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Abstract

We consider the classification problem of quantum spin chains invariant under
local decomposable group actions, covering matrix product unitaries (MPUs),
using an operator algebraic approach. We focus on finite group symmetries
hosting both symmetric and symmetry broken phases. The local-decomposable
group actions we consider have a 3-cocycle class of the symmetry group asso-
ciated to them. We derive invariants for our classification that naturally cover
one-dimensional symmetry protected topological (SPT) phases. We prove that
these invariants coincide with the ones of [GLM] using matrix product states
(MPSs) techniques, by explicitly working out the GNS representation of MPSs
and MPUs, resulting in a useful dictionary between both approaches that could
be of independent interest.
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1 Introduction

The phase classification problem of quantum spin systems with global symmetries has
attracted humongous attention in the last two decades. The main target are geomet-
rically local and gapped Hamiltonians placed on a lattice. The classification approach
focuses on finding the invariants on the boundary of a ground state’s region after
applying the symmetry there [PTBO, CGW, SPC]. That insight was given by matrix
product states (MPSs), the family of tensor network states that approximates effi-
ciently one-dimensional ground states of local and gapped Hamiltonians[H]. Later, the
approach was generalized to higher-dimensional tensor network states [CLW] and also
using algebraic approaches [EN].

Finally, an operator algebraic approach developed by one of the authors concluded
the classification problem for on-site symmetric chains [O1]. The completeness of this
work is based on two main points. First, the framework is based on states satisfying
the so called split property which is exactly satisfied by ground states of local gapped
Hamiltonians [M1]. Then, with this formalism the approximation introduced by using
MPSs disappears. Second, the operator algebra approach allows to deal properly with
the thermodynamic limit which is exactly where quantum phases are defined.

The result for on-site (tensor product form) global symmetries is as follows: for
unique ground states, the so-called symmetry protected topological (SPT) phases, the
invariants are given by the second and third cohomology group of the symmetry group
in one and two spatial dimensions respectively.
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However, more general symmetries than on-site actions can be considered as
representations of finite groups acting on 1D lattices. These are, nonetheless, automor-
phisms of the quantum spin systems that can be locally decomposed using unitaries
(see definition below). For example, matrix product unitary (MPU) representations of
groups fall into this category[CPSV].

In fact, Ref. [GLM] considers MPU representations of finite groups, and even rep-
resentations of fusion categories as global symmetries of ground spaces spanned by
MPSs. They derive a phase classification based on invariants obtained at the virtual
level of the MPSs which restricts to the second cohomology class for the regular setting
of SPT phases.

In this work, we generalize those findings by using the operator algebra approach
which allows us to work outside tensor networks and in the thermodynamic limit.
Moreover, we prove that their invariants coincide with ours working out explicitly the
connection between tensor networks and the operator algebra approach. We note that
the symmetry is specified by an extra index, not just the groupG as in the SPT setting,
associated with the representation of the finite group G that takes values on the third
cohomology group of G. In our setting, we deal with degenerate ground states where
the global symmetry permutes between them. Our findings can be stated informally
as follows: given a finite group G and a representation of it characterized by 3-cocycle
class [ω], the different quantum phases symmetric under the pair (G, [ω]) are labeled
by (H,σ): first, a subgroup H ⊂ G that trivializes ω to a 3-coboundary and second,
an element σ of the second cohomology group of H . The subgroup H is the unbroken
symmetry group, the ground state degeneracy is |G/H | and σ characterizes the SPT
phase of the unbroken symmetry.

We note that while finishing this article, we became aware of Ref. [KS] that also
shows the 3-cocycle index of global symmetries and the impossibility of having unique
ground state for non-trivial ones.

