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Abstract

The Gross-Neveu model is a quantum field theory model of Dirac fermions in two

dimensions with a quartic interaction term. Like Yang-Mills theory in four dimensions,

the model is renormalizable (but not super-renormalizable) and asymptotically free (i.e.

its short-distance behaviour is governed by the free theory). We give a new construction

of the massive Euclidean Gross-Neveu model in infinite volume based on the renormal-

ization group flow equation. The construction does not involve cluster expansion or

discretization of phase-space. We express the Schwinger functions of the Gross-Neveu

model in terms of the effective potential and construct the effective potential by solving

the flow equation using the Banach fixed point theorem. Since we use crucially the fact

that fermionic fields can be represented as bounded operators our construction does not

extend to models including bosons. However, it is applicable to other asymptotically

free purely fermionic theories such as the symplectic fermion model.
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1 Introduction

We give a new construction of the massive Gross-Neveu model on the plane based entirely

on the Polchinski flow equation. The Gross-Neveu model is one of the simplest barely-

renormalizable (i.e. scaling critical) and asymptotically free models of quantum field theory.

It is defined in terms of 2N ∈ N+ Dirac fields

ψ ≡ (ψ̄,
¯
ψ) ≡ ((ψ̄1, . . . , ψ̄N ), (

¯
ψ1, . . . ,

¯
ψN )).

For every n ∈ {1, . . . , N} the fields ψ̄n ≡ (ψ̄n,α)α∈{1,2},
¯
ψn ≡ (

¯
ψn,α)α∈{1,2} transform under

rotations of the plane as two-component spinors. The fields take values in a Grassmann

algebra and, in particular, they all anti-commute. In what follows, we use the notation

ψ̄ ≡ ψ−,
¯
ψ ≡ ψ+, ψ ≡ (ψσ)σ∈G, where G := {−,+} × {1, . . . , N} × {1, 2}, and

ψ̄ ·
¯
ψ =

N
∑

n=1

2
∑

α=1

ψ̄n,α

¯
ψn,α, ψ̄ · /∂

¯
ψ =

N
∑

n=1

2
∑

α1,α2=1

2
∑

j=1

ψ̄n,α1 γα1,α2

j ∂j
¯
ψn,α2 ,

where γj = (γα1,α2

j )α1,α2∈{1,2}, j ∈ {1, 2}, are the Pauli matrices and ∂j , j ∈ {1, 2}, denote

the derivatives with respect to the Cartesian coordinates of the plane. We first introduce a

Gross-Neveu model with cutoffs τ, ε ∈ (0, 1] that is defined on a two-dimensional torus T2
τ of

size 1/τ in terms of Dirac fields containing only the Fourier modes with frequencies less than

1/ε. Subsequently, we study the limit τ, εց 0. The free part of the action takes the form

Aτ (ψ) =

∫

T2
τ

ψ̄(x) ·
¯
ψ(x) dx +

∫

T2
τ

ψ̄(x) · (/∂
¯
ψ)(x) dx. (1.1)

The first term on the RHS of the above equality is called the mass term whereas the second

one is called the kinetic term. The interaction potential is given by

Uτ,ε(ψ) =

∫

T2
τ

1/gτ,ε (ψ̄(x) ·
¯
ψ(x))2 dx+

∫

T2
τ

rτ,ε ψ̄(x) ·
¯
ψ(x) dx. (1.2)

The parameters 1/gτ,ε, rτ,ε ∈ R are called the bare coupling constant and the mass coun-

terterm, respectively. The Grassmann measure of the Gross-Neveu model with the infrared
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cutoff τ ∈ (0, 1] and the ultraviolet cutoff ε ∈ (0, 1] is defined by the formula

µτ,ε(F ) :=

∫

F (ϑε ∗ ψτ,ε) exp
(

−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)
)

dψτ,ε
∫

exp
(

−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)
)

dψτ,ε
(1.3)

for functionals of polynomial type F on Grassmann-valued Schwartz distributions on R
2.

We use the notation
∫

F (ψτ,ε) dψτ,ε for the so-called Berezin integral [Ber87]. The Berezin

integral can be viewed as a fermionic analog of the Lebesgue integral, even though it is not

an integral in the usual sense. The Grassmann field ψτ,ε ≡ (ψστ,ε)σ∈G on R2 appearing in the

above formula is periodic with period 1/τ and contains only Fourier modes with frequencies

smaller than 1/ε. Since working with the sharp cutoff in momentum space would result in

slow decay of correlations in position space we convolve the Grassmann field ψτ,ε with a

Schwartz function ϑε ∈ S (R2) supported in Fourier space inside the ball of radius 1/ε. We

denote by T K the set of tuples (V k)k∈K such that V k ∈ T for all k ∈ K. Now we are ready

to state our main result.

Theorem 1.1. Let N ∈ {2, 3, . . .}. There exist λ⋆ ∈ (0, 1] and a choice of parameters

(gτ,ε, rτ,ε)τ,ε∈(0,1] such that for all λ ∈ (0, λ⋆] the following statements are true.

(A) For every m ∈ N+ and ϕ1, . . . , ϕm ∈ S (R2)G the limit

〈Sm, ϕ1 ⊗ . . .⊗ ϕm〉 := lim
τ,εց0

∫

ψ(ϕ1) . . . ψ(ϕm)µτ,ε(dψ)

exists and defines the m-point Schwinger function Sm ∈ S ′(R2m)G
m

, where µτ,ε is the

Grassmann measure of the Gross-Neveu model with cutoffs τ, ε ∈ (0, 1] defined in terms

of the parameters gτ,ε, rτ,ε ∈ R.

(B) For every m ∈ N+ the distribution Sm ∈ S ′(R2m)G
m

is invariant under Euclidean

transformations of the plane.

(C) For m ∈ N+ let Tm ∈ S ′(R2m)G
m

be the m-point truncated Schwinger function

associated to the hierarchy (Sm)m∈N+ . For every m ∈ N+ there exist a collection

(T̂m,a,σ)a∈Am,σ∈Gm of finite Borel measures on R2(m−1) such that

〈Tm, ϕ〉 =
∑

a∈Am

∑

σ∈Gm

∫

R2m

T̂m,a,σ(dy1, . . . , dym−1) (∂
aϕσ)(x, x+y1, . . . , x+ym−1) dx

for all ϕ ∈ S (R2m)G
m

, where A := {0, 1, 2}2.

(D) The equalities

∑

σ∈G2

ψσ1ψσ2

∫

R2

T̂ 2,0,σ(dy) =
¯
ψ · ψ̄,

∑

σ∈G4

ψσ1 . . . ψσ4

∫

R6

T̂ 4,0,σ(dy1, dy2, dy3) = λ (
¯
ψ · ψ̄)2

hold for all Grassmann-valued ψ ≡ (ψσ)σ∈G ≡ (ψ̄α,ς ,
¯
ψα,ς)α∈{1,2},ς∈{1,...,N}.
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(E) The truncated Schwinger functions decay stretched exponentially, more precisely

lim
|x|→∞

exp(|x|1/2) |〈Tm+n, ϕx ⊗ ψ〉| = 0

for all m,n ∈ N+ and ϕ ∈ C∞
c (R2m)G

m

, ψ ∈ C∞
c (R2n)G

n

, where for x ∈ R2 we de-

fine ϕx ∈ C∞
c (R2m)G

m

by the equality ϕx(y1, . . . , ym) := ϕ(y1 − x, . . . , ym − x) for all

y1, . . . , ym ∈ R2.

Proof. The theorem is an immediate consequence of Theorem 15.4.

Remark 1.2. The precise definition of the Berezin integral and the Gross-Neveu measure with

cutoffs can be found in Sec. 4. The notion of invariance under Euclidean transformations

used in Item (B) of the above theorem is defined in Sec. 8.

Remark 1.3. The equalities stated in Item (D) of the above theorem should be viewed as

renormalization conditions that fix implicitly the bare coupling constant gτ,ε and the mass

counterterm rτ,ε appearing in the expression for the measure µτ,ε. We parameterize the

Gross-Neveu models in terms of numerical constants linked directly to the Schwinger functions

instead of using the parameters gτ,ε and rτ,ε. Note that Item (D) implies in particular that

the truncated four-point Schwinger function is non-zero. As a result, the construction yields

a non-trivial quantum field theory.

Remark 1.4. The result stated in Item (E) of the above theorem is not optimal. Actually,

the truncated Schwinger functions decay exponentially. However, the exponential decay does

not follow immediately from the construction presented in the paper and its proof requires a

separate argument.

Method of the proof

Our construction of the Gross-Neveu model, like the previous constructions [GK85a,

FMRS86], utilizes the Wilsonian renormalization group theory [Wil71]. The fundamental

object of this theory is the so-called effective potential Uτ,ε;t depending on the spatial scale

t ∈ [0, 1] and the cutoffs τ, ε ∈ (0, 1]. The effective potential Uτ,ε;t at the spatial scale t = 0

coincides with the interaction potential Uτ,ε defined by Eq. (1.2). The goal is to construct

the effective potential Uτ,ε;t at the spatial scale t = 1, which coincides with the generating

functional of the so-called connected amputated Schwinger functions. To this end, one usually

solves a certain equation that relates the effective potentials at different scales. The previous

constructions [GK85a, FMRS86] of the Gross-Neveu model used the renormalization group

transformation that relates the effective potentials Uτ,ε;t at different discrete values of the

scale parameter t ∈ {L−k | k ∈ N0} ⊂ (0, 1], where L ∈ (1,∞) is sufficiently big. In contrast,

the approach of this paper is based on the so-called Polchinski flow equation [WK74,Pol84]

that is a certain differential equation in the scale parameter t ∈ (0, 1].

It was recognized long time ago that the flow equation is a very powerful tool in per-

turbative quantum field theory. In fact, there is a short and general proof of perturbative

renormalizability of QFT models based on the flow equation [Pol84, Kop07, Mul03, Sal99].
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The renormalization problem is solved using a simple inductive argument and amounts to

imposing appropriate boundary conditions for the flow equation. In particular, the proof

avoids the problem of overlapping divergences appearing in all approaches based on the Feyn-

man diagrammatical representations such as the BPHZ approach. However, the applicability

of the Polchinski flow equation in non-perturbative constructions is limited. For bosonic

theories it is generally believed that the flow equation is not useful non-perturbatively as

it does not allow to take advantage of the boundedness from above of the interaction po-

tential. The exception is the sine-Gordon model, which up to the second threshold was

constructed [BK87,BB21,GM24] with the use of the Polchinski equation. In quantum field

theory models with bosons the boundedness from above of the effective potential is usually

necessary to ensure that the interacting measure has finite total mass. This is the so-called

large field problem. It is possible to address this problem in the approach based on the renor-

malization group transformation but the problem seems intractable in the approach based on

the Polchinski equation. As an aside, let us mention that the large field problem can be solved

in the framework for singular stochastic PDEs developed in [Duc21,Duc22] based on a certain

flow equation that plays an analogous role to the Polchinski equation. In fact, this framework

was used recently to construct the bosonic fractional Φ4
3 model in full super-renormalizable

regime [DGR23].

Since fermionic fields can be represented by bounded operators the large field problem

should be absent in purely fermionic models of quantum field theory and a construction of

such models based on the Polchinski flow equation should be feasible. Such a construction

is not straight-forward because the effective potential solving the Polchinski equation is nec-

essarily a highly non-local functional, which in particular is generically not of polynomial

type. A progress in this direction has recently been made by De Vecchi, Fresta, Gubinelli

in [DFG22], where a new approach to super-renormalizable fermionic theories was developed

based on a certain forward-backward stochastic differential equation (FBSDE). The main ad-

vantage of the FBSDE approach is the fact that in this approach one only needs to construct

an effective potential that satisfies the flow equation up to a sufficiently small error term.

In particular, for super-renormalizable models it is always possible to construct a suitable

effective potential in the space of functionals of polynomial type using a certain recursive

procedure. In principle the FBSDE approach can be also useful for barely-renormalizable

models. However, it is clear that in the case of such models a suitable approximate solution

of the Polchinski equation cannot be a functional of polynomial type. Consequently, allowing

for an error term in the Polchinski equation does not provide an obvious benefit.

The main obstacle in constructing an exact solution of the Polchinski equation was the

lack of a suitable norm in the space of functionals that is compatible with this equation. At

technical level, the problem seems to be related to the fact that the scale decomposition of

the free fermionic field, which behaves like a Grassmann cylindrical Wiener process, is not

Lipschitz continuous in the scale parameter but only 1/2 Hölder continuous. We refer the

reader to [SW00] and Sec. 2 for more details and to [BW99,BW88] for an earlier unsuccessful
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attempt at proving bounds for fermionic correlations using the flow equation. The important

contribution of the paper is a novel norm in the space of functionals in which the flow equation

can be solved. The norm is defined with the use of the filtered non-commutative probability

space constructed in [DFG22]. Using the new norm we rewrite the mild form of the Polchinski

equation as a fixed point problem posed in a certain complete metric space and solve it using

the Banach theorem. Finally, we express the Schwinger functions in terms of the effective

potential Uτ,ε;t at the spatial scale t = 1 and prove their convergence as τ, εց 0.

Remark 1.5. The sign of the parameter λ that appears in Item (D) of Theorem 1.1 plays a very

important role in our construction. The Gross-Neveu model with λ > 0 and N ∈ {2, 3, . . .}

that we construct is asymptotically free – at high energies the Schwinger functions of the model

are well approximated by the Schwinger functions of the free theory. We refer the reader

to [GK89] for a discussion of the significance of the asymptotic freedom in constructions

of barely renormalizable models of quantum field theory. For λ < 0 and N ∈ {2, 3, . . .}

the Gross-Neveu model is not expected to be asymptotically free and most likely does not

exist non-perturbatively. For N = 1 the Gross-Neveu model coincides with the so-called

Thirring model. Even though the Thirring model is not asymptotically free it has some

special properties that allow its non-perturbative construction [BFM07].

Remark 1.6. One of the manifestations of the asymptotic freedom of the Gross-Neveu model

is the fact that the bare coupling constant 1/gτ,ε > 0 fixed by the renormalization condition

stated in Item (D) of Theorem 1.1 vanishes logarithmically in the limit εց 0. Thus, naively

one could expect that the construction yields a free theory. However, as we pointed out in

Remark 1.3 the hierarchy of the constructed Schwinger functions is non-trivial. The underly-

ing intuitive reason for the non-triviality is the fact that in the limit εց 0 the fields become

genuine distributions and consequently the quartic interaction term involving a pointwise

products of the fields is very singular. See [Hai24] for a related phenomenon in the context

of subcritical singular stochastic PDEs.

Possible generalizations

The method developed in this work is applicable to other purely fermionic renormalizable

models of quantum theory such as for example the symplectic fermion model with N 6= 8. The

symplectic fermion model is a fermionic analog of the bosonic Φ4 model in four-dimensions.

The model is barely renormalizable. It describes N ∈ {4, 5, . . .} scalar fermionic fields. The

kinetic part of the action of the model contains the Laplacian and the quartic interaction po-

tential is invariant under symplectic transformation of the fields. See [GMR21] for a precise

definition of the model. The assumption N 6= 8 is probably not essential and is related to

the fact that the construction presented in the paper requires that the one-loop beta-function

β2 is positive. Our construction can be also applied to super-renormalizable models such as

the Gross-Neveu model or symplectic fermion model with modified propagators that are less

singular at the origin than the standard propagators. Even though our construction simplifies

drastically in the super-renormalizable regime the FBSDE approach developed in [DFG22],

which was discussed briefly above, seems advantageous as it allows to avoid the use compli-
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cated norms in the space of functionals. Let us also mention that the method developed in

this paper should be applicable to the sine-Gordon model of quantum field theory up to the

second threshold.

Overview of the literature

The Gross-Neveu model appeared for the first time in the work [MW73] by Mitter and

Weisz who investigated the flow of renormalization group transformations in this model. In

the paper [GN74] Gross and Neveu introduced the same model as a toy model of Yang-Mills

theory in four dimensions. They studied the dynamical mass generation in a model with the

chiral symmetry. They presented an argument suggesting that despite the fact that the action

of such a model does not contain a mass term, which is prohibited by the chiral symmetry,

the truncated Schwinger functions decay exponentially, that is the model is massive. Note

that in this paper we construct the version of the Gross-Neveu model with a mass term.

The first mathematical construction of the Gross-Neveu model was given by Gawędzki

and Kupiainen in [GK85a]. Another construction was given shortly thereafter in [FMRS86]

by Feldman, Magnen, Rivasseau and Seneor. Both constructions rely on the discrete renor-

malization group method and the estimates for fermionic correlations derived with the use of

the Gram-Hadamard inequality and the cluster expansion. In [DR00] Disertori and Rivasseau

constructed the Gross-Neveu model by proving convergence of appropriately rearranged per-

turbation theory. Let us also mention the recent paper [DY23] by Dimock and Yuan who

studied the flow of the renormalization group transformations in the massless Gross-Neveu

model on a torus and established uniform boundedness of the partition function of the model

in the UV cutoff.

The above-mentioned works concerned the Gross-Neveu model with a mass term on the

plane or the model with the chiral symmetry on the unit torus. The problem of the dynamical

mass generation was addressed in [KMR95], where it was proved that the two-point Schwinger

functions of the chiral model with a fixed UV cutoff falls off exponentially. Some properties of

the Gross-Neveu model related to the particle interpretation and the asymptotic completeness

were established in [IM87,IM88a,IM88b]. The super-renormalizable Gross-Neveu model with

less singular propagator was studied in [SW02]. A construction of the Gross-Neveu model with

a more singular propagator, which is perturbatively non-renormalizable, was given in [GK85b].

Let us discuss some related results. The two-dimensional Yukawa model was constructed

by Lesniewski in [Les87] using the technique developed in [GK85a]. The important contri-

bution of [Les87] is a new elegant proof of bounds for fermionic connected correlations based

on the Brydges-Battle-Federbush formula. An alternative approach to bounds for fermionic

correlations was given by Salmhofer and Wieczerkowski in [SW00]. The infrared stable non-

Gaussian fixed point of the renormalization group transformation in the symplectic fermion

model with weakly relevant quartic interaction was constructed in [GMR21]. Let us mention

once again the stochastic quantization approach to fermionic models based on a FBSDE de-

veloped in [DFG22], which was used to construct the symplectic fermion model with N = 4

in infinite volume in full super-renormalizable regime. First steps towards the construction
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of fermionic quantum field theories using the parabolic stochastic quantization method were

made in [ABDG20, CHP23, DFGG23], where the framework of non-commutative probabil-

ity suitable for fermionic stochastic analysis was developed and local well-posedness for the

parabolic stochastic quantization equation of the two-dimensional Yukawa model was proved.

We refer the reader to [FKT00] for a general overview of fermionic functional integrals with

applications to constructive quantum field theory.

2 Strategy of the proof

Definition 2.1. We fix N ∈ {2, 3, . . .} and a small parameter κ := 1/1000.

Definition 2.2. Let β2 := 2(N − 1)/π. For t, λ ∈ (0, 1] we define λt := (λ−1 − β2 log t)
−1.

For t = 0 we set λt = 0.

Remark 2.3. We identify functions and distributions on the torus T2
τ with periodic functions

and distributions on R2 with period 1/τ .

In this section we describe in informal terms the main steps of the proof of Theorem 1.1

highlighting the most important ideas. We use the framework of non-commutative probabil-

ity. A non-commutative probability space is the pair (F ,E) consisting of a unital Banach

subalgebra F of the algebra of operators acting on a separable Hilbert space and a contin-

uous normalized linear functional F → C. Recall that the Grassmann measure (1.3) of the

Gross-Neveu model is defined with the use of the Berezin integral, which, like the Lebesgue

integral, is only well-defined in finite dimension. For this reason, it is advantageous to use

as a reference measure a certain Gaussian Grassmann measure, called the free field measure

with cutoffs τ, ε ∈ (0, 1], defined by the formula

ντ,ε(F ) :=

∫

F (ϑε ∗ ψτ,ε) exp(−Aτ (ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε

for functionals F of polynomial type. Note that the RHS of the above equality involves only

the free part of the action Aτ (ψτ,ε), which is quadratic in the field ψτ,ε. We stress that

the above formula for the measure ντ,ε is meaningful only if τ, ε ∈ (0, 1]. We would like to

construct a collection of anti-commuting random variables (Ψτ,ε)τ,ε∈[0,1] in a non-commutative

probability space such that ντ,ε(F ) = E(F (Ψτ,ε)) for all τ, ε ∈ (0, 1]. To this end, we use

the so-called Osterwalder-Schrader construction [OS72,OS73]. For all τ, ε ∈ [0, 1] we define

Ψτ,ε ∈ S ′(R2,B(H ))G as a certain linear combination of creation and annihilation operators

acting in a fermionic Fock space H with the vacuum state Ω ∈ H . Let B(H ) be the algebra

of bounded operators on H . The unital algebra F is defined as the Banach subalgebra of

B(H ) generated by 〈Ψτ,ε, ϕ〉 with ϕ ∈ L2(R2)G. The expected value E : F → C is defined

by the formula EF (Ψτ,ε) = (Ω, F (Ψτ,ε)Ω)H , where (•, •)H denotes the scalar product in H .

The fields Ψτ,ε are defined in such a way that they all anti-commute,

E〈Ψτ,ε, φ〉 = 0, E〈Ψτ,ε, φ〉〈Ψτ,ε, η〉 = 〈φ,Gτ,ε ∗ η〉
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and higher moments of Ψτ,ε can be expressed in terms of the covariance using an analog of the

formula valid for commuting Gaussian random variables. If τ ∈ (0, 1], then Ψτ,ε is periodic

with period 1/τ . The propagatorGτ,ε with the IR cutoff τ ∈ (0, 1] and the UV cutoff ε ∈ (0, 1]

is defined as a periodization of Gε with the period 1/τ , the propagator Gε with the UV cutoff

ε ∈ (0, 1] is defined by Gε := ϑε ∗G∗ϑε and the propagator G is the inverse of the differential

operator
1

2

(

/∂ + 1 0

0 /∂t − 1

)

appearing in the free part of the action (1.1). The family of functions ϑε ∈ S (R2) parame-

terized by ε ∈ (0, 1] is chosen in such a way that it converges to the Dirac delta at the origin

as εց 0 and for all ε ∈ (0, 1] the Fourier transform of ϑε is supported in a ball of radius 1/ε.

Moreover, if ε = 1, then ϑε = 0 and we define ϑε with ε = 0 to be the Dirac delta at the

origin. If τ = 0, then Gτ,ε := Gε and if ε = 0, then Gε := G. We call Ψτ,ε the free field with

cutoffs τ, ε ∈ (0, 1]. Using Ψτ,ε one rewrites the formula (1.3) in the following way

µτ,ε(F ) =
E
(

F (Ψτ,ε)e
Uτ,ε(Ψτ,ε)

)

E
(

eUτ,ε(Ψτ,ε)
) . (2.1)

Note that for all ε ∈ (0, 1] the free field Ψτ,ε belongs to C∞(R2,B(H ))G. Consequently,

the RHS of the above equality is well-defined for all τ, ε ∈ (0, 1] (provided the denominator

is not zero). Since in the limit ε ց 0 the free field Ψτ,ε is not a function over R2 but only

a Schwartz distribution the pointwise products in the expression (1.2) for the potential Uτ,ε
become meaningless. In the limit τ ց 0 the expression (1.2) for the potential Uτ,ε is ill-

defined due to unbounded domain of integration. Thus, the expression (2.1) for the measure

µτ,ε becomes singular in the limit εց 0 or τ ց 0. Because of the presence of the unit mass

term in the free part of the action the proof of the existence of the limit τ ց 0 is relatively

easy. The limit ε ց 0 is quite subtle as it only exists if the parameters gτ,ε and rτ,ε of the

potential (1.2) diverge at particular rate as εց 0.

In order to study the limit ε ց 0 of µτ,ε(F ) we use the renormalization group the-

ory [Wil71,Pol84]. To this end, we introduce a certain scale decomposition of the propagator

Gτ,ε and the free field Ψτ,ε. The scale decomposition [0, 1] ∋ t 7→ Gε;t ∈ L1(R2)G
2

of the

propagator Gε is defined by Gε;t := ϑt ∗Gτ,ε ∗ ϑt for t ∈ [0, 1]. Then Gτ,ε;t is defined as the

periodization of Gε;t. The parameter t ∈ [0, 1] plays the role of an artificial UV cutoff. Note

that due to the properties of the function ϑt for every t ∈ (0, 1] and τ, ε ∈ [0, 1] the propagator

Gτ,ε;t is smooth and essentially constant at spatial scales smaller than t and it captures the

behavior of Gτ,ε at spatial scales larger than t. The scale decomposition [0, 1] 7→ Ψτ,ε;t of the

free field Ψτ,ε is defined in a non-commutative probability space containing the probability

space of the free field as a collection of anti-commuting random variables such that for all

τ, ε ∈ [0, 1] the following conditions are satisfied:

(1) Ψτ,ε;t is Gaussian with mean zero and covariance Gτ,ε;t for all t ∈ [0, 1],

(2) Ψτ,ε;t ∈ C∞(R2,B(H )) for all t ∈ (0, 1],
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(3) Ψτ,ε;t is essentially constant at spatial scales smaller than t ∈ (0, 1],

(4) Ψτ,ε;t captures the behavior of Ψτ,ε at spatial scales larger than t ∈ (0, 1],

(5) t 7→ Ψτ,ε;t has independent increments.

Observe that the condition (1) implies, in particular, that Law(Ψτ,ε;t=0) = Law(Ψτ,ε) and

Ψτ,ε;t=1 = 0. A scale decomposition satisfying the conditions (1)–(4) could be defined by

the formula Ψτ,ε;t = ϑt ∗ Ψτ,ε for all t ∈ [0, 1]. However, with this definition, the process

t 7→ Ψτ,ε;t does not have independent increments, a property that plays a crucial role in the

whole construction. In order to define a scale decomposition of the free field satisfying all con-

ditions (1)–(5) we follow the strategy proposed in [DFG22]. To this end, we use the so-called

Fermionic white noise ξ ∈ S ′(R2 × [0, 1],B(H ))G on spacetime R2 × [0, 1]. The Fermionic

white noise is a anti-commuting Gaussian random variable in some non-commutative proba-

bility space (F ,E) defined using a variant of the Osterwalder-Schrader construction described

above. The Hilbert space H is a conveniently chosen Fermionic Fock space, the expected

value E is defined as above, ξ is expressed as a certain linear combination of creation and

annihilation operators such that ξ has mean zero and its covariance coincides with the Dirac

delta on the diagonal in (R2 × [0, 1])2 and F is the sub-algebra of B(H ) generated by

〈ξ, f〉 with f ∈ L2(R2 × [0, 1])G. We also introduce propagators G±
τ,ε;t such that for all

t ∈ (0, 1] the Fourier transform of G±
τ,ε;t is contained in a shell of radius of order 1/t and

G+
τ,ε;t ∗ G

−
τ,ε;t := ∂tGτ,ε;t. The scale decomposition [0, 1] 7→ Ψτ,ε;t ≡ (Ψ̄τ,ε;t,

¯
Ψτ,ε;t) of the free

field Ψτ,ε ≡ (Ψ̄τ,ε,
¯
Ψτ,ε) satisfying the conditions (1)–(5) is defined by the formula

Ψ̄τ,ε;t :=

∫

T2
τ×[t,1]

G−
τ,ε;s(• − y) ξ(dy, ds),

¯
Ψτ,ε;t :=

∫

T2
τ×[t,1]

G+
τ,ε;s(• − y) ξ(dy, ds).

The free field is defined to be Ψτ,ε := Ψτ,ε;0. For t, s ∈ [0, 1] such that s ≤ t the increment

Ψτ,ε;t,s of the scale decomposition of the free field is defined by Ψτ,ε;t,s := Ψτ,ε;s − Ψτ,ε;t and

the algebra Ft,s is defined as the Banach subalgebra of F ⊂ B(H ) generated by ξ(f), where

f ∈ L2(R2 × [0, 1]) is s.t. supp f ⊂ R2 × [s, t]. Note that Ψτ,ε;t,s is supported in the Fourier

space in a shell of radii of order 1/t and 1/s and depends only on the white noise in the time

interval [s, t]. Hence, 〈Ψτ,ε;t,s, ϕ〉 ∈ Ft,s for all ϕ ∈ S (R2)G. Observe also that for all t ∈ (0, 1]

the free field can be decomposed into the low and high frequency part Ψτ,ε = Ψτ,ε;1,t+Ψτ,ε;t,0,

where Ψτ,ε;1,t contains only the Fourier modes with frequencies in the ball with radius of

order 1/t and Ψτ,ε;t,0 contains only the Fourier modes with frequencies outside the ball with

radius of order 1/t. Finally, let us mention that in the non-commutative probability space

(F ,E) of the white noise it is possible to construct [DFG22] the conditional expectation

Et : F → F1,t given the algebra F1,t that has the usual properties of the conditional

expectation. In intuitive terms, Et integrates out the high frequency part Ψτ,ε;t,0 of the free

field Ψτ,ε = Ψτ,ε;1,t + Ψτ,ε;t,0 and acts trivially on the low frequency part Ψτ,ε;1,t.

Now let us introduce the effective potential and the Polchinski flow equation that play

a central role in our construction. To this end, fix t ∈ (0, 1] and let F be a functional of

polynomial type such that F (Ψτ,ε) = F (Ψτ,ε;1,t), that is F depends only on the low frequency

10



part of the free field. For such functional the formula (2.1) for the interacting measure µτ,ε
can be rewritten in the form

µτ,ε(F ) ∝ EEt
(

F (Ψτ,ε;1,t)e
Uτ,ε(Ψτ,ε)

)

= E
(

F (Ψτ,ε;1,t)Ete
Uτ,ε(Ψτ,ε;1,t+Ψτ,ε;t,0)

)

, (2.2)

where we used the tower property of the conditional expectation as well as the fact that

F (Ψτ,ε;1,t) ∈ F1,t. Suppose that a functional Uτ,ε;t satisfies the following equality

exp(Uτ,ε;t(φ)) := E exp(Uτ,ε(φ+ Ψτ,ε;t,0)) (2.3)

for all φ ∈ C∞(T2
τ ) valued in the odd part of some Grassmann algebra G independent of the

white noise ξ(f). The choice of the Grassmann algebra G does not play an important role.

However, G has to have at least as many generators as the Grassmann algebra of the free

field with cutoffs τ, ε ∈ (0, 1]. For this reason, it is convenient to assume that G is infinite-

dimensional. We call a functional as above an effective potential at spatial scale t ∈ (0, 1].

Using an effective potential and Eq. (2.2) we conclude that

µτ,ε(F ) ∝ E
(

F (Ψτ,ε;1,t)e
Uτ,ε;t(Ψτ,ε;1,t)

)

for all functionals F as above. Note that the RHS of the above equality involves only the

low frequency part Ψτ,ε;1,t of the free field, which is smooth for all τ, ε ∈ [0, 1]. Consequently,

the above formula remains meaningful without cutoffs provided an effective potential Uτ,ε;t
is well-defined. This suggest that the family of effective potentials (Uτ,ε;t)t∈(0,1] determines

the measure µτ,ε completely and one can prove the existence of the limit τ, ε ց 0 of µτ,ε by

studying the limit τ, ε ց 0 of (Uτ,ε;t)t∈(0,1]. Actually, using the translational invariance of

the Berezin integral one shows the following formula

µτ,ε(exp(〈•, ϕ〉)) = exp(〈ϕ,Gτ,ε ∗ ϕ〉/2 + Uτ,ε;1(Gτ,ε ∗ ϕ)− Uτ,ε;1(0)) (2.4)

for all φ ∈ C∞(T2
τ ) valued in the odd part of G , which provides a direct link between

an effective potential Uτ,ε;t at the spatial scale t = 1 and a generating functional of the

Schwinger functions. The upshot is that in order to construct the Schwinger functions and

prove their convergence as τ, εց 0 it is enough to construct the family of effective potentials

and prove its convergence as τ, εց 0. The basic idea of the renormalization group theory is

to derive a certain equation that relates the effective potentials at different scales and then

use it to construct the effective potential. In the discrete renormalization group method one

studies an equation that relates the effective potential at different discrete values of the scale

parameter. Our construction uses instead the so-called Polchinski flow equation, which is a

Hamilton-Jacobi-Bellman type equation for the function (t, φ) 7→ Uτ,ε;t(φ). The mild form of

this equation is given by

Uτ,ε;t(φ) = EUτ,ε(Ψτ,ε;t,0 + φ)

+
1

2

∫ t

0

E〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ ds (2.5)
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for all t ∈ [0, 1] and φ ∈ C∞(T2
τ )

G valued in the odd part of G . In the above formula,

Ġε;t := ∂tGε;t and DφF stands for the functional derivative of F . The flow equation (2.5) is

well-posed provided τ, ε ∈ (0, 1]. Note that the first term on the RHS of Eq. (2.5) involves the

original potential Uτ,ε defined by Eq. (1.2), which depends on the parameters gτ,ε, rτ,ε ∈ R.

Recall that these parameters are not given. Our task is to find (gτ,ε, rτ,ε)τ,ε∈(0,1] such that

the Schwinger functions converge as τ, εց 0. This is the so-called renormalization problem.

A comment on functionals is in order. We identify functionals U with collections of kernels

(Um,σ)m∈N0,σ∈Gm such that

U(φ) = U0 +
∑

m∈N+

∑

σ∈Gm

〈Um,σ, φσ1 ⊗ . . .⊗ φσm〉τ (2.6)

for all φ ∈ C∞(T2
τ )

G valued in the odd part of G , where U0 ∈ C and Um,σ ∈ S ′(T2
τ ) is

antisymmetric for m ∈ N+, σ ∈ Gm. We interpret the flow equation as an equation for the

hierarchy of kernels (Um,σ)m∈N0,σ∈Gm . In order to study the infinite volume limit it is useful

to consider instead the hierarchy of kernels (V m,σ)m∈N+,σ∈Gm such that V m,σ ∈ S ′(R2) for

all m ∈ N+, σ ∈ Gm and such that V m,σ is related to Um,σ by the equality

〈Um,σ, φ1 ⊗ . . .⊗ φm〉τ = 〈V m,σ, χτφ1 ⊗ φ2 ⊗ . . .⊗ φm〉 (2.7)

for all m ∈ N+, σ ∈ Gm and φ1, . . . , φm ∈ C∞(T2
τ ), where χτ ∈ C∞

c (R2) is such that its

periodization with period 1/τ coincides with the constant function equal to one. The paring

〈•, •〉τ is the paring between distributions and test functions on T2
τ , whereas the paring 〈•, •〉

is the paring between distributions and test functions on R2. By the translational invariance

of V m,σ and the periodicity of φ1, . . . , φm the RHS of Eq. (2.7) is independent of the choice

of the function χτ . In informal terms, Um,σ is obtained by the periodization of V m,σ in m−1

variables. Because of the assumption that Vm,σ is antisymmetric the choice of these m − 1

variables is not important. Note that the hierarchy (V m,σ)m∈N+,σ∈Gm contains no information

about U0, which is redundant. It turns out that if the flow equation (2.5) is satisfied up to a

constant, then it is possible to choose the constant such that the flow equation holds exactly.

The advantage of working with the kernels (V m,σ)m∈N+,σ∈Gm rather than (Um,σ)m∈N0,σ∈Gm is

that the kernels (V m,σ)m∈N+,σ∈Gm are not periodic and decay rapidly in directions transversal

to the diagonal. Collections of kernels (V m,σ)m∈N+,σ∈Gm are identified with functionals V by

the formula

V [ϕ] =
∑

m∈N+

∑

σ∈Gm

〈V m,σ, ϕσ1 ⊗ . . .⊗ ϕσm〉 (2.8)

for all ϕ ∈ S (R2)G valued in the odd part of G . In order to introduce a topology in the space

of functionals V ≡ (V m,σ)m∈N+,σ∈Gm for all m ∈ N+, σ ∈ Gm it is convenient to make the

following ansatz

〈V m,σ, ϕ1 ⊗ . . .⊗ ϕm〉 =
∑

a∈Am

〈V m,a,σ, ∂a1ϕ1 ⊗ . . .⊗ ∂amϕm〉 (2.9)
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for all ϕ1, . . . , ϕm ∈ S (R2), where A = {0, 1, 2}2 is the set of spatial multi-indices and for all

m ∈ N+, a ∈ A
m, σ ∈ G

m the distributions V m,a,σ ∈ S ′(R2m) are measures such that the

following norm

‖V m,a,σ‖Mm = sup
x1∈R2

∫

|V m,a,σ(x1, dx2, . . . , dxm)|

is finite. We also introduce the notation Jϕ = (∂aϕσ)a∈A,σ∈G ∈ S (R2)A×G for the jet exten-

sion of the function ϕ ∈ S (R2)G. The representation (2.9) of V m,σ in terms of (V m,a,σ)a∈Am

is of course not unique. The fact that the potential of the Gross-Neveu model Uτ,ε does not

involve derivatives suggests that one could set V m,a,σ = 0 unless a = 0. However, it turns

out that another representation of V m,σ in terms of (V m,a,σ)a∈Am is more convenient to solve

the renormalization problem. In what follows, we identify functionals V with collections of

kernels (V m,a,σ)m∈N+,a∈Am,σ∈Gm such that Eqs. (2.8) and (2.9) are satisfied. We also use the

notation V m for the collection of kernels (V m,a,σ)a∈Am,σ∈Gm . For τ, ε ∈ [0, 1] and t, s ∈ (0, 1]

we introduce the following maps in the space of functionals

(Aτ,ε;t,sV )[ϕ] := Π◦V [JΨτ,ε;t∨s,s + ϕ],

Bε;s(V )[ϕ] = Π◦〈DϕV [ϕ]⊗DϕV [ϕ], (J⊗ J)Ġε;s(• − •)〉
(2.10)

where Π◦V [ϕ] := V [ϕ] − V [0] and ϕ ∈ S (R2)A×G is an arbitrary Schwartz function valued

in the odd part of G . The above definitions should be interpreted as hierarchies of equations

for the kernels V ≡ (V m,a,σ)m∈N+,a∈Am,σ∈Gm . Note that the map Π◦ ensures that the func-

tionals (Aτ,ε;t,sV )[ϕ] and (Bε;s(V ))[ϕ] vanish for ϕ = 0 and are of the form (2.8). We stress

that Aτ,ε;t,sV is a functional taking values in Ft,s ⊂ B(H ). We denote by A
m,a,σ
τ,ε;t,sV and

Bm,a,σ
ε;s (V ) the kernels of the functionals Aτ,ε;t,sV and Bε;s(V ). The symbols Am

τ,ε;t,sV and

Bm
ε;s(V ) denote collections of kernels.

