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Bootstrapping Guarantees: Stability and Performance Analysis

for Dynamic Encrypted Control

Sebastian Schlor and Frank Allgöwer

Abstract— Encrypted dynamic controllers that operate for
an unlimited time have been a challenging subject of research.
The fundamental difficulty is the accumulation of errors and
scaling factors in the internal state during operation. Bootstrap-
ping, a technique commonly employed in fully homomorphic
cryptosystems, can be used to avoid overflows in the controller
state but can potentially introduce significant numerical errors.
In this paper, we analyze dynamic encrypted control with
explicit consideration of bootstrapping. By recognizing the
bootstrapping errors occurring in the controller’s state as an
uncertainty in the robust control framework, we can provide
stability and performance guarantees for the whole encrypted
control system. Further, the conservatism of the stability and
performance test is reduced by using a lifted version of the
control system.

I. INTRODUCTION

Encrypted control offers the ability to outsource the com-

putations to evaluate the control law to external servers while

maintaining the privacy of the involved data at the same

time. This not only enhances flexibility and reduces the need

for dedicated hardware for the controller, but also can be

valuable for control and monitoring of distributed systems.

From a cryptographic point of view, the technology that

enables end-to-end encrypted computations is homomorphic

encryption. A simple example for this concept is, e.g., the

Paillier cryptosystem [1], which is additively homomorphic,

i.e., there exists an operation ⊕ such that

Dec(Enc(x1)⊕Enc(x2)) = x1+x2. (1)

Here, Enc and Dec correspond to the encryption and decryp-

tion process, respectively. Leveled homomorphic arithmetic

cryptosystems allow for the evaluation of any fixed-degree

polynomial. They become fully homomorphic if they extend

to arbitrary many operations.

Modern homomorphic cryptosystems for arithmetic op-

erations on real numbers are approximate, i.e., the result

of the computation is not exact but contains a small error.

This enhances security and can be mitigated by appropriate

scaling and rounding of the decrypted result. Furthermore,

cryptosystems typically only support integers as inputs,

which means that every real-number input has to be quan-

tized and represented as a fixed-point number with integer

representation and an corresponding scaling factor.
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While this works well for predetermined computations,

encrypted control raises additional challenges. Depending on

the application, the results should be available in real-time.

Further, in dynamic control, recursive computations are per-

formed over a possibly infinite time-horizon, which exceeds

preset degrees for the supported polynomials. This blows

up the introduced errors so that the decryption of the result

is no longer valid. Ever-growing scaling factors, especially

through multiplications, lead to undetected overflows in the

results.

A. Related work

To mitigate these effects, researchers from the control

community have come up with different measures. When the

recursive computations are about to exceed the predefined

number of multiplications, sending the encrypted controller

state to the plant and receiving a freshly rounded and re-

encrypted state from the plant, as used in [2], can reset

the error and the scaling factor. However, this adds more

computational burden to the plant, and additional commu-

nication is needed. In contrast, [3] proposed a periodic

reset of the controller state to a known encryption of zero.

This solves the problem of overflow and adds no further

communication and computation; however, a transient phase

of convergence is introduced repeatedly, which can lead to

unsatisfactory control behavior. A similar line of thought

lead to the proposal of [4], where instead of periodic resets

of the whole state, an FIR filter-type controller was used.

There, the output of the FIR filter always contains only a

constant number of factors, which can be computed with

a predefined number of multiplications. To avoid scaling

factors entirely, [5]–[7] proposed to transform non-integer

system matrices into integer matrices using pole-placement

by feedback with the plant. The integer reformulation, how-

ever, usually leads to the cloud-implemented controller being

unstable [8]. Merely the feedback stabilizes the controller

dynamics. Additionally, re-encryption and communication by

the actuator is necessary.

From a cryptographer’s point of view, the first solution to

arbitrary many computations on encrypted data was proposed

by [9] introducing so-called bootstrapping. The main idea of

this procedure is to evaluate the decryption process, which

subsequently enables refreshing the ciphertext, in an en-

crypted fashion. For an overview of recent progress, we refer

to [10], [11]. In more modern fully homomorphic cryptosys-

tems, such as CKKS [12], which we build on in this paper,

the core of bootstrapping corresponds to a so-called modular

reduction, which entails a polynomial approximation of the
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modulo function. This is one of the sources of numerical

accuracy loss. We give a quick introduction in Section II-D.

