s 5 VLY s s = (VELE = VXm0,
(©) s+ 5 (G4 (x.) - G2 Z8)][PEem——
<X s o VX 20000 lls = (VX = VEUZ)) | 0
F X s o VAU (Zo) 2000 s = (VLK) = VELZD)] 200,
(D) [ls = s (G (2.) = GEP(Z))] 2200100
< M ls s VI(2.) v (2.)
Next, observe that
HSHVgl( . 23700 S HSHVSZ( .) éi( .) ERSIOL
s = VEL(Z)ly 25000 < s = VEU(Z2) 02
s = VEL(2.) 02 0(2.)
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by Remarks 10.18, 10.34 and 10.35. The statement of the lemma is now an immediate
consequence of Lemma 13.15. O

Lemma 13.18. There ezists A € (0,1] and C € (0,00) such that for all X € (0, \.], all
1,6 €10,1] and all X.,Y. € %, ., Z. € ¥ it holds:
(A) |Is = Wr s (Xo)|| s, . < O N,
(B) HS = (WT,E;S(X') _Wr,a;s( ))H“/ﬂg‘” sorx < C)‘Kl
(C) lls = (Wres(Xe) = Wreis(Ze H"fﬂfj' 2-s0n < C' A"
(D) HS = (WS(Z') - Wr,a;s(Z')) - < C A7

TVeE"

Tsf

1',57

Proof. For 1, € [0,1], X. = (go, 7, 2o, Wo) € 2+ and s € (0, 1] we define
HTaa?S(X ) (H’:rns S(X‘))m€N+ eN

by the equality
H'r £; s( ) W EAT gl SWS - ECT,E;LSWS-

Recalling that the maps I .. and G ..; were defined in Lemmas 12.7 and 13.16, respectively,
and using the notation introduced in Def. 10.12 we obtain

W (Xa) = WL (X)) + WEL (X.),

T,E;8

WU (X)) =L as(u = uGau(XL)),  WEL (X)) = (T + T1y) Hr o (X0).

Observe that

W7(_12 S(Xo) — W7(_12 S(Yo) =L cs(u = u (Geu(X.) — Gew(Y2))),
WL (X)) = WL (Z.) = L cis(u s u (G (X)) — Geu(Z4))),
ng)(Z) ngs( D=L —Lgs)(ur uGy(Z ))JFITES(U’_)U( u(Z.) = Geu(Z.)))-

It follows now from Lemma 12.7 and Lemma 13.16 that the bounds (A), (B), (C) with
W ..s(X.) replaced by ng s(X.) hold true. Consequently, by the triangle inequality to com-
plete the proof of the lemma it suffices to establish the bounds (A), (B), (C) with W, ..4(X.)
replaced by ng .s(X.). By Remarks 10.35 and 10.19 the latter bounds are implied by the
following bounds:

(A1) [Is = Hr oo (X0) S OAY,

(B1) lIs = (Hre(Xo) = Hrcis(V2)) [ ya32-50- < C A7 |
(C1) s = (Hres(Xo) = Hroio(Z)) ]| 1.22-500 < C A"
(D1) [ls = (Hs(Z.) = Hrei5(2)) SCON

TVe*

The above bounds follow from Lemma 10.26 (B) and (D), Remark 10.10 and Def. 13.1. This
finishes the proof. O

7'55

Qfﬂ',é”
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Lemma 13.19. Let y € [0,00). For 7, € [0,1], W. € #3%7 and s € (0,1] define

c:?é?S(W ) - LEA:rrne 1 5W57 m e {25 4}7
c2l (W.) = LoEAZ | W..

T,€;8 T,651,8

There exists A € (0,1] and C € (0,00) such that for all A € (0,\], all 7,e € [0,1], t € (0,1],
W., W, € W37, W. € w557 and all (m,i) € {(2,0), (4,0), (2,1)} it holds:

(A) A, y— 21<amt3 m/2— z|cm1( )

(B) A2 g2 ZIcS’Z?(W-) e (W, ) (Ws = Wl
() A2 e G (W) — e (W, (Ws = Wo)llzzzo,
(D) 37 g2 e ) et (W, > Foells = s Willysa

Remark 13.20. Actually, since the map CS_TZ? is linear Item (B) of the above lemma follows

immediately from Item (A).

Proof. By Remark 10.19 and Lemma 10.26 (A), (C), (E) there exists C' € (0,00) such that
(A7) |Is+— sA™ W|‘“j/m‘v<CHS’—)SWHWS377

T,651,8
(B1) [Is = s (ATy W = ATy We)[lyma S Clls = s (W = Wi)lly s,
( HSHS(ATslsW A‘rsls H“I;WW <CHSHS(W _W H“/}%f*“

(D1) |Is = s (AT, W — ATy Wo)llyme < CNEyells > s Wil .00

for all 7,¢ € [0,1] and m € {2,4}. The bounds (A), (B), (C), (D) follow now from Def. 10.15
of the norm ||s||4m:, Remark 10.10 and Lemma 11.9. This completes the proof. O

Lemma 13.21. For 1,e € [0,1], X. = (gu, 7., 2., W.) € 2. and s € (0,1] define

all) (X.):= LEA7 ; ,B.;s(U(1/45,0,0)),
alL (X.) == LEA] ; Beis(U(2/gs, 75, 25), U (0,75, 25)),
al’l, (X.) = LEAigléBE;s(2U<1/gs,rs,zs) + Wa, W)
and
alll,(X.) = LoEAT ; Bes(U(1/95,0,0)),
a'(r,g;s(X’) L EA?rs 1 sBs;S(U(Q/QSa s, 2s), U(0, 75, 25)),
al’) (X.) == LoBAZ . Beiu(QU(1/gs, 75, 25) + Wa, Wo).
There exists Ay € (0,1] and C € (0,00) such that for all X € (0,\], all 7, € [0,1], all

€ 0,1, all X..Y. € ¥ o, Z. € ¥ and all i € {1,...,6} it holds:
(A)A "Dl (X)) <
(B) X\, t]al,(x.) — <”< Y.)| <

Az et

(€) 57 tal",(x.) —al (2] <

[0)



(D) N,V t|al?(2.) — 2l (2.)] <

'ret TVeE?

where y(1) = 2 — 32k, v(2) = v(3) =3 — 108k, v(4) = 2 — 36k, v(5) = v(6) = 3 — 112k.