Now we shall rewrite the flow equation (2.5) in a form that is suitable for studying the

infinite volume limit τ ց 0. To this end, let the functional Vτ,ε ≡ (V m,a,στ,ε )m∈N+,a∈Am,σ∈Gm

be related to the potential (1.2) of the Gross-Neveu model by Eqs. (2.6), (2.7) and (2.9) and

let t 7→ Vτ,ε;t ≡ (V m,a,στ,ε;t )m∈N+,a∈Am,σ∈Gm be a solution of the following flow equation

Vτ,ε;t[Jϕ] = EAτ,ε;t,0Vτ,ε[Jϕ] +

∫ t

0

EAτ,ε;t,sBε;s(Vτ,ε;s)[Jϕ] ds (2.11)

for all ϕ ∈ S (R2)G valued in the odd part of G . The above equation is written using

the notation introduced in the previous paragraph. For t ∈ [0, 1] we define the functional

Uτ,ε;t ≡ (Um,στ,ε;t)m∈N0,σ∈Gm related to Vτ,ε;t by Eqs. (2.7) and (2.9). This leaves U0
τ,ε;t ∈ C

unspecified but for a suitable choice of t 7→ U0
τ,ε;t the function (t, φ) 7→ Uτ,ε;t(φ) satisfies the

flow equation (2.5). Hence, we are led to study the flow equation (2.11). The advantage of

Eq. (2.11) over Eq. (2.5) is that it is well-posed in the limit τ ց 0. Let us stress that a

solution t 7→ Vτ,ε;t ≡ (V m,a,στ,ε;t )m∈N+,a∈Am,σ∈Gm of Eq. (2.11) is not unique. Observe that a

solution of the following equation

Vτ,ε;t[ϕ] = EAτ,ε;t,0Vτ,ε[ϕ] +

∫ t

0

EAτ,ε;t,sBε;s(Vτ,ε;s)[ϕ] ds (2.12)
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for all ϕ ∈ C∞(R2)A×G valued in the odd part of G is also a solution of Eq. (2.11). However,

the reverse implication is not true because of the non-uniqueness of the representation (2.9)

of V m,σ in terms of (V m,a,σ)a∈Am . We shall take advantage of this non-uniqueness in order

to solve the renormalization problem. In particular, a solution of Eq. (2.11) that we are going

to construct will not satisfy Eq. (2.12).

Let us now investigate the renormalization problem. To this end, we have to study the

limit ε ց 0. First note that since for ε = 0 the increment Ψτ,ε;t,0 is not a function over R2

but only a distribution and the functional Vτ,ε involves pointwise products the first term on

the RHS of Eq. (2.11) becomes singular in the limit ε ց 0. We hope that the second term

becomes singular in this limit as well and for specific choices of the parameters gτ,ε, rτ,ε ∈ R

of the original potential the singularities of both terms cancel out. We would like to rewrite

Eq. (2.11) in a form that exhibits the above-mentioned cancellation of singularities. To this

end, we have to come up with an appropriate space of functionals. The norm in this space

should control the dependence of the norm ‖Vm,a,στ,ε;t ‖Mm of the kernels of the functional Vτ,ε;t
on t ∈ (0, 1] and m ∈ N+, a ∈ Am, σ ∈ Gm. Let us first concentrate on the dependence

on t ∈ (0, 1]. Using the fact that the perturbative corrections to the kernels V m,a,στ,ε;t can be

expressed in terms of Feynman diagrams by naive power counting argument for all m ∈ N+,

a ∈ Am, σ ∈ Gm the following bound

‖Vm,a,στ,ε;t ‖Mm . tm/2+|a|−2 (2.13)

should hold uniformly in τ, ε ∈ [0, 1] and t ∈ (0, 1] up to logarithmic corrections, which

we ignore for the moment. Since V m,a,στ,ε;t = 0 if m ∈ N+ \ 2N+ by the charge conjugation

invariance one can restrict attention to kernels V m,a,στ,ε;t with m ∈ 2N+. This suggest that for

ε = 0 the norm of the kernel

(V 2,0,σ
τ,ε;t )σ∈G2 ,

may diverge polynomially and the norms of the kernels

(V 4,0,σ
τ,ε;t )σ∈G4 , (V 2,a,σ

τ,ε;t )a∈A2,|a|=1,σ∈G2

may diverge logarithmically as t ց 0. We call the above kernels relevant and marginal,

respectively. The remaining kernels vanish in the limit t ց 0 and are called irrelevant. Note

that the functional Vτ,ε, which is closely related to the original potential Uτ,ε defined by

Eq. (1.2), contains only relevant and marginal kernels. Using properties of the maps Aτ,ε;t,s

and Bε;s as well as the bound (2.13) one shows that for all m ∈ N+, a ∈ Am, σ ∈ Gm the

bound

‖EA
m,a,σ
τ,ε;t,sBε;s(Vτ,ε;s)‖Mm . sm/2+|a|−3

holds uniformly in τ, ε ∈ [0, 1] and t, s ∈ (0, 1] up to logarithmic corrections. By the Minkowski

inequality this implies the bound

∥

∥

∫ t

0
EA

m,a,σ
τ,ε;t,sBε;s(Vs) ds

∥

∥

Mm ≤
∫ t

0

∥

∥EA
m,a,σ
τ,ε;t,sBε;s(Vs)

∥

∥

Mm ds

.
∫ t

0
sm/2+|a|−3 ds . tm/2+|a|−2 (2.14)

14



uniform in τ, ε ∈ [0, 1] and t ∈ (0, 1] up to logarithmic corrections unless m = 4 and a = 0, or

m = 2 and |a| ≤ 1. Consequently, for the irrelevant kernels the bound (2.13) is consistent with

the flow equation (2.11). The relevant kernels require special treatment. Indeed, if m = 4

and a = 0, or m = 2 and |a| ≤ 1, then the last estimate in (2.14) is false.

In order to address the above-mentioned problem with the estimates for the relevant

kernels we make the following ansatz

Vτ,ε;t = U(1/gτ,ε;t, rτ,ε;t, zτ,ε;t) +Wτ,ε;t, (2.15)

where gτ,ε;t ∈ (0,∞), rτ,ε;t, zτ,ε;t ∈ R are some parameters, Wτ,ε;t is a functional and for all

g, r, z ∈ R the functional U(g, r, z) is defined by the equality

U(g, r, z)[ψ] :=

∫

R2

(

g (ψ̄(x) ·
¯
ψ(x))2 + r ψ̄(x) ·

¯
ψ(x) + z ψ̄(x) · (/∂

¯
ψ)(x)

)

dx

for all ψ = (ψσ)σ∈G ∈ S (R2)G valued in the odd part of G . Since the functional U(g, r, z) is

a linear combination of quartic and quadratic terms it holds Vm,a,στ,ε;t = Wm,a,σ
τ,ε;t unless m = 4

and a = 0, or m = 2 and |a| ≤ 1.

In order to specify the relation between Vτ,ε;t and (gτ,ε;t, rτ,ε;t, zτ,ε;t,Wτ,ε;t) we have to

first introduce the notion of the local part of a kernel and the remainder. The local part of a

collection of kernels V 4
τ,ε;t = (V 4,a,σ)a∈G4,σ∈G4 is defined by the equality

LV 4 (
¯
ψ · ψ̄)2 :=

∑

σ∈G4

ψσ1 . . . ψσ4

∫

R6

V 4,0,σ(x1, dx2, dx3, dx4)

for all Grassmann-valued numbers ψ ≡ (ψσ)σ∈G ≡ (ψ̄α,ς ,
¯
ψα,ς)α∈{1,2},ς∈{1,...,N}. Note that

the RHS of the above formula does not depend on x1 ∈ R2 because of the translational

invariance of the kernels of the functional Vτ,ε;t. It turns out that given a collection of kernels

V 4 = (V 4,a,σ)a∈A4,σ∈G4 that posses certain symmetries there exists a collection of kernels

RV 4 = ((RV 4)a,σ)a∈A4,σ∈G4 such that (RV 4)a,σ = 0 if a = 0 and

LV 4

∫

R2

(
¯
ψ(x) · ψ̄(x))2 dx+

∑

a∈A4

∑

σ∈G4

〈(RV 4)a,σ, ∂a1ψσ1 ⊗ . . .⊗ ∂a4ψσ4〉

=
∑

a∈A4

∑

σ∈G4

〈V 4,a,σ, ∂a1ψσ1 ⊗ . . .⊗ ∂a4ψσ4〉 (2.16)

for all ψ ∈ S (R)G valued in the odd part of G . Similarly, given a collection of kernels

V 2 = (V 2,a,σ)a∈A2,σ∈G2 that posses certain symmetries there exist numbers LV 2,L∂V
2 ∈ R

and a collection of kernels RV 2 = ((RV 2)a,σ)a∈A2,σ∈G2 such that (RV 2)a,σ = 0 if |a| ≤ 1 and

LV 2

∫

R2 ¯
ψ(x) · ψ̄(x) dx + L∂V

2

∫

R2

ψ̄(x) · (/∂
¯
ψ)(x) dx

+
∑

a∈A2

∑

σ∈G2

〈(RV 2)a,σ, ∂a1ψσ1 ⊗ ∂a2ψσ2〉 =
∑

a∈A2

∑

σ∈G2

〈V 2,a,σ, ∂a1ψσ1 ⊗ ∂a2ψσ2〉 (2.17)
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for all ψ ∈ S (R)G valued in the odd part of G . The identities (2.16) and (2.17) are conse-

quences of the Taylor theorem and the form of the local terms

∫

R2

ψ̄(x) ·
¯
ψ(x) dx,

∫

R2

ψ̄(x) · (/∂
¯
ψ)(x) dx,

∫

R2

(ψ̄(x) ·
¯
ψ(x))2 dx

appearing in these identities is dictated by the symmetries of the Gross-Neveu model. The

parameter 1/gτ,ε;t ∈ (0,∞) is called the effective coupling constant at spatial scale t ∈ (0, 1]

and is defined so that it satisfies the equation

1/gτ,ε;t = LEA4
τ,ε;t,0Vτ,ε +

∫ t

0

LEA4
τ,ε;1,sBε;s(Vτ,ε;s) ds. (2.18)

The parameter rτ,ε;t satisfies the equation

rτ,ε;t = LEA2
τ,ε;0,tVτ,ε + LEA2

τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0)

+

∫ t

0

LEA2
τ,ε;1,sBε;s(Vτ,ε;s) ds. (2.19)

The parameter zτ,ε;t satisfies the equation

zτ,ε;t =

∫ t

0

L∂EA2
τ,ε;1,sBε;s(Vτ,ε;s) ds. (2.20)

Finally, the functional Wτ,ε;t satisfies the equations

Wm
τ,ε;t =

∫ t

0

EAm
τ,ε;t,sBε;s(Vτ,ε;s) ds, m ∈ N+ \ {2, 4}, (2.21)

Wm
τ,ε;t =

∫ t

0

REAm
τ,ε;1,sBε;s(Vτ,ε;s) ds−ECm

τ,ε;1,tWτ,ε;t, m ∈ {2, 4}, (2.22)

where Cτ,ε;1,tV := Aτ,ε;1,tV − V . Note that Cm
τ,ε;1,tWτ,ε;t depends only on (Wm+k

τ,ε;t )k∈N+ .

Hence, the RHS of Eq. (2.22) does not depend on Wm
τ,ε;t. The functional Vτ,ε;s appearing in

Eqs. (2.18), (2.19), (2.20), (2.21), (2.22) is related to (gτ,ε;s, rτ,ε;s, zτ,ε;s,Wτ,ε;s) by Eq. (2.15).

In this way we obtain a closed system of equations for (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•). Using

Eqs. (2.16) and (2.17) one proves that given a solution (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) of this system

of equations the functional Vτ,ε;• related to (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) by Eq. (2.15) is a solution

of the flow equation (2.11). Let us mention that this solution does not satisfy Eq. (2.12).

The argument presented in the previous paragraph together with the fact that the relevant

kernels of the functional REAτ,ε;1,sBε;s(Vτ,ε;s) vanish identically by the definition of the map

R suggest that the integrands in Eqs. (2.21), (2.22) are absolutely integrable also for ε = 0.

Now let us study more closely Eq. (2.18) for the effective coupling constant. Noting that

∂tgτ,ε;t = −g2τ,ε;t ∂t(1/gτ,ε;t) = −g2τ,ε;tLEA4
τ,ε;1,tBε;t(Vτ,ε;t)
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and using the fact that LEA4
τ,ε;t,0Vτ,ε = 1/gτ,ε, where gτ,ε is the parameter of the poten-

tial (1.2), we obtain

gτ,ε;t = gτ,ε −

∫ t

0

g2τ,ε;sLEA4
τ,ε;1,sBε;s(Vτ,ε;s) ds.

We fix the parameter gτ,ε = gτ,ε;t=0 implicitly by imposing the following renormalization

condition

gτ,ε;t=1 = 1/λ, (2.23)

where λ ∈ (0, 1] is assumed to be sufficiently small. Taking into account the above boundary

condition we rewrite the equation for gτ,ε;t in the following form

gτ,ε;t = 1/λ+

∫ 1

t

g2τ,ε;s LEA4
τ,ε;1,sBε;s(Vτ,ε;s) ds. (2.24)

It turns out that the asymptotic behavior of

s 7→ g2τ,ε;sLEA4
τ,ε;1,sBε;s(Vτ,ε;s) = g2τ,ε;sLEA4

τ,ε;1,sBε;s(U(1/gτ,ε;s, rτ,ε;s, zτ,ε;s) +Wτ,ε;s)

at s = 0 coincides with the asymptotic behavior of

s 7→ g2τ,ε;sLEA4
τ,ε;1,sBε;s(U(1/gτ,ε;s, 0, 0)) = LEA4

τ,ε;1,sBε;s(U(1, 0, 0))

The above claim is justified a posteriori by assuming that the tuple (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•)

belongs to the set Yτ,ε defined below. Moreover, a direct computation yields

LEA4
τ,ε;1,sBε;s(U(1, 0, 0)) = β2 s

−1, β2 = 2(N − 1)/π,

for τ = 0 and ε = 0. Consequently, for τ = 0 and ε = 0 the asymptotic behavior of t 7→ 1/gτ,ε;t
at t = 0 coincides with the asymptotic behavior of t 7→ λt, where λt was introduced in Def. 2.2.

Note that the asymptotic behavior of the effective coupling constant 1/gτ,ε;t is easiest to

determine by studying Eq. (2.24) for its inverse gτ,ε;t. This is one of the reasons why we

chose gτ,ε;t rather than the effective coupling constant 1/gτ,ε;t to be one of the fundamental

variables. Note that by the above argument the effective coupling constant 1/gτ,ε;t with ε = 0

vanishes logarithmically as t ց 0. Thus, at high energy the behavior of Schwinger functions

of the Gross-Neveu model without the UV cutoff should not differ much from the behavior

of the Schwinger functions of the free theory. This property is called in the literature the

asymptotic freedom and plays a crucial role in our construction. Let us remark that our scale

decomposition Gε;t of the propagator Gε satisfies the condition Ġε;t = 0 for t ∈ (0, ε]. As a

result, Bε;t(•) = 0 and gτ,ε;t = gτ,ε;ε for t ∈ [0, ε]. Hence, the flow of the effective coupling

constant in the model with the UV cutoff ε ∈ (0, 1] halts when the scale parameter t reaches

the value ε. In particular, the model with the UV cutoff is not asymptotically free and the

value of the parameter gτ,ε = gτ,ε;0 = gτ,ε;ε of the potential (1.2) fixed by the renormalization
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condition (2.23) vanishes logarithmically as ε ց 0. As a side remark, we mention that the

assumption λ > 0 is necessary for the asymptotic freedom of the model without the UV cutoff

as for λ < 0 the function t 7→ λt blows up at the scale t = e1/(λβ2), which is called in the

literature the Landau pole. Because of the asymptotic freedom the logarithmic corrections,

which were ignored in the bound (2.13), improve the asymptotic behavior of t 7→ ‖V m,a,στ,ε;t ‖Mm

at t = 0. Actually, taking into account the logarithmic vanishing of the effective coupling

constant a direct inspection of perturbative corrections yields the following bound

‖Vm,a,σt ‖Mm . λ
(m/2−1)∨1
ε∨t tm/2+|a|−2

uniform in τ, ε ∈ [0, 1] and t ∈ (0, 1] for all m ∈ N+, a ∈ Am, σ ∈ Gm. Using the above bound

one shows that

‖EA
m,a,σ
τ,ε;t,sBε;s(Vτ,ε;s)‖Mm . λ(m/2−1)∨2

s sm/2+|a|−3

uniformly in τ, ε ∈ [0, 1] and t, s ∈ (0, 1]. Hence, using Lemma 2.4 (A) we obtain

∥

∥

∫ t

0 EAm,a,σ
τ,ε;u,sBε;s(Vτ,ε;s) ds

∥

∥

Mm .
∫ t

0 λ
(m/2−1)∨2
s sm/2+|a|−3 ds

. λ
(m/2−1)∨2
t tm/2+|a|−2 (2.25)

uniform in τ, ε ∈ [0, 1] and t, u ∈ (0, 1] unless m = 4 and a = 0, or m = 2 and |a| ≤ 1. By

Lemma 2.4 (D) applied with ρ = 1 we have

∥

∥

∫ t

0 EAm,a,σ
τ,ε;u,sBε;s(Vτ,ε;s) ds

∥

∥

Mm .
∫ t

0 λ
2
s s

−1 ds . λt (2.26)

uniformly in τ, ε ∈ [0, 1] and t, u ∈ (0, 1] for m = 4 and a = 0, or m = 2 and |a| = 1. If m = 2

and a = 0, then for ε = 0 the function s 7→ EAm,a,σ
τ,ε;u,sBε;s(Vs) is not integrable at s = 0.

However, by Lemma 2.4 (C) applied with ρ = 2, ̺ = −1 and λ ∈ (0, 1] small enough we have

∥

∥

∫ 1

t
EAm,a,σ

τ,ε;u,sBε;s(Vτ,ε;s) ds
∥

∥

Mm .
∫ 1

t
λ2s s

−2 ds . λ2t t
−1 (2.27)

uniformly in τ, ε ∈ [0, 1] and t, u ∈ (0, 1] for m = 2 and a = 0. The bound (2.26) suggests

that Eq. (2.20) for zτ,ε;t is well-posed for ε = 0. On the other hand, Eq. (2.19) for rτ,ε;t is

not expected to be well-posed for ε = 0. To address the problem with Eq. (2.19) we impose

the following renormalization condition

rτ,ε;t=1 = 0

that fixes implicitly the mass counterterm rτ,ε = rτ,ε;t=0 and rewrite this equation so that it

involves the integral appearing on the LHS of the bound (2.27). Using Eq. (2.19) we obtain

the following equation

rτ,ε;t = −LEA2
τ,ε;1,tU(1/gτ,ε;t, 0, 0)−

∫ 1

t

LEA2
τ,ε;1,sBε;s(Vτ,ε;s) ds. (2.28)
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Let us remark that since we do not impose any non-trivial renormalization condition for the

parameter zτ,ε;t introducing this parameter in the ansatz (2.15) is not necessary and is done

mainly because it is convenient when proving estimates.

The claim is that the system of equations (2.24), (2.28), (2.20), (2.21), (2.22) for the

tuple (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) remains well-posed in the limit τ, ε ց 0. Since we would

like to construct a solution of this system of equations using the contraction principle we

have to first find an appropriate complete metric space of tuples (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•).

We will define this metric space as a closed subset of a certain Banach space. The norm

in the Banach space has to control the dependence of gτ,ε;t, rτ,ε;t, zτ,ε;t ∈ R on t ∈ (0, 1]

as well as the dependence of ‖Wm,a,σ
τ,ε;t ‖Mm on t ∈ (0, 1] and m ∈ N+, a ∈ Am, σ ∈ Gm.

To this end, for α, β ∈ [1,∞) and γ ∈ [0,∞) we introduce the Banach space of functionals

s 7→ Ws = (Wm,a,σ
s )m∈N+,a∈Am,σ∈Gm depending on the scale parameter s ∈ (0, 1] equipped

with the following norm

‖W•‖V α,β;γ := sup
m∈N+

αmmβ ‖Wm
• ‖V m;γ ,

where

‖Wm
• ‖V m;γ := sup

s∈(0,1]

∑

a∈Am

∑

σ∈Gm

λ−ργ,κ(m)
s s2−m/2−|a| ‖wms W

m,a,σ
s ‖Mm .

The weight wms depending only on the relative coordinates and growing stretched exponen-

tially is needed to establish stretched exponential decay of truncated correlations as well

as to prove the desired estimates for the map R introduced above. The bound (2.25) sug-

gest that the kernels of a solution Wτ,ε;• of Eqs. (2.21) and (2.22) should have finite norms

‖Wm
τ,ε;•‖V m;γ defined in terms of ργ,κ(m) = (m/2−1)∨2. In order to give oneself some wiggle

room when proving estimates we choose instead ργ,κ(m) := γ+2κm with γ = 2− 80κ, where

κ = 1/1000 was fixed in Def. 2.1. It turns out the kernels of the functional Vτ,ε;• related

to (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) by Eq. (2.15) have finite norms ‖t 7→ θ(t − ε)V mτ,ε;t‖V m;γ with

γ = 1− 40κ. The presence of the function θ(t− ε) in the above expression is needed because

in the model with the UV cutoff the flow of the effective coupling constant 1/gτ,ε;t halts at

t = ε and consequently 1/gτ,ε;t does not vanish in the limit t ց 0 if ε ∈ (0, 1]. Recall that

Ġε;t = 0 and Bε;t(•) = 0 if t ∈ (0, ε]. As a result, the RHS of Eqs. (2.24), (2.28), (2.20),

(2.21), (2.22) depend only on t 7→ θ(t− ε)Vτ,ε;t. The usefulness of the norm ‖•‖V α,β;γ comes

from the following estimates

∥

∥s 7→ sBε;s(Vs)
∥

∥

V α,β−1;2γ ≤ C ‖s 7→ Vs‖
2
V α,β;γ (2.29)

and
∥

∥t 7→
∫ t

0
Π>4Vs/s ds

∥

∥

V α,β;γ ≤ C ‖s 7→ Vs‖V α,β−1;γ (2.30)

valid for α ∈ [1,∞), β ∈ (2,∞), γ ∈ [0,∞), where C ∈ (0,∞) is a universal constant

and given a functional V = (V m,a,σ)m∈N+,a∈Am,σ∈Gm we define the functional Π>4V by the

equalities (Π>4V )m,a,σ = 0 if m ≤ 4 and (Π>4V )m,a,σ = V m,a,σ if m > 4. The presence of
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the operator Π>4 in the second of the above estimates is related to the fact that the relevant

kernels of s 7→ Bε;s(Vs) are not absolutely integrable at s = 0 and need a special treatment.

Observe also that since the scale dependent functional s 7→ Vs−Π>4Vs has only finitely many

non-zero kernels the parameters α and β do not play any role when estimating its ‖•‖V α,β;γ

norm. The estimates (2.29) and (2.30) imply in particular that

∥

∥t 7→
∫ t

0
Π>4Bε;s(Vs) ds

∥

∥

V α,β;2γ ≤ C ‖s 7→ Vs‖
2
V α,β;γ . (2.31)

The remarkable property of the above bound is the fact that the norms on both sides of

this bound have the same parameter α and β. Recall that the RHS of Eq. (2.21) involves

EAτ,ε;t,sBε;s(Vτ,ε;s). In particular, to be able to solve the above system in the space V α,β;γ

of functionals Wτ,ε;• the validity of an estimate of the form

‖t 7→
∫ t

0
Π>4EAτ,ε;t,sVs/s ds‖V α,β;γ ≤ C ‖s 7→ Vs‖V α,β−1;γ (false) (2.32)

with a universal constant C ∈ (0,∞) appears to be crucial. Indeed, the bounds (2.29)

and (2.32) imply the bound

∥

∥t 7→
∫ t

0 Π>4EAτ,ε;t,sBε;s(Vs) ds
∥

∥

V α,β;2γ ≤ C ‖s 7→ Vs‖
2
V α,β;γ (false) (2.33)

with a universal constant C ∈ (0,∞), which would allow to control the ‖•‖V α,β;γ norm of

the RHS of Eq. (2.21). Recall that the definition of the map Aτ,ε;t,s involves the increment

Ψτ,ε;t,s of the scale decomposition of the free field. Using the bound

|E(Ψσ1
τ,ε;t,s(x1) . . . Ψ

σk
τ,ε;t,s(xk))| ≤ sup

σ∈G

‖Ψστ,ε;t,s‖
k
C

where ‖φ‖C := supx∈R2 ‖φ(x)‖B(H ), as well as a similar bound for ∂aΨστ,ε;t,s one shows, with

some effort, that the bound (2.32) would be true for sufficiently small λ ∈ (0, 1] if the following

bound

‖∂aΨστ,ε;t,s‖C ≤ c (s−1/2−|a| − t−1/2−|a|), 0 < s ≤ t ≤ 1, (false) (2.34)

with a universal constant c ∈ (0,∞) was true. The above estimate would imply in particular

that the scale decomposition of the free field is locally Lipschitz continuous. However, the scale

decomposition of the free field should have similar regularity in the scale parameter, which

plays the role of time, to the Grassmann Brownian motion, which is only Hölder continuous

with exponent 1/2. In fact, the following bound

‖∂aΨστ,ε;t,s‖C ≤ c (s−1−2|a| − t−1−2|a|)1/2, 0 < s ≤ t ≤ 1, (2.35)

holds true with a universal constant c ∈ (0,∞). This indicates that the bound (2.32) is false.

The above argument is obviously not conclusive. However, closer analysis reveals that it is

unlikely that the estimate (2.33) is true. We refer the reader to [SW00] for related comments.

As an aside, we mention that as observed in [SW00] the proof of estimates for fermionic
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correlations given in [BW88,BW99] is not correct precisely because the scale decomposition

of the free field is not Lipschitz continuous. This suggest that, in a sense, the difficulty we

face is related to the fact that the scale decomposition of the free field is only 1/2 Hölder

continuous. Note also that in the discrete renormalization group one studies scales t, s ∈ (0, 1]

such that s = t/L with L ∈ (1,∞) fixed. For scales t, s ∈ (0, 1] satisfying the above relation

the estimates (2.34) and (2.35) with some constants c ∈ (0,∞) are equivalent.

One of the novel ideas of this work is the use of the following norm

‖W•‖W
α,β;γ
τ,ε

:= sup
u∈[0,1]

‖s 7→ Aτ,ε;u∨s,sWs‖V α,β;γ

in the space of scale dependent functionals s 7→ Ws = (Wm,a,σ
s )m∈N+,a∈Am,σ∈Gm . Since

Aτ,ε;s,sVs = Vs the norm ‖•‖
W

α,β;γ
τ,ε

is stronger than ‖•‖V α,β;γ . We stress that the norm

‖•‖
W

α,β;γ
τ,ε

depends on the cutoffs τ, ε ∈ (0, 1]. We also note that the functional Aτ,ε;u∨s,sVs,

which appears in the definition of the norm ‖•‖
W

α,β;γ
τ,ε

, takes values in Fu∨s,s ⊂ F ⊂ B(H ).

For this reason we are forced to work with kernels that are measures valued in a Banach

space B(H ). The main advantage of the norm ‖•‖
W

α,β;γ
τ,ε

over ‖•‖V α,β;γ is the validity of the

following estimate
∥

∥t 7→
∫ t

0
Π>4EAτ,ε;t,sBε;s(Vs) ds

∥

∥

W
α,β;2γ
τ,ε

≤ C ‖s 7→ Vs‖
2
W

α,β;γ
τ,ε

, (2.36)

where C ∈ (0,∞) is some universal constant. As we argued above an analogous estimate is

almost certainly false if the norm ‖•‖
W

α,β;γ
τ,ε

is replaced by the more standard norm ‖•‖V α,β;γ .

Let us stress that the lack of a norm in the space of scale dependent functionals for which the

estimate of the form (2.36) holds true was the main obstacle in the construction of Grassmann

measures of fermionic quantum field theories with the use of the Polchinski flow equation.

Since the estimate (2.36) is of crucial importance let us sketch the main ideas behind its proof.

First, observe that in order to prove the estimate (2.36) we have to control the ‖•‖
V

α,β;2γ
τ,ε

norm

of the functional Au,tEAt,sBs(Vs) in terms of the ‖•‖
V

α,β;γ
τ,ε

norm of the functional Am
u,sVs.

Next, note that for 0 < s ≤ t ≤ u ≤ 1 it holds

Aτ,ε;u,sV = Aτ,ε;u,tAτ,ε;t,sV, Aτ,ε;u,sBε;s(V ) = Bε;s(Aτ,ε;u,sV ),

Aτ,ε;u,tEAτ,ε;t,sV = Aτ,ε;u,tEtAτ,ε;t,sV = EtAτ,ε;u,tAτ,ε;t,sV = EtAτ,ε;u,sV.

The identities in the first line above follow easily from the definition (2.10) of the maps Aτ,ε;t,s

and Bε;s. The first equality in the second line is a consequence of the fact that the kernels of

the functional Aτ,ε;t,sV take values in Ft,s and on Ft,s ⊂ Ft,0 the expected value E coincides

with the conditional expectation Et. To prove the second equality in the second line we use

the fact that the conditional expectation Et act trivially on Fu,t ⊂ F1,t. As a result, the

following identity

Aτ,ε;u,tEAτ,ε;t,sBε;s(V ) = EtBε;s(Aτ,ε;u,sV ) (2.37)

holds true. We also note that ‖EtV ‖Mm ≤ ‖V ‖Mm and

‖u 7→ EtVu‖V α,β;γ ≤ ‖u 7→ Vu‖V α,β;γ . (2.38)
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Consequently, ignoring the presence of the operator Π>4 in the estimate (2.31) we obtain

∥

∥t 7→
∫ t

0
EAτ,ε;t,sBε;s(Vs) ds

∥

∥

W
α,β;2γ
τ,ε

= sup
u∈(0,1]

∥

∥t 7→
∫ t

0
Aτ,ε;u,tEAτ,ε;t,sBε;s(Vs) ds

∥

∥

V α,β;2γ

= sup
u∈(0,1]

∥

∥t 7→
∫ t

0
EtBε;s(Aτ,ε;u,sVs) ds

∥

∥

V α,β;2γ ≤ sup
u∈(0,1]

∥

∥t 7→
∫ t

0
Bε;s(Aτ,ε;u,sVs) ds

∥

∥

V α,β;2γ

≤ C sup
u∈(0,1]

‖s 7→ Aτ,ε;u,sVs‖
2
V α,β;γ = C ‖s 7→ Vs‖

2
W

α,β;γ
τ,ε

.

The first and the last equality above follow from the definition of the norm ‖•‖
W

α,β;γ
τ,ε

. The

second equality above follows from the identity (2.37). The first bound above follows from the

estimate (2.38). Finally, to prove the second bound above we used the estimate (2.31) with

the operator Π>4 omitted. Since the presence of the operator Π>4 in the estimate (2.31) is

crucial the above reasoning is of course not correct. However, a more complicated argument

not ignoring the presence of the operator Π>4 in the estimate (2.31) allows to establish

rigorously the desired bound (2.36).

We are ready to define the complete metric space in which we will solve the system of

equations (2.24), (2.28), (2.20), (2.21), (2.22). Let us first introduce the Banach space of

tuples

X• ≡ (g•, r•, z•,W•) ∈ C((0, 1],C)× C((0, 1],C)× C((0, 1],C)× W
8,4;2−80κ
τ,ε =: Xτ,ε

equipped with the norm

‖X•‖ := sup
t∈(0,1]

λκ1+1
t |gt|+ sup

t∈(0,1]

λκ2−1
t t |rt|+ sup

t∈(0,1]

λκ3−1
t |zt|+ ‖W•‖W

8,4;2−80κ
τ,ε

.

where κ1, κ2, κ3 ∈ (0, 1) are certain small parameters. Next, for τ, ε ∈ [0, 1] we define the

complete metric space

Yτ,ε := {X• ∈ Xτ,ε | ‖X•‖Xτ,ε ≤ 1, ∀t∈(0,1] Im gt = Im rt = Im zt = 0, λε∨t gt ≥ λκ}

and a map

Yτ,ε ∋ X• 7→ Xτ,ε;t(X•) := (gτ,ε;t(X•), rτ,ε;t(X•), zτ,ε;t(X•),Wτ,ε;t(X•)), t ∈ (0, 1],

such that a fixed point of Xτ,ε;• coincides with a solution of the system of equations (2.24),

(2.28), (2.20), (2.21), (2.22). In particular, for all τ, ε ∈ [0, 1] it holds gτ,ε;1(X•) = 1/λ

and rτ,ε;1(X•) = 0. We prove that there exists λ⋆ ∈ (0, 1] such that for all λ ∈ (0, λ⋆] and

τ, ε ∈ [0, 1] the map Xτ,ε;• : Yτ,ε → Yτ,ε is well-defined and is a contraction. We denote by

Xτ,ε;• the fixed point of Xτ,ε;•. We omit τ and ε if τ = 0 and ε = 0. In order to establish

convergence of the Schwinger functions as τ, ε ց 0 we have to control X• −Xτ,ε;•. To this

end, we introduce a certain norm ‖•‖
X̃τ,ε

in X ∪Xτ,ε weaker than ‖•‖X ∨‖•‖Xτ,ε and prove

that

lim
τ,εց0

‖X• −Xτ,ε;•‖X̃τ,ε
= 0. (2.39)
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The norm ‖(g•, r•, z•,W•)‖X̃τ,ε
is defined in terms of a norm ‖W•‖W̃

2,3;2−80κ
τ,ε

that has a form

similar to the norm ‖W•‖W
2,3;2−80κ
τ,ε

but involves a different weight. The use of a different

weight having some decay at infinity is crucial for the existence of the infinite volume limit

τ ց 0. Let us also mention that the norm ‖•‖
W̃

2,3;2−80κ
τ,ε

is stronger than a certain norm

‖•‖
Ṽ 2,3;2−80κ independent of τ, ε ∈ (0, 1] whose definition is very similar to the definition of

the norm ‖•‖V 2,3;2−80κ but involves a different weight.

Finally, let us discuss the convergence of the Schwinger functions as τ, ε ց 0. To this

end, first recall that the fixed point Xτ,ε;• = (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) of the map Xτ,ε;• is

related to a solution Vτ,ε;• = U(1/gτ,ε;•, rτ,ε;•, zτ,ε;•) +Wτ,ε;• of the flow equation (2.11) and

Vτ,ε;• = (V m,a,στ,ε;• )m∈N+,a∈Am,σ∈Gm is related by Eqs. (2.6), (2.7) and (2.9) to a solution Uτ,ε;•
of the flow equation (2.5). We conclude that the functional Uτ,ε;t is an effective potential at

the scale t ∈ (0, 1], that is Uτ,ε;t satisfies Eq. (2.3), and Uτ,ε;t=1 is related by Eq. (2.4) to the

generating functional of the Schwinger functions. The convergence of the Schwinger functions

as τ, εց 0 follows now from the existence of the limit (2.39).

Lemma 2.4. For all ρ, ̺ ∈ R and η ∈ (0, 1) there exists C ∈ (0,∞) such that the following

statements are true for all λ ∈ (0, 1] and t ∈ (0, 1].

(A) If ρ ≥ 0 and ̺ > 0, then
∫ t

0
λρs s

̺−1 ds ≤ λρt t
̺/̺.

(B) If ρ ≥ 0 and ̺ > 0, then
∫ t

0
λρs s

̺−1 (1 − s/t)−η ds ≤ C λρt t
̺.

(C) If ρ ≥ 0 and ̺ < −β2 ρ λ, then
∫ 1

t
λρs s

̺−1 ds ≤ C λρt t
̺.

(D) If ρ > 0, then
∫ t

0
λρ+1
s s−1 ds ≤ C λρt .

(E) If ρ < 0, then
∫ 1

t
λρ+1
s s−1 ds ≤ C λρt .

Remark 2.5. Recall that λt and β2 were introduced in Def. 2.2.

Proof. For ρ ∈ [0,∞) and ̺ ∈ (0,∞) we have

∫ t

0

λρs s
̺−1 ds ≤ λρt

∫ t

0

s̺−1 ds = λρt t
̺/̺

as well as

∫ t

0

λρs s
̺−1 (1− s/t)−η ds ≤ λρt

∫ t

0

s̺−1 (1 − s/t)−η ds ≤ λρt t
̺

∫ 1

0

s̺−1 (1− s)−η ds.

This proves the bounds (A) and (B). To prove the bound (C) we use the fact that for ρ ∈ [0,∞)

and ̺ ∈ (−∞,−β2 ρ λ) the following estimates

∫ 1

t

λρs s
̺−1 ds ≤ (−̺− β2 ρ λ)

−1

∫ 1

t

(−̺− β2 ρ λs)λ
ρ
s s

−̺−1 ds

≤ (−̺− β2 ρ λ)
−1

∫ 1

t

∂s(−λ
ρ
s s

̺) ds ≤ λρt t
̺/(−̺− β2 ρ λ)
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hold true. The bound (D) is a consequence of the equalities

∫ t

0

λρ+1
s s−1 ds = β−1

2

∫ t

0

λρ−1
s dλs = λρt /(β2ρ)

valid for ρ ∈ (0,∞) and the bound (E) is a consequence of the estimates

∫ 1

t

λρ+1
s s−1 ds = β−1

2

∫ 1

t

λρ−1
s dλs ≤ λρt /(−β2ρ)

valid for ρ ∈ (−∞, 0). This finishes the proof.

The rest of this article is organised as follows. In Sec. 3 we define the spaces of distributions

and functionals on a torus and introduce the notation used in the paper. Sec. 4 contains the

definition of the Berezin integral and the Grassmann measure µτ,ε of the Gross-Neveu model

with cutoffs. In Sec. 5 we define the scale decomposition Gτ,ε;t of the propagator Gτ,ε and

discuss its properties. In Sec. 6 we introduce the filtered non-commutative probability space

(F ,E) of the spacetime white noise ξ and define the conditional expected value Et as well

as the scale decomposition of the free field Ψτ,ε;t. In Sec. 7 we present the equation for an

effective potential and examine its relation with the Polchinski equation. In Sec. 8 we discuss

the symmetries of the Gross-Neveu model. In Sec. 9 we define the weights. Sec. 10 contains

the definitions of the spaces V m;γ , V α,β;γ , W α,β;γ
τ,ε of kernels and functionals in infinite volume.