Recent research on bootstrapping has focused on different

advanced polynomial approximations of the modulo function,

mainly with respect to minimizing the point-wise maximal

error [13], [14] or its ℓ2-norm [15]. While this works well for

general purpose applications, only a relative error measure

can ensure asymptotic stability for encrypted control. In [16],

bootstrapping was used for encrypted control, but only timing

aspects were considered.

B. Contribution

This is the first work to incorporate bootstrapping in the

analysis of encrypted control. In particular, we make the

following contributions:

● For encrypted dynamic control, we explicitly take the

bootstrapping errors into account.

● By considering these errors as static sector nonlinear-

ities in the control loop, we provide a stability and

performance test for the encrypted control system using

the robust control framework.

● By lifting the system dynamics, we further reduce the

conservatism of the stability and performance guaran-

tees.

● With our framework, we unify the analysis of encrypted

control approaches with bootstrapping, periodic state

reset, and FIR filters.

Our analysis shows that encrypted control has different

requirements on the bootstrapping than general purpose

homomorphic encryption. Using tailored bootstrapping poly-

nomails for encrypted control can reduce the computation

time and enhance the control performance.

II. PRELIMINARIES

In this section, we present the most relevant properties of

cryptosystems for the focus of the paper.

A. Notation

For q ∈ N, we define the centered modulo operator by

m mod q = m− q⌊m/q⌉, with the rounding operator ⌊⋅⌉. By

⟨a,s⟩ we denote the inner product of the vectors a and

s. By 0 and I we we denote the zero and identity matrix

of matching dimensions. By ≻ 0 (⪰ 0) we denote positive

(semi-) definiteness. We abbreviate terms by (⋆) if they can

be obtained by symmetry.

B. CKKS

One of the most advanced fully homomorphic cryptosys-

tems supporting arithmetic operations on approximate real

numbers is the Cheon-Kim-Kim-Song (CKKS) scheme [12],

which is a special type of Learning With Errors (LWE)

cryptosystem [17]. Here, we only introduce a simplified,

abstract version thereof to highlight the most important

functionalities for encrypted control.

Before encrypting and manipulating encrypted numbers,

every number or vector of numbers has to be encoded as a

polynomial in a polynomial ring. For the sake of clarity, we

will not go into more detail here. For this paper, we treat

them as if they were numbers or vectors of reals or integers,

i.e., we can add, multiply, and round them and they have an

inner product.

For decryption and encryption, a secret and a public key

are created. The secret key is denoted by sk = (1,s), where s

is n-dimensional and sampled from a predefined distribution.

For a public modulus q, the public key is generated as pk =
(b,a) with b = −⟨a,s⟩+ e mod q, a of equal dimension and

random, and e a random scalar. The encryption of a secret

number m is then generated as Encpk(m) = (m,0)+pk mod

q = (−⟨a,s⟩+m+e mod q,a) =∶ ctq(m). Decryption works by

taking the inner product Decsk(ctq(m)) = ⟨ctq(m),sk⟩ mod

q = −⟨a,s⟩ +m + e + ⟨a,s⟩ mod q = m + e mod q ≈ m if e is

small and m ∈ (− q

2
,

q

2
]. Further, CKKS has operations for

addition and multiplication with public and secret factors

implemented. For more details, we refer to the literature [11].

C. Integer representation and rescaling

Every number that is encrypted in CKKS has to be

represented by an integer first, before the encoding and

encryption. This can be done by appropriate scaling and

rounding. Suppose we have a number mreal ∈ R. We can

obtain an approximate scaled and rounded integer represen-

tation as m = ⌊cmreal⌉ with some scaling factor c, which has

to be remembered. In the setup, a chain of moduli of the

ciphertext qℓ = q0cℓ ∈ {q0, . . . ,q, . . . ,Q, . . . ,qL} with levels ℓ

is selected. Now suppose we have two numbers m1 and

m2 represented in this form with scaling factors c. Then,

the product Mult(ctqℓ(m1),ctqℓ(m2)) = ctqℓ(m3) contains a

scaling factor c2 to be represented correctly. Thus, coined

to dynamic encrypted control, if the controller’s system

matrix contains non-integer values, the scaling factor of

the controller state is ever-growing. This leads to overflows.

To reduce the digits and scaling factor again, a rescaling

operation RS(ctqℓ(m3))= ctqℓ−1
(m3)= ⌊1

c
ctqℓ(m3)⌉ mod qℓ−1

is implemented. This reduces the scaling factor back to c at

the cost of reducing the modulus. Since numbers cannot be

represented correctly anymore if the modulus gets too small,

no more rescaling is possible at some point.