Remark 13.22. Observe that it holds

( )QLEAis 1 SBE;S(‘/S) = (95)2 'rs s( ’) + ( ) '(ng S(X ) + (gS) a‘(rgg S(X’)7
LaEAT gl SBE;S(‘/S) = a(4) (X ) a(52 (X ) + a'(rGg S(X )7

T,E3S T

(13.3)

S

where Vi = U(1/gs, s, 25) + Ws and X, = (g., 7., 2., W.). Note that the expressions
( )2LEA:1'815 8S(V9)’ LEATEl& ES(V;)’ LaEAT&ls 88(‘/;)

appear in Def. 13.4 of the maps g, c.., I'r .. and z, ... The second of the above expressions
will be estimated directly in Lemma 13.27 using Lemmas 13.19 and 13.16. One could also
estimate directly the remaining two expressions without using the decompositions (13.3).
However, estimates obtained in that way are not strong enough for our purposes as they do
not take into account the fact that a(T?g;s(X.) =0 and a&‘? .s(X.) =0 for s € (0,1/2), which
we prove below. Let us also mention that we will not use at all the bounds for a(T%g;s(X.)

stated in the above lemma. Instead we will estimate directly (gé)Qan s(X.) = fres, where

fr,e:s is introduced in Def. 13.23. Note that f; ..s does not depend on X..
Proof. First observe that for X. = (g, 7., 2., W.) € £+ ¢ it holds
B€§S(U(1/g57 05 0)) - G‘(r?‘f) (X’)7
BE;S(U(Q/QS, Ts,2s), U(0, 75, 25)) = G_(,_}él)(X.) +2 Gg_%f) (X.),
B...(2U(1/gs, 75, 25) + Wi, W) = 2GH (XL) +2GEP (X.) + GEP) (XL,

T,

where the maps Gg 2’ were introduced in Lemma 13.16. Using the fact that fR2 es(x)de =0
for s € (0,1/2) by Remark 5.2 (D) as well as Def. 10.22, 12.4 and 11.1 one shows that

LEA] . Bes(U(2/gs,7s,25), U0, 75, 25)) = 0,
LBEAT g1 SBE;S(U(2/957 Ts, Zs)a U(O, Ts, Zs)) =0

for s € (0,1/2). Recall that 6 /5.; = A\t/A1/2v¢. Since 0y /o, = 1 for s € [1/2, 1] we obtain

35—2,2;5( ) = Hi/2405 LEATE 1 s ,(U(Q/gS,TS,ZS),U(O,TS,ZS)) (13'4)
and
al®) (X.) = 0 5" LoBAZ | Be(U(2/gs,7s, 26), U (0,75, 25)). (13.5)

To prove the bounds (A), (B), (C), (D) in the cases i € {1,...,6} we use the following
arguments, respectively.
(1) We apply Lemma 13.19 with m = 4, ¢ = 0 and 7 = 2 — 40k and Lemma 13.16 with
(i,4) = (2,2).
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(2) We apply Lemma 13.19 with m = 4, ¢ = 0 and v = 2 — 80k and Lemma 13.16 with
(1,7) € {(1,1),(1,2)} and use the identity (13.4).

(3) We apply Lemma 13.19 with m = 4, i = 0 and v = 3 — 120k and Lemma 13.16 with
(1,5) € {(1,3),(2,3),(3,3)}.

(4) We apply Lemma 13.19 with m =
(i,9) = (2,2).

(5) We apply Lemma 13.19 with m = 2, ¢ = 1 and 7 = 2 — 80k and Lemma 13.16 with
(i,7) € {(1,1),(1,2)} and use the identity (13.5).

(6) We apply Lemma 13.19 with m = 2, ¢ = 1 and v = 3 — 120k and Lemma 13.16 with
(1,5) € {(1,3),(2,3),(3,3)}.

This finishes the proof. |

|
DO

,7=1and v =2 — 40k and Lemma 13.16 with

Definition 13.23. For 7,e € [0,1] and ¢ € (0, 1] we define

T1

1
fren =271 +/ LEA!_, B..(U(1,0,0))ds,  hrey:=LEAZ_, ,U(1,0,0).
t

Remark 13.24. For X, = (g., 7., 2., W.) € 27 it holds

1
g'r,a;t(X-) = fret +/ (98)2 (LEAis;l,sBs;s(VS) - LEAiE;LSBE;s(U(l/gS, 0,0)))ds
t

and

1
r‘r,e;t(X-) = *h'r,e;t/gt - / LEA?—,&;LSB&S(‘/S(X’)) dS’
t
where Vi (X.) = U(1/gs,7s, 25) + Ws.

Lemma 13.25. There exists Ay € (0,1] and C € (0,00) such that for all X € (0, \;] it holds
(A) Aajt/C < frea SONY,
(B) |ft - fr,s;t| < C’ng,r )‘;178’1;
(C) |hT,8;t| < C)‘;M t_l;
(D) |ht - hT,a;tl < CX;VT )‘;M t=!
for all 7,e € [0,1] and t € (0, 1].

Proof. Let us first note that A%__ B (U(1,0,0)) coincides with the RHS of Eq. (10.4)
with V' = B.,(U(1,0,0)). Since BXL*(U(1,0,0)) = 0 for all k € Ng but k = 2 in the
case at hand only the term k = 2 contributes to the sum over & € Ny on the RHS of
Eq. (10.4). Consequently, taking into account Eq. (6.1) and Def. 12.4 we conclude that
LEA7] ., B.(U(1,0,0)) can be represented in terms of the propagators Hy .., and H..,
introduced in Def. 12.1, which are defined in terms of G, ..; and G'E;s. More specifically,
LEA? ., B.s(U(1,0,0)) is a linear combination of one-loop Feynman diagrams with two
quartic vertices, one of which is integrated over R%2. The following types of diagrams ap-
pear: (1) diagrams with the vertices connected by two edges representing the propagators

T



Ge.s and G .5, respectively, and (2) diagrams with the vertices connected by a single edge
representing the propagator GE;S and with a self-contraction of one of of the vertices by the
propagator G ..s. Note that for s € (0,1/2) the diagrams of the type (2) vanish identically
since [po Ges(z)dz = 0 for s € (0,1/2) by Remark 5.2 (D). For s € [1/2,1] both of the
above-mentioned diagrams contribute to LEA] _. 1 B.,s(U(1,0,0)). However, in this regime
both propagators GE;S and G .5 have the UV cutoff of order one and by elementary estimates
LEA7 .., B.s(U(1,0,0)) is uniformly bounded for all 7,¢ € [0,1] and s € [1/2,1]. Thus, we
can restrict attention to the diagrams of the type (1) and s € (0,1/2].