In Sec. 11 we introduce the decomposition of kernels into the local part and the remainder

and discuss its properties. In Sec. 12 we establish bounds for the maps Aτ,ε;t,s and Bε;t. In

Sec. 13 we introduce the space Xτ,ε and the map Xτ,ε and prove that the map Xτ,ε is a

contraction. In Sec. 14 we prove that the fixed point of the map Xτ,ε yields a solution of the

Polchinski equation. In Sec. 15 we show that the effective potential at unit scale is directly

related to the generating functional of the Schwinger functions and prove Theorem 1.1 stated

in the introduction. The core of the proof of the main result is contained in Sec. 13, 14 and 15.

3 Distributions and functionals on torus

In this section we introduce the basic notation we use throughout the paper. In particular,

we define the spaces of distributions and functionals on a torus.

Definition 3.1. For m ∈ N+ we denote by S (R2m) and S ′(R2m) the space of Schwartz

functions and distributions, respectively. We denote by 〈V, φ〉 ∈ C the standard paring

between a distribution V ∈ S ′(R2m) and a test function φ ∈ S (R2m). By ∗ we mean the

convolution in S ′(R2m). We use the following convention for the Fourier transform

(Ff)(p) :=

∫

R2m

f(x) e−ip·x dx, f(x) =
1

(2π)2m

∫

R2m

(Ff)(p) eip·x dp.
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Definition 3.2. Let τ ∈ (0, 1]. We define T2
τ := (R/τ−1Z)2. Occasionally, we identify T2

τ

with the set (−1/(2τ), 1/(2τ))2 ⊂ R
2. For m ∈ N+ we denote by S ′(T2m

τ ) the subspace

of S ′(R2m) consisting of distributions that are 1/τ periodic. Given ϕ ∈ L1(R2) we define

Pτϕ ∈ L1(T2
τ ) by the equality

Pτϕ =
∑

n∈Z2

ϕ(• + n/τ).

For V ∈ S ′(T2m
τ ) and φ ∈ C∞(T2m

τ ) we write

〈V, φ〉τ := 〈V, χ⊗m
τ φ〉 ∈ C,

where χτ ∈ C∞
c (R2) is such that Pτχτ = 1. By ∗τ we mean the convolution in S ′(T2m

τ ). We

use the following convention for the Fourier transform

(Fτf)(p) :=

∫

T2m
τ

f(x) e−ip·x dx, f(x) = τ2m
∑

p∈(2πτZ)2m

(Fτf)(p) e
ip·x dp.

Remark 3.3. Using periodicity of V ∈ S ′(T2m
τ ) and φ ∈ C∞(T2m

τ ) one shows that the bracket

〈V, φ〉τ does not depend on the choice of χτ .

Remark 3.4. Note that G ∗ φ = PτG ∗τ φ ∈ C(T2
τ ) for all τ ∈ (0, 1], G ∈ L1(R2), φ ∈ C(T2

τ ).

Remark 3.5. For τ = 0 we identify T2
τ with R2.

Definition 3.6. Let K be a finite set and let T be a topological space. We denote by T K

the set of maps K → T . We identity elements V of T K with tuples (V k)k∈K and equip T K

with the product topology.

Definition 3.7. Fix τ ∈ (0, 1] and a finite set K. For m ∈ N+, U ≡ (Uk)k∈Km ∈ S ′(T2m
τ )K

m

and ϕ ≡ (ϕk)k∈Km ∈ C∞(T2m
τ )K

m

we write 〈U,ϕ〉τ :=
∑

k∈K
〈Uk, ϕk〉τ . For m,n ∈ N+,

ϕ ∈ C∞(T2m
τ )K

m

and ψ ∈ C∞(T2n
τ )K

n

we define ϕ⊗ ψ ∈ C∞(T
2(m+n)
τ )K

m+n

by the equality

(ϕ⊗ ψ)(k,l) := ϕk ⊗ ψl, k ∈ K
m, l ∈ K

n.

For G ∈ L1(R2)K
2

and φ ∈ C∞(T2
τ )

K we define G ∗ φ ∈ C∞(T2
τ )

K by the equality

(G ∗ φ)k =
∑

l∈K

Gk,l ∗ φl.

We define ∗τ in an analogous way.

Definition 3.8. Let τ ∈ (0, 1], m ∈ N+ and K be a finite set. We say that U ∈ S ′(T2m
τ )K

m

is antisymmetric iff

〈U,ϕ1 ⊗ . . .⊗ ϕm〉τ = (−1)sgn(π)〈U,ϕπ(1) ⊗ . . .⊗ ϕπ(m)〉τ

for all ϕ1, . . . , ϕm ∈ C∞(T2
τ )

K and all permutations π ∈ Pm.
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Definition 3.9 (Grassmann algebra). Let E be a vector space over C. By definition

the Grassmann algebra G (E) is the exterior algebra of E. We define a unique grading

G = G + ⊕ G − such that E ⊂ G − and such that the exterior product satisfies the condi-

tions G ±G ± ⊂ G + and G ±G ∓ ⊂ G −. We say that an algebra A is a Grassmann algebra if

A = G (E) for some vector space E. A Grassmann algebra G (E) is finite/infinite dimensional

if E is finite/infinite dimensional.

Remark 3.10. In what follows, the symbol ⊗alg denotes the algebraic tensor product of vector

spaces (the linear span of the set of simple tensors).

Definition 3.11. Let τ ∈ (0, 1], G be a Grassmann algebra and K be a finite set. For

m ∈ N+, U ∈ S ′(T2m
τ )K

m

⊗alg G and φ ∈ C∞(T2m
τ )K

m

⊗alg G we define 〈U, φ〉τ ∈ G by the

equality

〈U, φ〉τ :=
k

∑

i=1

l
∑

j=1

〈Ui, φj〉τ gihj ∈ G , U =
k

∑

i=1

Ui ⊗ gi, φ =
l

∑

j=1

φj ⊗ hj,

for all k, l ∈ N+, U1, . . . , Uk ∈ S ′(T2m
τ )K

m

, g1, . . . , gk ∈ G and φ1, . . . , φl ∈ C∞(T2m
τ )K

m

,

h1, . . . , hl ∈ G . For m,n ∈ N+ and ϕ ∈ C∞(T2n
τ )K

n

⊗alg G , ψ ∈ C∞(T2m
τ )K

m

⊗alg G we define

ϕ⊗ ψ ∈ C∞(T
2(n+m)
τ )K

n+m

⊗alg G by the equality

ϕ⊗ ψ :=

k
∑

i=1

l
∑

j=1

(ϕi ⊗ ψj)⊗ gihj , ϕ =

k
∑

i=1

ϕi ⊗ gi, ψ =

l
∑

j=1

ψj ⊗ hj ,

for all k, l ∈ N+, ϕ1, . . . , ϕk ∈ C∞(T2n
τ )K

n

, g1, . . . , gk ∈ G and ψ1, . . . , ψl ∈ C∞(T2m
τ )K

m

,

h1, . . . , hl ∈ G .

Remark 3.12. The bracket 〈U, φ〉τ and the tensor product ϕ⊗ψ do not depend on the choice

of a representations of U, φ, ϕ, ψ as sums of simple tensors.

Remark 3.13. Let m ∈ N+ and E be a vector space of dimension grater or equal to m.

An antisymmetric distribution U ∈ S ′(T2m
τ )K

m

is uniquely determined by the map

C∞(T2
τ )

K ⊗alg G
− ∋ ϕ 7→ 〈U,ϕ⊗m〉τ ∈ G , (3.1)

where G := G (E). Indeed, given ψ1, . . . , ψm ∈ C∞(T2
τ )

K we choose ϕ =
∑m

j=1 ψj ⊗ gj , where

g1, . . . , gm ∈ G are such that g = g1 . . . gm 6= 0. Then m! 〈U,ψ1⊗ . . .⊗ψm〉τ ⊗ g = 〈U,ϕ⊗m〉τ .

Note also that if G is an infinite-dimensional Grassmann algebra, then for every m ∈ N+ an

antisymmetric distribution U ∈ S ′(T2m
τ )K

m

is uniquely determined by the map (3.1).

Definition 3.14. Let τ ∈ (0, 1] and K be a finite set. We call a functional a collection

U = (Um)m∈N0 such that U0 ∈ C and Um ∈ S ′(T2m
τ )K

m

is antisymmetric for m ∈ N+. We

denote the vector space of functionals by

N (C∞(T2
τ )

K) ⊂ C× ×
m∈N+

S
′(T2m

τ )K
m
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and endow it with the product topology. Let G be an infinite-dimensional Grassmann algebra.

For U ∈ N (C∞(T2
τ )

K) and φ ∈ C∞(T2
τ )

K ⊗alg G − we define

U(φ) := U0 +
∑

m∈N+

〈Um, φ⊗m〉τ ∈ G . (3.2)

For U ∈ N (C∞(T2
τ )

K), an entire function f ∈ C → C and φ ∈ C∞(T2
τ )

K ⊗alg G − we define

f(U(φ)) by

f(U(φ)) :=
∑

n∈N0

anU(φ)n, f(z) =
∑

n∈N0

an z
n, z ∈ C, an ∈ C, n ∈ N0.

For k ∈ N0, U ∈ N (C∞(T2
τ )

K) and φ ∈ C∞(T2
τ )

K ⊗alg G − the antisymmetric distribution

DkφU(φ) ∈ S
′(T2k

τ )K
k

⊗alg G

is uniquely defined by the equality

〈DkφU(φ), ψ⊗k〉τ := ∂kuU(φ+ uψ)
∣

∣

u=0

for all φ, ψ ∈ C∞(T2
τ )

K ⊗alg G −.

Remark 3.15. The assumption that G is an infinite-dimensional Grassmann algebra is only

needed to ensure that for all k ∈ N0 the antisymmetric distribution DkφU(φ) is uniquely

defined, cf. Remark 3.13. Moreover, observe that given U ≡ (Um)m∈N0 ∈ N (C∞(T2
τ )

K) for

all k ∈ N0 it holds DkφU(φ)|φ=0 = k!Uk.

Remark 3.16. Note that for all φ ∈ C∞(T2
τ )

K ⊗alg G − there are only finitely many non-zero

terms in the series on the RHS of Eq. (3.2) and in the series defining f(U(φ)). Indeed, if

φ =
∑n

i=1 φi ⊗ gi ∈ C∞(T2
τ )

K ⊗alg G −, then φ⊗m = 0 and U(φ)m = 0 for m > n. Note

that the unique functional W = (Wm)m∈N0 ∈ N (C∞(T2
τ )

K) such that f(U(φ)) = W (φ) for

φ ∈ C∞(T2
τ )

K ⊗alg G − is defined by the equations W k := Dkφf(U(φ))|φ=0 for all k ∈ N+.

Remark 3.17. As an example, let us consider a functional U ∈ N (C∞(T2
τ )) of the form

U(φ) = φ(x1)φ(x2) for some fixed x1, x2 ∈ R2. Then DφU(φ) = −φ(x2)δx1 + φ(x1)δx2 and

D2
φU(φ) = δx1 ⊗ δx2 − δx2 ⊗ δx1 , where δx ∈ S ′(T2

τ ) is the periodization of the Dirac delta

at x ∈ R
2. Furthermore, we have 〈DφU(φ), ψ〉τ = ψ(x1)φ(x2) + φ(x1)ψ(x2) as well as

〈D2
φU(φ), ψ⊗2〉τ = 2ψ(x1)ψ(x2).

4 Gross-Neveu model with cutoffs

In this section we introduce the Grassmann algebra of the Gross-Neveu model and use it to

define the Berezin integral and the Grassmann interacting measure µτ,ε of the Gross-Neveu

model with cutoffs τ, ε ∈ (0, 1]. We also state the conditions for the bump function ϑε used

to implement the UV cutoff.
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Definition 4.1. Let F := {1, . . . , N}×{1, 2}, G := {−,+}×F, A := {0, 1, 2}2. We call ς ∈ F

and σ ∈ G spinor indices and a ∈ A a spatial multi-index.

Definition 4.2. The so-called gamma matrices are defined by

γ1 :=

(

0 1

1 0

)

, γ2 :=

(

0 −i

i 0

)

, Γj ≡ (Γς1,ς2j )ς1,ς2∈F := (γj)
⊕N , j ∈ {1, 2}.

Remark 4.3. Note that γ1, γ2 are complex 2×2 matrices and Γ1,Γ2 are complex block diagonal

2N × 2N matrices. It holds

γt2γ2 = −1, γt2γ1γ2 = γt1, γt2γ2γ2 = γt2,

where At denotes the transposition of the matrix A. The matrices Γ1,Γ2 satisfy the same

identities.

Definition 4.4. For φ = (φς)ς∈F ∈ CF and ψ = (ψς)ς∈F ∈ CF we write φ · ψ =
∑

ς∈F
φςψς .

Definition 4.5. Let τ, ε ∈ (0, 1], ω(p) := (|p|2 + 1)1/2, Λτ,ε := {p ∈ (2πτZ)2 | εω(p) ≤ 4}

and Cτ,ε := (Span{x 7→ eip·x | p ∈ Λτ,ε})
G ⊂ C∞(T2

τ )
G. The Grassmann algebra of the

Gross-Neveu model Gτ,ε is the unital complex algebra whose generators

{(Fτψ
σ
τ,ε)(p) | p ∈ Λτ,ε} (4.1)

satisfy the conditions

(Fτψ
σ1
τ,ε)(p1) (Fτψ

σ2
τ,ε)(p2) + (Fτψ

σ2
τ,ε)(p2) (Fτψ

σ1
τ,ε)(p1) = 0

for all p1, p2 ∈ Λτ,ε and σ1, σ2 ∈ G. We define a unique grading Gτ,ε = G +
τ,ε ⊕ G −

τ,ε such that

(Fτψ
σ
τ,ε)(p) ∈ G −

τ,ε for all p ∈ Λτ,ε, σ ∈ G and such that the product in Gτ,ε satisfies the

conditions G ±
τ,εG

±
τ,ε ⊂ G +

τ,ε and G ±
τ,εG

∓
τ,ε ⊂ G −

τ,ε. Moreover, we define the free Grassmann field

ψτ,ε = (ψστ,ε)σ∈G ∈ Cτ,ε ⊗ G
−
τ,ε ⊂ C∞(T2

τ )
G ⊗ G

−
τ,ε

by the following equality

ψστ,ε(x) := τ2
∑

p∈Λτ,ε

(Fτψ
σ
τ,ε)(p) e

ip·x dp (4.2)

for all x ∈ R2 and σ ∈ G. For ς ∈ F we set ψ̄ςτ,ε(x) := ψ−,ς
τ,ε (x) and

¯
ψςτ,ε(x) := ψ+,ς

τ,ε (x).

Remark 4.6. For all τ, ε ∈ (0, 1] it holds Gτ,ε = G (Eτ,ε), where the vector space Eτ,ε coincides

with the span of the set (4.1). In particular, Gτ,ε is a finite-dimensional Grassmann algebra

in the sense of Def. 3.9.

Remark 4.7. Observe that for every τ, ε ∈ (0, 1] it holds ψ⊗m
τ,ε = 0 for all m ∈ N+ provided

m > |G| |Λτ,ε|, where |S| denotes the number of elements of a set S.
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Definition 4.8. Let τ, ε ∈ (0, 1]. The Berezin integral is a linear map

Gτ,ε ∋ g 7→

∫

g dψτ,ε ∈ C

such that
∫

g dψτ,ε = 1, g =
∏

p∈Λτ,ε

∏

ς∈F

(Fτ ψ̄
ς
τ,ε)(p) (Fτ

¯
ψςτ,ε)(p), (4.3)

and such that it vanishes on any other monomial in the generators of Gτ,ε.

Remark 4.9. Note that the order in the product in Eq. (4.3) is unimportant because the

elements of the set {(Fτ ψ̄
ς
τ,ε)(p) (Fτ

¯
ψςτ,ε)(p) | p ∈ Λτ,ε, ς ∈ F} commute. For a discussion of

properties of the Berezin integral see for example [CSS13, Appendix A].

Remark 4.10. Let G1,G2 be Grassmann algebras. We denote by G1 ⊗alg G2 the algebraic

graded tensor product of graded algebras G1 and G2. Note that G1 ⊗alg G2 is a Grassmann

algebra. Given g1 ∈ G1 and g2 ∈ G2 we define g1 + g2 := g1 ⊗ 1 + 1⊗ g2 ∈ G1 ⊗alg G2.

Remark 4.11. Let G be a Grassmann algebra. We define the Berezin integral on Gτ,ε ⊗alg G

as a linear map

Gτ,ε ⊗alg G ∋ g 7→

∫

g dψτ,ε ∈ G

such that
∫

(g ⊗ h) dψτ,ε :=

(
∫

g dψτ,ε

)

h

for all g ∈ Gτ,ε and h ∈ G .

Lemma 4.12. Let τ, ε ∈ (0, 1] and G be a Grassmann algebra. For all F ∈ N (C∞(T2
τ )

K)

and φ ∈ Cτ,ε ⊗ G − ⊂ C∞(T2
τ )

G ⊗ G − it holds
∫

F (ψτ,ε + φ) dψτ,ε =

∫

F (ψτ,ε) dψτ,ε,

where ψτ,ε + φ ∈ C∞(T2
τ )

G ⊗ (Gτ,ε ⊗ G )−.

Proof. The lemma follows from the invariance under translation of the Berezin integral,

cf. [CSS13, Proposition A.12].

Definition 4.13. Let ζ♭ ∈ (4/5, 1) and ϑ ∈ C∞(R) be a function belonging to the Gevrey

class of order 1/ζ♭ such that ϑ(t) = 1 for t ∈ (−∞, 1/2] and ϑ(t) = 0 for t ∈ [1,∞). For

ε ∈ (0, 1] we define ϑε ∈ C∞(R2) by Fϑε(p) = ϑ(2εω(p))1/2.

Remark 4.14. Recall that the class of Gevrey functions of order s ∈ [1,∞) on R
d consists of

ϕ ∈ C∞(Rd) such that for some C ∈ (0,∞) the bound

sup
p∈Rd

|∂aϕ(p)| ≤ C1+|a| (a!)s

is satisfied for all a ∈ Nd0.
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Remark 4.15. For an explicit construction of a function ϑ satisfying the conditions stated in

the above definition see [GMR21, App. A.1].

Definition 4.16. The free action functional Aτ ∈ N (C∞(T2
τ )

G) and the interaction term

Uτ,ε ≡ Uτ (gτ,ε, rτ,ε) ∈ N (C∞(T2
τ )

G) with cutoffs τ, ε ∈ (0, 1] are defined uniquely by

Eqs. (1.1) and (1.2) for all ψ ≡ (ψ̄,
¯
ψ) ∈ C∞(T2

τ )
G⊗alg G − ≡ (C∞(T2

τ )
F×C∞(T2

τ )
F)⊗alg G −,

where G is an infinite-dimensional Grassmann algebra. The free and interacting measures

with cutoffs τ, ε ∈ (0, 1] are defined with the use of the Berezin integral introduced in Def. 4.8

by the equations

ντ,ε(F ) :=

∫

F (ϑε ∗ ψτ,ε) exp(−Aτ (ψτ,ε))) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε

and

µτ,ε(F ) :=

∫

F (ϑε ∗ ψτ,ε) exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
,

respectively, for all functionals F ∈ N (C∞(T2
τ )

G), where ψτ,ε ∈ C∞(T2
τ )

G ⊗ G −
τ,ε is defined

by Eq. (4.2).

Remark 4.17. Note that by [CSS13, Proposition A.14] it holds

∫

exp(−Aτ (ψτ,ε)) dψτ,ε =
∏

p∈Λτ,ε

det((−Ξς1,ς2(p))ς1,ς2∈F) =
∏

p∈Λτ,ε

(−1)N (1 + |p|2)N 6= 0,

where Ξς1,ς2(p) := 1ς1,ς2 −
∑

j∈{1,2} iΓ
ς1,ς2
j pj for ς1, ς2 ∈ F. As a result, the free field measure

is well-defined for all τ, ε ∈ (0, 1]. The interacting measure with cutoffs τ, ε ∈ (0, 1] is well-

defined provided

∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε
= ντ,ε(exp(Uτ,ε(•))) 6= 0.

This is proved in Remark 14.4 for a specific choice of parameters gτ,ε, rτ,ε fixed as in Theo-

rem 1.1.

5 Scale decomposition of propagator

In this section we define the scale decomposition Gτ,ε;t of the propagator Gτ,ε. We also

introduce auxiliary propagators G±;ς,ς̃
ε;t that will be used in Sec. 6 to construct the scale

decomposition Ψτ,ε;t of the free field that satisfies the conditions discussed in Sec. 2.

Definition 5.1. For ς1, ς2 ∈ F and p ∈ R2 let Ξς1,ς2(p) := 1ς1,ς2 −
∑

j∈{1,2} iΓ
ς1,ς2
j pj and

ω(p) := (|p|2 + 1)1/2. The free field covariance

G ≡ (Gσ)σ∈G2 ∈ L1(R2)G
2
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is defined by

Gσ(x) =
1

(2π)2

∫

R2

(FGσ)(p) eip·x dp,

where
(FG+,ς1,+,ς2)(p) := 0, (FG+,ς1,−,ς2)(p) := Ξς1,ς2(p)/(ω(p))2,

(FG−,ς1,−,ς2)(p) := 0, (FG−,ς1,+,ς2)(p) := −(FG+,ς2,−,ς1)(−p)

for all ς1, ς2 ∈ F. For ε, t ∈ [0, 1] we define

Gε ≡ (Gσε )σ∈G2 , Gε;t ≡ (Gσε;t)σ∈G2 , Ġε;t ≡ (Ġσε;t)σ∈G2 ∈ L1(R2)G
2

,

by the equalities

(FGσε )(p) := ϑ(2εω(p)) (FGσ)(p), (FGσε;t)(p) := ϑ(tω(p)) (FGσε )(p), Ġσε;t := ∂tG
σ
ε;t.

For ε ∈ [0, 1], t ∈ (0, 1] and σ ∈ G2, ς, ς̃ ∈ F we define G±;ς,ς̃
ε;t ∈ L1(R2), by the equalities

(FG+;ς,ς̃
ε;t )(p) := (FĠ+,ς,−,ς̃

ε;t )(p), (FG−;ς,ς̃
ε;t )(p) := ϑ(ε/2t)ϑ(tω(p)/2) 1ς,ς̃ .

For τ ∈ (0, 1] the periodizations of the kernels Gσ, Gσε , G
σ
ε;t, Ġ

σ
ε;t, G

±;ς,ς̃
ε;t are defined with the

use of the operator Pτ introduced in Def. 3.2 and are denoted byGστ , G
σ
τ,ε, G

σ
τ,ε;t, Ġ

σ
τ,ε;t, G

±;ς,ς̃
τ,ε;t ,

respectively. We use the symbols Ġσt , G
±;ς,ς̃
t to denote Ġσε;t, G

±;ς,ς̃
ε;t with ε = 0.

Remark 5.2. The kernels introduced in the above definition have the following properties.

(A) If t ∈ (0, ε], then ϑ(2εω(p))ϑ(tω(p)) = ϑ(2εω(p)) and Gσε;t = Gσε , Ġ
σ
ε;t = 0.

(B) If t ∈ (0, ε/2], then G±;ς,ς̃
ε;t = 0. Moreover, suppFτG

±;ς,ς̃
τ,ε;t ⊂ Λτ,ε for all t ∈ (0, 1].

(C) If t ∈ [4ε, 1], then ϑ(2εω(p))ϑ̇(tω(p)) = ϑ̇(tω(p)) and Ġσε;t = Ġσt , G
±;ς,ς̃
ε;t = G±;ς,ς̃

t .

(D) If t ∈ (0, 1/2), then ϑ̇(tω(0)) = 0 and
∫

R2 Ġ
σ
ε;t = 0.

(E) Since ϑ(ε/2t)ϑ(tω(p)/2) = 1 on the support of p 7→ ϑ(2εω(p)) ϑ̇(tω(p)), it holds

Ġ+;ς,−,ς̃
ε;t =

∑

ς̂∈F
G+;ς,ς̂
ε;t ∗G−;ς̂,ς̃

ε;t , Ġ+;ς,−,ς̃
τ,ε;t =

∑

ς̂∈F
G+;ς,ς̂
τ,ε;t ∗τ G

−;ς̂,ς̃
τ,ε;t .

Note also that Ġ+,ς,−,ς̃
ε;t (x) = −Ġ−,ς̃,+,ς

ε;t (−x) as well as Ġ+,ς;+,ς̃
ε;t = 0 and Ġ−,ς;−,ς̃

ε;t = 0.

(F) Since Gε;1 = 0 it holds Gε = −
∫ 1

ε Ġε;t dt and G−Gε = −
∫ 4ε

0 (Ġt − Ġε;t) dt.

Lemma 5.3. For all a ∈ N2
0 there exist δ ∈ (0, 1) and C ∈ (0,∞) such that for all ε ∈ [0, 1],

t ∈ (0, 1], ς1, ς2 ∈ F and x ∈ R2 it holds

exp(δ t−ζ♭ |x|ζ♭) |∂aG±;ς1,ς2
ε;t (x)| ≤ C t−|a|−2,

where ζ♭ ∈ (4/5, 1) is the parameter introduced in Def. 4.13.
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Proof. We first note the following identities

xb∂aG+,ς1,ς2
ε;t (x) =

i|a|−|b|

(2π)2

∫

R2

∂bp

(

pa ϑ(2εω(p)) ϑ̇(tω(p)) Ξς1,ς2(p)/ω(p)
)

eip·x dp (5.1)

and

xb∂aG−,ς1,ς2
ε;t (x) =

i|a|−|b|

(2π)2

∫

R2

∂bp

(

pa ϑ(ε/2t)ϑ(tω(p)/2) 1ς1,ς2
)

eip·x dp. (5.2)

Note that the composition of a Gevrey function of order s ∈ [1,∞) with an analytic function

is a Gevrey function of order s ∈ [1,∞), cf. [Rod93, Prop. 1.4.6]. Consequently, since the

function ϑ is flat in the vicinity of the origin the function

R× R
2 ∋ (ε, p) 7→ ϑ((ε2 + p2)1/2) ∈ R

belongs to the Gevrey class of order 1/ζ♭. As a result, there exists C ∈ (0,∞) such that for

all ε ∈ [0, 1] and a ∈ N2
0 it holds

sup
p∈Rd

|∂apϑ(εω(p))| = ε|a| sup
p∈Rd

|∂apϑ((ε
2 + p2)1/2)| ≤ C1+|a| (a!)1/ζ♭ ε|a|.

By a similar argument, there exists C ∈ (0,∞) such that for all t ∈ [0, 1] and a ∈ N2
0 it holds

sup
p∈Rd

|∂apϑ(tω(p)/2)| = t|a| sup
p∈Rd

|∂apϑ((t
2 + p2)1/2/2)| ≤ C1+|a| (a!)1/ζ♭ t|a|,

sup
p∈Rd

|∂ap ϑ̇(tω(p))| = t|a| sup
p∈Rd

|∂ap ϑ̇((t
2 + p2)1/2)| ≤ C1+|a| (a!)1/ζ♭ t|a|.

Since the function p 7→ Ξς1,ς2(p)/ω(p) ∈ R is analytic in a strip of size one around the real

axis there exists C ∈ (0,∞) such that for all a ∈ N2
0 it holds

sup
p∈Rd

|∂ap (Ξ
ς1,ς2(p)/ω(p))| ≤ C1+|a| a! .

Noting that ϑ(2εω(p)) ϑ̇(tω(p)) vanishes unless tω(p) ∈ (1/2, 1) and t > ε and ϑ(tω(p)/2) van-

ishes unless tω(p) ∈ [0, 2] and using the general Leibniz rule we show there exists C ∈ (0,∞)

such that for all ε ∈ [0, 1], t ∈ (0, 1] it holds

∂bp

(

pa ϑ(2εω(p)) ϑ̇(tω(p)) Ξς1,ς2(p)/ω(p)
)

≤ C1+|b| (b!)1/ζ♭ t|b|−|a| 1[0,2](tω(p))

and

∂bp (p
a ϑ(ε/2t)ϑ(tω(p)/2) 1ς1,ς2) ≤ C1+|b| (b!)1/ζ♭ t|b|−|a| 1[0,2](tω(p)).

Using Eqs. (5.1) and (5.2) we obtain that there exists C ∈ (0,∞) such that for all ε ∈ [0, 1],

t ∈ (0, 1] and k ∈ N0 it holds

(|x|/t)k |∂aG±,ς1,ς2
ε;t (x)| ≤ C1+k (k!)1/ζ♭ t−|a|−2/2
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We conclude that there exists C ∈ [e,∞) such that for all ε ∈ [0, 1], t ∈ (0, 1] and l ∈ N+ it

holds

(|x|/t)ζ♭l |∂aG±,ς1,ς2
ε;t (x)| ≤ C1+k (k!)1/ζ♭ t−|a|−2/2 ≤ C1+3l/ζ♭ l! t−|a|−2/2

where k = ⌈ζ♭l⌉ ≤ l ∧ (ζ♭l + 1). The second of the above bounds follows from the estimates

(k!)1/ζ♭ ≤ kk/ζ♭ ≤ ll+1/ζ♭ ≤ e2l/ζ♭ l!. This implies that the bound stated in the lemma holds

true for δ = C−3/ζ♭/2.

6 Scale decomposition of free field and coupling

In this section we introduce the scale decomposition of the free field Ψτ,ε;t satisfying properties

listed in Sec. 2. The scale decomposition of the free field is defined in the non-commutative

probability space (F ,E) of the fermionic spacetime white noise ξ. We also introduce a

filtration (Ft)t∈[0,1] in F as well as the conditional expected value Et that will play an

essential role in the proof of the estimates stated in Sec. 12.

Definition 6.1. Let h be a Hilbert space. We denote by Γa(h) the antisymmetric Fock space

built on h. We denote by N the number operator and by P := (−1)N the parity operator.

Definition 6.2. Let H = Γa(L
2([0, 1]×R2×F))⊗2. The creation and annihilation operators

in Γa(L
2([0, 1]× R2 × F)) are denoted by a∗(f, ς) and a(f, ς), where f ∈ L2([0, 1]× R2) and

ς ∈ F. The vacuum state in H is denoted by Ω. Let B := B(H ) be the Banach algebra of

bounded operators on H . The fermionic white noise is defined by

ξ−,ς(f) ≡

∫

[0,1]×R2

f(s, x) ξ−,ς(ds, dx) := (P⊗ a∗(f, ς)− a(f c, ς)⊗ 1),

ξ+,ς(f) ≡

∫

[0,1]×R2

f(s, x) ξ+,ς(ds, dx) := (a∗(f, ς)⊗ 1+ P⊗ a(f c, ς))

for all f ∈ L2([0, 1] × R2), ς ∈ F, where f c denotes the complex conjugate of the func-

tion f . We define F to be the unital Banach subalgebra of B generated by ξ±,ς(f),

where f ∈ L2([0, 1]× R
2), ς ∈ F. We define a unique grading F = F+ ⊕ F− such that

ξ±,ς(f) ∈ F− and such that the product in F satisfies the conditions F±F± ⊂ F+ and

F±F∓ ⊂ F−. For s ∈ [0, 1] and t ∈ [s, 1] we define Fs,t to be the unital Banach subalgebra

of F generated by ξ±,ς(f), where f ∈ L2([0, 1]×R2), ς ∈ F, supp f ⊂ [s, t]×R2. For t ∈ [0, 1]

we we set Ft := F1,t.

Remark 6.3. We note that that F is an infinite-dimensional Grassmann algebra. One shows

that elements of F− anti-commute with each other and elements of F+ commute with all

elements of F .

Remark 6.4. It what follows, the following bound

∥

∥

∑

ς∈F
ξ±,ς(f ς)

∥

∥

2

B
≤ 2

∑

ς∈F
‖f ς‖2L2([0,1]×R2)
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valid for all f = (f ς)ς∈F ∈ L2([0, 1]× R2)F will play an important role. The above bounds is

an immediate consequence of the identity

‖
∑

ς∈F
a(f ς , ς)‖B = ‖

∑

ς∈F
a∗(f ς , ς)‖B =

∑

ς∈F
‖f ς‖L2([0,1]×R2),

which follows easily from the anti-commutation relations of the fermionic creation and anni-

hilation operators, for details see for example [BR97, Proposition 5.2.2].

Definition 6.5 (Expected value). We define a continuous linear functional E : F → C by

the equality EF := (Ω, FΩ) for all F ∈ F .

Remark 6.6. Note that it holds

E(ξ±,ς(f) ξ∓,ς̃(f̃)) = ±1ς,ς̃ 〈f, f̃〉L2([0,1]×R2), E(ξ±,ς(f) ξ±,ς̃(f̃)) = 0

for all f, f̃ ∈ L2([0, 1]× R2), ς, ς̃ ∈ F.

Definition 6.7 (Conditional expected value). A family of continuous linear functionals

(Et : F → F )t∈[0,1] is called the conditional expected value if

(0) Et : F → Ft for all t ∈ [0, 1],

(1) EtF = EF for all t ∈ [0, 1] and F ∈ F0,t,

(2) Et = EtEs : F → Ft for s ∈ [0, 1] and t ∈ [s, 1],

(3) Et(GFH) = GEt(F )H for all t ∈ [0, 1] and G,H ∈ Ft, F ∈ F ,

(4) ‖EtF‖B ≤ ‖F‖B for all t ∈ [0, 1] and F ∈ F .

Remark 6.8. For the construction of the conditional expected value see [DFG22, Appendix A].

Remark 6.9. Note that the condition (1) implies in particular that E1 = E.

Remark 6.10. Let G be a Grassmann algebra. We define F ⊗alg G to be the algebraic

graded tensor product of graded algebras F and G . We introduce the family of functionals

(Et : F ⊗alg G → Ft ⊗alg G )t∈[0,1] defined uniquely by the equality Et(F ⊗ g) = (EtF )⊗ g

for all F ∈ F , g ∈ G and t ∈ [0, 1]. The functional E : F ⊗alg G → G is defined in an

analogous way.

Definition 6.11. Let τ, ε ∈ [0, 1], s ∈ [0, 1] and t ∈ [s, 1]. We define operator-valued

distributions

Ψτ,ε;t,s ≡ (Ψ−
τ,ε;t,s, Ψ

+
τ,ε;t,s) ≡ (Ψ̄τ,ε;t,s,

¯
Ψτ,ε;t,s) ≡ (Ψστ,ε;t,s)σ∈G ∈ S

′(T2
τ ,Ft,s ∩ F

−)G

by the equation

〈Ψ±,ς
τ,ε;t,s, ϕ〉 :=

∑

ς̃∈F

∫

[s,t]×T2
τ

(G±;ς,ς̃
τ,ε;u ∗ ϕ)(x) ξ±,ς̃(du, dx)

for all ς ∈ F and ϕ ∈ S (R2). We call Ψτ,ε := Ψτ,ε;1,0 the free field with IR cutoff τ ∈ [0, 1]

and UV cutoff ε ∈ [0, 1]. We also define Ψτ,ε;s := Ψτ,ε;1,s. We omit τ and ε if τ = 0 and ε = 0.
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Remark 6.12. Observe that by Remark 5.2 (B) for τ, ε ∈ (0, 1] it holds

Ψστ,ε(x) := τ2
∑

p∈Λτ,ε

(FτΨ
σ
τ,ε)(p) e

ip·x.

In particular, Ψ⊗m
τ,ε = 0 for all m ∈ N+ provided m > |G| |Λτ,ε|, where |S| denotes the number

of elements of a set S.

Remark 6.13. Let G be a Grassmann algebra. For φ ∈ C∞(T2
τ )

G ⊗alg G we define the paring

〈Ψτ,ε;t,s, φ〉τ ∈ F ⊗alg G by the equality

〈Ψτ,ε;t,s, φ〉τ :=

n
∑

i=1

〈Ψτ,ε;t,s, φi〉τ ⊗ gi, φ =

n
∑

i=1

φi ⊗ gi,

for all n ∈ N+, φ1, . . . , φn ∈ C∞(T2
τ )

G and g1, . . . , gn ∈ G . We identify A ∈ F and g ∈ G

with

A⊗ 1 ∈ F ⊗alg G and 1⊗ g ∈ F ⊗alg G ,

respectively, and use these identifications to make sense of A+ g,Ag ∈ F ⊗alg G .

Remark 6.14. Let τ, ε ∈ [0, 1], s ∈ [0, 1] and t ∈ [s, 1] be such that ε > 0 or s > 0. Using

Remark 6.4, the fact that G±;ς,ς̃
ε;t = 0 for t ∈ (0, ε/2] by Remark 5.2 (B) and Lemma 5.3 one

shows that Ψτ,ε;t,s ∈ C∞(T2
τ ,Ft,s)

G. Note that it holds EΨστ,ε;t(x) = 0 and

E(Ψσ1
τ,ε;t(x)Ψ

σ2
τ,ε;s(y)) = Gσ1,σ2

τ,ε;t (x− y), (6.1)

whereGτ,ε;t ∈ C∞(R2)G
2

was introduced in Def. 5.1. Using the equality Ψτ,ε;t,s = Ψτ,ε;s−Ψτ,ε;t
one shows that it holds EΨστ,ε;t,s(x) = 0 and

E(Ψσ1
τ,ε;t,s(x)Ψ

σ2
τ,ε;t,s(y)) = E( (Ψσ1

τ,ε;s(x)− Ψσ1
τ,ε;t(x)) (Ψ

σ2
τ,ε;s(y)− Ψσ2

τ,ε;t(y)) )

= (Gσ1,σ2
τ,ε;s −Gσ1,σ2

τ,ε;t )(x− y).

The expected values of products of more than two fields Ψτ,ε;t,s can be expressed in terms of

the covariance with the use of the generating functional

C∞(T2
τ )

G ⊗alg G
− ∋ φ 7→ E exp(〈Ψτ,ε;t,s, φ〉τ ) = exp(−〈φ, (Gε;s −Gε;t) ∗ φ〉τ/2) ∈ G , (6.2)

where G is an infinite-dimensional Grassmann algebra. In order to prove (6.2) one decomposes

Ψτ,ε;t,s into a sum of two terms Ψ
(±)
τ,ε;t,s involving only the creation and annihilation operators,

applies the Baker–Campbell–Hausdorff formula

exp(〈Ψτ,ε;t,s, φ〉τ ) = exp(〈Ψ
(+)
τ,ε;t,s, φ〉τ ) exp(〈Ψ

(−)
τ,ε;t,s, φ〉τ ) exp(−[〈Ψ

(+)
τ,ε;t,s, φ〉τ , 〈Ψ

(−)
τ,ε;t,s, φ〉τ ]/2),

where [•, •] denotes the commutator, and uses the fact that the vacuum state Ω belongs to

the intersection of the kernels of the annihilation operators.
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Lemma 6.15. Let τ, ε ∈ (0, 1]. For all F ∈ N (C∞(T2
τ )

G) it holds

ντ,ε(F ) ≡

∫

F (ϑε ∗ ψτ,ε) exp(−Aτ (ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε
= EF (Ψτ,ε).