D. Bootstrapping

The bootstrapping operation is needed to raise the modulus

again and to enable further computations. For that, we first

interpret the ciphertext ctq(m) with small modulus q as if it

was given in a larger modulus Q. The decrypted value would

result in Decsk(ctq (but assume Q)(m)) = (−⟨a,s⟩ +m + e mod

q)+⟨a,s⟩ = (−⟨a,s⟩+m+e− rq)+⟨a,s⟩ = m+e− rq mod Q ≈
m−rq with the number of overflows in the small modulus r =
⌊−⟨a,s⟩+m+e

q
⌉. However, this number r is unknown due to the

encryption. To remove the rescaling error rq and get a correct

representation of ctQ(m), the essence of bootstrapping is

evaluating m mod q(modQ) homomorphically.

However, since the modulo function is non-polynomial,

and the homomorphisms of the cryptosystem only allow

addition and multiplication, a polynomial approximation

has to be evaluated. In the literature, scaled versions of



Chebyshev polynomials [18] and Taylor and Chebyshev

approximations [19], as well as polynomials minimizing the

point-wise maximal error [13], [14] or its ℓ2 norm [15] were

proposed. Here, we take polynomials with a relative error

description and show their benefits for encrypted control.

III. BOOTSTRAPPING POLYNOMIAL

For the analysis of the errors introduced by bootstrapping

with an approximating polynomial we make the following

assumptions.

Assumption 1:

1) The encrypted values ∣m+ e∣ ≤ ε q

2
< q

2
are bounded by

ε ∈ (0,1) relative to the maximal representable number.

2) The number of overflows ∣r∣ ≤K is bounded by K ∈N.

To satisfy the first assumption, the modulus q is set up

large enough, and the controller design has to ensure stability

or, more precisely, invariance. As the wrap-arounds are

caused by the inner product ⟨a,s⟩ with bounded and random

a and s, r is drawn from an Irwin-Hall distribution. Due to

its finite support, the second assumption is also satisfied.

From this observation, we see that the modulo function

only has to be accurately approximated in intervals of width

ε q

2
around multiples of q up to ±Kq, i.e., on the set I =

{m− rq ∶ ∣m∣ ≤ ε q

2
,r ∈ {−K, . . . ,K}}.

Let p ∶R→R, p(m) =∑d
i=0 p̃im

i of fixed degree d and with

coefficient vector p̃ be the polynomial that approximates the

modulo function. Then, the error between the polynomial and

the modulo function can be measured in different ways. For

general purpose homomorphic encryption, ∣p(m)− (m mod

q)∣≤ γ ∀m ∈ I bounds the maximal point-wise error by γ (c.f.

[13], [14]). This is useful to give absolute worst-case error

bounds. The expected variance of the error can be described

by EI(∣p(m)−(m mod q)∣2) (c.f. [15]).

In contrast to the literature on general homomorphic

encryption, we use a relative error measure ∣p(m)−(m mod

q)∣ ≤ γ ∣m mod q∣ ∀m ∈ I, which is necessary to ensure stabil-

ity of the encrypted control system. A polynomial satisfying

this kind of error bound can be generated by solving an

interpolation problem, e.g., Hermite interpolation with con-

ditions on the value of p(m) and its derivative p′(m) at

m = rq,r ∈ {−K, . . . ,K}, or interpolation over sampled points.

A more rigorous alternative would be to use an optimization-

based approach by sum-of-squares optimization. To this end,

the optimal parameters can be obtained by

p̃⋆ = argmin
p̃,γ

γ (2)

s.t. −γm ≤m− p(m− rq) ≤ γm ∀m ∈ [−ε
q

2
,ε

q

2
],

r ∈ {−K, . . . ,K}.
Here, we demonstrate the concept by a optimized polynomial

with degree d = 25, the upper bound K = 2, and the number

range ε = 0.5, which leads to a polynomial that satisfies the

sector bound with γ = 0.2296. The polynomial is depicted

next to the modulo function in Fig. 1. In Fig. 2, the error

between the modulo function and the polynomial is shown

over m mod q instead of m.
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Fig. 1. The modulo function and its polynomial approximation for
bootstrapping.
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Fig. 2. Relative error of the polynomial approximation to the modulo
function for bootstrapping. The figure shows multiple error functions since
the bootstrapping polynomial in Fig. 1 is evaluated at different intervals
depending on the offset rq.