Taking into account all possible contractions of the fields represented by edges of the
diagrams of the type (1) we obtain that for s € (0,1/2] and 7 € (0, 1] it holds

9(2ew(p))* I(sw(p)) I(sw(p)) w(p) (1 — |pl*)
(1+p*)?

LEA! _, B..(U(1,0,0) =8(N-1)7* >
pe(2nTZ)?

whereas for s € (0,1/2] and 7 = 0 (recall that we omit 7 in the notation if 7 = 0) it holds

LEAL B.(0(1,0.0) = S0 [ A2l ostp) i) ) 0~ )

dp.

As a result, there exists C' € (0, 00) such that
[LEAY, B, (U(1,0,0) ~ LEA® ., B...(U(1,0,0))] < C (1 - logs)

for all 7,e € [0,1] and s € (0,1/2]. This and the first paragraph of the proof implies that
there exists C' € (0, 00) such that

|f‘r,5;t - fa;t| S C (136)
for all 7,e € [0,1] and ¢ € (0,1]. By the Lebesgue dominated convergence theorem it holds
. B I(|p) I(|p o0 .
lim s LEA? B, (U(1,0,0)) = — = Y(pl) v (lel) dp = —2f I(|pl) 9(|pl) d[p| = Ba.
N0 T Jr2 || 0
Next, observe that

LEAilBg;S(U(l, 0, 0)) - 62/8

LB [ (OS2 IR D((2 + p2)2) (52— [p2) | d(lpl) I(Ipl)
—m/m( (s + |pP2)3/2 T )dp'

Hence, we conclude that there exists C' € (0, 00) such that it holds

|LEA3;S,1B€§S(U(17 Oa 0)) - ﬂ2/8| < C

for all € € [0,1] and s € (4¢,1]. Consequently,

1
foe = N1 < [ ILEAL, Bl (U(1L0,0) ~ fafs| £ C (13.7
t
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for all e € [0,1] and ¢ € [4¢,1]. Using the bound

ILEAZ, |B.,(U(1,0,0))|

< @/ I(2e(1+ [pl*/5%)'7?)* 9((s* + [pI*)"/?) [9((s> + [pI*) /)| (s* — Ip*) dp

TS Jge (52 + |p|2)3/2
we show that there exists C' € (0, 00) such that

LEAL,,B...(U(1,0.0)| < C/(c v 5)
for all € € [0,1] and s € (0, 1]. Hence,
4e
fou = foel < [ ILEAL, B (U(L0,0)]ds <4C (13.8)
t

for all € € [0,1] and ¢ € (0,4e]. Combining the bounds (13.6), (13.7) and (13.8) we obtain
that there exists A, € (0, 1] such that

[friest = Azvel S ATH/2 < AT 2 <00, /2

for all A € (0, ], 7,e € [0,1] and s € (0,1]. This proves the bound (A).
To prove the bound (B) first note that

ILEA] B, (U(1,0,0)) — LEA}_, B..(U(1,0,0))|

T,e;1,s
< es(Bs(U(1,0,0)) — e52,(Bs(U(1,0,0))]
+ €72, (Bs(U(1,0,0)) — 2, (B2 (U(1,0,0))|

where the map cizg;t was introduced in Lemma 13.19. By Lemma 12.6 (A), (C) applied with
~v1 = 72 = —8k and Lemma 13.13 applied with v = —8k there exists C' € (0, c0) such that

HBS(U(17 05 0))”7//3'539*16" < Cv ||BS(U(15 07 0)) - BE;S(U(L 07 0))”%}3"’16” < CA?

for all 7,¢ € [0,1] and s € (0,1]. Consequently, by Lemma 13.19 (B), (C), (D) applied with
m =4, i=0 and v = —16k there exists C' € (0, 00) such that

ILEA] B, (U(1,0,0)) — LEA} ., B.(U(1,0,0))| < C N5, A% s}

T,6;1,s TVe

for all 7,e € [0,1] and s € (0,1]. The bound (B) follows now from Lemma 2.4 (E) applied
with p = —1 — 8k.
Finally, let us turn to the proof of the bounds (C), (D). Observe that

hrew = LEAZ ., U(1,0,0) = t 2 (s = s~ U(1,0,0)),

where the map ci:g;t was introduced in Lemma 13.19. The bounds (C), (D) follow now from
Lemma 13.19 (A), (D) applied with m =2, ¢ = 0 and 7 = —8k as well as Lemma 13.13 (A)
applied with v = —8k. This finishes the proof. O
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Lemma 13.26. There exists A € (0,1] and C € (0,00) such that for all X\ € (0, \], all
T,e €[0,1], all t € (0,1] and all X.,Y. € ¥; ., Z. € ¥ it holds:
(A) N1 [gr e (X.)] <
(B) N1 |gree(X.) — grat( Ol <
(C) X grct(X.) — gre(Z.)] <
(D) N1 |ge(Z.) = reit(Z.)] < O Ny
(E) )\svt gr,a;t(X- > 1/0

Proof. For 1,e € [0,1], X. = (ge, 7%, 2., W.) € 2+ and s € (0,1] define

1
W) (%) = ()2 @@, () +a® (X)), g, (X.) = / M) (X.)ds,

where the maps afg;s and ag’g;s were introduced in Lemma 13.21. Note that it holds

gret(X.) = fron + 800, (X).

We shall prove that for i € {0,1} it holds
(An) A7 gl (X)) <
(Br) A7t gl (X.) — g'rst( Ol <
(C1) A7 g L (X) — 8 (Z)] <
(D1) A7 g (2) — UL Z)] < O N

for all 7, € [0,1] and ¢ € (0, 1], where v = —128k. For i« = 1 the above bounds follow from
Lemma 13.21 and Def. 13.1. To prove the above bounds for ¢ = 0 we use the bounds with
i =1 and Lemma 2.4 (E) applied with p = 7. Note that by Lemma 13.25 (A), (B) it holds

)\%JrlO/{ |fr,a;t| S C)\%OK S C)\K, )\%4’10[{ |ft fT . t| < C)‘s\/‘r )\2& < C)\K

evT:*

The bounds (A), (B), (C),(D) follow from the above bounds and the bounds (A1), (B1), (C1),
(D1) with i = 0.