Remark 6.16. Note that in particular it holds

∫

ψσ1(x)ψσ2 (y) ντ,ε(dψ) = Gσ1,σ2
τ,ε (x − y).

Proof. In view of Remarks 4.7 and 6.12 it suffices to prove the stated equality for func-

tionals F = (Fm)m∈N0 ∈ N (C∞(T2
τ )

G) such that Fm 6= 0 only for finitely many m ∈ N0.

In consequence, it is enough to prove the stated equality for functionals F = Fη for all

η ∈ C∞(T2
τ )

G ⊗alg G −, where the functional Fη ∈ N (C∞(T2
τ )

G) is defined by the equality

Fη(φ) := exp(〈φ, η〉τ ) for all φ ∈ C∞(T2
τ )

G ⊗alg G −. By [CSS13, Theorem A.16] it holds

∫

Fη(ψτ,ε) exp(−Aτ (ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε
= exp(−〈η, G̃τ,ε ∗τ η〉τ/2),

where Fτ G̃τ,ε(p) := 1Λτ,ε(p)FG(p). Note that

Fη(ϑε ∗ ψτ,ε) = Fϑε∗η(ψτ,ε).

Using the fact that suppFτPτϑε ⊂ Λτ,ε we show that

ϑε ∗ G̃τ,ε ∗ ϑε = ϑε ∗Gτ ∗ ϑε = Gτ,ε

and
∫

Fη(ϑε ∗ ψτ,ε) exp(−Aτ (ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε)) dψτ,ε
= exp(−〈η,Gτ,ε ∗τ η〉τ/2).

On the other hand,

EFη(Ψτ,ε) = exp(−〈η,Gτ,ε ∗τ η〉τ/2)

by Eq. (6.2) and Remark 3.4. This finishes the proof.

Lemma 6.17. Let τ, ε ∈ (0, 1], s ∈ [0, 1] and t ∈ [s, 1]. For all F ∈ N (C∞(T2
τ )

G) and

φ ∈ C∞(T2
τ )

G ⊗alg G − it holds

EF (Ψτ,ε;t,s + φ) = (exp(Dτ,ε;t,s/2)F )(φ),

where the map Dτ,ε;t,s is defined by the equation

(Dτ,ε;t,sF )(φ) := 〈D2
φF (φ), (Gτ,ε;s −Gτ,ε;t)(• − •)〉τ

for all F ∈ N (C∞(T2
τ )

G) and φ ∈ C∞(T2
τ )

G ⊗alg G −.
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Proof. By the argument from the proof of Lemma 6.15 it suffices to prove the statement for all

functionals of the form F = Fη for some η ∈ C∞(T2
τ )

G ⊗alg G −, where Fη(φ) := exp(〈φ, η〉τ )

for all φ ∈ C∞(T2
τ )

G ⊗alg G −. By direct computation we obtain

Dτ,ε;t,sFη = 〈η, (Gτ,ε;s −Gτ,ε;t) ∗τ η〉τ Fη.

Since 〈η, (Gτ,ε;s −Gτ,ε;t) ∗τ η〉τ ∈ G + we arrive at

exp(Dτ,ε;t,s/2)Fη =
∞
∑

n=0

1

2nn!
Dn
τ,ε;t,sFη =

∞
∑

n=0

1

2nn!
〈η, (Gτ,ε;s −Gτ,ε;t) ∗τ η〉

n
τ Fη

= exp(−〈η, (Gτ,ε;s −Gτ,ε;t) ∗τ η〉τ/2) Fη.

On the other hand,

EFη(Ψτ,ε;t,s + φ) = EFη(Ψτ,ε;t,s) Fη(φ) = exp(−〈η, (Gτ,ε;s −Gτ,ε;t) ∗τ η〉τ/2) Fη(φ)

by Eq. (6.2) and Remark 3.4. This finishes the proof.

Definition 6.18. The vector space C consists of continuous functions φ : R2 → B such

that the following norm

‖φ‖C := sup
x∈R2

‖φ(x)‖B

is finite. For φ ∈ C we define ‖φ‖
C̃
:= ‖w̃ φ‖C , where w̃ ∈ C∞(R2) is defined by the equality

w̃(x) = (1 + |x|)−1/2 for all x ∈ R2.

Lemma 6.19. There exists λ⋆ ∈ (0, 1] such that for all λ ∈ (0, λ⋆], τ, ε ∈ [0, 1], t ∈ (0, 1],

s ∈ (0, t] and a ∈ A = {0, 1, 2}2, σ ∈ G it holds

‖∂aΨστ,ε;t,s‖C ≤ λ−κ s−1/2−|a|, ‖w̃(∂aΨσt,s − ∂aΨστ,ε;t,s)‖C ≤ λ−κ λκτ∨ε λ
−κ
s s−1/2−|a|.

Proof. Suppose that σ = (±, ς) for some ς ∈ F. By Remark 6.4 we obtain

‖∂aΨστ,ε;t,s‖
2
C = sup

x∈R2

‖∂aΨ±,ς
τ,ε;t,s(x)‖

2
B ≤ 2 sup

x∈R2

∑

ς̃∈F

∫ t

s

∫

T2
τ

|∂aG±;ς,ς̃
τ,ε;u (x− y)|2 dy du.

Using Lemma 5.3 and the fact that for all y ∈ T2
τ = (−1/(2τ), 1/(2τ))2 and n ∈ Z2 such that

|n|∞ ≥ 2 it holds |y + n/τ |∞ ≥ |y|∞ + |n|∞/(2τ) one shows that

∫

T2
τ

|∂aG±;ς,ς̃
τ,ε;u (x− y)|2 dy =

∫

T2
τ

|∂aG±;ς,ς̃
τ,ε;u (y)|

2 dy

≤
∑

n∈N2
0

∫

T2
τ

|∂aG±;ς,ς̃
ε;u (y + n/τ)|2 dy ≤ C u−2−2|a|.
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As a result, we conclude that there exists C ∈ (0,∞) such that for all ε ∈ [0, 1], t ∈ (0, 1],

s ∈ (0, t] and a ∈ A, σ ∈ G it holds

‖∂aΨστ,ε;t,s‖C ≤ C s−1/2−|a|. (6.3)

Next, we observe that

‖∂aΨσt,s − ∂aΨσε;t,s‖
2
C = sup

x∈R2

‖∂aΨ±,ς
t,s (x) − ∂aΨ±,ς

ε;t,s(x)‖
2
B

≤ 2 sup
x∈R2

∑

ς̃∈F

∫ t

s

∫

R2

|∂aG±;ς,ς̃
u (x − y)− ∂aG±;ς,ς̃

ε;u (x− y)|2 dy du.

The integrand on the RHS of the above equality vanishes identically if u ∈ [4ε, 1] by Re-

mark 5.2 (C). As a result, by the bound (6.3) we obtain

‖∂aΨσt,s − ∂aΨσε;t,s‖C ≤ C λκ4ε λ
−κ
s s−1/2−|a|. (6.4)

Next, note that

‖w̃(∂aΨσε;t,s − ∂aΨστ,ε;t,s)‖
2
C = sup

x∈R2

w̃(x)2 ‖∂aΨ±,ς
ε;t,s(x) − ∂aΨ±,ς

τ,ε;t,s(x)‖
2
B

≤ 2 sup
x∈R2

w̃(x)2
∑

ς̃∈F

∫ t

s

∫

R2

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y) 1T2
τ
(y)|2 dy du,

where 1T2
τ

is the characteristic function of the set T2
τ = (−1/(2τ), 1/(2τ)). Observe that

w̃(x)2 ≤ w̃(y)2 w̃(x − y)−2. Consequently, it holds

sup
x∈R2

w̃(x)2
∫

R2

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y) 1T2
τ
(y)|2 dy

≤ sup
x∈T2

2τ

∫

T2
τ

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y)|2 dy

+ sup
x∈R2\T2

2τ

w̃(x)2
∫

T2
τ

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y)|2 dy

+ sup
x∈R2

∫

R2\T2
τ

w̃(y)2 w̃(x − y)−2 |∂aG±;ς,ς̃
ε;u (x− y)|2 dy.
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Using the fact that w̃(x) = (1 + |x|)−1/2 we obtain

sup
x∈R2

w̃(x)2
∫

R2

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y) 1T2
τ
(y)|2 dy

≤ sup
x∈T2

2τ

∫

T2
τ

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y)|2 dy

+ (2τ)

∫

T2
τ

|∂aG±;ς,ς̃
ε;u (y)− ∂aG±;ς,ς̃

τ,ε;u (y)|
2 dy

+ τ

∫

R2

w̃(y)−2 |∂aG±;ς,ς̃
ε;u (y)|2 dy.

Since for all x ∈ T2
2τ , y ∈ T2

τ and n ∈ Z2 \ {0} it holds |x − y + n/τ |∞ ≥ |n|∞/(4τ) by

Lemma 5.3 we obtain that there exist c, C ∈ (0,∞) such that for all ε ∈ [0, 1], u ∈ (0, 1] and

a ∈ A, ς, ς̃ ∈ F it holds

sup
x∈T2

2τ

sup
y∈T2

τ

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y)| ≤ C u−2−|a| exp(−c/τζ♭)

This implies the bound

sup
x∈T2

2τ

∫

T2
τ

|∂aG±;ς,ς̃
ε;u (x− y)− ∂aG±;ς,ς̃

τ,ε;u (x− y)|2 dy ≤ C u−2−2|a|

with a possibly different constant C ∈ (0,∞). Moreover, by Lemma 5.3 we have

∫

R2

w̃(y)−2 |∂aG±;ς,ς̃
ε;u (y)|2 dy ≤ C u−2−2|a|.

Consequently, we obtain

‖∂aΨσε;t,s − ∂aΨστ,ε;t,s‖C ≤ C τ1/2 s−1/2−|a|. (6.5)

The lemma follows now from the bounds (6.3), (6.4), (6.5).

7 Effective potential and Polchinski equation

In this section we introduce the notion of an effective potential and prove that a solution of

the mild form of the Polchinski equation (7.3) satisfies the equation for an effective potential.

A solution Uτ,ε;• of the Polchinski equation will be constructed in Sec. 14 in terms of the

fixed point Xτ,ε;• of the map Xτ,ε;• constructed in Sec. 13. Then by the results of this section

such Uτ,ε;t is an effective potential at the scale t. Using this fact in Sec. 15 we will show that

Uτ,ε;t=0 is the generating functional of the connected amputated Schwinger functions.
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Lemma 7.1. Let τ, ε ∈ (0, 1]. Suppose that E exp(Uτ,ε(Ψτ,ε)) 6= 0. The interacting measure

satisfies the equality

µτ,ε(F ) =
E(F (Ψτ,ε) exp(Uτ,ε(Ψτ,ε)))

E exp(Uτ,ε(Ψτ,ε))
∈ C

for all functionals F ∈ N (C∞(T2
τ )

G).

Proof. The lemma is a consequence of Def. 4.16 of the measure µτ,ε and Lemma 6.15.

Definition 7.2. Let τ, ε ∈ (0, 1] and Uτ,ε ≡ Uτ (gτ,ε, rτ,ε) ∈ N (C∞(T2
τ )

G) be defined as

specified in Def. 4.16. We call a functional Uτ,ε;t ∈ N (C∞(T2
τ )

G) an effective potential at

the spatial scale t ∈ [0, 1] (of the Gross-Neveu model with the parameters gτ,ε, rτ,ε ∈ R) if it

satisfies the following equality

exp(Uτ,ε;t(φ)) = E exp(Uτ,ε(Ψτ,ε;t,0 + φ)) ∈ G

for all φ ∈ Cτ,ε⊗G −, where Cτ,ε = (Span{x 7→ eip·x | p ∈ Λτ,ε})
G ⊗G − ⊂ C∞(T2

τ )
G ⊗G − was

introduced in Def. 4.5 and G is an infinite-dimensional Grassmann algebra.

Remark 7.3. Note that for s ≤ t it holds

exp(Uτ,ε;s(Ψτ,ε;t,s + φ)) = Es exp(Uτ,ε(Ψτ,ε;t,0 + φ)).

Consequently, for s ≤ t an effective potential fulfills the following identity

exp(Uτ,ε;t(φ)) = E exp(Uτ,ε;s(Ψτ,ε;t,s + φ)).

Remark 7.4. For all τ, ε, t ∈ (0, 1] we have

Ġτ,ε;t(• − •) ∈ Cτ,ε ⊗ Cτ,ε ⊂ C∞(R2 × R
2),

where the function Gτ,ε;t(• − •) ∈ C(R2 ×R
2) coincides with the map (x, y) 7→ Gτ,ε;t(x− y).

Lemma 7.5. Let τ, ε ∈ (0, 1] and G be an infinite-dimensional Grassmann algebra. Suppose

that the function [0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) satisfies the Polchinski flow equation

∂tUτ,ε;t(φ) = −
1

2
〈D2

φUτ,ε;t(φ), Ġτ,ε;t(• − •)〉τ +
1

2
〈DφUτ,ε;t(φ), Ġε;t ∗DφUτ,ε;t(φ)〉τ (7.1)

with the initial condition Uτ,ε;0(φ) = Uτ,ε(φ) for all φ ∈ C∞(T2
τ )

G ⊗alg G −. Then for every

t ∈ [0, 1] the functional Uτ,ε;t ∈ N (C∞(T2
τ )

G) is an effective potential at the spatial scale t.

Proof. Let us first observe that for every U ∈ N (C∞(T2
τ )

G) such that U(φ) ∈ G + for all

φ ∈ C∞(T2
τ )

G ⊗alg G − it holds

Dφ exp(U(φ)) = exp(U(φ))DφU(φ) ∈ S
′(T2

τ )
G ⊗alg G

−,

D2
φ exp(U(φ)) = exp(U(φ))D2

φU(φ) − exp(U(φ)) (DφU(φ)⊗DφU(φ)) ∈ S
′(T4

τ )
G

2

⊗alg G
+.

40



In consequence, the function [0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) satisfies the Polchinski flow

equation (7.1) for all φ ∈ C∞(T2
τ )

G ⊗alg G − if and only if it satisfies the equation

∂t exp(Uτ,ε;t(φ)) = −
1

2
〈D2

φ exp(Uτ,ε;t(φ)), Ġτ,ε;t(• − •)〉τ

for all t ∈ (0, 1] and φ ∈ C∞(T2
τ )

G ⊗alg G −. Note that by Lemma 6.17 the equation

∂tE exp(Uτ,ε(Ψτ,ε;t,0 + φ)) = −
1

2
〈D2

φE exp(Uτ,ε(Ψτ,ε;t,0 + φ)), Ġτ,ε;t(• − •)〉τ

holds true for all t ∈ (0, 1] and φ ∈ C∞(T2
τ )

G ⊗alg G −. The statement follows now from

Lemma 7.6.

Lemma 7.6. Let τ, ε ∈ (0, 1] and G be an infinite-dimensional Grassmann algebra. Suppose

that the function [0, 1] ∋ t 7→ Zτ,ε;t ∈ N (C∞(T2
τ )

G) satisfies the equation

∂tZτ,ε;t(φ) = −
1

2
〈D2

φZτ,ε;t(φ), Ġτ,ε;t(• − •)〉τ (7.2)

with the initial condition Zτ,ε;0(φ) = 0 for all φ ∈ Cτ,ε ⊗ G −. Then Zτ,ε;t(φ) = 0 for all

t ∈ [0, 1] and φ ∈ Cτ,ε ⊗ G −.

Proof. Recall that a functional Zτ,ε;t ∈ N (C∞(T2
τ )

G) is a collection Zτ,ε;t = (Zmτ,ε;t)m∈N0

such that Z0
τ,ε;t ∈ C and Zmτ,ε;t ∈ S ′(T2m

τ )G
m

is antisymmetric for m ∈ N+. Next, set

mτ,ε := |Λτ,ε||G| = dim(Cτ,ε) and let {e1, . . . , emτ,ε} be a basis of Cτ,ε. For m ∈ N+ and

i1, . . . , im ∈ {1, . . . ,mτ,ε} define

Z
(i1,...,im)
τ,ε;t :=

1

m!

∑

π∈Pm

(−1)sgn(π)〈Zmτ,ε;t, eπ(i1) ⊗ . . .⊗ eπ(im)〉 ∈ C,

where Pm is the set of permutations of {1, . . . ,m}. Observe that Z
(i1,...,im)
τ,ε;t vanishes identically

if m > mτ,ε. Hence, by Remark 7.4 Eq. (7.2) implies that the finite collection

{Z0
τ,ε;•} ∪ {Z(i1,...,im)

τ,ε;• |m, i1, . . . , im ∈ {1, . . . ,mτ,ε}}

satisfies a first order linear ODE with a trivial boundary condition. This proves the claim.

Lemma 7.7. Let τ, ε ∈ (0, 1] and G be an infinite-dimensional Grassmann algebra. Suppose

that a continuous function [0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) satisfies the integral form of

the Polchinski equation

Uτ,ε;t(φ) = EUτ,ε(Ψτ,ε;t,0 + φ)

+
1

2

∫ t

0

E〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ ds (7.3)

for all φ ∈ C∞(T2
τ )

G ⊗alg G −. Then for every t ∈ [0, 1] the functional Uτ,ε;t ∈ N (C∞(T2
τ )

G)

is an effective potential at the spatial scale t.
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Proof. It holds

∂tUτ,ε;t(φ) = ∂tEUτ,ε;0(Ψτ,ε;t,0 + φ)

+
1

2

∫ t

0

∂tE〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ ds

+
1

2
〈DφUτ,ε;t(φ), Ġε;t ∗DφUτ,ε;t(φ)〉τ .

Lemma 6.17 implies that

∂tEF (Ψτ,ε;t,s + φ) = −
1

2
〈D2

φF (Ψτ,ε;t,s + φ), Ġτ,ε;t(• − •)〉τ

for all F ∈ N (C∞(T2
τ ))

G. Hence, we obtain

∂tUτ,ε;t(φ) = −
1

2
〈D2

φEUτ,ε;0(Ψτ,ε;t,0 + φ), Ġτ,ε;t(• − •)〉τ

−
1

4

∫ t

0

〈D2
φE〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ , Ġτ,ε;t(• − •)〉τ ds

+
1

2
〈DφUτ,ε;t(φ), Ġε;t ∗DφUτ,ε;t(φ)〉τ .

Using Eq. (7.3) the sum of the first two terms on the RHS of the above equation can be

rewritten as

−
1

2
〈D2

φUτ,ε;t(φ), Ġτ,ε;t(• − •)〉τ .

This implies that the function [0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) satisfies the Polchinski flow

equation (7.1) with the initial condition Uτ,ε;0(φ) = Uτ,ε(φ). The statement follows now from

Lemma 7.5.

8 Symmetries

In this section we discuss the symmetries of the Gross-Neveu model that are instrumental in

the decomposition of kernels of functionals into the local part and the remainder, which is

defined in Sec. 11. As we mentioned in Sec. 2 the form of the local terms that appear in this

decomposition is restricted by the symmetries of the kernels.

Definition 8.1. The jet prolongation of ϕ ∈ C∞(R2)G is defined by

J : C∞(R2)G → C∞(R2)A×G, (Jϕ)a,σ ≡ Jϕa,σ = ∂aϕσ, a ∈ A, σ ∈ G.

Definition 8.2 (Symmetries of plane). Let x ∈ R
2 and let R : R

2 → R
2 be a matrix of a

rotation around the origin or a reflection with respect to a line passing through the origin.
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For every R = (Rjk)j,k∈{1,2} as above we choose a complex invertible 2× 2 matrix γ(R) such

that

γ(R)−1 γj γ(R) =
∑

k∈{1,2}

Rjkγk,

where γ1, γ2 are the gamma matrices introduced in Def. 4.2. We set Γ(R) = γ(R)⊕N . For

ϕ ≡ (ϕ̄,
¯
ϕ) ∈ S (R2)G we define

T(x,R)ϕ ≡ (T(x,R)ϕ̄,T(x,R)ϕ̄) ∈ S (R2)G

by the equalities

(T(x,R)ϕ̄)(y) := Γ(R−1)tϕ̄(R−1(y − x)), (T(x,R)
¯
ϕ)(y) := Γ(R)

¯
ϕ(R−1(y − x))

for all y ∈ R2. Let m ∈ N+. We say that a Schwartz distribution V ∈ S ′(R2m)G
m

is invariant

under the symmetries of the plane iff

〈V, ϕ1 ⊗ . . .⊗ ϕm〉 = 〈V,T(x,R)ϕ1 ⊗ . . .T(x,R)ϕm〉 (8.1)

for all ϕ1, . . . , ϕm ∈ S (R2)G, all x ∈ R2 and all R as above. The action of T(x,R) on

S (R2)A×G is defined in such a way that

T(x,R)(Jϕ) := J(T(x,R)ϕ)

for all ϕ ∈ S (R2)G, where J is the jet prolongation introduced in Definition 8.1. We say that

a Schwartz distribution V ∈ S ′(R2m)A
m×G

m

is invariant under the symmetries of the plane

iff the condition (8.1) is satisfied for all ϕ1, . . . , ϕm ∈ S (R2)A×G, all x ∈ R2 and all R as

above.

Remark 8.3. It is possible to choose the assignment R 7→ γ(R) such that (x,R) 7→ T(x,R) is

a projective representation of the Euclidean group on S (R2)G. The choice of the assignment

R 7→ γ(R) does not play a role in what follows.

Definition 8.4 (Symmetries of torus). A Schwartz distribution V ∈ S ′(R2m)A
m×G

m

is

invariant under the symmetries of the torus iff the condition (8.1) is satisfied for all x ∈ R2

and all R : R2 → R2 that are a rotation by a multiple of π/2 or a reflection with respect to

the line x1 = 0 or x2 = 0.

Definition 8.5 (Internal rotations). Let ϕ ≡ (ϕ̄,
¯
ϕ) ≡ (ϕ−, ϕ+) ∈ S (R2)A×G and a permu-

tation π ∈ PN . We define T(π)ϕ ∈ S (R2)G by the equality

(T(π)ϕ)a,(±,n,α)(x) := ϕa,(±,π(n),α)(x)

for all a ∈ A, n ∈ {1, . . . , N}, α ∈ {1, 2} and x ∈ R
2. Let m ∈ N+. We say that a Schwartz

distribution V ∈ S ′(R2m)A
m×G

m

is invariant under the internal symmetries iff

〈V, ϕ1 ⊗ . . . ϕm〉 = 〈V,T(π)ϕ1 ⊗ . . .T(π)ϕm〉

for all π ∈ PN and all ϕ1, . . . , ϕm ∈ S (R2)A×G.
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Definition 8.6 (Charge conjugation). For ϕ ≡ (ϕ̄,
¯
ϕ) ∈ S (R2)A×G we define we define

Cϕ ≡ (Cϕ̄,Cϕ̄) ∈ S (R2)G by the equalities

(Cϕ̄)a(x) = Γ2
¯
ϕa(x), (C

¯
ϕ)a(x) = Γ2ϕ̄

a(x)

for a ∈ A, x ∈ R2. Let m ∈ N+. We say that a distribution V ∈ S ′(R2m)A
m×G

m

is invariant

under the charge conjugation symmetry iff

〈V, ϕ1 ⊗ . . .⊗ ϕm〉 = 〈V,Cϕ1 ⊗ . . .⊗Cϕm〉

for all ϕ1, . . . , ϕm ∈ S (R2)G.

Remark 8.7. One shows that if m ∈ N+ \ 2N+ and V ∈ S ′(R2m)A
m×G

m

is invariant under

the charge conjugation symmetry, then V = 0.

Remark 8.8. The only local functionals of degree two in ψ ∈ S(R2)G ⊗alg G with up to one

derivative compatible with all of the above symmetries are of the form
∫

R2

ψ̄(x) ·
¯
ψ(x) dx,

∫

R2

ψ̄(x) · ((Γ1∂1 + Γ2∂2)
¯
ψ)(x) dx. (8.2)

The only local functionals of degree four in ψ ∈ S(R2)G⊗algG without derivatives compatible

with all of the above symmetries are of the form
∫

R2

(ψ̄(x) ·
¯
ψ(x))2 dx,

∑

j∈{1,2}

∫

R2

(ψ̄(x) · Γj
¯
ψ(x))2 dx,

∫

R2

(ψ̄(x) · Γ1Γ2
¯
ψ(x))2 dx. (8.3)

For the proof of the above claims we refer the reader to [MW73, Appendix] or [DY23, Ap-

pendix C].

9 Weights

In this section we define the weights that are used in the definitions of various norms and

establish some of their properties. The use of weights growing stretched exponentially allows

to prove stretched exponential decay of truncated correlations. This choice of the weights will

also play a role in the proof of the estimates for the map R presented in Sec. 11.

Definition 9.1. The diameter of the set of points {x1, . . . , xm} ⊂ R2 is defined by

D(x1, . . . , xm) := max
i,j∈{1,...,m}

|xi − xj |.

Let ζ := 4/5. For m ∈ N+, ν ∈ [0, 1/2] and t ∈ (0, 1] we define the weights wν ∈ C(R2) and

wmt;ν ∈ C(R2m) by wν(x) = (1 + |x|)−ν and

wmt;ν(x1, . . . , xm) := (1 + |x1|)
−ν(1 + D(x1, . . . , xm))1/2−ν exp(t−ζD(x1, . . . , xm)ζ).

We set w̃ := w1/2, w
m
t := wmt;0, w̃

m
t := wmt;1/2 and ζ⋆ := −2(1/ζ − 7/8) = −3/4.
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Remark 9.2. Note that the upper index m ∈ N+ of wmt;ν does not denote the power.

Remark 9.3. We will frequently use the fact that w̃mt (x1, . . . , xm) ≤ wmt (x1, . . . , xm) for all

m ∈ N+, t ∈ (0, 1] and x1, . . . , xm ∈ R2. The weights w̃mt will be used to study the infinite

volume limit. Observe that the weight w̃ appeared already in Lemma 6.19.

Remark 9.4. It holds 1/w̃(x) ≤ 1/w̃(y) 1/w̃(x− y) for all x, y ∈ R2.

Lemma 9.5. There exists C ∈ (0,∞) such that for all l ∈ {0, 1}, ν ∈ [0, 1/2], t ∈ (0, 1],

s ∈ (0, t), k ∈ {1, . . . ,m} and x1, . . . , xm, y1, . . . , ym, y, z ∈ R2 it holds

(a) wmt;ν(x1, . . . , xm) ≤ wk+1
t;ν (x1, . . . , xk, y)w

2
t (y, z)w

m−k+1
t (z, xk+1, . . . , xm),

(b) wmt;ν(xm, . . . , x1) ≤ wm−k+1
t (z, xm, . . . , xk+1)w

2
t (y, z)w

k+1
t;ν (y, xk, . . . , x1),

(c) wmt;ν(x1, . . . , xm) ≤ wmt;ν(y1, . . . , ym)w
2
t (y1, x1) . . . w

2
t (ym, xm),

(d) wkt;ν(x1, . . . , xk) ≤ wmt;ν(x1, . . . , xk, xk+1, . . . , xm),

(e) wkt;ν(x1, . . . , xk) ≤ wmt (x1, . . . , xk, xk+1, . . . , xm)wν(xm),

(f)
∫ 1

0
(1− u)lD(x1, . . . , xm)l+1wmt;ν(ux1, . . . , uxm) du ≤ C sl+1 (1− s/t)ζ⋆ wms;ν(x1, . . . , xm).

Remark 9.6. The above lemma will be only used with ν ∈ {0, 1/2}.

Proof. Items (a) and (b) follow from the bounds

D(x1, . . . , xm) ≤ D(x1, . . . , xk, y) + |y − z|+D(z, xk+1, . . . , xm),

|y| ≤ |y − z|+D(z, xk+1, . . . , xm) + |xm|,

which are consequences of the triangle inequality, and the bounds

(a+ b+ c)µ ≤ aµ + bµ + cµ, (1 + a+ b+ c)µ ≤ (1 + a)µ(1 + b)µ(1 + c)µ

valid for µ ∈ (0, 1] and a, b, c ∈ [0,∞). Item (c) is proved along the same lines with the use

of the bounds

D(x1, . . . , xm) ≤ D(y1, . . . , ym) + |y1 − x1|+ . . .+ |ym − xm|, |y1| ≤ |y1 − x1|+ |x1|.

To prove Item (d) one uses the fact that the function

[0,∞) ∋ d 7→ (1 + d)1/2−ν exp(t−ζdζ) ∈ R

is monotonic. Item (e) follows from Item (d), the bound |xm| ≤ |x1|+D(x1, . . . , xm) and the

inequality (1 + a + b)µ ≤ (1 + a)µ(1 + b)µ valid for µ ∈ (0, 1] and a, b ∈ [0,∞). We proceed

to the proof of Item (f). Let D(x1, . . . , xm) = d. Observe that it holds

dl+1w
m;ν
t (ux1, . . . , uxm)

wm;ν
s (x1, . . . , xm)

=
(1 + |x1|)

ν

(1 + u |x1|)ν
(1 + u d)1/2−ν

(1 + d)1/2−ν
dl+1 exp((uζt−ζ − s−ζ)dζ)

≤ u−νdl+1 exp((uζt−ζ − s−ζ)dζ) ≤ Ĉ u−ν (s−ζ − uζt−ζ)−(l+1)/ζ ,

45



where Ĉ ∈ (0,∞) is such that dl+1 exp(−dζr) ≤ Ĉ r−(l+1)/ζ for all l ∈ {0, 1}, r ∈ (0,∞) and

ζ ∈ (0, 1]. Consequently, it holds
∫ 1

0

(1 − u)lD(x1, . . . , xm)l+1w
m;ν
t (ux1, . . . , uxm)

wm;ν
s (x1, . . . , xm)

du ≤ Ĉ

∫ 1

0

sl+1 u−ν (1 − u)l

(1 − uζ(s/t)ζ)(l+1)/ζ
du

Note that for 0 < s < t ≤ 1 and 0 < u ≤ 1 it holds 1− uζ ≥ ζ(1 − u) and

(1−uζ(s/t)ζ)(l+1)/ζ ≥ ζ(l+1)/ζ (1−u(s/t))(l+1)/ζ ≥ ζ(l+1)/ζ (1−u)ζ♯(l) (1−s/t)(l+1)(1/ζ−7/8),

where ζ♯(l) := (l+1)/ζ− (l+1)(1/ζ−7/8) > 0. Since l ∈ {0, 1} and l− ζ♯(l) > −1 the bound

stated in Item (f) holds true with

C = max
l∈{0,1}

ζ−2/ζ Ĉ

∫ 1

0

u−1/2 (1− u)l

(1− u)ζ♯(l)
du <∞.

This finishes the proof.

10 Spaces of kernels and functionals

In this section we define the spaces of kernels and functionals in infinite volume that are used

in Sec. 13 to solve the system of equations (2.24), (2.28), (2.20), (2.21), (2.22) introduced in

Sec. 2 using the Banach fixed point theorem. We also define the map Aτ,ε;t,s and analyse its

properties. We refer the reader to Sec. 2 for the motivation behind the definitions stated in

this section.

Definition 10.1. Let m,n ∈ N+ and A be a unital Banach algebra. We denote by

S (R2m,A ) the space of Schwartz test functions valued in A equipped with the usual family

of semi-norms. The space of A -valued Schwartz distributions is denoted by S ′(R2m,A ) and

by definition coincides with the space of continuous maps S (R2m) → A equipped with the

topology of pointwise convergence. We denote by

〈•, •〉 : S
′(R2m,A )× S (R2m,A ) → A

the unique bilinear map such that 〈V, ϕA〉 := 〈V, ϕ〉A for all V ∈ S ′(R2m,A ), ϕ ∈ S (R2m)

and A ∈ A , where 〈V, ϕ〉 is the standard paring between a distribution and a test function.

We denote by
• ⊗ • : S (R2m,A )× S (R2n,A ) → S (Rm+n,A )

the unique bilinear map such that ϕA⊗ψB := (ϕ⊗ψ)AB for all ϕ ∈ S (R2m), ψ ∈ S (R2n)

and A,B ∈ A , where ϕ ⊗ ψ ∈ S (R2m+2n) is the standard tensor product of Schwartz

functions. Let K be a finite set. The maps

〈•, •〉 : S
′(R2m,A )K × S (R2m,A )K → A ,

• ⊗ • : S (R2m,A )K
m

× S (R2n,A )K
n

→ S (R2m+2n,A )K
m+n

are defined in analogy to Def. 3.7.
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Remark 10.2. In what follows, we assume that G is an infinite dimensional Grassmann algebra.

It is important G is infinite dimensional as we shall frequently use the fact that for every

n ∈ N+ there exist g1, . . . , gn ∈ G such that g1 . . . gn 6= 0. We do not equip G with any

topology.

Remark 10.3. Let A = A + ⊕A − be a graded unital algebra. We define A ⊗alg G to be the

algebraic graded tensor product of graded algebras A and G . In particular, the product in

A ⊗alg G satisfies the condition (A⊗ g)(B ⊗ h) = (−1)deg(g) deg(B)AB ⊗ gh for all A,B ∈ A

and gh ∈ G of definite parity. We identify A ∈ A and g ∈ G with

A⊗ 1 ∈ A ⊗alg G and 1⊗ g ∈ A ⊗alg G ,

respectively. We use these identifications to make sense of A+g,Ag ∈ A ⊗alg G . Let m ∈ N+

and K be a finite set. We define the paring

〈•, •〉 : S
′(R2m,A )K

m

× (S (R2m,A )K
m

⊗alg G ) → A ⊗alg G

as the unique bilinear map such that 〈V, ϕ ⊗ g〉 := 〈V, ϕ〉 ⊗ g for all V ∈ S ′(R2m,A )K,

ϕ ∈ S (R2m)K and g ∈ G . We denote by

• ⊗ • : (S (R2m,A )K
m

⊗alg G )× (S (R2n,A )K
n

⊗alg G ) → S (R2m+2n,A )K
m+n

⊗alg G

the unique bilinear map such that (ϕ ⊗ g) ⊗ (ψ ⊗ h) := (−1)deg(g) deg(ψ)(ϕ ⊗ ψ) ⊗ gh for all

ϕ ∈ S (R2m,A )K
m

, ψ ∈ S (R2n,A )K
n

and g, h ∈ G of definite parity.

Definition 10.4. Let m ∈ N+ and A be a unital Banach algebra. We denote by Pm
the group of permutations of the set {1, . . . ,m}. The antisymmetric part of a distribution

V ∈ S ′(R2m,A )A
m×G

m

is the distribution SV ∈ S ′(R2m,A )A
m×G

m

defined by

〈SV, ϕ1 ⊗ . . .⊗ ϕm〉 =
1

m!

∑

π∈Pm

(−1)sgn(π)〈V, ϕπ(1) ⊗ . . .⊗ ϕπ(m)〉

for all ϕ1, . . . , ϕm ∈ S (R2)A×G. We say that a distribution V ∈ S ′(R2m,A )A
m×G

m

is

antisymmetric iff V = SV .

Remark 10.5. Recall that B = B(H ) is the algebra of bounded operators acting on the

Hilbert space H introduced in Def. 6.2

Definition 10.6. Let m ∈ N+ and A be a unital Banach subalgebra of B. We denote by

Mm(A ) the vector space of Schwartz distributions V ∈ S ′(R2m,A ) such that there exists

a kernel VK : R2 × Borel(R2(m−1)) → A satisfying the following conditions:

(1) for every A ∈ Borel(R2(m−1)) the map x 7→ VK(x,A) is Borel measurable,

(2) for every x ∈ R2 the map A 7→ VK(x,A) is a Banach space valued measure,
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(3) the following norm

‖V ‖Mm := sup
x1∈R2

∫

R2(m−1)

‖VK(x1, dx2 . . . dxm)‖B

is finite, where ‖VK(x1, dx2 . . . dxm)‖B denotes the variation of VK(x1, dx2 . . . dxm),

(4) for all ϕ ∈ S (R2m) it holds

〈V, ϕ〉 =

∫

R2m

VK(x1, dx2 . . . dxm)ϕ(x1, . . . , xm) dx1. (10.1)

We write Mm := Mm(C).

Remark 10.7. Note that it holds Mm(C) ⊂ Mm(A ) ⊂ Mm(B).

Remark 10.8. Let K : R2m → B be measurable such that

‖K‖K m := sup
x1∈R2

∫

R2(m−1)

‖K(x1, . . . , xm)‖B dx2 . . . dxm <∞.

Then V ∈ S ′(R2m,B) defined by Eq. (10.1) with

VK(x1, dx2 . . . dxm) = K(x1, . . . , xm) dx2 . . . dxm

belongs to Mm(B) and ‖V ‖Mm = ‖K‖K m .

Remark 10.9. Let δ(m) ∈ S ′(R2m) be the Dirac measure on the diagonal, i.e.

〈δ(m), ϕ1 ⊗ . . .⊗ ϕm〉 :=

∫

R2

ϕ1(x) . . . ϕm(x) dx

for all ϕ1, . . . , ϕm ∈ S (R2). Then δ(m) ∈ Mm and ‖δ(m)‖Mm = 1.

Remark 10.10. It follows from the definition of the variation of the vector measure and the

properties (0) and (4) of the conditional expected value introduced in Def. 6.7 that

EtV ∈ M
m(Ft), ‖EtV ‖Mm ≤ ‖V ‖Mm

for all V ∈ Mm(F ) and t ∈ [0, 1].

Remark 10.11. Recall that wm1 and w̃m1 are weights introduced in Def. 9.1.

Definition 10.12. Let m ∈ N+ and A be a unital Banach subalgebra of B. The vector

space N m
♯ (A ) ⊂ Mm(A )A

m×G
m

consists of Schwartz distributions

V ≡ (V a,σ)a∈Am,σ∈Gm ∈ S
′(R2m,A )A

m×G
m

such that the following norm

‖V ‖N m :=
∑

a∈Am

∑

σ∈Gm

‖wm1 V
a,σ‖Mm
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is finite. We define the norm ‖V ‖
Ñ m in an analogous way with wm1 replaced by w̃m1 . We de-

note by N m(A ) the subspace of N m
♯ (A ) consisting of antisymmetric Schwartz distributions,

cf. Def. 10.4. The vector space N (A ) :=×m∈N+
N m(A ) consists of tuples

V ≡ (V m)m∈N+ ≡ (V m,a,σ)m∈N+,a∈Am,σ∈Gm .

We endow N (A ) with the product topology. The subspace N fin(A ) ⊂ N (A ) consists of

tuples V such that V m = 0 for all but finitely many m ∈ N+. We set ΠmV := V m and

Πm,a,σV := V m,a,σ. For V ∈ N (A ) and k ∈ N+ we define ΠkV ≡ ((ΠkV )m)m∈N+ ∈ N (A )

by the equalities (ΠkV )m := 0 for all m ∈ N+ \ {k} and (ΠkV )m := Vm for m = k.