There is a natural trade-off between precision, i.e., a small

γ , and the evaluation complexity in terms of the degree d of

the polynomial. Thus, if the control system can cope with

larger bootstrapping errors, a smaller-degree polynomial with

quicker evaluation time can be used, which helps in real-time

applications.

IV. PROBLEM DESCRIPTION AND FORMULATION AS

ROBUST CONTROL PROBLEM

We introduce the involved system and controller before

we cover the bootstrapping error within the robust control

framework.

A. System description

We consider the discrete-time, linear, time-invariant sys-

tem

x(t +1) = Ax(t)+Bu(t)+B1wp1
(t) (3)

y(t) =Cx(t)+F1wp1
(t) (4)

zp(t) =C1x(t)+Eu(t)+D1wp1
(t) (5)

with time-index t ∈ N, initial condition x(0) = x0, control

input u, performance input wp1
, measurement output y, and

performance output zp.
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Fig. 3. Block diagram of the encrypted control system with bootstrapping.
The bootstrapping is is interpreted as static nonlinearity acting on the
controller state.

For this system, we consider a dynamic output feedback

controller

xc(t +1) = Acxc(t)+Bcy(t)+B2wp2
(t)+Acwu(t) (6)

u(t) =Ccxc(t)+Dcy(t)+F2wp2
(t) (7)

zu(t) = xc(t) (8)

with initial state xc(0) = xc,0, performance input wp2
, uncer-

tainty input wu, and uncertainty output zu. This controller

emerges from a standard controller, e.g., LQG, extended

by the uncertainty channel from zu to wu. This uncertainty

channel will be used to incorporate the bootstrapping errors

affecting the controller state into the analysis. Further, in-

troducing an additional performance input wp2
provides the

opportunity to study the influence of other errors due to

quantization and the cryptosystem’s noise e.

The interconnection of plant and controller with joint state

ξ = ( x

xc
) and joint performance input wp = (wp1

wp2

) results in

the closed-loop system representation

⎛⎜⎝
ξ(t+1)

zp(t)
zu(t)

⎞⎟⎠ =
⎛⎜⎝
A Bp Bu

C p Dpp Dpu

Cu Dup Duu

⎞⎟⎠
⎛⎜⎝

ξ(t)
wp(t)
wu(t)

⎞⎟⎠ (9)

with

⎛⎜⎝
A Bp Bu

C p Dpp Dpu

Cu Dup Duu

⎞⎟⎠ =
⎛⎜⎜⎜⎝

A+BDcC BCc B1+BDcF1 BF2 0

BcC Ac BcF1 B2 Ac

C1+EDcC ECc D1+EDcF1 EF2 0

0 I 0 0 0

⎞⎟⎟⎟⎠
. (10)

B. Bootstrapping error

From a robust control viewpoint, the approximation error

between the polynomial and the actual modulo function can

be described by a static, time-varying uncertainty ∆r acting

on the channel from zu = ξ to wu = ∆r(zu) = p(ξ)−(ξ mod

q) and depending on the unknown number of overflows r.

By p(ξ), we denote the component-wise evaluation of the

polynomial. By our choice of bootstrapping polynomial in

Section III with its relative error bounds, we can cover every

possible bootstrapping uncertainty ∆r as an element of the

set ∆∆∆ of all uncertainties satisfying the same relative error

bound.

At every time step, the input and the error of the boot-

strapping satisfy the sector condition

(wu,i+γzu,i)(γzu,i−wu,i) ≥ 0 (11)

in every component i.

More generally, a sector condition of the form

(∆(zu)−Lℓzu)⊺ (Luzu−∆(zu)) ≥ 0 (12)

with upper and lower bounds Lu and Lℓ, respectively, can

equivalently be described by

(∆(zu)
zu
)
⊺

τPu(∆(zu)
zu
) ≥ 0 (13)

with any τ > 0 and the multiplier

Pu = ( −2I Lℓ +Lu

L⊺
ℓ
+L⊺u −L⊺

ℓ
Lu −L⊺u Lℓ

) . (14)

For the component-wise bootstrapping error, we get Lu =
γI, Lℓ = −γI, and

Pu = (−2I 0

0 2γ2I
) . (15)

Thus, the set ∆∆∆ of sector bounded uncertainties ∆, containing

the bootstrapping uncertainties, is described by (13) with the

multiplier (15).

C. Problem description

We consider performance as in the following definition.