To prove the bound (E) first note that since Hgs = 01if s < ¢ it holds B.;; = 0 and
g92 s(X.) =01if s < e. Consequently, g(Tgt(X ) = g(Togs( X.) if t < e. Recall also that by
Lemma 13.25 (A) it holds f,.; > A.,/C. Consequently, there exists C' € (0, 00) such that

it holds
gr,s;t(X-) > )‘a‘_\/lt/c —C\" AZW = )‘a_\/lt (1/0 -\ )‘;vtmgﬁ)
> Ay (1/C = C A1) > A1 /(20)

for all A € (0, )], 7, € [0,1] and t € (0, 1] provided A, € (0, 1] is small enough. This proves
the bound (E) and completes the proof of the lemma. O

Lemma 13.27. There exists A € (0,1] and C € (0,00) such that for all X\ € (0, \.], all
ree(0,1], alit € (0,1 and all X.,Y. € %, Z. € ¥ it holds:

80



(A) Nt e (X0)] <
(B) )‘?GN 1t|r775;t( - rrst( Il <
(C) A?G’iilﬂrﬂs;t(){-) —rree(Z)] <
(D) X t[ri(Ze) = vren(Z)] <

Proof. We first observe that for all 7,¢ € [0,1], X. = (g, 7., 2., W.) € 27 and s € (0,1] it
holds

TVe*

I"r,a;t(X) (1) (X ) +r(2)' (X')’

T et T,e5t
where .
1 2
f0, 00 == [ (s £ (X = b/
t
and

rg'g,g;t(X‘) = LEA?—,&;I,tGE;t(X') = C2 0 (Ga;t(X-))-

T,e5t
Recall that the map G.,s was introduced in Lemma 13.16, the maps aQQ 5 aﬁi s and ag’g;s

were introduced in Lemma 13.21, the map ¢2?. was introduced in Lemma 13.19 and hr
was 1ntroduced in Def. 13.23. We shall prove that for i € {1, 2,3} it holds

(A1) A7 e |r“ (X)) <
(B1) 4770 1769 ), () — 1, )] <
(1) 47020 1), () e (2] <

(D1) 370 0 5 (2 28 (2] < O

where y(1) =2 — 76k, o(1) = =1, v(2) =1 — 16k, 0(2) = —1 and ¥(3) = 1 — 76k, 0(3) = —2.
Note that the above bounds with ¢ € {1, 2} imply immediately the bounds (A), (B), (C), (D).
Actually, even stronger bounds with )\f6”_1 replaced by At6” ! hold true.

It remains to prove the bounds (A;), (B1), (C1), (D1). Application of Lemma 13.19 with
m=2,i=0and v = 2 — 80k and Lemma 13.16 with (i, j) = (0,0) yields the bounds (A;),
(B1), (C1), (D1) with ¢ = 3. Consequently, the bounds (A1), (B1), (Ci1), (Dy) with i =1
follow from Lemma 2.4 (C) applied with o = —1 and p = 2 — 76x. To show the bounds (A;),
(B1), (Cy), (D1) with ¢ = 2 we use Lemma 13.25 (C), (D) and Lemma 13.12. O

Lemma 13.28. There exists A\ € (0,1] and C € (0,00) such that for all X € (0,\], all
T,e €[0,1], all t € (0,1] and all X.,Y, € ¥; ., Z. € ¥ it holds:
(4) )‘3% ! |27 e (X0)] <
(B) )‘3% ' |27 e (X.) — z'rst( Il <
(C) )‘ffm 1|z'rst( X.) = zreu(Z.)] <
(D) N7 2e(Z.) = zr e (Z.)] <

TVeE"

Proof. Tt holds

t
tres(X.) = / (ald), (X.) + ) (X.) +a®), (X.)) ds,
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where the maps a(;,lg;s, ag)g;s and ag?g;s were introduced in Lemma 13.21. The bounds (A),

(B), (C), (D) follow from Lemma 13.21 and Lemma 2.4 (D) applied with p = 1 — 36k. O

14 Relation to Polchinski equation

In this section we construct a solution Uy ... of the flow equation (7.3) using the fixed point
X7 e of the map X, ... defined in Sec. 13. The strategy of the construction was discussed in
Sec. 2. We first construct a solution V; ... of the flow equation (14.2) and subsequently use it
to construct a solution U, ... of the flow equation (7.3).

Theorem 14.1. Let 7,e € (0,1] and A € (0, \.], where A, is as in Corollary 15.10. Let
(0,1] 2t = Xr et = (Groeits Trests Zreits Wret) ERXRXR x A
be the fized point of the map X, c.o * %o — #; o, introduced in Def. 13.4. Moreover, set
97,650 1= Greier  Tres0 = Tree,  Zre0 =0, Wirgo:=0.

Fort € [0,1] define Vy ey = (V'L )men, € A by the equation

7,65t

Vi etle] = U1/ grests Treits 2r.e) (0] + Wr eit[0] (14.1)

for all p € S (R?)€ @149~ Then it holds

t

<Vrr,ré;tv (J¢)®m> = <EA:?a;t,OVT,€;Ov (J¢)®m> +/0 <EAZ?a;t,sBE;S(VT,€;S)v (J¢)®m> ds (14.2)

for all t € (0,1], m € Ny and ¢ € S (R?)® @1, 9.

Remark 14.2. Since GT,g;t =0 for t € (0,¢] by Remark 5.2 (A), it follows from Def. 12.4 that
B..i(s) =0 for all ¢ € (0,¢]. Consequently, by Def. 13.4 we have

V‘r,s;O = V‘I‘,E;t; 97,0 = Grests  Tres0 = Trejty  21.e:0 = 21,65ty WT,E;O = W‘r,s;t
for all t € (0,¢], where (gr.eie, Tr.ci0s Zr.e50, Wr eio) 18 the fixed point of X ...