We also define Π>kV ≡ ((Π>kV )m)m∈N+ ∈ N (A ) by the equalities (Π>kV )m := 0 for all

m ∈ {1, . . . , k} and (Π>kV )m := Vm for m ∈ N+ \ {1, . . . , k}. For V ∈ N fin(A ) and

ϕ ∈ S (R2,A )A×G ⊗alg G we write

V [ϕ] :=
∑

m∈N+

〈V m, ϕ⊗m〉 ∈ A ⊗alg G .

For k ∈ N0 we define DkϕV [ϕ] in analogy to Def. 3.14. We set N m
♯ := N m

♯ (C), N m :=

N m(C), N := N (C) and N fin := N fin(C).

Remark 10.13. Let V ∈ N m
♯ (A ). Since the norm ‖V ‖N m <∞ involves a weight of stretched

exponential growth it holds XV a,σ ∈ M for all a ∈ Am, σ ∈ Gm and all translationally-

invariant polynomials X ∈ C∞(R2m).

Remark 10.14. Using the fact that V ∈ N m(A ) is antisymmetric one shows that it is

uniquely determined by the map

S (R2)A×G ⊗alg G
− ∋ ϕ 7→ 〈V, ϕ⊗m〉 ∈ A ⊗alg G .

Actually, given ψ1, . . . , ψm ∈ S (R2)A×G we choose ϕ =
∑m
j=1 ψjgj , where g1, . . . , gm ∈ G are

such that g = g1 . . . gm 6= 0. Then m! 〈V, ψ1 ⊗ . . .⊗ ψm〉 ⊗ g = 〈V, ϕ⊗m〉.

Definition 10.15. Let m ∈ N+, α ∈ (0,∞), β, γ ∈ [0,∞) and ργ,κ(m) := γ + 2κm. For

continuous maps

(0, 1] ∋ s 7→ V ms ≡ (V m,a,σs )a∈Am,σ∈Gm ∈ N
m(B)

we define

‖V m• ‖V m;γ := sup
s∈(0,1]

∑

a∈Am

∑

σ∈Gm

λ−ργ,κ(m)
s s2−m/2−|a| ‖wms V

m,a,σ
s ‖Mm . (10.2)

The vector space V m;γ consists of continuous maps

(0, 1] ∋ s 7→ V ms ≡ (V m,a,σs )a∈Am,σ∈Gm ∈ N
m ≡ N

m(C)

such that ‖V m• ‖V m;γ <∞. The vector space V γ consists of continuous maps

(0, 1] ∋ s 7→ Vs ∈ N ≡ N (C)
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such that V m• ≡ ΠmV• ∈ V m;γ for all m ∈ N+. The vector space V fin;γ consists of continuous

maps

(0, 1] ∋ s 7→ Vs ∈ N
fin ≡ N

fin(C)

such that V m• ≡ ΠmV• ∈ V m;γ for all m ∈ N+. We denote by V α,β;γ the closure of

V fin;γ ⊂ V γ with respect to the norm

‖V•‖V α,β;γ := sup
m∈N+

αmmβ ‖Vm• ‖V m;γ . (10.3)

For V m• ∈ V m;γ we define ‖Vm• ‖
Ṽ m;γ in an analogous way to ‖Vm• ‖V m;γ with wms replaced by

w̃ms in Eq. (10.2). For V• ∈ V α,β;γ we define ‖V•‖Ṽ α,β;γ in an analogous way to ‖V m• ‖V α,β;γ

with ‖•‖V m;γ replaced by ‖•‖
Ṽ m;γ in Eq. (10.3).

Remark 10.16. Since w̃mt ≤ wmt the norms ‖•‖
Ṽ m;γ and ‖•‖

Ṽ α,β;γ are weaker than the norms

‖•‖V m;γ and ‖•‖V α,β;γ , respectively. The norms ‖•‖
Ṽ m;γ and ‖•‖

Ṽ α,β;γ will be used to study

the infinite volume limit. Observe that we did not define the spaces Ṽ m;γ and Ṽ α,β;γ .

Remark 10.17. Note that the weight w̃mt used in the definition of the norms ‖•‖
Ṽ m;γ and

‖•‖
Ṽ α,β;γ is not invariant under permutations of its arguments. For a permutation π ∈ Pm

define Sπw̃
m
t ∈ C(R2m) by the equality (Sπw̃

m
t )(x1, . . . , xm) := w̃mt (xπ(1), . . . , xπ(m)). Using

the fact that

V m ≡ (V m,a,σ)a∈Am,σ∈Gm ∈ N
m(B) ⊂ S

′(R2m,A )A
m×G

m

is antisymmetric one shows that
∑

a∈Am

∑

σ∈Gm

‖(Sπw̃
m
s )V m,a,σ‖Mm =

∑

a∈Am

∑

σ∈Gm

‖w̃ms V
m,a,σ‖Mm .

Remark 10.18. For all α, α̃ ∈ [1,∞), β, β̃, γ, γ̃ ∈ [0,∞) and V• ∈ V α,β;γ such that α̃ ≤ α,

β̃ < β, γ̃ ≤ γ it holds

‖V•‖V α̃,β̃;γ̃ ≤ ‖V•‖V α,β;γ , ‖V•‖Ṽ α̃,β̃;γ̃ ≤ ‖V•‖Ṽ α,β;γ .

Remark 10.19. For all α, β, α̃, β̃ ∈ [1,∞), k ∈ N+ there exists C ∈ (0,∞) such that for all

γ ∈ [0,∞) and V• ∈ V α,β;γ it holds

‖ΠkV•‖V k;γ ≤ C ‖V•‖V α,β;γ , ‖ΠkV•‖V α̃,β̃;γ ≤ C ‖V•‖V α,β;γ .

Lemma 10.20. For all m ∈ N+ and α ∈ (0,∞), β, γ ∈ [0,∞) the spaces (V m;γ , ‖•‖V m;γ )

and (V α,β;γ , ‖•‖V α,β;γ ) are Banach spaces.

Proof. We first observe that for every m ∈ N+ the space (Mm(C), ‖•‖Mm) is a Banach space

and given a Banach space T the spaces Cb((0, 1],T ) and l∞0 (T ) are also Banach spaces.

Using the fact that λ
−ργ,κ(m)
s s2−m/2−|a|wms 6= 0 for all s ∈ (0, 1], a ∈ Am we conclude that

the space (V m;γ , ‖•‖V m;γ ) is a Banach space. Similarly, since αmmβ 6= 0 for all m ∈ N+ the

space (V α,β;γ , ‖•‖V α,β;γ ) is a Banach space.
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Remark 10.21. Recall that F is the Banach subalgebra of B = B(H ) generated by the

white noise, cf. Def. 6.2.

Definition 10.22. Let τ, ε ∈ [0, 1] and t, s ∈ (0, 1]. The maps

Aτ,ε;t,s,Cτ,ε;t,s : N
fin(F ) → N

fin(F )

are defined by the equalities

Aτ,ε;t,sV [ϕ] := V [ϕ+ JΨτ,ε;t∨s,s]− V [JΨτ,ε;t∨s,s], ϕ ∈ S (R2)A×G ⊗alg G
−,

Cτ,ε;t,sV := Aτ,ε;t,sV − V,

where Ψτ,ε;t,s was introduced in Def. 6.11 and J is the jet prolongation introduced in Def. 8.1.

We also set Am
τ,ε;t,s := ΠmAτ,ε;t,s, A

m,a
t,s := Πm,aAτ,ε;t,s and A

m,a,σ
t,s := Πm,a,σAτ,ε;t,s and

analogously for the map Cτ,ε;t,s. We omit τ and ε if τ = 0 and ε = 0.

Remark 10.23. The equation defining the map Aτ,ε;t,s should be interpreted as

〈Am
τ,ε;t,sV, ϕ

⊗m〉 =
∑

k∈N0

(m+ k)!

m!k!
〈V m+k, ϕ⊗m ⊗ JΨ⊗k

τ,ε;t∨s,s〉 (10.4)

for all m ∈ N+. The map Aτ,ε;t,s is well defined thanks to Remark 10.14 and the fact that

‖JΨa,στ,ε;t∨s,s‖C < ∞ for all τ, ε ∈ [0, 1], t, s ∈ (0, 1] and a ∈ A, σ ∈ G, which follows from

Lemma 6.19.

Remark 10.24. Let t, s ∈ (0, 1] be such that t ≥ s and let V ∈ N fin(Fs). Then we have

Aτ,ε;t,sV ∈ N
fin(Ft), EtAτ,ε;t,sV = EAτ,ε;t,sV, EsAτ,ε;t,sV = Aτ,ε;t,sEV

by Def. 6.11 of Ψτ,ε;t,s and the properties (1) and (3) of the conditional expected value

introduced in Def. 6.7.

Remark 10.25. Let t, u, s ∈ (0, 1] be such that t ≥ u ≥ s and let V ∈ N fin(C). Then we have

(A) Aτ,ε;t,sV = Aτ,ε;t,uAτ,ε;u,sV ,

(B) Aτ,ε;t,uEAτ,ε;u,sV = EuAτ,ε;t,uAτ,ε;u,sV = EuAτ,ε;t,sV ,

(C) EAτ,ε;t,uEAτ,ε;u,sV = EAτ,ε;t,sV

by Remark 10.24 and the tower property (2) of the conditional expected value introduced in

Def. 6.7.

Lemma 10.26. There exists λ⋆ ∈ (0, 1] such that for all λ ∈ (0, λ⋆] the following is true. Let

m ∈ N+, α, β ∈ [1,∞), γ ∈ [0,∞), τ, ε ∈ [0, 1] and V• ∈ V fin;γ. For all t ∈ (0, 1] the map

(0, 1] ∋ s 7→ Am
τ,ε;t,sVs ∈ N

m(Ft,s) (10.5)

is continuous and it holds
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(A) ‖s 7→ Aτ,ε;t,sVs‖V α/2,β;γ ≤ ‖V•‖V α,β;γ ,

(B) ‖s 7→ Cτ,ε;t,sVs‖V α/2,β−1;γ ≤ λκ ‖V•‖V α,β;γ ,

(C) ‖s 7→ Aτ,ε;t,sVs‖Ṽ α/2,β;γ ≤ ‖V•‖Ṽ α,β;γ ,

(D) ‖s 7→ Cτ,ε;t,sVs‖Ṽ α/2,β−1;γ ≤ λκ ‖V•‖Ṽ α,β;γ ,

(E) ‖s 7→ (At,s −Aτ,ε;t,s)Vs‖Ṽ α/2,β−1;γ ≤ λκτ∨ε ‖V•‖V α,β;γ .

In particular the map (10.5) is well-defined for all V• ∈ V α,β;γ.

Remark 10.27. Note that the parameters α of the norms V α,β;γ , Ṽ α,β;γ that appear on both

sides of the bounds stated in the above lemma are different. As we discussed in Sec. 2 the

bounds of this type appear to be false if the parameters α of the norms are the same on both

sides of the bounds. This is the main reason why we work with the space (W α,β;γ
τ,ε , ‖•‖

W
α,β;γ
τ,ε

)

introduced below. One of the consequences of the above lemma is the relation between the

norms ‖•‖
W

α,β;γ
τ,ε

and ‖•‖V 2α,β;γ stated in Remark 10.35.

Proof. First recall that λs ≤ λ by Def. 2.2 and

‖JΨa,στ,ε;t,s‖C ≤ λ−κ s−1/2, ‖w̃(JΨa,σt,s − JΨa,στ,ε;t,s)‖C ≤ λ−κ λκτ∨ε λ
−κ
s s−1/2

by Lemma 6.19. Noting that ργ,κ(m) = ργ,κ(m+k)−2κk and using Lemma 9.5 (d) we obtain

∑

a∈Am

∑

σ∈Gm

λ−ργ,κ(m)
s s2−m/2−|a| ‖wms A

m,a,σ
τ,ε;t,sVs‖Mm

≤
∑

k∈N0

∑

a∈Am+k

∑

σ∈Gm+k

(m+ k)!

m!k!
λ−ργ,κ(m+k)+κk
s s2−m/2−k/2−|a| ‖wm+k

s V m+k,a,σ
s ‖Mm+k .

Using Definition 10.15 of the norms ‖•‖V m+k;γ and ‖•‖V α,β;γ we estimate the expression on

the RHS of the above bound by

∑

k∈N0

(m+ k)!

m!k!
λκk ‖V m+k

• ‖V m+k;γ ≤
∑

k∈N0

(m+ k)!

m!k!
λκk α−m−k(m+ k)−β ‖V•‖V α,β;γ

≤ α−mm−β (1− λκ)−m−1 ‖V•‖V α,β;γ ≤ 2m α−mm−β ‖V•‖V α,β;γ .

The last bound above is true of λκ ≤ 1/5. This proves the bound (A). Using analogous

estimates as above with the sum over k ∈ N0 replaced by the sum over k ∈ N+ we obtain

∑

a∈Am

∑

σ∈Gm

λ−ργ,κ(m)
s s2−m/2−|a| ‖wms (Am,a,σ

τ,ε;t,sVs − V m,a,σs )‖Mm

≤ α−m (m+ 1)−β ((1− λκ)−m−1 − 1) ‖V•‖V α,β;γ ≤ λκ 2m α−mm1−β ‖V•‖V α,β;γ ,

where again the last bound above is true of λκ ≤ 1/5. This implies the bound (B). To prove

the bounds (C) and (D) we use exactly the same strategy but with the weight wms replaced
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by w̃ms . Let us turn to the proof of the bound (E). By Lemma 9.5 (e) we have

λκ λ−κτ∨ε
∑

a∈Am

∑

σ∈Gm

λ−ργ,κ(m)
s s2−m/2−|a| ‖w̃ms (Am,a,σ

t,s −A
m,a,σ
τ,ε;t,s)Vs‖Mm

≤
∑

k∈N+

∑

a∈Am+k

∑

σ∈Gm+k

(m+ k)!

m!(k − 1)!
λ−ργ,κ(m+k)+κk
s s2−m/2−k/2−|a| ‖wm+k

s V m+k,a,σ
s ‖Mm+k .

Using again Definition 10.15 of the norms ‖•‖V m+k;γ and ‖•‖V α,β;γ we estimate the expression

on the RHS of the above bound by

∑

k∈N+

(m+ k)!

m!(k − 1)!
λκk ‖V m+k

• ‖V m+k;γ ≤
∑

k∈N+

(m+ k)!

m!(k − 1)!
λκk α−m−k(m+ k)−β ‖V•‖V α,β;γ

≤ λκ (m+ 1)α−m(m+ 1)−β (1− λκ)−m−2 ‖V•‖V α,β;γ ≤ λκ 2m α−mm1−β ‖V•‖V α,β;γ .

The last bound above is true of λκ ≤ 1/5. This proves the bound (E).

Definition 10.28. We say that a distribution V ∈ N m ⊂ N m
♯ is compatible with the flow

of charge iff V = 0 for m ∈ N+ \ 2N+ and otherwise it holds V = SW for some W ∈ N m
♯

such that:

(a) 〈W,ϕ1 ⊗ . . .⊗ ϕm〉 = 〈W,Cϕ1 ⊗Cϕ2 ⊗ ϕ3 ⊗ . . .⊗ ϕm〉,

(b) 〈W,ϕ1 ⊗ . . .⊗ ϕm〉 = 〈W,ϕ2π(1)−1 ⊗ ϕ2π(1) ⊗ . . .⊗ ϕ2π(m/2)−1 ⊗ ϕ2π(m/2)〉,

(c) 〈W,ϕ1 ⊗ . . .⊗ ϕm〉 = −〈W,ϕ2 ⊗ ϕ1 ⊗ ϕ3 ⊗ . . .⊗ ϕm〉

for all ϕ1, . . . , ϕm ∈ S (R2)G and π ∈ Pm/2.

Remark 10.29. We say that V ∈ N is invariant under a certain symmetry or compatible

with the flow of charge iff V m ∈ N m ⊂ S ′(R2m)A
m×G

m

is invariant under this symmetry or

compatible with the flow of charge for all m ∈ N+.

Remark 10.30. The map C was introduced in Def. 8.6. Note that if V ∈ N m is compatible

with the flow of charge, then it is invariant under the charge conjugation. If m ∈ {4, 6, . . .},

then generically the reverse implication is false. Observe also that the second and the third of

the functionals (8.3) are not compatible with the flow of charge. Hence, there are only three

relevant or marginal local functionals invariant under all the symmetries listed in Sec. 8 and

compatible with the flow of charge: the quadratic functionals (8.2) and the first of the quartic

functionals (8.3). The reduction of the number of relevant or marginal local functionals that

have to be investigated is the main reason behind introducing the notion of the compatibility

with the flow of charge. See [GK85a, Sec. 5.B] for a simple argument showing that perturbative

corrections to an effective potential are compatible with the flow of charge.

Definition 10.31. Let m ∈ N+. We denote by N m
+ the subspace of N m consisting of

Schwartz distributions invariant under the symmetries of the torus and the internal sym-

metries and compatible with the flow of charge. We denote by N m
0 the subspace of N m

+
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consisting of Schwartz distributions invariant under the symmetries of the plane. The closures

of N m
+ and N m

0 in N m are denoted by (N m
+ )c and (N m

0 )c, respectively. Let sgn(τ) := 0

if τ = 0 and sgn(τ) := + if τ ∈ (0, 1]. For τ ∈ (0, 1] we set N m
τ := N m

sgn(τ) and

N
fin
τ := {V ∈ N

fin | ∀m∈N+V
m ∈ N

m
τ },

V
fin;γ
τ := {V• ∈ V

fin;γ | ∀s∈(0,1]Vs ∈ N
fin
τ }.

Definition 10.32. Let α, β ∈ [1,∞), γ ∈ [0,∞) and τ, ε ∈ [0, 1]. The vector space W α,β;γ
τ,ε is

the closure of V fin;γ
τ ⊂ V α,β;γ with respect to the following norm

‖V•‖W
α,β;γ
τ,ε

:= sup
t∈[0,1]

‖s 7→ Aτ,ε;t∨s,sVs‖V α,β;γ . (10.6)

For V• ∈ W α,β;γ
τ,ε we define ‖V•‖W̃

α,β;γ
τ,ε

in an analogous way to ‖V•‖W
α,β;γ
τ,ε

with ‖•‖V α,β;γ

replaced by ‖•‖
Ṽ α,β;γ in Eq. (10.6).

Remark 10.33. By Remark 10.16 the norm ‖•‖
W̃

α,β;γ
τ,ε

is weaker than the norm ‖•‖
W

α,β;γ
τ,ε

. The

former norm will be used to study the infinite volume limit.

Remark 10.34. Note that

‖V•‖V α,β;γ ≤ ‖V•‖W
α,β;γ
τ,ε

, ‖V•‖Ṽ α,β;γ ≤ ‖V•‖W̃
α,β;γ
τ,ε

.

Thus, in particular W α,β;γ
τ,ε ⊂ V α,β;γ .

Remark 10.35. Observe that by Lemma 10.26 (A), (C) it holds

‖V•‖W
α,β;γ
τ,ε

≤ ‖V•‖V 2α,β;γ , ‖V•‖W̃
α,β;γ
τ,ε

≤ ‖V•‖Ṽ 2α,β;γ .

Remark 10.36. Note that N m
τ , τ ∈ [0, 1], is not a closed subspace of N m. It is easy to see

that the invariance under the symmetries of the torus/plane, the internal symmetries and

the charge conjugation symmetry are preserved under limits. However, this is not the case

for the compatibility with the flow of charge. Hence, in general, it need not be true that for

V• ∈ W α,β;γ
τ,ε it holds Vms ∈ N m

τ for m ∈ N+ and s ∈ (0, 1]. Nonetheless, V ms ∈ (N m
τ )c for

all m ∈ N+ and s ∈ (0, 1].

Lemma 10.37. For all α, β ∈ [1,∞), γ ∈ [0,∞) and τ, ε ∈ [0, 1] the space (W α,β;γ
τ,ε , ‖•‖

W
α,β;γ
τ,ε

)

is a Banach space.

Proof. Let (pV )p∈N+ be a Cauchy sequence in W α,β;γ
τ,ε . Then, (pV )p∈N+ is a Cauchy sequence

in V α,β;γ . Consequently, there exists V ∈ V α,β;γ such that

lim
p→∞

‖V• − (pV )•‖V α,β;γ = 0.

By Lemma 10.26 (A) it holds

‖s 7→ Am
τ,ε;t,s((

pV )s − Vs)‖V m;γ ≤ 2mαmm−β ‖(pV )• − V•‖V α,β;γ .
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Let δ ∈ (0,∞). There exists P ∈ N+ such that for all p, q ∈ N+, p, q ≥ P it holds

‖(pV )• − (qV )•‖W
α,β;γ
τ,ε

≤ δ

and for every m ∈ N+ there exists p(m) ∈ N+, p(m) ≥ P , such that

‖s 7→ Am
τ,ε;t,s((

p(m)V )s − Vs)‖V m;γ ≤ α−mm−β δ.

As a result, for all p ∈ N+, p ≥ P it holds

‖s 7→ Am
τ,ε;t,s(Vs − (pV )s)‖V m;γ

≤ ‖s 7→ Am
τ,ε;t,s(Vs − (p(m)V )s)‖V m;γ + ‖s 7→ Am

τ,ε;t,s((
p(m)V )s − (pV )s)‖V m;γ

≤ α−mm−β δ + α−mm−β ‖(pV )• − (qV )•‖W
α,β;γ
τ,ε

≤ 2α−mm−β δ.

Hence, V• ∈ W α,β;γ
τ,ε and limp→∞ ‖V• − (pV )•‖W

α,β;γ
τ,ε

= 0.

11 Local part and remainder

In this section we introduce operators L, L∂ and R and establish their most important

properties. The operators L, L∂ and R are used to decompose kernels of functionals into the

local part and the remainder. As we discussed in Sec. 2 the above-mentioned decomposition

is crucial for the solution of the renormalization problem.

Definition 11.1. The distributions

U2 ≡ (U2,a,σ)a∈A2,σ∈G2 , U2
∂ ≡ (U2,a,σ

∂ )a∈A2,σ∈G2 ∈ N
2

0 ⊂ S
′(R4)A

2×G
2

,

such that for all a ∈ A2 and σ ∈ G2 it holds U2,a,σ = 0 unless |a| = 0 and U2,a,σ
∂ = 0 unless

|a| = 1 are defined by the equalities

〈U2, (Jψ)⊗2〉 =

∫

R2

ψ̄(x) ·
¯
ψ(x) dx,

〈U2
∂ , (Jψ)

⊗2〉 =

∫

R2

ψ̄(x) · ((Γ1∂1 + Γ2∂2)
¯
ψ)(x) dx

(11.1)

for all ψ ∈ S (R2)G ⊗alg G −, where J is the jet prolongation introduced in Def. 8.1. The

distribution

U4 ≡ (U4,a,σ)a∈A4,σ∈G4 ∈ N
4
0 ⊂ S

′(R8)A
4×G

4

such that for all a ∈ A4 and σ ∈ G4 it holds U4,a,σ = 0 unless |a| = 0 is defined by the

equalities

〈U4, (Jψ)⊗4〉 =

∫

R2

(ψ̄(x) ·
¯
ψ(x))2 dx (11.2)
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for all ψ ∈ S (R2)G ⊗alg G −. For g, r, z ∈ C we define U(g, r, z) ∈ N by the equation

U(g, r, z)[ψ] := g 〈U4, ψ⊗4〉+ r 〈U2, ψ⊗2〉+ z 〈U2
∂ , ψ

⊗2〉

for all ψ ∈ S (R2)G ⊗alg G −.

Remark 11.2. Note that U(g, r, z) = g U(1, 0, 0) + r U(0, 1, 0) + z U(0, 0, 1).

Remark 11.3. Recall that by Def. 10.31 distributions belonging to the space N m
0 ⊂ N m ⊂

S ′(R2m)A
m×G

m

are invariant under the symmetries of the plane and the internal symmetries

and compatible with the flow of charge. Moreover, distributions belonging to N m are an-

tisymmetric. Using the above-mentioned properties one proves that U2, U2
∂ , U

4 are uniquely

defined by the equalities stated in Def. 11.1. In particular, by the charge conjugation invari-

ance and Remark 4.3 it holds

〈U2
∂ , ψ

⊗2〉 =
1

2

2
∑

i=1

∫

R2

(

ψ̄0(x) · Γi
¯
ψai(x) − ψ̄ai(x) · Γi

¯
ψ0(x)

)

dx

for all ψ = (ψ̄a,
¯
ψa)a∈A ∈ S (R2)A×G ⊗alg G − and a1 = (1, 0) ∈ A, a2 = (0, 1) ∈ A.

Remark 11.4. It holds

• if σ = ((−, 1, 1), (+, 1, 1)) ∈ G2, then U2,σ,0 = δ(2)/2,

• if a = ((0, 0), (1, 0)) ∈ A2, σ = ((−, 1, 1), (+, 1, 2)) ∈ G2, then U2,σ,a = δ(2)/4,

• if σ = ((−, 1, 1), (+, 1, 1), (−, 1, 1), (+, 1, 1)) ∈ G4, then U4,σ,0 = δ(4)/6,

where δ(m) ∈ S ′(R2m) is the Dirac measure on the diagonal introduced in Remark 10.9.

Remark 11.5. In the definitions stated below we use the fact that for every distribution

V ∈ Mm ⊂ S ′(R2m) there exists a kernel VK in the sense of Definition 10.6 such that

Eq. (10.1) holds. Note that the maps introduced in the definitions below do not depend on

the choice of the kernel VK associated to a distribution V .

Definition 11.6. Let V 2 = (V 2,a,σ)a∈A2,σ∈G2 ∈ N 2 and V 4 = (V 4,a,σ)a∈A4,σ∈G4 ∈ N 4 be

translationally invariant. We define LV 2 ∈ C by the equality

LV 2 := 2

∫

R2

V 2,0,σ(x1, dx2)

with σ = ((−, 1, 1), (+, 1, 1)) ∈ G2. We define L∂V
2 := L̂∂V

2 + Ľ∂V
2 ∈ C by the equalities

L̂∂V
2 := 4

∫

R2

(x2 − x1)
a1+a2 V 2,0,σ(x1, dx2), Ľ∂V

2 := 4

∫

R2

V 2,a,σ(x1, dx2),

with a = (a1, a2) = ((0, 0), (1, 0)) ∈ A2 and σ = ((−, 1, 1), (+, 1, 2)) ∈ G2. We define LV 4 ∈ C

by the equality

LV 4 := 6

∫

R6

V 4,0,σ(x1, dx2, dx3, dx4)

with σ = ((−, 1, 1), (+, 1, 1), (−, 1, 1), (+, 1, 1)) ∈ G4.
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Remark 11.7. By translational invariance the above definitions of LV 2,L∂V
2,LV 4 do not

depend on the choice of x1 ∈ R
2.

Remark 11.8. Note that the following equalities LU2 = 1, L∂U
2
∂ = 1, LU4 = 1 hold true.

Lemma 11.9. Let ν ∈ [0, 1/2]. There exists C ∈ (0,∞) such that for all t ∈ (0, 1] and

all translationally invariant V 2 = (V 2,a,σ)a∈A2,σ∈G2 ∈ N 2, V 4 = (V 4,a,σ)a∈A4,σ∈G4 ∈ N 4 it

holds:

(A) |LV 2| ≤ supa∈A2 supσ∈G2 ‖w2
t;νV

2,a,σ‖M2 ,

(B) |L∂V
2| ≤ C t supa∈A2 supσ∈G2 ‖w2

t;νV
2,a,σ‖M2 ,

(C) |LV 4| ≤ supa∈A4 supσ∈G4 ‖w4
t;νV

4,a,σ‖M4 .

Proof. By Remark 11.7 we can set x1 = 0 in the equations defining LV 2,L∂V
2,LV 4, which

are given in Def. 11.6. The bounds follow now immediately from Def. 10.6 of the norm ‖•‖Mm

and the fact that there exists C ∈ (0,∞) such that |x2 − x1|/w
2
t;ν(x1, x2) ≤ C t for x1 = 0

and all x2 ∈ R2 and t ∈ (0, 1].

Lemma 11.10. Let V 2 = (V 2,a,σ)a∈A2,σ∈G2 ∈ (N 2
+ )c, V 4 = (V 4,a,σ)a∈A4,σ∈G4 ∈ (N 4

+ )c.

Then we have

LV 2, L̂∂V
2, Ľ∂V

2,L∂V
4 ∈ R (11.3)

and the following equalities

LV 2 〈U2, (Jψ)⊗2〉 =
∑

σ∈G2

∫

R4

V 2,0,σ(x1, dx2)ψ
σ1(x1)ψ

σ2(x1) dx1,

L̂∂V
2 〈U2

∂ , (Jψ)
⊗2〉

=
∑

a∈A
2

|a|=1

∑

σ∈G2

∫

R4

(x2 − x1)
a1+a2 V 2,0,σ(x1, dx2) (Jψ)

a1,σ1(x1) (Jψ)
a2,σ2(x1) dx1,

Ľ∂V
2 〈U2

∂ , (Jψ)
⊗2〉 =

∑

a∈A
2

|a|=1

∑

σ∈G2

∫

R4

V 2,a,σ(x1, dx2) (Jψ)
a1,σ1(x1) (Jψ)

a2,σ2(x1) dx1,

LV 4 〈U4, (Jψ)⊗4〉 =
∑

σ∈G4

∫

R8

V 4,0,σ(x1, dx2, dx3, dx4)ψ
σ1(x1)ψ

σ2(x1)ψ
σ3 (x1)ψ

σ4(x1) dx1

hold true for all ψ ∈ S (R2)G ⊗alg G −.

Remark 11.11. Recall that Jψa,σ ≡ (Jψ)a,σ is the jet prolongation. In particular, ψσ = Jψ0,σ.

The space N m
+ was introduced in Def. 10.31 and (N m

+ )c denotes its closure in N m.
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Proof. By Lemma 11.9 without loss of generality we can assume that V 2 ∈ N 2
+ , V 4 ∈ N 4

+ .

The conditions (11.3) follow from the charge conjugation invariance. It is clear that the

equalities listed in the statement of the lemma hold for some distributions U2, U2
∂ , U

4 such

that: (1) they satisfy all of the conditions stated in Def. 11.1 possibly with the exception of

the equalities (11.1) and (11.2), (2) are proportional to the Dirac measures on the diagonal,

(3) are invariant under the symmetries of the torus and the internal rotations and (4) are

compatible with the flow of the charge. By Remark 10.30 the conditions (2-4) imply that

the equalities (11.1) and (11.2) hold up to a constant. To conclude it is enough to use the

properties stated in Remark 11.4.

Definition 11.12. Let

V 2 = (V 2,a,σ)a∈A2,σ∈G2 ∈ N
2 ⊂ S

′(R4)A
2×G

2

be such that XV 2 ∈ N 2 for all translationally invariant polynomials X ∈ C∞(R4) of degree

two. We define Ŵ 2 ∈ N 2
♯ ⊂ S ′(R4)A

2×G
2

and W̌ 2 ∈ S ′(R4)A
2×A

2×G
2

by Eq. (10.1) with

Ŵ 2,a,σ
K (x1, dx2) :=

1

a!
(x1 − x1)

a1(x2 − x1)
a2

∫ 1

0

(1 − u)u−2 (V 2,0,σ
K )(u−1x1, u

−1dx2) du

and

W̌ 2,b,c,σ
K (x1, dx2) := (x1 − x1)

b1(x2 − x1)
b2

∫ 1

0

u−2 (V 2,c,σ
K )(u−1x1, u

−1dx2) du

if |a| = 2, |b| = |c| = 1 and Ŵ 2,a,σ
K = 0, W̌ 2,b,c,σ

K = 0 otherwise. We define W 2 ∈ N 2
♯ by the

equality

W 2,a,σ = Ŵ 2,a,σ +
∑

b,c∈A
2

b+c=a

W̌ 2,b,c,σ.

We define RV 2 ≡ ((RV 2)a,σ)a∈A2,σ∈G2 ∈ N 2 by the equalities

(RV 2)a,σ = 0, |a| ≤ 1,

(RV 2)a,σ = V 2,a,σ + (SW 2)a,σ, |a| = 2,

(RV 2)a,σ = V 2,a,σ, |a| ≥ 3.

Let

V 4 = (V 4,a,σ)a∈A4,σ∈G4 ∈ N
4 ⊂ S

′(R8)A
4×G

4

be such that XV 4 ∈ N 4 for all translationally invariant polynomials X ∈ C∞(R8) of degree

one. We define W 4 ∈ N 4
♯ ⊂ S ′(R8)A

4×G
4

by Eq. (10.1) with

W 4,a,σ
K (x1, dx2, dx3, dx4) := (x1 − x1)

a1(x2 − x1)
a2(x3 − x1)

a3(x4 − x1)
a4

×

∫ 1

0

u−6 (V 4,0,σ
K )(u−1x1, u

−1dx2, u
−1dx3, u

−1dx4) du
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if |a| = 1 and W 4,a,σ
K = 0 otherwise. We define RV 4 ≡ ((RV 4)a,σ)a∈A4,σ∈G4 ∈ N 4 by the

equalities
(RV 4)a,σ = 0, |a| = 0,

(RV 4)a,σ = V 4,a,σ + (SW 4)a,σ, |a| = 1,

(RV 4)a,σ = V 4,a,σ, |a| ≥ 2.

Remark 11.13. Recall that SV , introduced in Def. 10.4, denotes the antisymmetric part of V .

Note that Ŵ 2,a,σ
K = 0 unless a1 = 0, W̌ 2,b,c,σ

K = 0 unless b1 = 0 and W 4,a,σ
K = 0 unless a1 = 0.

Remark 11.14. It follows from Def. 9.1 of the weight wms that if V 2
• ∈ V 2;γ , then XV 2

s ∈ N 2

for all translationally invariant polynomials X ∈ C∞(R4) and all s ∈ (0, 1) and if V 4
• ∈ V 4;γ ,

then XV 4
s ∈ N 4 for all translationally invariant polynomials X ∈ C∞(R8) and all s ∈ (0, 1).

Remark 11.15. The map R is compatible with the symmetries. More precisely, let τ ∈ {0,+}

and suppose that V 2 ∈ (N 2
τ )c ⊂ N 2 is such that XV 2 ∈ N 2 for all translationally invariant

polynomials X ∈ C∞(R4) of degree two and V 4 ∈ (N 4
+ )c ⊂ N 4 is such that XV 4 ∈ N 4 for

all translationally invariant polynomials X ∈ C∞(R8) of degree one. Then RV 2 ∈ N 2
τ and

RV 4 ∈ N 4
τ .

Lemma 11.16. There exists C ∈ (0,∞) such that it holds

‖w2
t;ν (RV

2)a,σ‖M2 ≤ C (1 − s/t)ζ⋆ sup
b∈A2

s|a|−|b| ‖w2
s;ν V

2,b,σ‖M2 ,

‖w4
t;ν (RV

4)a,σ‖M4 ≤ C (1 − s/t)ζ⋆ sup
b∈A4

s|a|−|b| ‖w4
s;ν V

4,b,σ‖M4 .

for all ν ∈ [0, 1/2], t ∈ (0, 1], s ∈ (0, t) and all V 2 ∈ N 2, V 4 ∈ N 4 such that the RHS of the

above bounds are finite.

Remark 11.17. Recall that ζ⋆ = −3/4 was introduced in Def. 9.1. See also Lemma 9.5 (f).

Proof. Since by assumption V 2, V 4 are antisymmetric it suffices to prove that for all a ∈ A
2,

|a| = 2, σ ∈ G2 it holds

‖w2
t;ν Ŵ

2,a,σ‖M2 ≤ C (1− s/t)ζ⋆ s|a| sup
σ∈G2

‖w2
s;ν V

2,0,σ‖M2 ,

for all b, c ∈ A2, |b| = |c| = 1, σ ∈ G2 it holds

‖w2
t;ν W̌

2,b,c,σ‖M2 ≤ C (1− s/t)ζ⋆ s|b| sup
σ∈G2

‖w2
s;ν V

2,c,σ‖M2

and for all a ∈ A4, |a| = 1, σ ∈ G4 it holds

‖w4
t;νW

4,a,σ‖M4 ≤ C (1− s/t)ζ⋆ s|a| sup
σ∈G4

‖w4
s;ν V

4,0,σ‖M4 .

The above estimates follow easily from Def. 11.12 and Lemma 9.5 (f).
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Lemma 11.18. Let V 2 ∈ (N 2
+ )c ⊂ N 2 be such that XV 2 ∈ N 2 for all translationally invari-

ant polynomials X ∈ C∞(R4) of degree two and V 4 ∈ (N 4
+ )c ⊂ N 4 be such that XV 4 ∈ N 4

for all translationally invariant polynomials X ∈ C∞(R8) of degree one. Then it holds

〈(R + U2L+ U2
∂L∂)V

2, (Jψ)⊗2〉 = 〈V 2, (Jψ)⊗2〉,

〈(R+ U4L)V 4, (Jψ)⊗4〉 = 〈V 4, (Jψ)⊗4〉.