Definition 1: The system satisfies quadratic performance

specified by Pp if it is asymptotically stable for wp = 0 and

there exists ε > 0 such that

∞

∑
t=0

(wp(t)
zp(t))

⊺

Pp(wp(t)
zp(t)) ≤ −ε

∞

∑
t=0

wp(t)⊺wp(t) (16)

for ξ(0) = 0 and all wp ∈ ℓ2.

This includes the ℓ2-gain, among other common perfor-

mance specifications.

Problem 1: For the closed-loop system (9) under the

influence of bootstrapping with any possible error according

to (11), we want to find a test for quadratic performance

specified by Pp.

V. DYNAMIC CONTROL WITH BOOTSTRAPPING

In this main section, we first show how we can test

performance using the system and bootstrapping description

from Section IV. Then, we use a lifting approach to reduce

the conservatism of our analysis.

A. Stability and performance analysis

As described in Section IV, we consider the bootstrap-

ping error as a time-varying, unknown, static uncertainty

described by the sector condition (13). Clearly, the zero

element resembling no error, i.e., no bootstrapping, is also

contained in the uncertainty description ∆∆∆. Then, by applying

robust control theory [20, Thm. 10.4.], we can obtain the

following theorem.



Theorem 1: The encrypted closed-loop system (9) with

the bootstrapping uncertainty (13) satisfies robust quadratic

performance with performance index Pp = (Qp Sp

S⊺p Rp
) with

Rp ⪰ 0, if there exist X ≻ 0 and τ > 0 such that

(⋆)⊺(−X 0

0 X
)( I 0 0

A Bp Bu
) (17)

+(⋆)⊺Pp( 0 I 0

C p Dpp Dpu
) (18)

+(⋆)⊺τPu( 0 0 I

Cu Dup Duu
) ≺ 0. (19)

Proof: The proof follows directly from our uncertainty

description for bootstrapping (13), which suits the robust

stability and performance test in [20, Thm. 10.4.].

B. Lifted dynamics

The stability and performance test in Theorem 1 is con-

servative for the actual encrypted system in the sense that it

remains valid even if the bootstrapping error is introduced in

every time step. In reality, however, we know that we need

to perform bootstrapping only every TBS ∈N time steps. This

number results from the fact that the cryptosystem supports

several multiplications, i.e., control updates until the modulus

has to be raised again.

Inspired by the success of lifting in [21], we adapt the

lifting idea from [22] to obtain a system description only

sampled at time instants t = kTBS with time-index k of the

lifted system.

We lift the involved signals as

z̃u(k) = zu(kTBS), w̃u(k) =wu(kTBS), ξ̃(k) = ξ(kTBS),
z̃p(k) = ⎛⎜⎝

zp(kTBS)
⋮

zp(kTBS+(TBS−1))
⎞⎟⎠ ,

w̃p(k) = ⎛⎜⎝
wp(kTBS)
⋮

wp(kTBS+(TBS−1))
⎞⎟⎠ .

The lifted system with time-index k is represented by

⎛⎜⎝
ξ̃(k+1)

z̃p(k)
z̃u(k)

⎞⎟⎠ =
⎛⎜⎝
Ã B̃p B̃u

C̃ p D̃pp D̃pu

Cu D̃up Duu

⎞⎟⎠
⎛⎜⎝

ξ̃(k)
w̃p(k)
w̃u(k)

⎞⎟⎠ (20)

with

Ã =ATBS , B̃u =ATBS−1Bu, B̃p = (ATBS−1Bp . . . Bp) ,

C̃ p =
⎛⎜⎝

C p

⋮
C pATBS−1

⎞⎟⎠ , D̃pu =

⎛⎜⎜⎜⎝

0

C pBu

⋮
C pATBS−2Bu

⎞⎟⎟⎟⎠
,

D̃pp =

⎛⎜⎜⎜⎝

Dpp 0 ⋯ 0

C pBp
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋮
⋮ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
0

C pATBS−2Bp ⋯ C pBp Dpp

⎞⎟⎟⎟⎠
,

D̃up = (Dup 0 ⋯ 0) .

With this equivalent system description, we can proceed

with an improved stability and performance analysis.

Lemma 1: The original system (9) satisfies quadratic per-

formance specified by

Pp = (Qp Sp

S⊺p Rp
) , (21)

if and only if the lifted system (20) satisfies quadratic

performance specified by

P̃p = (ITBS
⊗Qp ITBS

⊗Sp

ITBS
⊗S⊺p ITBS

⊗Rp
) . (22)

Proof: Similar results were derived in [23] (stability),

[21] (ℓ2-performance), and [24] (the general case). The proof

follows from

∞

∑
t=0

(wp(t)
zp(t))

⊺

Pp(wp(t)
zp(t)) =

∞

∑
k=0

(w̃p(k)
z̃p(k))

⊺

P̃p(w̃p(k)
z̃p(k)) (23)

and
∞

∑
t=0

wp(t)⊺wp(t) = ∞∑
k=0

w̃p(k)⊺w̃p(k). (24)

This performance equivalence can be used for our second

theorem.