Proof. First note that Eq. (14.1) is equivalent to the system of equations

V;Z;t = W':La;t’ me N+ \ {25 4}7
V‘r4,5;t = U4 1/97',8§t + W‘lz},s;t’

2 2 2 2
V‘r,s;t =U T'rest =+ UB Zr.e5t + W‘r,s;t’

where U*,U? U3 were introduced in Def. 11.1. Observe that the fixed point of the map
Xrew Yo — Y, o, introduced in Def. 13.4, is equivalent to the system of Egs. (14.3), (14.4)
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and (14.5) presented below. These equations imply in particular that

TnzO:O’ m € Ny \ {2,4},
V'r450 =U* 1/97’80;
Viio=Urrc0.

As a result, it holds

EAT.; oVieo0 =0, m e Ny \ {2,4},
EA?—,s;t,OVﬂE;O =U* 1/97’,6;0;
EAE,E;t,OVﬂe;O =U? Tre0 + 1/97,5;0 EAE,a;t,OU(L 0, 0)-

If m € Ny \ {2,4}, then the first term on the RHS of Eq. (14.2) vanishes identically and
VI, = W], Consequently, for m € Ny \ {2,4} Eq. (14.2) follows immediately from the
fixed point equation

t
Wi () = [ BAZL Be(Vie) ds. (143
0

Let us turn to the proof of Eq. (14.2) for m = 4. By the fixed point equation we obtain

T 5 t / REAT eil,s é(V‘BE;S) ds — ECi,g;l,tWT,E;ta
(14.4)

Gret = A1+ /t (9rc)? LEAL ., Be,(Vr..) ds.
In particular, the function (0,1] 3 ¢t — g, € R is continuously differentiable and
01(1/grext) = —(0egr.et) [ (greit)® = LEAL 1 Bey (Vi cut)-
Consequently, we obtain
1gret = 1/gren + / LEA® ., B..(V;..)ds.
Next, we observe that by Lemma 11.18 it holds

<U4 LEA?‘ e;l,s 5 S(VT &3 é) + REA‘TE 1,s 8 S(VT,E;S)’ (J(p)®4>
<EA;1— el sBs;S(Vf,s;S)v (J¢)®4>-

We also note that it follows from Def. 10.22 of the map C, ..+ that ECiE;LtWT,g;t depends
only on W, with m > 4. Hence, taking into account Eq. (14.3) we obtain

t
chlr el tWT et = ECT eil,t / EAT,E;t,sBs;S(VﬂE;S) ds.
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Consequently, by Remark 10.25 (C) and the equality C; o1V = A 14V —V we get

ECﬁ e, Wreit = /0 EAi i1,sBeis (Vres) ds — /0 EAis t,sBeis (Vress) ds.
Using the above identities we arrive at
(Ve T0)®h) = (U 1/gr i, (JO)®*) + (Wi F0)®Y)
= (U 1/grc0, (Jp)®*) + /O (BAZ 1,:Beis(Vreis), (Jo)®h) ds — (ECT iy (W et (J0)®7)
= (BAL Voo @)+ [ (BAL BV, (5 .

This proves Eq. (14.2) for m = 4. It remains to show that Eq. (14.2) holds true for m = 2.
Observe that by the fixed point equation we obtain

-r a t = / REA‘T eil,s Beis(Vies) ds — Ecg,a;l,tWT,E;ta
e =~ LBAZ 1 ,U(1/gr.c.0,0) - / LEAZ,, B..(Vre)ds,  (145)
t
trest = /O LoEA2 ., Beiu(Vscs) ds.
The second of the above equations implies
Tre0 = *LEAi,a;l,OU(l/gr,s;Ov 0,0) — / LEAi el sBE;S(VT,E;S) ds,
0
and

Tret = Tre0 + LEA?,-@;LOU(l/gT,E;Ov 0,0) + LEA? 71U/ gre0 —1/97.6,0,0)
/O LEA? | Be...(Vrc)ds, (14.6)
where we used the identity
EAi,a;l,OU(l/gT,E;O; 0,0) = EA?—,&;I,tU(l/gT,E;O; 0,0) + EAg,a;t,OU(l/gT,a;Oa 0,0).

Using Def. 10.22 of the maps A, .5+ and C; .5+ and Remark 10.25 (C) we show that

EC? e i Wret = ECT et Vret — ECT el t U1/ gre;ts Trests 27e5t)
= Ec?r,s;l,tVﬂE;t - EA‘IQ',E;l,tU(l/gT,E;tv 0, 0) (147)
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and

ECE,E;l,tEAT,E;WVT,E;O = ECE el tEAﬂE;t,OU(l/gT,E;Oa 0, 0)
= (EA‘IQ',s;l 0 EA?retO (1/97'75;0’070) EA?‘& 1.t (1/97,8§0’070)' (148)

Moreover, we observe that ECE,E;LtVT,E;t depends only on V.., with m > 2. Hence, by
Eq. (14.2) with m > 2, which has already been proved to be true and Eq. (14.8) we obtain

<E02 et Vrets (Jp)® %) = <EA3,8;1¢U(1/97 £0,0,0), (Jp)¥?)
/0 <E03 el tEAT,E;t,sBE;s(VT,E;s)a (JQD)®2> ds.
Consequently, by Remark 10.25 (C) and Eq. (14.7) it holds
<ECE &l tWT,s;tv (J¢)®2> = <EA3,8;1¢U(1/97,5;0 —1/97.6:,0,0), (J<P)®2>
+ /Ot<(EA3 ens — BAZ L O)Bes (Vo) (J9)®%) ds.