Proof. By Lemmas 11.9 and 11.16 both sides of the identities listed in the statement of the

lemma depend continuously on V 2 ∈ N 2, V 4 ∈ N 4. Thus, without loss of generality we

can assume that V 2 ∈ N 2
+ , V 4 ∈ N 4

+ . The rest of the proof is an application of the Taylor

theorem. We first note that the equality

〈((R+ U2L+ U2
∂L∂)V

2)a,σ, (Jψ)a1,σ1 ⊗ (Jψ)a2,σ2〉 = 〈V 2,a,σ, (Jψ)a1,σ1 ⊗ (Jψ)a2,σ2〉

holds for all a ∈ A
2, |a| ≥ 2, and σ ∈ G

2 and the equality

〈((R + U4L)V 4)a,σ, (Jψ)a1,σ1 ⊗ . . .⊗ (Jψ)a4,σ4〉 = 〈V 4,a,σ, (Jψ)a1,σ1 ⊗ . . .⊗ (Jψ)a4,σ4〉

for all a ∈ A4, |a| ≥ 1, and σ ∈ G4. In general the above equalities are false but we will prove

that the sums of both sides over a and σ coincide. This follows from Def. 11.12 of the map R

as well as Eq. (11.4), (11.5) and (11.6) established below. We first observe that by the Taylor

theorem the following identity

ψσ1(x1)ψ
σ2(x2) = ψσ1(x1)ψ

σ2 (x1)+
∑

a∈A
2

|a|=1

(x1−x1)
a1(x2−x1)

a2(Jψ)a1,σ1(x1) (Jψ)
a2,σ2(x1)

+
∑

a∈A
2

|a|=2

1

a!
(x1 − x1)

a1(x2 − x1)
a2

∫ 1

0

(1− u) (Jψ)a1,σ1(x1) (Jψ)
a2,σ2(x1 + u(x2 − x1)) du

is true for σ ∈ G2. As a result, by Lemma 11.10 and Def. 11.12 of Ŵ 2,a,σ we obtain

∑

σ∈G2

〈V 2,0,σ, ψσ1 ⊗ ψσ2〉

=
∑

a∈A2

∑

σ∈G2

〈U2,a,σLV 2 + U2,a,σ
∂ L̂∂V

2 + Ŵ 2,a,σ, (Jψ)a1,σ1 ⊗ (Jψ)a2,σ2〉. (11.4)

Next, we note that

(Jψ)c1,σ1(x1) (Jψ)
c2,σ2(x2) = (Jψ)c1,σ1(x1)(Jψ)

c2,σ2(x1)

+
∑

b∈A
2

|b|=1

(x1 − x1)
b1(x2 − x1)

b2

∫ 1

0

(Jψ)b1+c1,σ1(x1) (Jψ)
b1+c1,σ2(x1 + u(x2 − x1)) du.
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for c ∈ A2 and σ ∈ G2. Consequently, by Lemma 11.10 and Def. 11.12 of W̌ 2,b,c,σ we have

∑

c∈A
2

|c|=1

∑

σ∈G2

〈V 2,c,σ, (Jψ)c1,σ1 ⊗ (Jψ)c2,σ2〉 =
∑

a∈A2

∑

σ∈G2

〈U2,a,σ
∂ Ľ∂V

2, (Jψ)a1,σ1 ⊗ (Jψ)a2,σ2〉

+
∑

b,c∈A2

∑

σ∈G2

〈W̌ 2,b,c,σ, (Jψ)b1+c1,σ1 ⊗ (Jψ)b2+c2,σ2〉. (11.5)

Finally, using the identity

4
∏

j=1

ψσj (xj) =

4
∏

j=1

ψσj (x1) +
∑

a∈A
4

|a|=1

4
∏

j=1

(xj − x1)
aj

∫ 1

0

4
∏

j=1

(Jψ)aj ,σj (x1 + u(xj − x1)) du,

Lemma 11.10 and Def. 11.12 of W 4,a,σ we get

∑

σ∈G4

〈V 4,0,σ, ψσ1 ⊗ . . .⊗ ψσ4〉

=
∑

a∈A4

∑

σ∈G4

〈U4,a,σLV 4 +W 4,a,σ, (Jψ)a1,σ1 ⊗ . . .⊗ (Jψ)a4,σ4〉. (11.6)

This finishes the proof.

12 Useful maps

In this section we study properties of the operators that appear on the RHS of the equa-

tions (2.24), (2.28), (2.20), (2.21), (2.22) introduced in Sec. 2. Recall that our goal is to solve

this system of equation by rewriting it as a fixed point equation of a certain map Xτ,ε;•, which

is defined in Sec. 13. The estimates we establish below play a crucial role in the proof that

the map Xτ,ε;• is well-defined and is a contraction.

Definition 12.1. For τ, ε ∈ [1, 0] and t ∈ (0, 1] we define

Ḣτ,ε;t ≡ (Ḣa,σ
τ,ε;t)a∈A2,σ∈G2 ∈ C∞(R2 × R

2)A
2×G

2

by the formula

Ḣa,σ
τ,ε;t(x, y) := ∂a1x ∂

a2
y Ġ

σ
τ,ε;t(x− y)

for all a = (a1, a2) ∈ A2 = {0, 1, 2}2, σ ∈ G2 and x, y ∈ R2. We omit τ if τ = 0 and we omit ε

if ε = 0.

Remark 12.2. The function Ḣτ,ε;t ∈ C∞(R2×R2)A
2×G

2

is antisymmetric and invariant under

the symmetries of the torus, the internal symmetries and the charge conjugation symmetry.

The proof of the invariance under the symmetries of the torus and the internal symmetries
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is straightforward. To prove the invariance under the charge conjugation symmetry one uses

Remark 4.3. If τ = 0, then the above function is also invariant under the symmetries of the

plane.

Lemma 12.3. There exists λ⋆ ∈ (0, 1] such that for all λ ∈ (0, λ⋆], ε ∈ [1, 0], t ∈ (0, 1], and

a ∈ A2, σ ∈ G2 it holds

‖w2
t Ḣ

a,σ
ε;t ‖M2 ≤ λ−κ t−|a|, ‖w2

t (Ḣ
a,σ
t − Ḣa,σ

ε;t )‖M2 ≤ λ−κ λκε λ
−κ
t t−|a|,

where the weight w2
t was introduced in Def. 9.1. Moreover, the map (0, 1] ∋ t 7→ Ḣε;t ∈ N 2

is continuous for all ε ∈ [0, 1].

Proof. Observe that w2
t (x1, x2) = (1 + |x1 − x2|)

1/2 exp(t−ζ |x1 − x2|
ζ) and ζ = 4/5 < ζ♭. As

a result, by Lemma 5.3 and Remark 5.2 (E) there exists a universal constant C ∈ (0,∞) such

that ‖w2
t Ḣ

a,σ
ε;t ‖M2 ≤ C t−|a|. This proves the first of the estimates stated in the lemma. The

second of the estimates follows from the above bound and Remark 5.2 (C).

Definition 12.4. Let m ∈ N+, ε ∈ [0, 1], s ∈ (0, 1]. The map Bm
ε;s : N (F ) → N m(F ) is

defined by

〈Bm
ε;s(V ), ϕ⊗m〉 :=

1

2

m
∑

k=0

(−1)m−k (k+1)(m−k+1) 〈V k+1⊗V m−k+1, ϕ⊗k⊗Ḣε;s⊗ϕ
⊗(m−k)〉

for all ϕ ∈ S (R2)A×G ⊗alg G −. The map Bm
ε;s : N (F ) × N (F ) → N m(F ) is defined by

Bm
ε;s(V,W ) := (Bm

ε;s(V +W,V +W )−Bm
ε;s(V −W,V −W ))/4.

The maps Bε;s : N → N , Bε;s : N × N → N are uniquely defined by the condition

ΠmBε;s = Bm
ε;s for all m ∈ N+. We also set Bm,a

ε;s := Πm,aBε;s and Bm,a,σ
ε;s := Πm,a,σBε;s.

We omit ε if ε = 0.

Remark 12.5. Using the antisymmetric property one shows that for V,W ∈ N it holds

Bε;s(V,W )[ϕ] = 〈DϕV [ϕ]⊗DϕW [ϕ], Ḣε;s〉 − 〈DϕV [0]⊗DϕW [0], Ḣε;s〉.

The above identity implies that

Bε;s(V,W )[ϕ+ JΨτ,ε;t∨s,s]−Bε;s(V,W )[JΨτ,ε;t∨s,s]

= 〈DϕV [ϕ+ JΨτ,ε;t∨s,s]⊗DϕW [ϕ+ JΨτ,ε;t∨s,s], Ḣε;s〉

− 〈DϕV [JΨτ,ε;t∨s,s]⊗DϕW [JΨτ,ε;t∨s,s], Ḣε;s〉.

Taking into account Def. 10.22 of the map Aτ,ε;t,s we obtain

Aτ,ε;t,sBε;s(V,W ) = Bε;s(Aτ,ε;t,sV,Aτ,ε;t,sW ). (12.1)
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Lemma 12.6. Let α ∈ [1,∞), β ∈ (2,∞), γ1, γ2 ∈ [0,∞). There exists λ⋆ ∈ (0, 1] such that

for all λ ∈ (0, λ⋆], τ, ε ∈ [0, 1] and V• ∈ W α,β;γ1
τ,ε , W• ∈ W α,β;γ2

τ,ε the map s 7→ sBε;s(Vs,Ws)

belongs to W α,β−1;γ1+γ2
τ,ε and for all V• ∈ V α,β;γ1, W• ∈ V α,β;γ2 it holds

(A) ‖s 7→ sBε;s(Vs,Ws)‖W
α,β−1;γ1+γ2
τ,ε

≤ λκ ‖V•‖
W

α,β;γ1
τ,ε

‖W•‖
W

α,β;γ2
τ,ε

,

(B) ‖s 7→ sBε;s(Vs,Ws)‖W̃
α,β−1;γ1+γ2
τ,ε

≤ λκ ‖V•‖
W̃

α,β;γ1
τ,ε

‖W•‖
W

α,β;γ2
τ,ε

,

(C) ‖s 7→ s (Bs(Vs,Ws)−Bε;s(Vs,Ws))‖
W̃

α/2,β−1;γ1+γ2
τ,ε

≤ λκε ‖V•‖V α,β;γ1 ‖W•‖V α,β;γ2 .

Proof. Let ν ∈ {0, 1/2}, s ∈ (0, 1] and Vs,Ws ∈ N (F ). By Def. 12.4 of the map Bε;s,

Def. 10.6 of the norm Mm, Lemma 9.5 (a), (b) and Remark 10.17 we obtain

∑

a∈Am

∑

σ∈Gm

‖wms;ν B
m,a,σ
ε;s (Vs,Ws)‖Mm ≤ sup

a∈A2

sup
σ∈G2

‖w2
sḢ

a,σ
ε;s ‖M2

×
m
∑

k=0

(k + 1)(m− k + 1)
∑

a∈Ak+1

∑

σ∈Gk+1

‖wk+1
s;ν V

k+1,a,σ
s ‖Mk+1

×
∑

a∈Am−k+1

∑

σ∈Gm−k+1

‖wm−k+1
s Wm−k+1,a,σ

s ‖Mm−k+1 (12.2)

and

∑

a∈Am

∑

σ∈Gm

‖wms;ν (B
m,a,σ
s (Vs,Ws)−Bm,a,σ

ε;s (Vs,Ws))‖Mm ≤ sup
a∈A2

sup
σ∈G2

‖w2
s(Ḣ

a,σ
s −Ḣa,σ

ε;s )‖M2

×

m
∑

k=0

(k + 1)(m− k + 1)
∑

a∈Ak+1

∑

σ∈Gk+1

‖wk+1
s;ν V

k+1,a,σ
s ‖Mk+1

×
∑

a∈Am−k+1

∑

σ∈Gm−k+1

‖wm−k+1
s Wm−k+1,a,σ

s ‖Mm−k+1 . (12.3)

Note that

ργ1+γ2,κ(m) = ργ1,κ(k + 1) + ργ2,κ(m− k + 1)− 4κ.

Moreover, observe that for all β ∈ (2,∞) there exists λ⋆ ∈ (0, 1] such that for all α ∈ [1,∞),

m ∈ N+ and λ ∈ (0, λ⋆] it holds

m
∑

k=0

α−(k+1)

(k + 1)β−1

α−(m−k+1)

(m− k + 1)β−1
≤ λ−κ

α−m

mβ−1
.

Recall also that λκs ≤ λκ for s ∈ (0, 1]. Consequently, by Def. 10.15 of the norm ‖•‖V α,β;γ and

Lemma 12.3 the bounds (12.2) and (12.3) imply that

(A0) ‖s 7→ sBε;s(Vs,Ws)‖V α,β−1;γ1+γ2 ≤ λκ ‖V•‖V α,β;γ1 ‖W•‖V α,β;γ2 ,

(B0) ‖s 7→ sBε;s(Vs,Ws)‖Ṽ α,β−1;γ1+γ2 ≤ λκ ‖V•‖Ṽ α,β;γ1 ‖W•‖V α,β;γ2 ,

(C0) ‖s 7→ s (Bs(Vs,Ws)−Bε;s(Vs,Ws))‖Ṽ α,β−1;γ1+γ2 ≤ λκε ‖V•‖V α,β;γ1 ‖W•‖V α,β;γ2 .
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The bounds (A) and (B) follow from Def. 10.32 of the norm W α,β;γ
τ,ε , the bounds (A0)

and (B0) and the identity (12.1). The bound (C) is a consequence of the bound (C0) and

Lemma 10.26 (C).

It remains to prove that the map s 7→ sBε;s(Vs,Ws) belongs to W α,β−1;γ1+γ2
τ,ε . By the

bound (A) and the fact that V fin;γ
τ is a dense subset of W α,β;γ

τ,ε it suffices to establish the above

claim for V• ∈ V fin;γ1
τ and W• ∈ V fin;γ2

τ . It follows from Lemma 12.8 that Bε;s(Vs,Ws) ∈ N fin
τ

for all s ∈ (0, 1]. Recall that the map (0, 1] ∋ s 7→ Ḣε;s ∈ N 2 is continuous by Lemma 12.3.

Hence, by a bound similar to the bound (12.2) the map (0, 1] ∋ s 7→ Bm
ε;s(Vs,Ws) ∈ N m is

continuous. Using the above fact and the bound (A) we infer that the map s 7→ sBε;s(Vs,Ws)

belongs to V fin;γ1+γ2
τ ⊂ W α,β−1;γ1+γ2

τ,ε . This finishes the proof.

Lemma 12.7. Let α ∈ [2,∞), β ∈ [1,∞), γ ∈ [0,∞). For τ, ε ∈ [0, 1], u ∈ (0, 1] and

V• ∈ V α,β;γ we define Iτ,ε;uV• ≡ (Imτ,ε;uV•)m∈N+ ∈ N by the equalities Imτ,ε;uV• = 0 for

m ∈ N+ \ 2N+,

Imτ,ε;uV• :=

∫ u

0

EAm
τ,ε;u,sVs/s ds ∈ N

m

for m ∈ {6, 8, . . .} and

Imτ,ε;uV• :=

∫ u

0

REAm
τ,ε;u,sVs/s ds ∈ N

m

for m ∈ {2, 4} provided the integrands appearing above are absolutely integrable. We set

Im,a,στ,ε;u V = Πm,a,σIτ,ε;uV . Moreover, we omit τ and ε if τ = 0 and ε = 0. There exists a

constant C ∈ (0,∞) such that for all τ, ε ∈ [0, 1] and V• ∈ W α,β;γ
τ,ε the map u 7→ Iτ,ε;uV•

belongs to W α,β+1;γ
τ,ε and for all τ, ε ∈ [0, 1] and V• ∈ V α,β;γ it holds

(A) ‖u 7→ Iτ,ε;uV•‖W
α,β+1;γ
τ,ε

≤ C ‖V•‖W
α,β;γ
τ,ε

,

(B) ‖u 7→ Iτ,ε;uV•‖W̃
α,β+1;γ
τ,ε

≤ C ‖V•‖W̃
α,β;γ
τ,ε

,

(C) ‖u 7→ (Iu − Iτ,ε;u)V•‖
W̃

α/4,β;γ
τ,ε

≤ C λκτ∨ε ‖V•‖V α,β;γ .

Proof. We shall prove the following bounds

(A1) ‖u 7→ ΠkIτ,ε;uV•‖V α,β;γ ≤ C ‖V•‖W
α,β;γ
τ,ε

,

(B1) ‖u 7→ ΠkIτ,ε;uV•‖Ṽ α,β;γ ≤ C ‖V•‖W̃
α,β;γ
τ,ε

,

(C1) ‖u 7→ Πk(Iu − Iτ,ε;u)V•‖Ṽ α/2,β−1;γ ≤ C λκτ∨ε ‖V•‖V α,β;γ .

with k ∈ {2, 4} and

(A2) ‖u 7→ Π>4Iτ,ε;uV•‖W
α,β+1;γ
τ,ε

≤ C ‖V•‖W
α,β;γ
τ,ε

,

(B2) ‖u 7→ Π>4Iτ,ε;uV•‖W̃
α,β+1;γ
τ,ε

≤ C ‖V•‖W̃
α,β;γ
τ,ε

,

(C2) ‖u 7→ Π>4(Iu − Iτ,ε;u)V•‖
W̃

α/4,β;γ
τ,ε

≤ C λκτ∨ε ‖V•‖V α,β;γ .

Recall that the operators Πk and Π>k were introduced in Def. 10.12. Note that by Re-

marks 10.35 and 10.19 the bounds (A1), (B1), (C1) imply analogous bounds with the norms

as in the bounds (A), (B), (C) and some universal constant C ∈ (0,∞). Hence, to prove the
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lemma it is enough to establish the bounds (A1), (B1), (C1) and (A2), (B2), (C2). In order to

verify the bound (A1) note that by Lemma 11.16 and Remark 10.10 for m ∈ {2, 4} it holds

‖wmu Im,a,στ,ε;u V•‖Mm ≤

∫ u

0

s−1 ‖wmu REAm,a,σ
τ,ε;u,sVs‖Mm ds

≤ sup
b∈Am

∫ u

0

s|a|−|b|−1 (1− s/u)ζ⋆ ‖wms Am,b,σ
τ,ε;u,sVs‖Mm ds.

By Def. 11.12 of the map R it holds ‖wmu Im,a,στ,ε;u V•‖Mm = 0 if |a| ≤ 1 and m = 2, or |a| = 0

and m = 4. Using Def. 10.32 and 10.15 as well as Lemma 2.4 (B) we obtain

‖wmu Im,a,στ,ε;u V•‖Mm ≤ α−mm−β ‖V•‖W
α,β;γ
τ,ε

∫ u

0

λργ,κ(m)
s s|a|+m/2−3 (1− s/u)ζ⋆ ds

≤ C α−mm−β λργ,κ(m)
u u|a|+m/2−2 ‖V•‖W

α,β;γ
τ,ε

with some universal constant C ∈ (0,∞) for m = 2 and |a| > 1, or m = 4 and |a| > 0.

This proves the bound (A1). The proof of the bound (B1) is the same only the wight wms is

replaced with the weight w̃ms . In order to verify the bound (C1) note that by Lemma 11.16

and Remark 10.10 for m ∈ {2, 4} it holds

‖wmu (Im,a,στ,ε;u − Im,a,σu )V•‖Mm ≤

∫ u

0

s−1 ‖wmu RE(Am,a,σ
τ,ε;u,s −Am,a,σ

u,s )Vs‖Mm ds

≤ sup
b∈Am

∫ u

0

s|a|−|b|−1 (1 − s/u)ζ⋆ ‖wms (Am,b,σ
τ,ε;u,s −Am,b,σ

u,s )Vs‖Mm ds.

By Def. 11.12 of the map R it holds ‖wmu (Im,a,στ,ε;u − Im,a,σu )V•‖Mm = 0 if |a| ≤ 1 and m = 2,

or |a| = 0 and m = 4. Using Lemma 10.26 (E) and Def. 10.15 as well as Lemma 2.4 (B) we

obtain

‖wmu (Im,a,στ,ε;u − Im,a,σu )V•‖Mm

≤ (α/2)−mm1−β ‖s 7→ (Aτ,ε;u,s −Au,s)Vs‖V α/2,β−1;γ

∫ u

0

λργ,κ(m)
s s|a|+m/2−3 (1− s/u)ζ⋆ ds

≤ C (α/2)−mm1−β λργ,κ(m)
u u|a|+m/2−2 ‖V•‖V α,β;γ

with some universal constant C ∈ (0,∞) for m = 2 and |a| > 1, or m = 4 and |a| > 0.

This proves the bound (C1). Let us turn to the proof of the bounds (A2), (B2), (C2). By

Def. 10.32 of the norm ‖•‖
W

α,β;γ
τ,ε

and the triangle inequality it suffices to show that

(A3) ‖u 7→ ΠkAτ,ε;t,uΠ>4Iτ,ε;uV•‖V α,β+1;γ ≤ C ‖V•‖W
α,β;γ
τ,ε

,

(B3) ‖u 7→ ΠkAτ,ε;t,uΠ>4Iτ,ε;uV•‖Ṽ α,β+1;γ ≤ C ‖V•‖W̃
α,β;γ
τ,ε

,

(C3) ‖u 7→ ΠkAτ,ε;t,uΠ>4(Iu − Iτ,ε;u)V•‖Ṽ α/4,β;γ ≤ C λκτ∨ε ‖V•‖V α,β;γ

for k ∈ {1, 2, 3, 4} and

(A4) ‖u 7→ Π>4Aτ,ε;t,uΠ>4Iτ,ε;uV•‖V α,β+1;γ ≤ C ‖V•‖W
α,β;γ
τ,ε

,
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(B4) ‖u 7→ Π>4Aτ,ε;t,uΠ>4Iτ,ε;uV•‖Ṽ α,β+1;γ ≤ C ‖V•‖W̃
α,β;γ
τ,ε

,

(C4) ‖u 7→ Π>4Aτ,ε;t,uΠ>4(Iu − Iτ,ε;u)V•‖Ṽ α/4,β;γ ≤ C λκτ∨ε ‖V•‖V α,β;γ

with some constant C ∈ (0,∞) independent of τ, ε, t ∈ [0, 1]. Actually, the bounds (A4),

(B4), (C4) with t = u together with Lemma 10.26 (A), (C), (E) and Remark 10.19 imply

the bounds (A3), (B3), (C3). Hence, it remains to prove the bounds (A4), (B4), (C4). Using

Def. 10.22 of the map Aτ,ε;t,u and Remark 10.25 (B) we obtain

Π>4Aτ,ε;t,uΠ>4Iτ,ε;uV• = Π>4Aτ,ε;t,uIτ,ε;uV•

= Π>4Aτ,ε;t,uE

∫ u

0

Aτ,ε;u,sVs/s ds = Π>4Eu

∫ u

0

Aτ,ε;t,sVs/s ds.

As a result, using Def. 10.32 and 10.15 as well as Remark 10.10 and Lemma 2.4 (A) we obtain

‖wmu A
m,a,σ
τ,ε;t,uIτ,ε;uV•‖Mm ≤

∫ u

0

s−1 ‖wmu A
m,a,σ
τ,ε;t,sVs‖Mm ds ≤

∫ u

0

s−1 ‖wms A
m,a,σ
τ,ε;t,sVs‖Mm ds

≤ α−mm−β ‖V•‖W
α,β;γ
τ,ε

∫ u

0

λργ,κ(m)
s s|a|+m/2−3 ds

≤ 10α−mm−β−1 λργ,κ(m)
u u|a|+m/2−2 ‖V•‖W

α,β;γ
τ,ε

for m ∈ {5, 6, . . .}. This implies the bound (A4). The proof of the bound (B4) is the same

only the wight wms is replaced with the weight w̃ms . In order to verify the bound (C4) we first

note that by Lemma 10.26 (C) it holds

‖u 7→ Π>4Aτ,ε;t,uΠ>4(Iu − Iτ,ε;u)V•‖Ṽ α/4,β;γ ≤ ‖u 7→ Aτ,ε;t,uΠ>4(Iu − Iτ,ε;u)V•‖Ṽ α/4,β;γ

≤ ‖u 7→ Π>4(Iu − Iτ,ε;u)V•‖Ṽ α/2,β;γ .

Using Def. 10.32 and 10.15 as well as Lemmas 10.26 (E) and 2.4 (A) we obtain

‖wmu (Imu − Imτ,ε;u)V•‖Mm ≤

∫ u

0

s−1 ‖wms (Am,a,σ
u,s −Am,a,σ

τ,ε;u,s)Vs‖Mm ds

≤ (α/2)−mm1−β ‖s 7→ (Au,s −Aτ,ε;u,s)Vs‖V
α/2,β−1;γ
τ,ε

∫ u

0

λργ,κ(m)
s s|a|+m/2−3 ds

≤ 10 (α/2)−mm−β λκτ∨ε λ
ργ,κ(m)
u u|a|+m/2−2 ‖V•‖V α,β;γ

for m ∈ {5, 6, . . .}, which implies that

‖u 7→ Π>4(Iu − Iτ,ε;u)V•‖Ṽ α/2,β;γ ≤ C ‖V•‖V α,β;γ .

This finishes the proof of the bound (C4).

It remains to prove that the map u 7→ Iτ,ε;uV• belongs to W α,β+1;γ
τ,ε . By the bound (A)

and the fact that V fin;γ
τ is a dense subset of W α,β;γ

τ,ε it suffices to establish the above claim

for V• ∈ V fin;γ
τ . It follows from Lemma 12.8 that Iτ,ε;uV• ∈ N fin

τ for all u ∈ (0, 1]. By the

bound (A) the map u 7→ Iτ,ε;uV• belongs to V fin;γ
τ ⊂ W α,β+1;γ

τ,ε . This finishes the proof.
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Lemma 12.8. Let τ, ε ∈ [0, 1] and t, s ∈ (0, 1]. If V ∈ N fin
τ , then Bε;t(V ) ∈ N fin

τ and

EAτ,ε;t,sV ∈ N fin
τ .

Proof. We have to prove that if V ∈ N fin is invariant under the symmetries of the torus/plane

and the internal symmetries and compatible with the flow of charge, then Bε;t(V ) and

EAτ,ε;t,sV have the same properties. First, note that the invariance of Bε;t(V ) and EAτ,ε;t,sV

under the symmetries of the torus/plane and the internal symmetries is a simple consequence

of Def. 10.22 and 12.4 of the maps Aτ,ε;t,s and Bε;t as well as Remarks 12.2 and 6.14. The

non-trivial part of the proof is the verification of the compatibility with the flow of charge

of Bε;t(V ) and EAτ,ε;t,sV . For an argument based on the analysis of Feynman diagrams we

refer the reader to [GK85a, Sec. 5.B]. Let us give a direct proof of the above claim. Since by

assumption V ∈ N fin is compatible with the flow of charge for every m ∈ N+ there exists

Wm ∈ N m
♯ such that V m = SWm and Wm satisfies the properties listed in Def. 10.28. Our

goal is to prove that:

(1) for all m ∈ N+ there exists Um ∈ N m
♯ such that Bm

ε;tV = SUm and Um satisfies the

conditions listed in Def. 10.28 and

(2) for all m ∈ N+ there exists Um ∈ N m
♯ such that EAm

τ,ε;t,sV = SUm and Um satisfies

the conditions listed in Def. 10.28.

To prove (1) is enough to observe that Um := Bm
ε;t(W ) satisfies the above-mentioned condi-

tions by Remark 12.2. The proof of (2) is more involved. Let us set N
−1
♯ = N 0

♯ = C. For

n ∈ N+ and i, j ∈ N+ such that i < j we define the operators

D
(i,j)
τ,ε;t,s, Dτ,ε;t,s, D̃τ,ε;t,s : N

n
♯ → N

n−2
♯

by the equalities D
(i,j)
τ,ε;t,sV = 0 for j > n,

〈D
(i,j)
τ,ε;t,sV, ϕ1 ⊗ . . .⊗ ϕn〉

:= E〈V, ϕ1 ⊗ . . .⊗ ϕi−1 ⊗ JΨτ,ε;t∨s,s ⊗ ϕi+1 ⊗ . . .⊗ ϕj−1 ⊗ JΨτ,ε;t∨s,s ⊗ ϕj+1 . . .⊗ ϕn〉

for j ≤ n and

Dτ,ε;t,s := 2

∞
∑

i=1

∞
∑

j=i+1

D
(i,j)
τ,ε;t,s, D̃τ,ε;t,s := (nD

(1,2)
τ,ε;t,s + n(n− 2)D

(2,3)
τ,ε;t,s).

Note that by Remark 6.14 and Def. 12.1 the expected value appearing in the equation defining

D
(i,j)
τ,ε;t,s can be expressed in terms of the function Hτ,ε;s −Hτ,ε;t∨s. We observe that for all

V ∈ N fin and m ∈ N+ it holds

EAτ,ε;t,sV = exp(Dτ,ε;t,s/2)V = exp(D̃τ,ε;t,s/2)V,

EAm
τ,ε;t,sV =

∞
∑

n=0

1

n!
(Dτ,ε;t,s/2)

n Vm+2n =

∞
∑

n=0

1

n!
(D̃τ,ε;t,s/2)

n V m+2n,
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where we used the fact that V m is antisymmetric for all m ∈ N+. The series on the RHS

of the second equation above are actually finite sums due to the assumption V ∈ N fin. For

m ∈ N+ we define

Um :=

∞
∑

n=0

1

n!
(D̃τ,ε;t,s/2)

nWm+2n.

Recall that (Wm)m∈N+ satisfies the properties (a), (b), (c) stated in Def. 10.28. Using the

properties (b) and (c) we prove that EAm
τ,ε;t,sV = SUm for allm ∈ N+. Using the property (a)

of (Wm)m∈N+ and the invariance of Hτ,ε;s−Hτ,ε;t∨s under the charge conjugation symmetry

we show the property (a) of (Um)m∈N+ . The properties (b) and (c) of (Um)m∈N+ follow from

the properties (b) and (c) of (Wm)m∈N+ and the fact that Hτ,ε;s−Hτ,ε;t∨s is antisymmetric.

This finishes the proof.

13 Fixed point problem

In this section we construct a solution Xτ,ε;• ≡ (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) of the system of

equations (2.24), (2.28), (2.20), (2.21), (2.22) introduced in Sec. 2. To this end, we rewrite

this system of equations as a fixed point equation of a certain map Xτ,ε;• acting in a complete

metric space Yτ,ε and prove that the map Xτ,ε;• is a contraction provided the parameter

λ ∈ (0, 1] is sufficiently small. As argued in Sec. 2 and proved in Sec. 14 using Xτ,ε;• it is

possible to construct a solution Uτ,ε;• of the flow equation (7.3).

Definition 13.1. For τ, ε ∈ [0, 1] and

X• ≡ (g•, r•, z•,W•) ∈ C((0, 1],C)× C((0, 1],C)× C((0, 1],C)× W
8,4;2−80κ
τ,ε

we define

‖X•‖P := sup
t∈(0,1]

λ1+10κ
t |gt|+ sup

t∈(0,1]

λ36κ−1
t t |rt|+ sup

t∈(0,1]

λ36κ−1
t |zt|,

‖X•‖Xτ,ε := ‖X•‖P + ‖W•‖W
8,4;2−80κ
τ,ε

, ‖X•‖X̃τ,ε
:= ‖X•‖P + ‖W•‖W̃

2,3;2−80κ
τ,ε

.

By definition the vector space Xτ,ε over C consists of maps X• of the above form such that

‖X•‖Xτ,ε <∞. We also define the set

Yτ,ε := {X• ∈ Xτ,ε | ‖X•‖Xτ,ε ≤ 1, Pε(X•) ≥ λκ, ∀t∈(0,1] Im gt = Im rt = Im zt = 0},

where Pε(X•) := inft∈(0,1] λε∨t gt. We omit τ, ε if τ = 0, ε = 0.

Lemma 13.2. For all τ, ε ∈ [0, 1] the space (Xτ,ε, ‖•‖Xτ,ε) is a Banach space. Moreover, the

set Yτ,ε is a closed subset of Xτ,ε.

Proof. The statement follows from Lemma 10.37.

Lemma 13.3. Let τ, ε ∈ [0, 1].
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(A) For all X• ∈ Xτ,ε it holds ‖X•‖X̃τ,ε
≤ ‖X•‖Xτ,ε .

(B) For all X• ∈ X it holds ‖X•‖X̃τ,ε
≤ ‖X•‖X .

Proof. Item (A) follows from Def. 10.32 and Remark 10.18. To prove Item (B) observe that

‖W•‖W̃
2,3;2−80κ
τ,ε

≤ ‖W•‖W
2,3;2−80κ
τ,ε

≤ ‖W•‖V 4,3;2−80κ ≤ ‖W•‖V 8,4;2−80κ ≤ ‖W•‖W
8,4;2−80κ
τ,ε

by Remark 10.33, 10.35, 10.18 and 10.34, respectively.

Definition 13.4. Let τ, ε ∈ [0, 1]. For X• ≡ (g•, r•, z•,W•) ∈ Yτ,ε and t ∈ (0, 1] define

Wm
τ,ε;t(X•) :=

∫ t

0

EAm
τ,ε;t,sBε;s(Vs) ds ∈ N

m, m ∈ N+ \ {2, 4},

Wm
τ,ε;t(X•) :=

∫ t

0

REAm
τ,ε;1,sBε;s(Vs) ds−ECm

τ,ε;1,tWt ∈ N
m, m ∈ {2, 4},

as well as

gτ,ε;t(X•) :=λ−1 +

∫ 1

t

(gs)
2 LEA4

τ,ε;1,sBε;s(Vs) ds ∈ R,

rτ,ε;t(X•) :=− LEA2
τ,ε;1,tU(1/gt, 0, 0)−

∫ 1

t

LEA2
τ,ε;1,sBε;s(Vs) ds ∈ R,

zτ,ε;t(X•) :=

∫ t

0

L∂EA2
τ,ε;1,sBε;s(Vs) ds ∈ R,

where

Vs ≡ Vs(X•) = U(1/gs, rs, zs) +Ws ∈ N , s ∈ (0, 1].

For λ ∈ (0, 1] small enough the map Xτ,ε;• : Yτ,ε → Xτ,ε is defined by

Xτ,ε;• := gτ,ε;• × rτ,ε;• × zτ,ε;• ×Wτ,ε;•, Wτ,ε;• := ×
m∈N+

Wm
τ,ε;•.

Remark 13.5. The fact that the map Xτ,ε;• is well-defined is non-trivial and is a consequence

of the estimates established below. We also point out that Wm
τ,ε;t(X•) = 0 for m ∈ N+ \ 2N+

by Remark 8.7.

Remark 13.6. We call the parameter gτ,ε;t the inverse of the effective coupling constant. Note

that we fixed gτ,ε;t at unit scale t = 1 to be gτ,ε;t=1 := λ−1, where λ ∈ (0, λ⋆] and λ⋆ ∈ (0, 1]

is a small constant.

Remark 13.7. The parameter rτ,ε;t is the correction to the effective mass due to the interac-

tion. Note that we fixed rτ,ε;t at unit scale t = 1 to be rτ,ε;t=1 = 0. Recall that that the free

part of the action contains the unit mass term. Hence, the above condition implies that the

effective mass at unit scale equals one.
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Remark 13.8. The fact that gτ,ε;t(X•), rτ,ε;t(X•), zτ,ε;t(X•) ∈ R follows from Lemma 11.10

and the symmetry properties of functionals U(g, r, z) and W ∈ W α,β;γ
τ,ε .

Theorem 13.9. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1] and all X•, Y• ∈ Yτ,ε, Z• ∈ Y it holds:

(A) ‖s 7→ Xτ,ε;s(X•)‖Xτ,ε ≤ C λκ and Pε(s 7→ Xτ,ε;s(X•)) ≥ 1/C,

(B) ‖s 7→ (Xτ,ε;s(X•)−Xτ,ε;s(Y•))‖Xτ,ε ≤ C λκ ‖X• − Y•‖Xτ,ε ,

(C) ‖s 7→ (Xτ,ε;s(X•)−Xτ,ε;s(Z•))‖X̃τ,ε
≤ C λκ ‖X• − Z•‖X̃τ,ε

,

(D) ‖s 7→ (Xs(Z•)−Xτ,ε;s(Z•))‖X̃τ,ε
≤ C λκτ∨ε.

Proof. The theorem is an immediate consequence of Lemmas 13.18, 13.26, 13.27, 13.28.

Corollary 13.10. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆] and

all τ, ε ∈ [0, 1] the map Xτ,ε;• : Yτ,ε → Yτ,ε is well-defined and has the unique fixed point

denoted by Xτ,ε;• ≡ (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) such that

‖X• −Xτ,ε;•‖X̃τ,ε
≤ C λκτ∨ε , (13.1)

where X• := Xτ,ε;• with τ = 0, ε = 0, and

‖Vmτ,ε;1‖N m ≤ C , ‖V m1 − V mτ,ε;1‖Ñ m ≤ C λκτ∨ε , (13.2)

where Vτ,ε;1 ≡ (V mτ,ε;1)m∈N+ := U(1/gτ,ε;1, rτ,ε;1, zτ,ε;1) +Wτ,ε;1 ∈ N for all τ, ε ∈ [0, 1] and

V1 := Vτ,ε;1 with τ = 0, ε = 0 and the norms ‖•‖N m , ‖•‖
Ñ m were introduced in Def. 10.12.

Proof. The fact that for all sufficiently small λ ∈ (0, 1] the map Xτ,ε;• : Yτ,ε → Yτ,ε is

well-defined and is a contraction follows from Theorem 13.9 and Remark 13.8. The existence

and uniqueness of the fixed point Xτ,ε;• is then a consequence of Lemma 13.2 and the Banach

fixed point theorem. In order to prove the bound (13.1) note that

X• −Xτ,ε;• = X•(X•)−Xτ,ε;•(Xτ,ε;•) .

Consequently, by the triangle inequality we obtain

‖X• −Xτ,ε;•‖X̃τ,ε
≤ ‖X•(X•)−Xτ,ε;•(X•)‖X̃τ,ε

+ ‖Xτ,ε;•(X•)−Xτ,ε;•(Xτ,ε;•)‖X̃τ,ε
.

Since X• ∈ Y , Xτ,ε;• ∈ Yτ,ε by the bounds (C) and (D) stated in Theorem 13.9 it holds

‖Xτ,ε;•(X•)−Xτ,ε;•(Xτ,ε;•)‖X̃τ,ε
≤ C λκ ‖X• −Xτ,ε;•‖X̃τ,ε

and

‖X•(X•)−Xτ,ε;•(X•)‖X̃τ,ε
≤ C λκτ∨ε .

Consequently, we have

‖X• −Xτ,ε;•‖X̃τ,ε
≤ C λκτ∨ε + C λκ ‖X• −Xτ,ε;•‖X̃τ,ε

.
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This proves the bound (13.1). By Def. 13.1, Remarks 10.34, 10.18 and the fact that λt=1 = λ

we have

λ−3/4 |1/gτ,ε;1|+ |rτ,ε;1|+ |zτ,ε;1|+ ‖Wτ,ε;•‖V 1,0;0 ≤ 2,

λ3/2 |g1 − gτ,ε;1|+ |r1 − rτ,ε;1|+ |z1 − zτ,ε;1|+ ‖W• −Wτ,ε;•‖Ṽ 1,0;0 ≤ C λκτ∨ε

for all τ, ε ∈ [0, 1]. As a result, in particular

|1/g1 − 1/gτ,ε;1| ≤ C λκτ∨ε

for all τ, ε ∈ [0, 1]. The bounds (13.2) follow now from Def. 10.15, 11.1. This finishes the

proof.

Definition 13.11. For ε ∈ [0, 1] and t ∈ (0, 1] we define θε;t := λt/λε∨t ∈ [0, 1].