Theorem 2: The encrypted closed-loop system (9) with

the bootstrapping uncertainty (13) satisfies robust quadratic

performance with performance index Pp = (Qp Sp

S⊺p Rp
) with

Rp ⪰ 0, if there exist X ≻ 0 and τ > 0 such that

(⋆)⊺(−X 0

0 X
)( I 0 0

Ã B̃p B̃u
) (25)

+(⋆)⊺P̃p( 0 I 0

C̃ p D̃pp D̃pu
) (26)

+(⋆)⊺τPu( 0 0 I

Cu D̃up Duu
) ≺ 0 (27)

with

P̃p = (ITBS
⊗Qp ITBS

⊗Sp

ITBS
⊗S⊺p ITBS

⊗Rp
) . (28)

Proof: The proof follows from Theorem 1 and

Lemma 1.

Theorem 2 yields a less conservative test than Theorem 1

since its lifted system description (20) captures the fact that

the bootstrapping errors only occur every TBS time steps.

C. Numerical example

For the numerical evaluation we use the system with

A = (−0.5 0.1

0 −0.2
) , B = (0

1
) , B1 = (11) , E = (1

1
) ,

C = (1 0) , F1 = 0, C1 = I, D1 = 0,

Ac = ( 0.13 0.1

−1.27 0.15
) , Bc = ( 0.63

−0.27
) , B2 = I,

Cc = (−1 0.35) , Dc = 0, F2 = 0.



Using the polynomial from Section III with TBS = 10, an

upper bound on the ℓ2-gain is found with Qp = −γ2
ℓ2

I,Sp =
0, and Rp = I. Theorem 1 yields γℓ2

= 5.13, and the less

conservative Theorem 2 returns γℓ2
= 3.97. A simulation

over 10.000 time steps yields an empirical lower bound of

γℓ2
= 1.88.

VI. ANALYSIS OF RESET AND FIR CONTROLLERS

It is interesting to note that if the sector slope is chosen

as γ = 1 in the uncertainty description (11), then also reset

controllers as in [3] can be analyzed using Theorem 2. This

is because this sector includes minus identity as part of its

error description, and this is precisely the error introduced

by resetting the entire controller state to zero. To pursue the

analysis in this case, we can use a nominal controller with

its matrices Ac,Bc,Cc, and Dc, and treat the reset purely by

the uncertainty channel.

Similarly, after small modifications, also FIR controllers

of length N such as in [4] can be analyzed by Theorem 1.

Instead of resetting all states, the dropped measurement

y(t −N) is fed into the uncertainty channel as zu(t) at each

time step. The uncertainty input yields wu(t) =−zu(t), which

can correspond to γ = 1 in the sector notation. The last

necessary modification is the change of Bu = ( 0

AN
c Bc
). This

cancels the effect that y(t−N) would have had on the current

controller state. Thus, if nominal dynamic controllers are

used in a reset or FIR fashion, our theorems provide stability

and performance tests.

VII. SUMMARY AND OUTLOOK

In this paper, we have shown how bootstrapping can be

incorporated into the stability and performance analysis of

encrypted control systems. For the bootstrapping polynomial

in the core of the bootstrapping operation, we derived an

appropriate error description. Using robust control theory,

we were able to derive a stability and performance test. By

finding a lifted system description, which considers the error

only at times when bootstrapping is done, a second, less

conservative test was introduced.

This is the first paper to explicitly incorporate the boot-

strapping effects into system analysis. This joint analysis

offers several new possibilities. If the controller is robust

enough to allow for large bootstrapping errors, a less precise

bootstrapping polynomial is required. In this case, the degree

of the bootstrapping polynomial can be reduced, offering

less precision but a computationally less complex encrypted

evaluation. This can lead to quicker bootstrapping, which

has been the main restriction of applying bootstrapping in

practice, so far. Moreover, for better performance of the

control system, it can be beneficial to extend the time

between two bootstrapping operations. This would lead to

a less frequent introduction of bootstrapping errors. Whether

this is possible in practice has to be investigated from a

cryptographical point of view.
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