Using Lemma 11.18 and the fact that REAZ ., ,U(1/grc0 — 1/gre:t,0,0) = 0 as well as
LaEA 7,651 tU(l/gTE ;0 — 1/97,5;7&, 0, 0) == 0 we Obtaln

<ECTaltWTEtv(JSD)®2> <U2LEA7—51tU(1/gTsO 1/gr,s;ta070)a (J@)®2>
t
+ / <(EA72' g;l,s EA‘?’E it, s) £ S(V‘BE;S)’ (J(p)®2> ds. (149)
0
Next, we observe that by Lemma 11.18 it holds

(U LEAZ

7'815

£; S(VT [=H é) + UB LBEAT e;l,s 8 S(VT [=H é) + REAT e;l,s 8 S(V‘BE;S)’ (J(p)®2>
<EA'21' =1,sBe; is(Vreis), (J‘P)®2>-
Hence, by the first and third of Eqgs. (14.5) and Eq. (14.6) we obtain

(V2ets (30)®2) = (UP st + US 21t + W2, (J)®2)
= (U rr 0+ UPLEAZ _, (U(1/gr.c0,0,0)+U*LEA2 | ,U(1/gr.c;0—1/gr.eit,0,0), (Jp)®?)
b [ BAL L B (Vo) (00)°7) s — (BOLy W, (36)°).
Consequently, by Eq. (14.9) we have
(V2o J39)®%) = (UP 70 + UPLEAZ _, U (1/9r.c0,0,0), (Jp)*?)
[ BBV, 3007 s

Hence, Eq. (14.2) is true for m = 2. This finishes the proof. O
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Corollary 14.3. Let 7, € (0,1] and A € (0,\], where A\, is as in Corollary 13.10. For
t € [0,1] define Vr ey = (V'L )men, € A as in the statement of Theorem 14.1. For m € N

7,65t

and t € [0,1] define the antisymmetric distribution U™, € .'(T?™)C" by the equality

(U7, 6% )7 = (VI I(xr9) ® (J) 207 1) (14.10)

for all ¢ € O(T2) @9~ Fort € (0,1] define the functional Uy .. € N (C®(T2)®) by the
equality
Urea(0) = Y (Urky 0°™)- €9, ¢ € C™(T)° @u ¥

meN_L

For t €]0,1] define U° € C by the equality

17 - . 8
U‘[(?’g;t = EUT,E(WT,E;tD) + 5 /0 E<D¢U'r,s;s(w'r,s;t,s>; Gs;s * D¢UT,€;S(WT,€;7§,S)>T ds. (1411)

Fort € [0,1] define the functional U, ., € N (C®(T2)) by the equality

Urea(9) = > (Ury,65™) - €9, ¢ €CP(T3)® @up 9.

mENy

Finally, define the functional U, . € A (C™(T2)®) as specified in Def. 4.16 with grc = gr.c.0
and v 1= Ty 0, where gr o0 and - .0 are as in the statement of Theorem 14.1. Then the
map [0,1] > t + Uy .o € A (C®(T2)®) is continuous and is a solution of the integral form
of the Polchinski equation

Ureit(6) = BUr e (Wt + 0)
1t .
+ 2 / E<D¢Ur,a;s(g/r,a;t,s + ), Ges * D¢UT,8;S(Q/T,8;IZS + ¢))-ds
0

for all ¢ € C°(T2)® @41, 9.

Proof. Using Theorem 14.1 and the fact that the distributions V..,, EAT_, V.0 and
EAT.; B..s(Vr ) are antisymmetric we obtain

t
<V'r7:b€;ta J®m1/)> = <EAZ:L5;t,OVT,E;Oa J®m¢> + / <EA:rr??€;t,sB€;S(VT,€;S>a J®m’¢}> dS
0

for all ¢ € (0,1], m € Ny and ¢ € .(R*™)¢". Hence, by Def. 10.22 and 12.4 of the maps
A’m

et s and B s we have

UT,E;t(¢) = EUT75(!pT7E;t,O + ¢>

1 [t .
+ 5 / E<D¢UT,€;S(WT,€;LS + ¢)7 Ge;s * chU'r,e;S(w'r,E;tﬁ + ¢)>'r ds
0
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for all t € (0,1) and ¢ € C°(T2)€ ®,, ¥~. Finally, to prove the continuity of the map
[0,1] 2 ¢+ Uy € A (C(T2)®) we observe that the map is constant for on [0,¢] and use
its definition in terms of the fixed point of the map X, ... : % . — %, . as well as Def. 13.1
of the set %, . and Def. 10.32 of the space y/To,téﬂw_ This finishes the proof. O

Remark 14.4. In the presence of the UV and IR cutoffs 7, € (0,1] it is straightforward to
show that UY_, € C given by Eq. (14.11) is well-defined for all ¢ € [0,1]. Consequently, for
the choice of parameters g. . and r, . as in the above corollary it holds

EGXP(Ur,a(Wr,a;t,O)) = exp(Uﬂg;t(O)) = eXp(UE,a;t) #0.

In particular,
Eexp(Urc(¥rc)) = exp(Ur c;t=1(0)) = eXp(US,a;tzl) #0.

15 Convergence of Schwinger functions

In this section we establish a relation between an effective potential U ..+ at the scalet = 1 and
the generating functional of the Schwinger functions and complete the proof of Theorem 1.1.
Recall that the effective potential U ..; was constructed in Sec. 14 with the use of the fixed
point X ... of the map X, ... constructed in Sec. 13.

Lemma 15.1. Let 7,e € (0,1]. Suppose that Eexp(U;(¥-.)) # 0. The following equality

MT,E(eXp(<'7 ¢>'r)) = eXP(<¢a G‘r,s *r ¢>'r/2 + U‘r,s;l(G‘r,s *r ¢) - U‘r,s;l(o))

holds for all ¢ € C>(T?)¢ ®alg 94—, where the interacting measure pr. was introduced in
Def. 4.16 and U, .1 is an effective potential at unit scale introduced in Def. 7.2.

Proof. First observe that by Def. 4.16 of the measure p, . it holds
_ fexp(*A‘r(i/}'r,s) + U‘r,s(ﬁs * 1/17,5) + <"/)‘r,sa e * ¢>'r) dw'r,s
f eXP(*Ar (1/17,5) + U‘r,s(ﬁs * "/"r,s)) dw'r,s

for all ¢ € C(T?)C ®,14 9. Using Def. 4.16 of the free action A, one proves the following
identity

for,e(exp((s, @)7))

1
(¥, 8)r — Ar(¢) = 5{G* §,9)r — Ar (Y — G x ¢)
for all 1, ¢ € C(T2)® @1, 9 ~. Consequently, using the equalities
Ve x Gx e = Ge, Gexp=Gre*r ¢

we obtain

for,e(exp((e, ¢)7))

— exp((6, G s @)y 2) LERCATWre = Gt e 4 9) & Ur (Ve + Urc)) dre

f eXp(*A'r (1/17,5) + U‘r,s(ﬁs * 1/17,5)) d"/)r,s
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for all ¢ € C>(T2)® ®Ralg 4. Note that since F,P.J. C A, it holds

Grdex o) =72 37 (FrGxdex 9)(p) e dp

peAr,s

and G x V. x ¢ € Cr. for all ¢ € COO('HE)G ®alg 4, where C; . was introduced in Def. 4.5.
Taking advantage of the invariance under translation of the Berezin integral, which was stated
in Lemma 4.12, we show the following equality

for,e(exp((e, ¢)7))

= exp(<¢’ GT,E *, ¢>T/2) f eXp(_AT(wT,E) + UT,8(795 * (1/17,8 + G * 198 * ¢))) dwT,a .

f exp(—AT (w'r,s) + U‘r@wa * w'r,s)) dyp, .