Lemma 13.12. For all τ, ε ∈ [0, 1] and

X• ≡ (g•, r•, z•,W•) ∈ Yτ,ε, Y• ≡ (g̃•, r̃•, z̃•, W̃•) ∈ Yτ,ε, Z ≡ (ĝ•, r̂•, ẑ•, Ŵ•) ∈ Y

it holds

(A) sups∈(0,1] λ
12κ−1
s |θ2ε;s/gs| ≤ 1,

(B) sups∈(0,1] λ
12κ−1
s |θ2ε;s/gs − θ2ε;s/g̃s| ≤ ‖X• − Y•‖Xτ,ε ,

(C) sups∈(0,1] λ
12κ−1
s |θ2ε;s/gs − θ2ε;s/ĝs| ≤ ‖X• − Z•‖X̃τ,ε

.

Proof. First observe that λε∨sθ
2
ε;s ≤ λs, λ

2
ε∨sθ

2
ε;s ≤ λ2s and λs ≤ λ. The above bounds and

Def. 13.1 imply that

(A1) sups∈(0,1] λ
κ−1
s |θ2ε;s/gs| ≤ λκs/Pε(X•),

(B1) sups∈(0,1] λ
12κ−1
s |θ2ε;s/gs − θ2ε;s/g̃s| ≤ λκs/Pε(X•) λκs /Pε(Y•) ‖X• − Y•‖P ,

(C1) sups∈(0,1] λ
12κ−1
s |θ2ε;s/gs − θ2ε;s/ĝs| ≤ λκs/Pε(X•) λκs /P(X•) ‖X• − Z•‖P .

The lemma follows now from Def. 13.1.

Lemma 13.13. Let α, β ∈ [1,∞), γ ∈ [0,∞). There exists C ∈ (0,∞) such that for all

τ, ε ∈ [0, 1] it holds:

(A) ‖s 7→ λ−γ−8κ
s U(1, 0, 0)‖

W
α,β;γ
τ,ε

≤ C,

(B) ‖s 7→ λ−γ−4κ
s sU(0, 1, 0)‖

W
α,β;γ
τ,ε

≤ C,

(C) ‖s 7→ λ−γ−4κ
s U(0, 0, 1)‖

W
α,β;γ
τ,ε

≤ C.

Moreover, analogous bounds with W α,β;γ
τ,ε replaced by W̃ α,β;γ

τ,ε are true.

Proof. From Def. 11.1 of the functional U(g, r, z) and Def. 10.15 of the norms ‖•‖V α,β;γ

and ‖•‖
Ṽ α,β;γ it follows that the bounds

(A1) ‖s 7→ λ−γ−8κ
s U(1, 0, 0)‖V 2α,β;γ ≤ C,

(B1) ‖s 7→ λ−γ−4κ
s sU(0, 1, 0)‖V 2α,β;γ ≤ C,

(C1) ‖s 7→ λ−γ−4κ
s U(0, 0, 1)‖V 2α,β;γ ≤ C
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as well as the bounds with V 2α,β;γ replaced by Ṽ 2α,β;γ hold true. The bounds (A), (B), (C)

are consequences of the bounds (A1), (B1), (C1) and Remark 10.35.

Remark 13.14. It follows immediately from Def. 10.15 of the norm ‖•‖V α,β;γ and Def. 10.32

of the norm ‖•‖
W

α,β;γ
τ,ε

that for all continuous functions h• : (0, 1] → R it holds

‖s 7→ hs Vs‖V α,β;γ ≤ ‖h•‖∞ ‖V•‖V α,β;γ , ‖s 7→ hs Vs‖W
α,β;γ
τ,ε

≤ ‖h•‖∞ ‖V•‖W
α,β;γ
τ,ε

,

where ‖h•‖∞ := sups∈(0,1] |hs|. The analogous bounds with V α,β;γ replaced by Ṽ α,β;γ and

W α,β;γ
τ,ε replaced by W̃ α,β;γ

τ,ε hold true as well.

Lemma 13.15. For τ, ε ∈ [0, 1], X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε and s ∈ (0, 1] define

V(1)
ε;s(X•) := U(0, rs, zs), V(2)

ε;s (X•) := U(θ2ε;s/gs, 0, 0), V(3)
ε;s (X•) :=Ws

and

V(0)
ε;s(X•) := V(1)

ε;s(X•) +V(2)
ε;s (X•) +V(3)

ε;s (X•) = U(θ2ε;s/gs, rs, zs) +Ws.

We omit ε if ε = 0. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1], all X•, Y• ∈ Yτ,ε, Z• ∈ Y and all i ∈ {1, 2, 3} it holds:

(A) ‖s 7→ V
(i)
ε;s(X•)‖

W
8,4;γ(i)
τ,ε

≤ C,

(B) ‖s 7→ (V
(i)
ε;s(X•)−V

(i)
ε;s(Y•))‖

W
8,4;γ(i)
τ,ε

≤ C ‖X• − Y•‖Xτ,ε,

(C) ‖s 7→ (V
(i)
ε;s(X•)−V

(i)
ε;s(Z•))‖

W̃
2,3;γ(i)
τ,ε

≤ C ‖X• − Z•‖X̃τ,ε
,

where γ(0) = γ(1) = 1− 40κ, γ(2) = 1− 20κ and γ(3) = 2− 80κ.

Proof. For i = 1 the bounds (A), (B), (C) follow from Lemma 13.13 applied with γ = γ(1), Re-

mark 13.14 and Def. 13.1. For i = 2 the bounds (A), (B), (C) follow from Lemma 13.13 applied

with γ = γ(2), Lemma 13.12, Remark 13.14 and Def. 13.1. For i = 3 the bounds (A), (B), (C)

follow immediately from Def. 13.1. For i = 0 the bounds (A), (B), (C) are consequences of

the bounds (A), (B), (C) with i ∈ {1, 2, 3} and the triangle inequality.

Lemma 13.16. For τ, ε ∈ [0, 1], X• ∈ Xτ,ε, i, j ∈ {0, 1, 2, 3} and s ∈ (0, 1] define

G(i,j)
ε;s (X•) := Bε;s(V

(i)
s (X•),V

(j)
s (X•)), Gε;s(X•) := G(0,0)

ε;s (X•),

where the maps V
(i)
ε;s, i ∈ {0, 1, 2, 3}, were introduced in Lemma 13.15. We omit ε if ε = 0.

There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all τ, ε ∈ [0, 1], all

X•, Y• ∈ Yτ,ε, Z• ∈ Y and all i, j ∈ {0, 1, 2, 3} it holds:

(A) ‖s 7→ sG
(i,j)
ε;s (X•)‖

W
8,3;γ(i)+γ(j)
τ,ε

≤ C λκ,

(B) ‖s 7→ s (G
(i,j)
ε;s (X•)−G

(i,j)
ε;s (Y•))‖

W
8,3;γ(i)+γ(j)
τ,ε

≤ C λκ ‖X• − Y•‖Xτ,ε,

(C) ‖s 7→ s (G
(i,j)
ε;s (X•)−G

(i,j)
ε;s (Z•))‖

W̃
2,2;γ(i)+γ(j)
τ,ε

≤ C λκ ‖X• − Z•‖X̃τ,ε
,

(D) ‖s 7→ s (G
(i,j)
s (Z•)−G

(i,j)
ε;s (Z•))‖

W̃
2,2;γ(i)+γ(j)
τ,ε

≤ C λκε ,
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where γ(0) = γ(1) = 1− 40κ, γ(2) = 1− 20κ and γ(3) = 2− 80κ.

Remark 13.17. Observe that for X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε it holds

Bε;s(U(1/gs, rs, zs) +Ws) = Gε;s(X•) = G(0,0)
ε;s (X•)

= G(1,1)
ε;s (X•) + 2G(1,2)

ε;s (X•) + 2G(1,3)
ε;s (X•) +G(2,2)

ε;s (X•) + 2G(2,3)
ε;s (X•) +G(3,3)

ε;s (X•).

Proof. Note that since Ḣε;s = 0 if s ∈ (0, ε] it holds Bε;s(•) = 0 if s ∈ (0, ε]. Consequently,

since θ2ε;s = 1 if s ∈ (0, ε] we obtain

G(i,j)
ε;s (X•) := Bε;s(V

(i)
ε;s(X•),V(j)

ε;s(X•))

and

G(i,j)
s (Z•)−G(i,j)

ε;s (Z•) = Bs(V
(i)
s (Z•),V

(j)
s (Z•))−Bε;s(V

(i)
s (Z•),V

(j)
s (Z•)).

Moreover, it holds

G(i,j)
ε;s (X•)−G(i,j)

ε;s (Y•) = Bε;s(V
(i)
ε;s(X•),V(j)

ε;s(X•)−V(j)
ε;s(Y•))

+Bε;s(V
(j)
ε;s(Y•),V(i)

ε;s(X•)−V(i)
ε;s(Y•))

and

G(i,j)
ε;s (X•)−G(i,j)

ε;s (Z•) = Bε;s(V
(i)
ε;s(X•),V

(j)
ε;s(X•)−V(j)

ε;s(Z•))

+Bε;s(V
(j)
ε;s(Z•),V

(i)
ε;s(X•)−V(i)

ε;s(Z•)).

The application of Lemma 12.6 with γ1 = γ(i) and γ2 = γ(j) yields

(A) ‖s 7→ sG
(i,j)
ε;s (X•)‖

W
8,3;γ(i)+γ(j)
τ,ε

≤ λκ ‖s 7→ V
(i)
ε;s(X•)‖

W
8,4;γ(i)
τ,ε

‖s 7→ V
(j)
ε;s(X•)‖

W
8,4;γ(j)
τ,ε

,

(B) ‖s 7→ s (G
(i,j)
ε;s (X•)−G

(i,j)
ε;s (Y•))‖

W
8,3;γ(i)+γ(j)
τ,ε

≤ λκ ‖s 7→ V
(i)
ε;s(X•)‖

W
8,4;γ(i)
τ,ε

‖s 7→ (V
(j)
ε;s(X•)−V

(j)
ε;s(Y•))‖

W
8,4;γ(j)
τ,ε

+ λκ ‖s 7→ V
(j)
ε;s(Y•)‖

W
8,4;γ(j)
τ,ε

‖s 7→ (V
(i)
ε;s(X•)−V

(i)
ε;s(Y•))‖

W
8,4;γ(i)
τ,ε

,

(C) ‖s 7→ s (G
(i,j)
ε;s (X•)−G

(i,j)
ε;s (Z•))‖

W̃
2,2;γ(i)+γ(j)
τ,ε

≤ λκ ‖s 7→ V
(i)
ε;s(X•)‖

W
2,3;γ(i)
τ,ε

‖s 7→ (V
(j)
ε;s(X•)−V

(j)
ε;s(Z•))‖

W̃
2,3;γ(j)
τ,ε

+ λκ ‖s 7→ V
(j)
ε;s(Z•)‖

W
2,3;γ(j)
τ,ε

‖s 7→ (V
(i)
ε;s(X•)−V

(i)
ε;s(Z•))‖

W̃
2,3;γ(i)
τ,ε

,

(D) ‖s 7→ s (G
(i,j)
s (Z•)−G

(i,j)
ε;s (Z•))‖

W̃
2,2;γ(i)+γ(j)
τ,ε

≤ λκε ‖s 7→ V
(i)
s (Z•)‖V 4,3;γ(i) ‖s 7→ V

(j)
s (Z•)‖V 4,3;γ(j) .

Next, observe that

‖s 7→ V(i)
ε;s(X•)‖

W
2,3;γ(i)
τ,ε

≤ ‖s 7→ V(i)
ε;s(X•)‖V 4,3;γ(i) ≤ ‖s 7→ V(i)

ε;s(X•)‖
W

8,4;γ(i)
τ,ε

,

‖s 7→ V(i)
ε;s(Z•)‖

W
2,3;γ(i)
τ,ε

≤ ‖s 7→ V(i)
ε;s(Z•)‖V 4,3;γ(i) ≤ ‖s 7→ V(i)

ε;s(Z•)‖W 8,4;γ(i) ,

‖s 7→ V(i)
ε;s(Z•)‖V 4,3;γ(i) ≤ ‖s 7→ V(i)

ε;s(Z•)‖V 8,4;γ(i) ≤ ‖s 7→ V(i)
ε;s(Z•)‖W 8,4;γ(i)
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by Remarks 10.18, 10.34 and 10.35. The statement of the lemma is now an immediate

consequence of Lemma 13.15.

Lemma 13.18. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1] and all X•, Y• ∈ Yτ,ε, Z• ∈ Y it holds:

(A) ‖s 7→ Wτ,ε;s(X•)‖W
8,4;2−80κ
τ,ε

≤ C λκ,

(B) ‖s 7→ (Wτ,ε;s(X•)−Wτ,ε;s(Y•))‖W
8,4;2−80κ
τ,ε

≤ C λκ ‖X• − Y•‖Xτ,ε ,

(C) ‖s 7→ (Wτ,ε;s(X•)−Wτ,ε;s(Z•))‖W̃
2,3;2−80κ
τ,ε

≤ C λκ ‖X• − Z•‖X̃τ,ε
,

(D) ‖s 7→ (Ws(Z•)−Wτ,ε;s(Z•))‖W̃
2,3;2−80κ
τ,ε

≤ C λκτ∨ε.

Proof. For τ, ε ∈ [0, 1], X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε and s ∈ (0, 1] we define

Hτ,ε;s(X•) := (Hm
τ,ε;s(X•))m∈N+ ∈ N

by the equality

Hτ,ε;s(X•) :=Ws −EAτ,ε;1,sWs = −ECτ,ε;1,sWs.

Recalling that the maps Iτ,ε;s and Gτ,ε;s were defined in Lemmas 12.7 and 13.16, respectively,

and using the notation introduced in Def. 10.12 we obtain

Wτ,ε;s(X•) := W(1)
τ,ε;s(X•) +W(2)

τ,ε;s(X•),

where

W(1)
τ,ε;s(X•) := Iτ,ε;s(u 7→ uGε;u(X•)), W(2)

τ,ε;s(X•) := (Π2 +Π4)Hτ,ε;s(X•).

Observe that

W(1)
τ,ε;s(X•)−W(1)

τ,ε;s(Y•) = Iτ,ε;s(u 7→ u (Gε;u(X•)−Gε;u(Y•))),

W(1)
τ,ε;s(X•)−W(1)

τ,ε;s(Z•) = Iτ,ε;s(u 7→ u (Gε;u(X•)−Gε;u(Z•))),

W(1)
s (Z•)−W(1)

τ,ε;s(Z•) = (Is − Iτ,ε;s)(u 7→ uGu(Z•)) + Iτ,ε;s(u 7→ u (Gu(Z•)−Gε;u(Z•))).

It follows now from Lemma 12.7 and Lemma 13.16 that the bounds (A), (B), (C) with

Wτ,ε;s(X•) replaced by W
(1)
τ,ε;s(X•) hold true. Consequently, by the triangle inequality to com-

plete the proof of the lemma it suffices to establish the bounds (A), (B), (C) with Wτ,ε;s(X•)

replaced by W
(2)
τ,ε;s(X•). By Remarks 10.35 and 10.19 the latter bounds are implied by the

following bounds:

(A1) ‖s 7→ Hτ,ε;s(X•)‖V 4,3;2−80κ ≤ C λκ,

(B1) ‖s 7→ (Hτ,ε;s(X•)−Hτ,ε;s(Y•))‖V 4,3;2−80κ ≤ C λκ ‖X• − Y•‖Xτ,ε ,

(C1) ‖s 7→ (Hτ,ε;s(X•)−Hτ,ε;s(Z•))‖Ṽ 1,2;2−80κ ≤ C λκ ‖X• − Z•‖X̃τ,ε
,

(D1) ‖s 7→ (Hs(Z•)−Hτ,ε;s(Z•))‖Ṽ 1,2;2−80κ ≤ C λκτ∨ε.

The above bounds follow from Lemma 10.26 (B) and (D), Remark 10.10 and Def. 13.1. This

finishes the proof.
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Lemma 13.19. Let γ ∈ [0,∞). For τ, ε ∈ [0, 1], W• ∈ W 8,3;γ
τ,ε and s ∈ (0, 1] define

cm,0τ,ε;s(W•) := LEAm
τ,ε;1,sWs, m ∈ {2, 4},

c2,1τ,ε;s(W•) := L∂EA2
τ,ε;1,sWs.

There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all τ, ε ∈ [0, 1], t ∈ (0, 1],

W•, W̃• ∈ W 8,3;γ
τ,ε , Ŵ• ∈ W 8,3;γ and all (m, i) ∈ {(2, 0), (4, 0), (2, 1)} it holds:

(A) λ−γ−2κm
t t3−m/2−i |c

(m,i)
τ,ε;t (W•)| ≤ C ‖s 7→ sWs‖W

8,3;γ
τ,ε

,

(B) λ−γ−2κm
t t3−m/2−i |c

(m,i)
τ,ε;t (W•)− c

(m,i)
τ,ε;t (W̃•)| ≤ C ‖s 7→ s (Ws − W̃s)‖W

8,3;γ
τ,ε

.

(C) λ−γ−2κm
t t3−m/2−i |c

(m,i)
τ,ε;t (W•)− c

(m,i)
τ,ε;t (Ŵ•)| ≤ C ‖s 7→ s (Ws − Ŵs)‖W̃

2,2;γ
τ,ε

,

(D) λ−γ−2κm
t t3−m/2−i |c

(m,i)
t (Ŵ•)− c

(m,i)
τ,ε;t (Ŵ•)| ≤ C λκτ∨ε ‖s 7→ s Ŵs‖W

8,3;γ
τ,ε

.

Remark 13.20. Actually, since the map c
(m,i)
τ,ε;t is linear Item (B) of the above lemma follows

immediately from Item (A).

Proof. By Remark 10.19 and Lemma 10.26 (A), (C), (E) there exists C ∈ (0,∞) such that

(A1) ‖s 7→ sAm
τ,ε;1,sWs‖V m;γ ≤ C ‖s 7→ sWs‖W

8,3;γ
τ,ε

,

(B1) ‖s 7→ s (Am
τ,ε;1,sWs −Am

τ,ε;1,sW̃s)‖V m;γ ≤ C ‖s 7→ s (Ws − W̃s)‖W
8,3;γ
τ,ε

,

(C1) ‖s 7→ s (Am
τ,ε;1,sWs −Am

τ,ε;1,sŴs)‖Ṽ m;γ ≤ C ‖s 7→ s (Ws − Ŵs)‖W̃
2,2;γ
τ,ε

,

(D1) ‖s 7→ s (Am
1,sŴs −Am

τ,ε;1,sŴs)‖Ṽ m;γ ≤ C λκτ∨ε ‖s 7→ s Ŵs‖W
8,3;γ
τ,ε

for all τ, ε ∈ [0, 1] and m ∈ {2, 4}. The bounds (A), (B), (C), (D) follow now from Def. 10.15

of the norm ‖•‖V m;γ , Remark 10.10 and Lemma 11.9. This completes the proof.

Lemma 13.21. For τ, ε ∈ [0, 1], X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε and s ∈ (0, 1] define

a(1)τ,ε;s(X•) := LEA4
τ,ε;1,sBε;s(U(1/gs, 0, 0)),

a(2)τ,ε;s(X•) := LEA4
τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)),

a(3)τ,ε;s(X•) := LEA4
τ,ε;1,sBε;s(2U(1/gs, rs, zs) +Ws,Ws)

and
a(4)τ,ε;s(X•) := L∂EA2

τ,ε;1,sBε;s(U(1/gs, 0, 0)),

a(5)τ,ε;s(X•) := L∂EA2
τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)),

a(6)τ,ε;s(X•) := L∂EA2
τ,ε;1,sBε;s(2U(1/gs, rs, zs) +Ws,Ws).

There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all τ, ε ∈ [0, 1], all

t ∈ (0, 1], all X•, Y• ∈ Yτ,ε, Z• ∈ Y and all i ∈ {1, . . . , 6} it holds:

(A) λ
−γ(i)
t t |a

(i)
τ,ε;t(X•)| ≤ C λκ,

(B) λ
−γ(i)
t t |a

(i)
τ,ε;t(X•)− a

(i)
τ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X .

(C) λ
−γ(i)
t t |a

(i)
τ,ε;t(X•)− a

(i)
τ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,
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(D) λ
−γ(i)
t t |a

(i)
t (Z•)− a

(i)
τ,ε;t(Z•)| ≤ C λκτ∨ε,

where γ(1) = 2− 32κ, γ(2) = γ(3) = 3− 108κ, γ(4) = 2− 36κ, γ(5) = γ(6) = 3− 112κ.

Remark 13.22. Observe that it holds

(gs)
2LEA4

τ,ε;1,sBε;s(Vs) = (gs)
2a(1)τ,ε;s(X•) + (gs)

2a(2)τ,ε;s(X•) + (gs)
2a(3)τ,ε;s(X•),

L∂EA2
τ,ε;1,sBε;s(Vs) = a(4)τ,ε;s(X•) + a(5)τ,ε;s(X•) + a(6)τ,ε;s(X•),

(13.3)

where Vs = U(1/gs, rs, zs) +Ws and X• ≡ (g•, r•, z•,W•). Note that the expressions

(gs)
2LEA4

τ,ε;1,sBε;s(Vs), LEA2
τ,ε;1,sBε;s(Vs), L∂EA2

τ,ε;1,sBε;s(Vs)

appear in Def. 13.4 of the maps gτ,ε;•, rτ,ε;• and zτ,ε;•. The second of the above expressions

will be estimated directly in Lemma 13.27 using Lemmas 13.19 and 13.16. One could also

estimate directly the remaining two expressions without using the decompositions (13.3).

However, estimates obtained in that way are not strong enough for our purposes as they do

not take into account the fact that a
(2)
τ,ε;s(X•) = 0 and a

(6)
τ,ε;s(X•) = 0 for s ∈ (0, 1/2), which

we prove below. Let us also mention that we will not use at all the bounds for a
(1)
τ,ε;s(X•)

stated in the above lemma. Instead we will estimate directly (gs)
2a

(1)
τ,ε;s(X•) = fτ,ε;s, where

fτ,ε;s is introduced in Def. 13.23. Note that fτ,ε;s does not depend on X•.

Proof. First observe that for X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε it holds

Bε;s(U(1/gs, 0, 0)) = G(2,2)
τ,ε (X•),

Bε;s(U(2/gs, rs, zs), U(0, rs, zs)) = G(1,1)
τ,ε (X•) + 2G(1,2)

τ,ε (X•),

Bε;s(2U(1/gs, rs, zs) +Ws,Ws) = 2G(1,3)
τ,ε (X•) + 2G(2,3)

τ,ε (X•) +G(3,3)
τ,ε (X•),

where the maps G
(i,j)
τ,ε were introduced in Lemma 13.16. Using the fact that

∫

R2 Ġε;s(x) dx = 0

for s ∈ (0, 1/2) by Remark 5.2 (D) as well as Def. 10.22, 12.4 and 11.1 one shows that

LEA4
τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)) = 0,

L∂EA2
τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)) = 0

for s ∈ (0, 1/2). Recall that θ1/2;t = λt/λ1/2∨t. Since θ1/2;s = 1 for s ∈ [1/2, 1] we obtain

a(2)τ,ε;s(X•) = θ1−40κ
1/2;s LEA4

τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)) (13.4)

and

a(6)τ,ε;s(X•) = θ1−40κ
1/2;s L∂EA2

τ,ε;1,sBε;s(U(2/gs, rs, zs), U(0, rs, zs)). (13.5)

To prove the bounds (A), (B), (C), (D) in the cases i ∈ {1, . . . , 6} we use the following

arguments, respectively.

(1) We apply Lemma 13.19 with m = 4, i = 0 and γ = 2 − 40κ and Lemma 13.16 with

(i, j) = (2, 2).
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(2) We apply Lemma 13.19 with m = 4, i = 0 and γ = 2 − 80κ and Lemma 13.16 with

(i, j) ∈ {(1, 1), (1, 2)} and use the identity (13.4).

(3) We apply Lemma 13.19 with m = 4, i = 0 and γ = 3 − 120κ and Lemma 13.16 with

(i, j) ∈ {(1, 3), (2, 3), (3, 3)}.

(4) We apply Lemma 13.19 with m = 2, i = 1 and γ = 2 − 40κ and Lemma 13.16 with

(i, j) = (2, 2).

(5) We apply Lemma 13.19 with m = 2, i = 1 and γ = 2 − 80κ and Lemma 13.16 with

(i, j) ∈ {(1, 1), (1, 2)} and use the identity (13.5).

(6) We apply Lemma 13.19 with m = 2, i = 1 and γ = 3 − 120κ and Lemma 13.16 with

(i, j) ∈ {(1, 3), (2, 3), (3, 3)}.

This finishes the proof.

Definition 13.23. For τ, ε ∈ [0, 1] and t ∈ (0, 1] we define

fτ,ε;t := λ−1 +

∫ 1

t

LEA4
τ,ε;1,sBε;s(U(1, 0, 0)) ds, hτ,ε;t := LEA2

τ,ε;1,tU(1, 0, 0).

Remark 13.24. For X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε it holds

gτ,ε;t(X•) = fτ,ε;t +

∫ 1

t

(gs)
2 (LEA4

τ,ε;1,sBε;s(Vs)− LEA4
τ,ε;1,sBε;s(U(1/gs, 0, 0))) ds

and

rτ,ε;t(X•) = −hτ,ε;t/gt −

∫ 1

t

LEA2
τ,ε;1,sBε;s(Vs(X•)) ds,

where Vs(X•) = U(1/gs, rs, zs) +Ws.

Lemma 13.25. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆] it holds

(A) λ−1
ε∨t/C ≤ fτ,ε;t ≤ C λ−1

t ,

(B) |ft − fτ,ε;t| ≤ C λκε∨τ λ
−1−8κ
t ,

(C) |hτ,ε;t| ≤ C λ−4κ
t t−1,

(D) |ht − hτ,ε;t| ≤ C λκε∨τ λ
−4κ
t t−1

for all τ, ε ∈ [0, 1] and t ∈ (0, 1].

Proof. Let us first note that A4
τ,ε;s,1Bε;s(U(1, 0, 0)) coincides with the RHS of Eq. (10.4)

with V = Bε;s(U(1, 0, 0)). Since B4+k
ε;s (U(1, 0, 0)) = 0 for all k ∈ N0 but k = 2 in the

case at hand only the term k = 2 contributes to the sum over k ∈ N0 on the RHS of

Eq. (10.4). Consequently, taking into account Eq. (6.1) and Def. 12.4 we conclude that

LEA4
τ,ε;1,sBε;s(U(1, 0, 0)) can be represented in terms of the propagators Hτ,ε;s and Ḣε;s

introduced in Def. 12.1, which are defined in terms of Gτ,ε;s and Ġε;s. More specifically,

LEA4
τ,ε;1,sBε;s(U(1, 0, 0)) is a linear combination of one-loop Feynman diagrams with two

quartic vertices, one of which is integrated over R2. The following types of diagrams ap-

pear: (1) diagrams with the vertices connected by two edges representing the propagators
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Ġε;s and Gτ,ε;s, respectively, and (2) diagrams with the vertices connected by a single edge

representing the propagator Ġε;s and with a self-contraction of one of of the vertices by the

propagator Gτ,ε;s. Note that for s ∈ (0, 1/2) the diagrams of the type (2) vanish identically

since
∫

R2 Ġε;s(x) dx = 0 for s ∈ (0, 1/2) by Remark 5.2 (D). For s ∈ [1/2, 1] both of the

above-mentioned diagrams contribute to LEA4
τ,ε;s,1Bε;s(U(1, 0, 0)). However, in this regime

both propagators Ġε;s and Gτ,ε;s have the UV cutoff of order one and by elementary estimates

LEA4
τ,ε;s,1Bε;s(U(1, 0, 0)) is uniformly bounded for all τ, ε ∈ [0, 1] and s ∈ [1/2, 1]. Thus, we

can restrict attention to the diagrams of the type (1) and s ∈ (0, 1/2].

Taking into account all possible contractions of the fields represented by edges of the

diagrams of the type (1) we obtain that for s ∈ (0, 1/2] and τ ∈ (0, 1] it holds

LEA4
τ,ε;s,1Bε;s(U(1, 0, 0)) = 8(N − 1) τ2

∑

p∈(2πτZ)2

ϑ(2εω(p))2 ϑ(sω(p)) ϑ̇(sω(p))ω(p) (1 − |p|2)

(1 + |p|2)2

whereas for s ∈ (0, 1/2] and τ = 0 (recall that we omit τ in the notation if τ = 0) it holds

LEA4
ε;s,1Bε;s(U(1, 0, 0)) =

8(N − 1)

(2π)2

∫

R2

ϑ(2εω(p))2 ϑ(sω(p)) ϑ̇(sω(p))ω(p) (1 − |p|2)

(1 + |p|2)2
dp.

As a result, there exists C ∈ (0,∞) such that

|LEA4
ε;s,1Bε;s(U(1, 0, 0))− LEA4

τ,ε;s,1Bε;s(U(1, 0, 0))| ≤ C (1− log s)

for all τ, ε ∈ [0, 1] and s ∈ (0, 1/2]. This and the first paragraph of the proof implies that

there exists C ∈ (0,∞) such that

|fτ,ε;t − fε;t| ≤ C (13.6)

for all τ, ε ∈ [0, 1] and t ∈ (0, 1]. By the Lebesgue dominated convergence theorem it holds

lim
sց0

sLEA4
s,1Bs(U(1, 0, 0)) = −

β2
π

∫

R2

ϑ(|p|) ϑ̇(|p|)

|p|
dp = −2β2

∫ ∞

0

ϑ(|p|) ϑ̇(|p|) d|p| = β2.

Next, observe that

LEA4
s,1Bε;s(U(1, 0, 0))− β2/s

=
β2
πs

∫

R2

(

ϑ((s2 + |p|2)1/2) ϑ̇((s2 + |p|2)1/2) (s2 − |p|2)

(s2 + |p|2)3/2
+
ϑ(|p|) ϑ̇(|p|)

|p|

)

dp.

Hence, we conclude that there exists C ∈ (0,∞) such that it holds

|LEA4
ε;s,1Bε;s(U(1, 0, 0))− β2/s| ≤ C

for all ε ∈ [0, 1] and s ∈ (4ε, 1]. Consequently,

|fε;t − λ−1
t | ≤

∫ 1

t

|LEA4
ε;1,sBε;s(U(1, 0, 0))− β2/s| ≤ C (13.7)
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for all ε ∈ [0, 1] and t ∈ [4ε, 1]. Using the bound

|LEA4
ε;s,1Bε;s(U(1, 0, 0))|

≤
β2
πs

∫

R2

ϑ(2ε(1 + |p|2/s2)1/2)2 ϑ((s2 + |p|2)1/2) |ϑ̇((s2 + |p|2)1/2)| (s2 − |p|2)

(s2 + |p|2)3/2
dp

we show that there exists C ∈ (0,∞) such that

|LEA4
ε;s,1Bε;s(U(1, 0, 0))| ≤ C/(ε ∨ s)

for all ε ∈ [0, 1] and s ∈ (0, 1]. Hence,

|fε;t − fε;4ε| ≤

∫ 4ε

t

|LEA4
ε;1,sBε;s(U(1, 0, 0))| ds ≤ 4C (13.8)

for all ε ∈ [0, 1] and t ∈ (0, 4ε]. Combining the bounds (13.6), (13.7) and (13.8) we obtain

that there exists λ⋆ ∈ (0, 1] such that

|fτ,ε;t − λ−1
ε∨t| ≤ λ−1

⋆ /2 ≤ λ−1/2 ≤ λ−1
ε∨t/2

for all λ ∈ (0, λ⋆], τ, ε ∈ [0, 1] and s ∈ (0, 1]. This proves the bound (A).

To prove the bound (B) first note that

|LEA4
1,sBs(U(1, 0, 0))− LEA4

τ,ε;1,sBε;s(U(1, 0, 0))|

≤ |c4,0s (Bs(U(1, 0, 0))− c4,0τ,ε;s(Bs(U(1, 0, 0))|

+ |c4,0τ,ε;s(Bs(U(1, 0, 0))− c4,0τ,ε;s(Bε;s(U(1, 0, 0))|

where the map c
4,0
τ,ε;t was introduced in Lemma 13.19. By Lemma 12.6 (A), (C) applied with

γ1 = γ2 = −8κ and Lemma 13.13 applied with γ = −8κ there exists C ∈ (0,∞) such that

‖Bs(U(1, 0, 0))‖
W

8,3;−16κ
τ,ε

≤ C, ‖Bs(U(1, 0, 0))−Bε;s(U(1, 0, 0))‖
W̃

2,2;−16κ
τ,ε

≤ C λκε

for all τ, ε ∈ [0, 1] and s ∈ (0, 1]. Consequently, by Lemma 13.19 (B), (C), (D) applied with

m = 4, i = 0 and γ = −16κ there exists C ∈ (0,∞) such that

|LEA4
1,sBs(U(1, 0, 0))− LEA4

τ,ε;1,sBε;s(U(1, 0, 0))| ≤ C λκτ∨ε λ
−8κ
s s−1

for all τ, ε ∈ [0, 1] and s ∈ (0, 1]. The bound (B) follows now from Lemma 2.4 (E) applied

with ρ = −1− 8κ.

Finally, let us turn to the proof of the bounds (C), (D). Observe that

hτ,ε;t = LEA2
τ,ε;1,tU(1, 0, 0) = t c2,0τ,ε;t(s 7→ s−1 U(1, 0, 0)),

where the map c
2,0
τ,ε;t was introduced in Lemma 13.19. The bounds (C), (D) follow now from

Lemma 13.19 (A), (D) applied with m = 2, i = 0 and γ = −8κ as well as Lemma 13.13 (A)

applied with γ = −8κ. This finishes the proof.

79



Lemma 13.26. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1], all t ∈ (0, 1] and all X•, Y• ∈ Yτ,ε, Z• ∈ Y it holds:

(A) λ1+10κ
t |gτ,ε;t(X•)| ≤ C λκ,

(B) λ1+10κ
t |gτ,ε;t(X•)− gτ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X .

(C) λ1+10κ
t |gτ,ε;t(X•)− gτ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,

(D) λ1+10κ
t |gt(Z•)− gτ,ε;t(Z•)| ≤ C λκτ∨ε,

(E) λε∨t gτ,ε;t(X•) ≥ 1/C.

Proof. For τ, ε ∈ [0, 1], X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε and s ∈ (0, 1] define

g(1)
τ,ε;s(X•) := (gs)

2 (a(2)τ,ε;s(X•) + a(3)τ,ε;s(X•)), g
(0)
τ,ε;t(X•) :=

∫ 1

t

g(1)
τ,ε;s(X•) ds,

where the maps a
(2)
τ,ε;s and a

(3)
τ,ε;s were introduced in Lemma 13.21. Note that it holds

gτ,ε;t(X•) = fτ,ε;t + g
(0)
τ,ε;t(X•).

We shall prove that for i ∈ {0, 1} it holds

(A1) λ
−γ−i
t ti |g

(i)
τ,ε;t(X•)| ≤ C λκ,

(B1) λ
−γ−i
t ti |g

(i)
τ,ε;t(X•)− g

(i)
τ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X .

(C1) λ
−γ−i
t ti |g

(i)
τ,ε;t(X•)− g

(i)
τ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,

(D1) λ
−γ−i
t ti |g

(i)
t (Z•)− g

(i)
τ,ε;t(Z•)| ≤ C λκτ∨ε

for all τ, ε ∈ [0, 1] and t ∈ (0, 1], where γ = −128κ. For i = 1 the above bounds follow from

Lemma 13.21 and Def. 13.1. To prove the above bounds for i = 0 we use the bounds with

i = 1 and Lemma 2.4 (E) applied with ρ = γ. Note that by Lemma 13.25 (A), (B) it holds

λ1+10κ
t |fτ,ε;t| ≤ C λ10κt ≤ C λκ, λ1+10κ

t |ft − fτ,ε;t| ≤ C λκε∨τ λ
2κ
t ≤ C λκε∨τ .

The bounds (A), (B), (C),(D) follow from the above bounds and the bounds (A1), (B1), (C1),

(D1) with i = 0.

To prove the bound (E) first note that since Ḣε;s = 0 if s < ε it holds Bε;s = 0 and

g
(1)
τ,ε;s(X•) = 0 if s < ε. Consequently, g

(0)
τ,ε;t(X•) = g

(0)
τ,ε;ε(X•) if t < ε. Recall also that by

Lemma 13.25 (A) it holds fτ,ε;t ≥ λ−1
ε∨t/C. Consequently, there exists C ∈ (0,∞) such that

it holds

gτ,ε;t(X•) ≥ λ−1
ε∨t/C − C λκ λγε∨t = λ−1

ε∨t (1/C − C λκ λ1−128κ
ε∨t )

≥ λ−1
ε∨t (1/C − C λ1−127κ) ≥ λ−1

ε∨t/(2C)

for all λ ∈ (0, λ⋆], τ, ε ∈ [0, 1] and t ∈ (0, 1] provided λ⋆ ∈ (0, 1] is small enough. This proves

the bound (E) and completes the proof of the lemma.

Lemma 13.27. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1], all t ∈ (0, 1] and all X•, Y• ∈ Yτ,ε, Z• ∈ Y it holds:
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(A) λ36κ−1
t t |rτ,ε;t(X•)| ≤ C λκ,

(B) λ36κ−1
t t |rτ,ε;t(X•)− rτ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X ,

(C) λ36κ−1
t t |rτ,ε;t(X•)− rτ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,

(D) λ36κ−1
t t |rt(Z•)− rτ,ε;t(Z•)| ≤ C λκτ∨ε.

Proof. We first observe that for all τ, ε ∈ [0, 1], X• ≡ (g•, r•, z•,W•) ∈ Xτ,ε and s ∈ (0, 1] it

holds

rτ,ε;t(X•) = r
(1)
τ,ε;t(X•) + r

(2)
τ,ε;t(X•),

where

r
(1)
τ,ε;t(X•) := −

∫ 1

t

r(3)τ,ε;s(X•) ds, r
(2)
τ,ε;t(X•) := −hτ,ε;t/gt

and

r
(3)
τ,ε;t(X•) := LEA2

τ,ε;1,tGε;t(X•) = c
2,0
τ,ε;t(Gε;t(X•)).

Recall that the map Gε;s was introduced in Lemma 13.16, the maps a
(1)
τ,ε;s, a

(2)
τ,ε;s and a

(3)
τ,ε;s

were introduced in Lemma 13.21, the map c2,0τ,ε;s was introduced in Lemma 13.19 and hτ,ε;t
was introduced in Def. 13.23. We shall prove that for i ∈ {1, 2, 3} it holds

(A1) λ
−γ(i)
t t−̺(i) |r

(i)
τ,ε;t(X•)| ≤ C λκ,

(B1) λ
−γ(i)
t t−̺(i) |r

(i)
τ,ε;t(X•)− r

(i)
τ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X ,

(C1) λ
−γ(i)
t t−̺(i) |r

(i)
τ,ε;t(X•)− r

(i)
τ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,

(D1) λ
−γ(i)
t t−̺(i) |r

(i)
t (Z•)− r

(i)
τ,ε;t(Z•)| ≤ C λκτ∨ε,

where γ(1) = 2− 76κ, ̺(1) = −1, γ(2) = 1− 16κ, ̺(2) = −1 and γ(3) = 1− 76κ, ̺(3) = −2.