The above equality can be rewritten as

fire(exp((*; d)7))

— exp((6, Gore #r B, /2) LERC AT W) + Ure(Ve e + G 1 6)) dipre

feXP 7(1/17,5) + U‘r,s(ﬁs * 1/17,5)) Az e
for all ¢ € C(T?2)® @, 4. Using Lemma 6.15 we arrive at

E(exp(Urc(¥rec + Gre *7 9)))
E(exp(Ur,c(¥r,c)))

The statement follows now from the fact that G, . %, ¢ € C, . for all ¢ € C°(T2)C @, 9,
U, . =W, 1,0 and Def. 7.2 of an effective potential. O

MT75(eXp(<0, ?)r)) = exp((¢, Gre*r ?)r/2)

Definition 15.2. Let 7,¢ € (0, 1]. Suppose that Eexp(U; (¥, .)) # 0. We call
SR @aig 9™ 2 ¢ Zrelp] = pre(exn((s,0)) €4
the generating functional. The Schwinger function of order m € Ny is defined by the equation
Sy =Dy Z o] ,_y € S (RP™)E".
The truncated Schwinger function of order m € N is defined by the equation
7 = D log(Zrc[¢])] o € &' (R*™)E".

Remark 15.3. The Schwinger function can be expressed in terms of the truncated Schwinger

functions using the formula
(S, ooy = > [T, o)

well,, Sem

valid for all ¢ € .7 (R?)® ®,,% ~, where II,,, denotes the set of partitions of the set {1,...,m}
into disjoint subsets whose union coincides with {1,...,m} and |S| denotes the number of
elements of a set S.
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Theorem 15.4. Fiz A € (0, \,], where A, is as in Corollary 13.10. For all T,¢ € [0,1] let
(07 1] St X’r,s;t = (g'r,s;t; T'rests 2r.eits W'r,s;t) ERXRXRx A

be the fized point of the map X, .o @ %o — %, ., which was introduced in Def. 13.4.
Moreover, set
9r.e ‘= Greier  Tre i= T'reiey
Suppose that for all T,& € (0, 1] the interacting measure pr - is defined as specified in Def. 4.16
with the above choice of the parameters g.. and rr.. Then for all m € N there exist
Sm T e .S (R*™)C™ such that:
(A) limy e o(T7%, @) = (T, @) for all p € S (R¥™)E",
(B) limr o\ 0(S7%, @) = (S™, @) for for all p € #(R*™)E",
(C) 8™, T™ are invariant under the symmetries of the plane in the sense of Def 8.2,
(D) T™ has the properties stated in Items (C) and (D) of Theorem 1.1.
(E) Ly, o0 exp(|zV/2) (T™, 00 @ 9)] = 0 for alln € {1,...,m — 1}, p € CZ(R™)",
P € CR(R2M=mNE"™" “where for x € R? we define p, € CX(R*)C" by the equality
Oe(Y1s -y Un) = 0(y1 — T, .o Yy — ) for all yy,...,y, € R2.

Remark 15.5. Note that g . = grecity 7re = rreq for all t € (0,] by Remark 14.2.

Remark 15.6. The exponent 1/2 in Item (C) of the above theorem has no significance. With
some extra work, it is possible to prove exponential decay of the truncated correlations. To
this end, one has to use a decomposition (Ga,t)te[o,l] of the covariance G, at ¢ = 0, which in
contrast to the decomposition introduced in Sec. 5, has exponential decay.

Proof. First, note that by Corollary 13.10 for all 7,e € [0,1] the map X, ... : % — %, is
well-defined and has a unique fixed point X: c.o = (grci0, Freies 21000, Wrena) € % .. For all
7,6 € [0,1] and ¢ € (0, 1] we define V; ..y = (V/%.;)men, € A4 by the equation

7,65t

VT,&;t[‘P] = U(l/gr,a;t; T'r.ets Zr,a;t)[@] + W‘r,e;t[‘P] (15-1)

for all p € 7 (R?*)® ®,13% . Recall that we omit 7 if 7 = 0 and we omit ¢ if € = 0. Moreover,
for all 7,¢ € (0,1] and ¢ € [0,1] we define U, .., € A (C>(T2)®) as in Corollary 14.3. Then
by Corollary 14.3 and Lemma 7.7 for all t € [0,1] the functional U, .y € A (C>(T2)®) is
an effective potential at scale t. Since by Remark 14.4 we have Eexp(U;(¥-.)) # 0 using
Lemma 15.1 we conclude that

pre(exp((e, @)7)) = exp({p, Gre *r $)7 /2 + Ur c:1(Gre %7 @) — Uz c1(0)) (15.2)

for all ¢ € C®(T2)¢ @, 4~ and 7, € (0, 1].
Let us prove Items (A) and (B). We observe that it suffices to show that for all m € N,
there exist S™, T™ € .%/(R?™)¢" such that:

(A) limr e o(TF, 01 @ ... Q@ om) = (T™, 01 ® ... @ o) for all @1,...,om € L (R?)C,
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(B”) lim; o\ 0{S7%, 01 ® ... @ @m) = (ST, 01 ® ... @ @) for all p1,..., 0 € S (R?)C,

By Remark 15.3 Item (B’) follows from Item (A’). We proceed to the proof of Item (A’). For

¢ € S (R?)® R4, 9~ we apply Eq. (15.2) with ¢ = P,y € C®(T2)€ @, 9~ to obtain
log(Zr[¢]) = log(pr.e(exp({s,9)))) = (¢, Gr.e % ©) /2 + Ur c1(Gre * @) — Ure;1(0))

for 7,¢ € (0,1]. Note that by the translational invariance of V™, Eq. (14.10) implies that

7,65t
(Urts (Gre % 9)™)r = (VI2y J(Ge % 9) © (J(Gre % 9)) #m7Y).

T,65t)

for all m € N+, 7,e,t € (0,1] and ¢ € S (R?)® ®,, ¥ ~. Consequently, using Def. 15.2 we
arrive at

<T3,s’ 50®2> = (0, Gre* ) +2 <V7-2,s;1aJ(G€ *0) @ (J(Gre x¢))),
(T, 0™ ™) = mI (V71 J(Ge % 0) @ (J(Gre % 90)®" D), meNy\ {2},

for all 7,e € (0,1] and ¢ € S (R?)® ®ay ¥~. For m € N+ we define an antisymmetric
distribution 7™ € ./ (R*™)¢™ by the equalities

(T?,0%%) = (0, G % ) + 2V, (J(G % ©))®?),
(T™, %) := m! (V™ (J(G * ¢))®™), m € Ny \ {2},

for all ¢ € .7 (R?)® a3 %™, where Vi = (V") men, € A is defined by Eq. (15.1) with 7 = 0,
e =0 and t = 1. Since by Lemma 15.10

lim (p1,Gr e * 02) = (1, G * p2)
7,eN\,0

for all 1, s € .7(R?)® in order to prove Item (A’) it suffices to show that

Tlir{lo(Vﬁ;l,J(Ga * 1) @J(Grex2) ®... Q0 J(Gre* Om))
= (V" J(Gxp1)@...0 (G * o))
for all m € Ny and 1, ..., ¢, € .7(R?)®. To this end, we observe that
|<V1m,J(G*<p1)®...®J(G*gﬁm)>f<V7_72;1,J(G5*501)®J(G775*302)®...®J(G775*50m)>|
SV J(G 1) @ ... @ J(G* o) — J(Ge % 01) @I(Gre x02) @ ... @I(Gr e * o))
V" = VI J(G 1) @ @ (G * om))|

By Remark 15.8 the above expression is bounded by
||VT7Z,1|‘jm (A =+ B’IZE)m_l BﬁE + H‘/lm - V;Z;l”jm Am,
where

A= ||J(G * (pl)/’lDHLl(]Rz)AxG V|IJ(G = @2)||Loo(R2)AxG VooV IJ(G g0m>HLao(R2)A\><G
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and

BT,E = HJ((G - GE) * (Pl)/wHLl(RZ)AXG
+[J(G = Gre) * 902)||L°°(1R2)AXG +. A J(G = Gre) * ‘Pm)HLOO(]Rz)AXG-

We used above the notation introduced in Remark 15.7 below. Item (A’) follows now from
Lemma 15.10 and the bounds for |V, || 7 < VL[| ym and [V = VL || .. established

in Corollary 13.10. As argued above, this proves Item (B’) as well as Items (A) and (B).

Let us turn to the proof of Item (C). Note that V3 € .4 defined by Eq. (15.1) is invariant
under the symmetries of the plane by Def. 11.1, 13.1 and 10.32. This together with the fact
that the kernel G is invariant under the symmetries of the plane implies Item (C).

Item (D) is an immediate consequence of the definition of 7™ € .#/(R*™)¢™ given above,
the properties of Vi = (V/")men, € A, the fact that [p, G(z)da =1 and Def. 13.4.

In order to prove Item (E) it is enough to show that

lim exp(|z|'/?) (e, G * )| = 0

Tr—r00
for all ¢ € C*(R?)® and ¢ € C>(R?)® and

lim_exp(fz|*/2) [(V", I (GF™ x (g, @ 9)))| = 0

Tr—r00

for all m € Ny, n € {1,...,m — 1}, ¢ € CX(R>**)C" ¢ € C*(R2m=7)E"™" Both of the
above equalities follow from Remarks 15.8 and 15.9 and the bounds for ||[Vi™|| .. < [[V/™||4m

established in Corollary 13.10. This finishes the proof. O

Remark 15.7. Given p € [1,00] and a finite tuple ¢ = (¢*)rex of measurable functions over
R? we define ||@| zomeye := D ek 107 Lo (r2).-
Remark 15.8. Let m € Ny and V = (V*7)4epm gegm € A ™. Recall that

Vigm =D > M0V |Lgm < V],

a€A™ oceG™

where
11)1”(:617...7:Em> :ﬁ)(xl)exp(D(:cl,...,xm)c), ’LD(Z') = (1+|1‘|)_1/25 4:4/55

for all z,21,...,2,, € R The following bound

0% (@1, ., )
(V@) < IVIjm sup sup  sup / - day
' N acA™ c€G™ zo,...,x,, ER2 JR2 wgn(wla"'7xm)

is true for all p € 7/ (R¥m)A"xC™,
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Remark 15.9. By Lemma 5.3 and Remark 5.2 (E), (F) there exists C' € (0, 00) such that
lz = (L+ J2])2 exp(|z]) G(@)ll rgayer <O, ¢ =4/5.
Consequently, by Lemma 9.5 (c) the following bound
[GE™ % VIl jm < O™ [V

holds for all m € N and V € 4™,

Lemma 15.10. The following equalities

Timy 1((G = Ge) * @) /D] L2 (m2)e =0, i (G = Gre) * ¢l Lo (m2)e =0

hold for all p € ./ (R?)®.
Proof. By Remark 9.4 we have
(G = Ge) x ) /D 1 r2ye < (G = Ge) /W] 11 geyoe2 [0/ D 1 (r2ye
Moreover, by elementary estimates we obtain
(G = Gre) x llLemeye < (G = Ge) * @llLereye + [(Ge = Gre) * @l Lo r2ye

< (G = Go) % pll e reye + 1Ge % (9 = Pro) | o oy
<G = Gell i gy 9]y + Gl garer 10 — Propll ooy

Note that by Lemma 5.3 and Remark 5.2 (E) there exists C' € (0, 00) such that
HGa;t/w”Ll(R%G? <C

for all € € [0,1] and ¢t € (0, 1]. Consequently, by Remark 5.2 (F) we obtain

1Ge /a2 SC0 NG = Gellaggaree < (G — Go) il gayee < 42 C
for all € € [0,1]. This finishes the proof. |
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