Note that the above bounds with i ∈ {1, 2} imply immediately the bounds (A), (B), (C), (D).

Actually, even stronger bounds with λ36κ−1
t replaced by λ16κ−1

t hold true.

It remains to prove the bounds (A1), (B1), (C1), (D1). Application of Lemma 13.19 with

m = 2, i = 0 and γ = 2 − 80κ and Lemma 13.16 with (i, j) = (0, 0) yields the bounds (A1),

(B1), (C1), (D1) with i = 3. Consequently, the bounds (A1), (B1), (C1), (D1) with i = 1

follow from Lemma 2.4 (C) applied with ̺ = −1 and ρ = 2− 76κ. To show the bounds (A1),

(B1), (C1), (D1) with i = 2 we use Lemma 13.25 (C), (D) and Lemma 13.12.

Lemma 13.28. There exists λ⋆ ∈ (0, 1] and C ∈ (0,∞) such that for all λ ∈ (0, λ⋆], all

τ, ε ∈ [0, 1], all t ∈ (0, 1] and all X•, Y• ∈ Yτ,ε, Z• ∈ Y it holds:

(A) λ36κ−1
t |zτ,ε;t(X•)| ≤ C λκ,

(B) λ36κ−1
t |zτ,ε;t(X•)− zτ,ε;t(Y•)| ≤ C λκ ‖X• − Y•‖X ,

(C) λ36κ−1
t |zτ,ε;t(X•)− zτ,ε;t(Z•)| ≤ C λκ ‖X• − Z•‖X̃

,

(D) λ36κ−1
t |zt(Z•)− zτ,ε;t(Z•)| ≤ C λκτ∨ε.

Proof. It holds

zτ,ε;t(X•) :=

∫ t

0

(a(4)τ,ε;s(X•) + a(5)τ,ε;s(X•) + a(6)τ,ε;s(X•)) ds,
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where the maps a
(4)
τ,ε;s, a

(5)
τ,ε;s and a

(6)
τ,ε;s were introduced in Lemma 13.21. The bounds (A),

(B), (C), (D) follow from Lemma 13.21 and Lemma 2.4 (D) applied with ρ = 1− 36κ.

14 Relation to Polchinski equation

In this section we construct a solution Uτ,ε;• of the flow equation (7.3) using the fixed point

Xτ,ε;• of the map Xτ,ε;• defined in Sec. 13. The strategy of the construction was discussed in

Sec. 2. We first construct a solution Vτ,ε;• of the flow equation (14.2) and subsequently use it

to construct a solution Uτ,ε;• of the flow equation (7.3).

Theorem 14.1. Let τ, ε ∈ (0, 1] and λ ∈ (0, λ⋆], where λ⋆ is as in Corollary 13.10. Let

(0, 1] ∋ t 7→ Xτ,ε;t ≡ (gτ,ε;t, rτ,ε;t, zτ,ε;t,Wτ,ε;t) ∈ R× R× R× N

be the fixed point of the map Xτ,ε;• : Yτ,ε → Yτ,ε, introduced in Def. 13.4. Moreover, set

gτ,ε;0 := gτ,ε;ε, rτ,ε;0 := rτ,ε;ε, zτ,ε;0 := 0, Wτ,ε;0 := 0.

For t ∈ [0, 1] define Vτ,ε;t = (V mτ,ε;t)m∈N+ ∈ N by the equation

Vτ,ε;t[ϕ] := U(1/gτ,ε;t, rτ,ε;t, zτ,ε;t)[ϕ] +Wτ,ε;t[ϕ] (14.1)

for all ϕ ∈ S (R2)G ⊗alg G −. Then it holds

〈V mτ,ε;t, (Jϕ)
⊗m〉 = 〈EAm

τ,ε;t,0Vτ,ε;0, (Jϕ)
⊗m〉+

∫ t

0

〈EAm
τ,ε;t,sBε;s(Vτ,ε;s), (Jϕ)

⊗m〉ds (14.2)

for all t ∈ (0, 1], m ∈ N+ and ϕ ∈ S (R2)G ⊗alg G −.

Remark 14.2. Since Ġτ,ε;t = 0 for t ∈ (0, ε] by Remark 5.2 (A), it follows from Def. 12.4 that

Bε;t(•) = 0 for all t ∈ (0, ε]. Consequently, by Def. 13.4 we have

Vτ,ε;0 = Vτ,ε;t, gτ,ε;0 = gτ,ε;t, rτ,ε;0 = rτ,ε;t, zτ,ε;0 = zτ,ε;t, Wτ,ε;0 =Wτ,ε;t

for all t ∈ (0, ε], where (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) is the fixed point of Xτ,ε;•.

Proof. First note that Eq. (14.1) is equivalent to the system of equations

V mτ,ε;t =Wm
τ,ε;t, m ∈ N+ \ {2, 4},

V 4
τ,ε;t = U4 1/gτ,ε;t +W 4

τ,ε;t,

V 2
τ,ε;t = U2 rτ,ε;t + U2

∂ zτ,ε;t +W 2
τ,ε;t,

where U4, U2, U2
∂ were introduced in Def. 11.1. Observe that the fixed point of the map

Xτ,ε;• : Yτ,ε → Yτ,ε, introduced in Def. 13.4, is equivalent to the system of Eqs. (14.3), (14.4)
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and (14.5) presented below. These equations imply in particular that

V mτ,ε;0 = 0, m ∈ N+ \ {2, 4},

V 4
τ,ε;0 = U4 1/gτ,ε;0,

V 2
τ,ε;0 = U2 rτ,ε;0.

As a result, it holds

EAm
τ,ε;t,0Vτ,ε;0 = 0, m ∈ N+ \ {2, 4},

EA4
τ,ε;t,0Vτ,ε;0 = U4 1/gτ,ε;0,

EA2
τ,ε;t,0Vτ,ε;0 = U2 rτ,ε;0 + 1/gτ,ε;0EA2

τ,ε;t,0U(1, 0, 0).

If m ∈ N+ \ {2, 4}, then the first term on the RHS of Eq. (14.2) vanishes identically and

V mτ,ε;t = Wm
τ,ε;t. Consequently, for m ∈ N+ \ {2, 4} Eq. (14.2) follows immediately from the

fixed point equation

Wm
τ,ε;t(X•) =

∫ t

0

EAm
τ,ε;t,sBε;s(Vτ,ε;s) ds. (14.3)

Let us turn to the proof of Eq. (14.2) for m = 4. By the fixed point equation we obtain

W 4
τ,ε;t =

∫ t

0

REA4
τ,ε;1,sBε;s(Vτ,ε;s) ds−EC4

τ,ε;1,tWτ,ε;t,

gτ,ε;t = λ−1 +

∫ 1

t

(gτ,ε;s)
2 LEA4

τ,ε;1,sBε;s(Vτ,ε;s) ds.

(14.4)

In particular, the function (0, 1] ∋ t 7→ gτ,ε;t ∈ R is continuously differentiable and

∂t(1/gτ,ε;t) = −(∂tgτ,ε;t)/(gτ,ε;t)
2 = LEA4

τ,ε;1,tBε;t(Vτ,ε;t).

Consequently, we obtain

1/gτ,ε;t = 1/gτ,ε;0 +

∫ t

0

LEA4
τ,ε;1,sBε;s(Vτ,ε;s) ds.

Next, we observe that by Lemma 11.18 it holds

〈U4 LEA4
τ,ε;1,sBε;s(Vτ,ε;s) +REA4

τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)
⊗4〉

= 〈EA4
τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)

⊗4〉.

We also note that it follows from Def. 10.22 of the map Cτ,ε;s,t that EC4
τ,ε;1,tWτ,ε;t depends

only on Wm
τ,ε;t with m > 4. Hence, taking into account Eq. (14.3) we obtain

EC4
τ,ε;1,tWτ,ε;t = EC4

τ,ε;1,t

∫ t

0

EAτ,ε;t,sBε;s(Vτ,ε;s) ds.

83



Consequently, by Remark 10.25 (C) and the equality Cτ,ε;1,tV = Aτ,ε;1,tV − V we get

EC4
τ,ε;1,tWτ,ε;t =

∫ t

0

EA4
τ,ε;1,sBε;s(Vτ,ε;s) ds−

∫ t

0

EA4
τ,ε;t,sBε;s(Vτ,ε;s) ds.

Using the above identities we arrive at

〈V 4
τ,ε;t, (Jϕ)

⊗4〉 = 〈U4 1/gτ,ε;t, (Jϕ)
⊗4〉+ 〈W 4

τ,ε;t, (Jϕ)
⊗4〉

= 〈U4 1/gτ,ε;0, (Jϕ)
⊗4〉+

∫ t

0

〈EA4
τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)

⊗4〉ds− 〈EC4
τ,ε;1,tWτ,ε;t, (Jϕ)

⊗4〉

= 〈EA4
τ,ε;t,0Vτ,ε;0, (Jϕ)

⊗4〉+

∫ t

0

〈EA4
τ,ε;t,sBε;s(Vτ,ε;s), (Jϕ)

⊗4〉ds.

This proves Eq. (14.2) for m = 4. It remains to show that Eq. (14.2) holds true for m = 2.

Observe that by the fixed point equation we obtain

W 2
τ,ε;t =

∫ t

0

REA2
τ,ε;1,sBε;s(Vτ,ε;s) ds−EC2

τ,ε;1,tWτ,ε;t,

rτ,ε;t =− LEA2
τ,ε;1,tU(1/gτ,ε;t, 0, 0)−

∫ 1

t

LEA2
τ,ε;1,sBε;s(Vτ,ε;s) ds,

zτ,ε;t =

∫ t

0

L∂EA2
τ,ε;1,sBε;s(Vτ,ε;s) ds.

(14.5)

The second of the above equations implies

rτ,ε;0 = −LEA2
τ,ε;1,0U(1/gτ,ε;0, 0, 0)−

∫ 1

0

LEA2
τ,ε;1,sBε;s(Vτ,ε;s) ds,

and

rτ,ε;t = rτ,ε;0 + LEA2
τ,ε;t,0U(1/gτ,ε;0, 0, 0) + LEA2

τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0)

+

∫ t

0

LEA2
τ,ε;1,sBε;s(Vτ,ε;s) ds, (14.6)

where we used the identity

EA2
τ,ε;1,0U(1/gτ,ε;0, 0, 0) = EA2

τ,ε;1,tU(1/gτ,ε;0, 0, 0) +EA2
τ,ε;t,0U(1/gτ,ε;0, 0, 0).

Using Def. 10.22 of the maps Aτ,ε;s,t and Cτ,ε;s,t and Remark 10.25 (C) we show that

EC2
τ,ε;1,tWτ,ε;t = EC2

τ,ε;1,tVτ,ε;t −EC2
τ,ε;1,tU(1/gτ,ε;t, rτ,ε;t, zτ,ε;t)

= EC2
τ,ε;1,tVτ,ε;t −EA2

τ,ε;1,tU(1/gτ,ε;t, 0, 0) (14.7)

84



and

EC2
τ,ε;1,tEAτ,ε;t,0Vτ,ε;0 = EC2

τ,ε;1,tEAτ,ε;t,0U(1/gτ,ε;0, 0, 0)

= (EA2
τ,ε;1,0 −EA2

τ,ε;t,0)U(1/gτ,ε;0, 0, 0) = EA2
τ,ε;1,tU(1/gτ,ε;0, 0, 0). (14.8)

Moreover, we observe that EC2
τ,ε;1,tVτ,ε;t depends only on V mτ,ε;t with m > 2. Hence, by

Eq. (14.2) with m > 2, which has already been proved to be true, and Eq. (14.8) we obtain

〈EC2
τ,ε;1,tVτ,ε;t, (Jϕ)

⊗2〉 = 〈EA2
τ,ε;1,tU(1/gτ,ε;0, 0, 0), (Jϕ)

⊗2〉

+

∫ t

0

〈EC2
τ,ε;1,tEAτ,ε;t,sBε;s(Vτ,ε;s), (Jϕ)

⊗2〉ds.

Consequently, by Remark 10.25 (C) and Eq. (14.7) it holds

〈EC2
τ,ε;1,tWτ,ε;t, (Jϕ)

⊗2〉 = 〈EA2
τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0), (Jϕ)

⊗2〉

+

∫ t

0

〈(EA2
τ,ε;1,s −EA2

τ,ε;t,s)Bε;s(Vτ,ε;s), (Jϕ)
⊗2〉ds.

Using Lemma 11.18 and the fact that REA2
τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0) = 0 as well as

L∂EA2
τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0) = 0 we obtain

〈EC2
τ,ε;1,tWτ,ε;t, (Jϕ)

⊗2〉 = 〈U2LEA2
τ,ε;1,tU(1/gτ,ε;0 − 1/gτ,ε;t, 0, 0), (Jϕ)

⊗2〉

+

∫ t

0

〈(EA2
τ,ε;1,s −EA2

τ,ε;t,s)Bε;s(Vτ,ε;s), (Jϕ)
⊗2〉ds. (14.9)

Next, we observe that by Lemma 11.18 it holds

〈U2 LEA2
τ,ε;1,sBε;s(Vτ,ε;s) + U2

∂ L∂EA2
τ,ε;1,sBε;s(Vτ,ε;s) +REA2

τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)
⊗2〉

= 〈EA2
τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)

⊗2〉.

Hence, by the first and third of Eqs. (14.5) and Eq. (14.6) we obtain

〈V 2
τ,ε;t, (Jϕ)

⊗2〉 = 〈U2 rτ,ε;t + U2
∂ zτ,ε;t +W 2

τ,ε;t, (Jϕ)
⊗2〉

= 〈U2 rτ,ε;0+U
2LEA2

τ,ε;t,0U(1/gτ,ε;0, 0, 0)+U
2LEA2

τ,ε;1,tU(1/gτ,ε;0−1/gτ,ε;t, 0, 0), (Jϕ)
⊗2〉

+

∫ t

0

〈EA2
τ,ε;1,sBε;s(Vτ,ε;s), (Jϕ)

⊗2〉ds− 〈EC2
τ,ε;1,tWτ,ε;t, (Jϕ)

⊗2〉.

Consequently, by Eq. (14.9) we have

〈V 2
τ,ε;t, (Jϕ)

⊗2〉 = 〈U2 rτ,ε;0 + U2 LEA2
τ,ε;t,0U(1/gτ,ε;0, 0, 0), (Jϕ)

⊗2〉

+

∫ t

0

〈EA2
τ,ε;t,sBε;s(Vτ,ε;s), (Jϕ)

⊗2〉ds.

Hence, Eq. (14.2) is true for m = 2. This finishes the proof.
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Corollary 14.3. Let τ, ε ∈ (0, 1] and λ ∈ (0, λ⋆], where λ⋆ is as in Corollary 13.10. For

t ∈ [0, 1] define Vτ,ε;t = (V mτ,ε;t)m∈N+ ∈ N as in the statement of Theorem 14.1. For m ∈ N+

and t ∈ [0, 1] define the antisymmetric distribution Umτ,ε;t ∈ S ′(T2m
τ )G

m

by the equality

〈Umτ,ε;t, φ
⊗m〉τ = 〈V mτ,ε;t,J(χτφ)⊗ (Jφ)⊗(m−1)〉 (14.10)

for all φ ∈ C∞(T2
τ )⊗alg G −. For t ∈ [0, 1] define the functional Ũτ,ε;t ∈ N (C∞(T2

τ )
G) by the

equality

Ũτ,ε;t(φ) :=
∑

m∈N+

〈Umτ,ε;t, φ
⊗m〉τ ∈ G , φ ∈ C∞(T2

τ )
G ⊗alg G

−.

For t ∈ [0, 1] define U0 ∈ C by the equality

U0
τ,ε;t = EUτ,ε(Ψτ,ε;t,0) +

1

2

∫ t

0

E〈DφŨτ,ε;s(Ψτ,ε;t,s), Ġε;s ∗DφŨτ,ε;s(Ψτ,ε;t,s)〉τ ds. (14.11)

For t ∈ [0, 1] define the functional Uτ,ε;t ∈ N (C∞(T2
τ )

G) by the equality

Uτ,ε;t(φ) :=
∑

m∈N0

〈Umτ,ε;t, φ
⊗m〉τ ∈ G , φ ∈ C∞(T2

τ )
G ⊗alg G

−.

Finally, define the functional Uτ,ε ∈ N (C∞(T2
τ )

G) as specified in Def. 4.16 with gτ,ε := gτ,ε;0
and rτ,ε := rτ,ε;0, where gτ,ε;0 and rτ,ε;0 are as in the statement of Theorem 14.1. Then the

map [0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) is continuous and is a solution of the integral form

of the Polchinski equation

Uτ,ε;t(φ) = EUτ,ε(Ψτ,ε;t,0 + φ)

+
1

2

∫ t

0

E〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ ds

for all φ ∈ C∞(T2
τ )

G ⊗alg G −.

Proof. Using Theorem 14.1 and the fact that the distributions V mτ,ε;t, EAm
τ,ε;t,0Vτ,ε;0 and

EAm
τ,ε;t,sBε;s(Vτ,ε;s) are antisymmetric we obtain

〈V mτ,ε;t,J
⊗mψ〉 = 〈EAm

τ,ε;t,0Vτ,ε;0,J
⊗mψ〉+

∫ t

0

〈EAm
τ,ε;t,sBε;s(Vτ,ε;s),J

⊗mψ〉ds

for all t ∈ (0, 1], m ∈ N+ and ψ ∈ S (R2m)G
m

. Hence, by Def. 10.22 and 12.4 of the maps

Am
τ,ε;t,s and Bε;s we have

Uτ,ε;t(φ) = EUτ,ε(Ψτ,ε;t,0 + φ)

+
1

2

∫ t

0

E〈DφUτ,ε;s(Ψτ,ε;t,s + φ), Ġε;s ∗DφUτ,ε;s(Ψτ,ε;t,s + φ)〉τ ds
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for all t ∈ (0, 1) and φ ∈ C∞(T2
τ )

G ⊗alg G −. Finally, to prove the continuity of the map

[0, 1] ∋ t 7→ Uτ,ε;t ∈ N (C∞(T2
τ )

G) we observe that the map is constant for on [0, ε] and use

its definition in terms of the fixed point of the map Xτ,ε;• : Yτ,ε → Yτ,ε as well as Def. 13.1

of the set Yτ,ε and Def. 10.32 of the space W α,β;γ
τ,ε . This finishes the proof.

Remark 14.4. In the presence of the UV and IR cutoffs τ, ε ∈ (0, 1] it is straightforward to

show that U0
τ,ε;t ∈ C given by Eq. (14.11) is well-defined for all t ∈ [0, 1]. Consequently, for

the choice of parameters gτ,ε and rτ,ε as in the above corollary it holds

E exp(Uτ,ε(Ψτ,ε;t,0)) = exp(Uτ,ε;t(0)) = exp(U0
τ,ε;t) 6= 0.

In particular,

E exp(Uτ,ε(Ψτ,ε)) = exp(Uτ,ε;t=1(0)) = exp(U0
τ,ε;t=1) 6= 0.

15 Convergence of Schwinger functions

In this section we establish a relation between an effective potential Uτ,ε;t at the scale t = 1 and

the generating functional of the Schwinger functions and complete the proof of Theorem 1.1.

Recall that the effective potential Uτ,ε;t was constructed in Sec. 14 with the use of the fixed

point Xτ,ε;• of the map Xτ,ε;• constructed in Sec. 13.

Lemma 15.1. Let τ, ε ∈ (0, 1]. Suppose that E exp(Uτ,ε(Ψτ,ε)) 6= 0. The following equality

µτ,ε(exp(〈•, φ〉τ )) = exp(〈φ,Gτ,ε ∗τ φ〉τ/2 + Uτ,ε;1(Gτ,ε ∗τ φ)− Uτ,ε;1(0))

holds for all φ ∈ C∞(T2
τ )

G ⊗alg G −, where the interacting measure µτ,ε was introduced in

Def. 4.16 and Uτ,ε;1 is an effective potential at unit scale introduced in Def. 7.2.

Proof. First observe that by Def. 4.16 of the measure µτ,ε it holds

µτ,ε(exp(〈•, φ〉τ )) =

∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε) + 〈ψτ,ε, ϑε ∗ φ〉τ ) dψτ,ε
∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε

for all φ ∈ C∞(T2
τ )

G ⊗alg G −. Using Def. 4.16 of the free action Aτ one proves the following

identity

〈ψ, φ〉τ − Aτ (ψ) =
1

2
〈G ∗ φ, φ〉τ −Aτ (ψ −G ∗ φ)

for all ψ, φ ∈ C∞(T2
τ )

G ⊗alg G −. Consequently, using the equalities

ϑε ∗G ∗ ϑε = Gε, Gε ∗ φ = Gτ,ε ∗τ φ

we obtain

µτ,ε(exp(〈•, φ〉τ ))

= exp(〈φ,Gτ,ε ∗τ φ〉τ/2)

∫

exp(−Aτ (ψτ,ε −G ∗ ϑε ∗ φ) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
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for all φ ∈ C∞(T2
τ )

G ⊗alg G −. Note that since FτPτϑε ⊂ Λτ,ε it holds

G ∗ ϑε ∗ φ(x) = τ2
∑

p∈Λτ,ε

(FτG ∗ ϑε ∗ φ)(p) e
ip·x dp

and G ∗ ϑε ∗ φ ∈ Cτ,ε for all φ ∈ C∞(T2
τ )

G ⊗alg G −, where Cτ,ε was introduced in Def. 4.5.

Taking advantage of the invariance under translation of the Berezin integral, which was stated

in Lemma 4.12, we show the following equality

µτ,ε(exp(〈•, φ〉τ ))

= exp(〈φ,Gτ,ε ∗τ φ〉τ/2)

∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ (ψτ,ε +G ∗ ϑε ∗ φ))) dψτ,ε
∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε
.

The above equality can be rewritten as

µτ,ε(exp(〈•, φ〉τ ))

= exp(〈φ,Gτ,ε ∗τ φ〉τ/2)

∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε +Gτ,ε ∗τ φ)) dψτ,ε
∫

exp(−Aτ (ψτ,ε) + Uτ,ε(ϑε ∗ ψτ,ε)) dψτ,ε

for all φ ∈ C∞(T2
τ )

G ⊗alg G −. Using Lemma 6.15 we arrive at

µτ,ε(exp(〈•, φ〉τ )) = exp(〈φ,Gτ,ε ∗τ φ〉τ/2)
E(exp(Uτ,ε(Ψτ,ε +Gτ,ε ∗τ φ)))

E(exp(Uτ,ε(Ψτ,ε)))
.

The statement follows now from the fact that Gτ,ε ∗τ φ ∈ Cτ,ε for all φ ∈ C∞(T2
τ )

G ⊗alg G −,

Ψτ,ε = Ψτ,ε;1,0 and Def. 7.2 of an effective potential.

Definition 15.2. Let τ, ε ∈ (0, 1]. Suppose that E exp(Uτ,ε(Ψτ,ε)) 6= 0. We call

S (R2)G ⊗alg G
− ∋ ϕ 7→ Zτ,ε[ϕ] := µτ,ε(exp(〈•, ϕ〉)) ∈ G

the generating functional. The Schwinger function of order m ∈ N+ is defined by the equation

Smτ,ε := Dmϕ Zτ,ε[ϕ]
∣

∣

ϕ=0
∈ S

′(R2m)G
m

.

The truncated Schwinger function of order m ∈ N+ is defined by the equation

Tmτ,ε := Dmϕ log(Zτ,ε[ϕ])
∣

∣

ϕ=0
∈ S

′(R2m)G
m

.

Remark 15.3. The Schwinger function can be expressed in terms of the truncated Schwinger

functions using the formula

〈Smτ,ε, ϕ
⊗m〉 =

∑

π∈Πm

∏

S∈π

〈T |S|
τ,ε , ϕ

⊗|S|〉

valid for all ϕ ∈ S (R2)G⊗algG −, where Πm denotes the set of partitions of the set {1, . . . ,m}

into disjoint subsets whose union coincides with {1, . . . ,m} and |S| denotes the number of

elements of a set S.
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Theorem 15.4. Fix λ ∈ (0, λ⋆], where λ⋆ is as in Corollary 13.10. For all τ, ε ∈ [0, 1] let

(0, 1] ∋ t 7→ Xτ,ε;t ≡ (gτ,ε;t, rτ,ε;t, zτ,ε;t,Wτ,ε;t) ∈ R× R× R× N

be the fixed point of the map Xτ,ε;• : Yτ,ε → Yτ,ε, which was introduced in Def. 13.4.

Moreover, set

gτ,ε := gτ,ε;ε, rτ,ε := rτ,ε;ε,

Suppose that for all τ, ε ∈ (0, 1] the interacting measure µτ,ε is defined as specified in Def. 4.16

with the above choice of the parameters gτ,ε and rτ,ε. Then for all m ∈ N+ there exist

Sm, Tm ∈ S ′(R2m)G
m

such that:

(A) limτ,εց0〈T
m
τ,ε, ϕ〉 = 〈Tm, ϕ〉 for all ϕ ∈ S (R2m)G

m

,

(B) limτ,εց0〈S
m
τ,ε, ϕ〉 = 〈Sm, ϕ〉 for for all ϕ ∈ S (R2m)G

m

,

(C) Sm, Tm are invariant under the symmetries of the plane in the sense of Def 8.2,

(D) Tm has the properties stated in Items (C) and (D) of Theorem 1.1.

(E) lim|x|→∞ exp(|x|1/2) |〈Tm, ϕx ⊗ ψ〉| = 0 for all n ∈ {1, . . . ,m − 1}, ϕ ∈ C∞
c (R2n)G

n

,

ψ ∈ C∞
c (R2(m−n))G

m−n

, where for x ∈ R2 we define ϕx ∈ C∞
c (R2n)G

n

by the equality

ϕx(y1, . . . , yn) := ϕ(y1 − x, . . . , yn − x) for all y1, . . . , yn ∈ R2.

Remark 15.5. Note that gτ,ε = gτ,ε;t, rτ,ε = rτ,ε;t for all t ∈ (0, ε] by Remark 14.2.

Remark 15.6. The exponent 1/2 in Item (C) of the above theorem has no significance. With

some extra work, it is possible to prove exponential decay of the truncated correlations. To

this end, one has to use a decomposition (Gε,t)t∈[0,1] of the covariance Gε at ε = 0, which in

contrast to the decomposition introduced in Sec. 5, has exponential decay.

Proof. First, note that by Corollary 13.10 for all τ, ε ∈ [0, 1] the map Xτ,ε;• : Yτ,ε → Yτ,ε is

well-defined and has a unique fixed point Xτ,ε;• ≡ (gτ,ε;•, rτ,ε;•, zτ,ε;•,Wτ,ε;•) ∈ Yτ,ε. For all

τ, ε ∈ [0, 1] and t ∈ (0, 1] we define Vτ,ε;t = (V mτ,ε;t)m∈N+ ∈ N by the equation

Vτ,ε;t[ϕ] := U(1/gτ,ε;t, rτ,ε;t, zτ,ε;t)[ϕ] +Wτ,ε;t[ϕ] (15.1)

for all ϕ ∈ S (R2)G⊗alg G −. Recall that we omit τ if τ = 0 and we omit ε if ε = 0. Moreover,

for all τ, ε ∈ (0, 1] and t ∈ [0, 1] we define Uτ,ε;t ∈ N (C∞(T2
τ )

G) as in Corollary 14.3. Then

by Corollary 14.3 and Lemma 7.7 for all t ∈ [0, 1] the functional Uτ,ε;t ∈ N (C∞(T2
τ )

G) is

an effective potential at scale t. Since by Remark 14.4 we have E exp(Uτ,ε(Ψτ,ε)) 6= 0 using

Lemma 15.1 we conclude that

µτ,ε(exp(〈•, φ〉τ )) = exp(〈φ,Gτ,ε ∗τ φ〉τ/2 + Uτ,ε;1(Gτ,ε ∗τ φ)− Uτ,ε;1(0)) (15.2)

for all φ ∈ C∞(T2
τ )

G ⊗alg G − and τ, ε ∈ (0, 1].

Let us prove Items (A) and (B). We observe that it suffices to show that for all m ∈ N+

there exist Sm, Tm ∈ S ′(R2m)G
m

such that:

(A’) limτ,εց0〈T
m
τ,ε, ϕ1 ⊗ . . .⊗ ϕm〉 = 〈Tm, ϕ1 ⊗ . . .⊗ ϕm〉 for all ϕ1, . . . , ϕm ∈ S (R2)G,
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(B’) limτ,εց0〈S
m
τ,ε, ϕ1 ⊗ . . .⊗ ϕm〉 = 〈Sm, ϕ1 ⊗ . . .⊗ ϕm〉 for all ϕ1, . . . , ϕm ∈ S (R2)G.

By Remark 15.3 Item (B’) follows from Item (A’). We proceed to the proof of Item (A’). For

ϕ ∈ S (R2)G ⊗alg G − we apply Eq. (15.2) with φ = Pτϕ ∈ C∞(T2
τ )

G ⊗alg G − to obtain

log(Zτ,ε[ϕ]) = log(µτ,ε(exp(〈•, ϕ〉))) = 〈ϕ,Gτ,ε ∗ ϕ〉/2 + Uτ,ε;1(Gτ,ε ∗ ϕ)− Uτ,ε;1(0))

for τ, ε ∈ (0, 1]. Note that by the translational invariance of V mτ,ε;t Eq. (14.10) implies that

〈Umτ,ε;t, (Gτ,ε ∗ ϕ)
⊗m〉τ = 〈V mτ,ε;t,J(Gε ∗ ϕ) ⊗ (J(Gτ,ε ∗ ϕ))

⊗(m−1)〉.

for all m ∈ N+, τ, ε, t ∈ (0, 1] and ϕ ∈ S (R2)G ⊗alg G −. Consequently, using Def. 15.2 we

arrive at

〈T 2
τ,ε, ϕ

⊗2〉 := 〈ϕ,Gτ,ε ∗ ϕ〉+ 2 〈V 2
τ,ε;1,J(Gε ∗ ϕ)⊗ (J(Gτ,ε ∗ ϕ))〉,

〈Tmτ,ε, ϕ
⊗m〉 := m! 〈V mτ,ε;1,J(Gε ∗ ϕ)⊗ (J(Gτ,ε ∗ ϕ))

⊗(m−1)〉, m ∈ N+ \ {2},

for all τ, ε ∈ (0, 1] and ϕ ∈ S (R2)G ⊗alg G −. For m ∈ N+ we define an antisymmetric

distribution Tm ∈ S ′(R2m)G
m

by the equalities

〈T 2, ϕ⊗2〉 := 〈ϕ,G ∗ ϕ〉+ 2 〈V 2
1 , (J(G ∗ ϕ))⊗2〉,

〈Tm, ϕ⊗m〉 := m! 〈V m1 , (J(G ∗ ϕ))⊗m〉, m ∈ N+ \ {2},

for all ϕ ∈ S (R2)G⊗alg G −, where V1 = (V m1 )m∈N+ ∈ N is defined by Eq. (15.1) with τ = 0,

ε = 0 and t = 1. Since by Lemma 15.10

lim
τ,εց0

〈ϕ1, Gτ,ε ∗ ϕ2〉 = 〈ϕ1, G ∗ ϕ2〉

for all ϕ1, ϕ2 ∈ S (R2)G in order to prove Item (A’) it suffices to show that

lim
τ,εց0

〈V mτ,ε;1,J(Gε ∗ ϕ1)⊗ J(Gτ,ε ∗ ϕ2)⊗ . . .⊗ J(Gτ,ε ∗ ϕm)〉

= 〈V m1 ,J(G ∗ ϕ1)⊗ . . .⊗ J(G ∗ ϕm)〉

for all m ∈ N+ and ϕ1, . . . , ϕm ∈ S (R2)G. To this end, we observe that

|〈V m1 ,J(G ∗ϕ1)⊗ . . .⊗J(G ∗ϕm)〉− 〈V mτ,ε;1,J(Gε ∗ϕ1)⊗J(Gτ,ε ∗ϕ2)⊗ . . .⊗J(Gτ,ε ∗ϕm)〉|

≤ |〈V mτ,ε;1,J(G ∗ ϕ1)⊗ . . .⊗ J(G ∗ ϕm)− J(Gε ∗ ϕ1)⊗ J(Gτ,ε ∗ ϕ2)⊗ . . .⊗ J(Gτ,ε ∗ ϕm)〉|

+ |〈V m1 − V mτ,ε;1,J(G ∗ ϕ1)⊗ . . .⊗ J(G ∗ ϕm)〉|

By Remark 15.8 the above expression is bounded by

‖V mτ,ε;1‖Ñ m (A+Bτ,ε)
m−1Bτ,ε + ‖V m1 − V mτ,ε;1‖Ñ m Am,

where

A := ‖J(G ∗ ϕ1)/w̃‖L1(R2)A×G ∨ ‖J(G ∗ ϕ2)‖L∞(R2)A×G ∨ . . . ∨ ‖J(G ∗ ϕm)‖L∞(R2)A×G
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and

Bτ,ε := ‖J((G−Gε) ∗ ϕ1)/w̃‖L1(R2)A×G

+ ‖J((G−Gτ,ε) ∗ ϕ2)‖L∞(R2)A×G + . . .+ ‖J((G−Gτ,ε) ∗ ϕm)‖L∞(R2)A×G .

We used above the notation introduced in Remark 15.7 below. Item (A’) follows now from

Lemma 15.10 and the bounds for ‖Vmτ,ε;1‖Ñ m ≤ ‖V mτ,ε;1‖N m and ‖V m1 −V mτ,ε;1‖Ñ m established

in Corollary 13.10. As argued above, this proves Item (B’) as well as Items (A) and (B).

Let us turn to the proof of Item (C). Note that V1 ∈ N defined by Eq. (15.1) is invariant

under the symmetries of the plane by Def. 11.1, 13.1 and 10.32. This together with the fact

that the kernel G is invariant under the symmetries of the plane implies Item (C).

Item (D) is an immediate consequence of the definition of Tm ∈ S ′(R2m)G
m

given above,

the properties of V1 = (V m1 )m∈N+ ∈ N , the fact that
∫

R2 G(x) dx = 1 and Def. 13.4.

In order to prove Item (E) it is enough to show that

lim
x→∞

exp(|x|1/2) |〈ϕx, G ∗ ψ〉| = 0

for all ϕ ∈ C∞
c (R2)G and ψ ∈ C∞

c (R2)G and

lim
x→∞

exp(|x|1/2) |〈V m1 ,J⊗m(G⊗m ∗ (ϕx ⊗ ψ))〉| = 0

for all m ∈ N+, n ∈ {1, . . . ,m − 1}, ϕ ∈ C∞
c (R2n)G

n

, ψ ∈ C∞
c (R2(m−n))G

m−n

. Both of the

above equalities follow from Remarks 15.8 and 15.9 and the bounds for ‖V m1 ‖
Ñ m ≤ ‖V m1 ‖N m

established in Corollary 13.10. This finishes the proof.

Remark 15.7. Given p ∈ [1,∞] and a finite tuple ϕ = (ϕk)k∈K of measurable functions over

R2 we define ‖ϕ‖Lp(R2)K :=
∑

k∈K
‖ϕk‖Lp(R2).

Remark 15.8. Let m ∈ N+ and V = (V a,σ)a∈Am,σ∈Gm ∈ N m. Recall that

‖V ‖
Ñ m =

∑

a∈Am

∑

σ∈Gm

‖w̃m1 V
a,σ‖Mm ≤ ‖V ‖N m ,

where

w̃m1 (x1, . . . , xm) = w̃(x1) exp(D(x1, . . . , xm)ζ), w̃(x) = (1 + |x|)−1/2, ζ = 4/5,

for all x, x1, . . . , xm ∈ R2. The following bound

|〈V, ϕ〉| ≤ ‖V ‖
Ñ m sup

a∈Am

sup
σ∈Gm

sup
x2,...,xm∈R2

∫

R2

|ϕa,σ(x1, . . . , xm)|

w̃m1 (x1, . . . , xm)
dx1

is true for all ϕ ∈ S (R2m)A
m×G

m

.
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Remark 15.9. By Lemma 5.3 and Remark 5.2 (E), (F) there exists C ∈ (0,∞) such that

‖x 7→ (1 + |x|)1/2 exp(|x|ζ)G(x)‖L1(R2)G2 ≤ C, ζ = 4/5.

Consequently, by Lemma 9.5 (c) the following bound

‖G⊗m ∗ V ‖
Ñ m ≤ Cm ‖V ‖

Ñ m

holds for all m ∈ N+ and V ∈ N m.

Lemma 15.10. The following equalities

lim
εց0

‖((G−Gε) ∗ ϕ)/w̃‖L1(R2)G = 0, lim
τ,εց0

‖(G−Gτ,ε) ∗ ϕ‖L∞(R2)G = 0

hold for all ϕ ∈ S (R2)G.

Proof. By Remark 9.4 we have

‖((G−Gε) ∗ ϕ)/w̃‖L1(R2)G ≤ ‖(G−Gε)/w̃‖L1(R2)G2 ‖ϕ/w̃‖L1(R2)G

Moreover, by elementary estimates we obtain

‖(G−Gτ,ε) ∗ ϕ‖L∞(R2)G ≤ ‖(G−Gε) ∗ ϕ‖L∞(R2)G + ‖(Gε −Gτ,ε) ∗ ϕ‖L∞(R2)G

≤ ‖(G−Gε) ∗ ϕ‖L∞(R2)G + ‖Gε ∗ (ϕ−Pτϕ)‖L∞(R2)G

≤ ‖G−Gε‖L1(R2)G2 ‖ϕ‖L∞(R2)G + ‖Gε‖L1(R2)G2 ‖ϕ−Pτϕ‖L∞(R2)G

Note that by Lemma 5.3 and Remark 5.2 (E) there exists C ∈ (0,∞) such that

‖Ġε;t/w̃‖L1(R2)G2 ≤ C

for all ε ∈ [0, 1] and t ∈ (0, 1]. Consequently, by Remark 5.2 (F) we obtain

‖Gε/w̃‖L1(R2)G2 ≤ C, ‖G−Gε‖L1(R2)G2 ≤ ‖(G−Gε)/w̃‖L1(R2)G2 ≤ 4 εC

for all ε ∈ [0, 1]. This finishes the proof.
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