2 General theory

2.1 Setting and main result

In this paper we consider one dimensional quantum spin systems. For each z ∈ Z,
let A{z} be an isomorphic copy of Md, and for any finite subset Λ ⊂ Z, let AΛ =
⊗z∈ΛA{z}, which is the local algebra of observables in Λ. For finite Λ, the algebra
AΛ can be regarded as the set of all bounded operators acting on the Hilbert space
⊗z∈ΛCd. We use this identification freely. If Λ1 ⊂ Λ2, the algebra AΛ1 is naturally
embedded in AΛ2 by tensoring its elements with the identity. The algebra A (resp. AR,
AL) representing the infinite chain (resp. half-infinite chain) is given as the inductive
limit of the algebras AΛ( resp. AΛ with Λ ⊂ [0,∞) and Λ ⊂ (−∞− 1]) completed by
the operator norm. Let G be a finite group and {βg}g∈G be a set of automorphisms
on A such that

βgβh = βgh, g, h ∈ G. (1)
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We assume that each βg is local-decomposable, i.e., it satisfies:

βg = Ad(wg) (βgL ⊗ βgR) , (2)

where wg is a unitary in A, βgL an automorphism on the left infinite chain AL and βgR
an automorphism on the right infinite chain AR. Notice that this particular choice is
arbitrary and this decomposition can be done for any chosen left and right partition.
We may set βeR = id. We denote by BR the set of such βR := {βgR}g∈G.

Let X be a finite G-right set and consider a set ω := {ωx}x∈X of pure split states
on A labeled by x ∈ X . We assume that the automorphisms permute between the set
of pure split states:

ωxβg = ωx·g. (3)

We denote by S the set of all such ω.
We consider a classification of S. We denote by AutG,0A the set of all automor-

phisms α on A allowing a decomposition

α = AdV ◦ (αL ⊗ αR) (4)

and commuting with βg. Recall that automorphisms given by G-invariant interactions
satisfy this condition. We say ω, ω̂ ∈ S are equivalent and write ω ∼G,r ω̂ if there
exists an α ∈ AutG,0A such that ω̂x = ωxα for all x ∈ X . Note that ∼G,r is rougher
than the equivalence relation considered in [O2].

We regard
⊕

x∈X U(1) an abelian group with the pointwise multiplication, and
associate a G-action

(

⊕

x∈X

ax

)g

:=
⊕

x∈X

axg. (5)

For σ ∈ C2
(

G,
⊕

x∈X U(1)
)

, ζ ∈ C1
(

G,
⊕

x∈X U(1)
)

we set

(dσ(g, h, k))x :=
σx(g, h)σx(gh, k)

σxg(h, k)σx(g, hk)
, x ∈ X, g, h, k ∈ G, (6)

and

(dζ)x (g, h) :=
ζx(gh)

ζxg(h)ζx(g)
x ∈ X, g, h, k ∈ G. (7)

Set

T0 :=

{

(σ, c) | σ ∈ C2

(

G,
⊕

x∈X

U(1)

)

, c ∈ Z3(G, U(1)), (dσ)x = c, for all x ∈ X

}

.

(8)
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We introduce an equivalence relation on T0 : (σ̂, ĉ) ∼ (σ, c) if and only if there exist
ζ ∈ C1

(

G,
⊕

x∈X U(1)
)

, z ∈ C2 (G,U(1)) such that σ̂ = dζ · σ · z̄ and ĉ = dz · c. We
denote by T the set of all equivalence classes of T0 with respect to this equivalence
relation. For (σ, c) ∈ T0, we denote by [(σ, c)]T the equivalence class of (σ, c). Here is
our main theorem in this general setting.
Theorem 1. There exists a T -valued invariant I(ω) on ω ∈ S of the classification
∼G.

For the rest of this section we prove this theorem.

2.2 The 3rd group cohomology index from local decomposable

finite group actions

In this section we derive a 3rd group cohomology index for our β. Let βR :=
{βgR}g∈G ∈ BR. We have

Ad(wgh) (βghL ⊗ βghR) = βgh = βgβh = Ad(wg) (βgL ⊗ βgR)Ad(wh) (βhL ⊗ βhR)

= Ad (wg (βgL ⊗ βgR) (wh)) (βgLβhL ⊗ βgRβhR) .

(9)

From this, we see

(

βgLβhLβ
−1
gh,L ⊗ βgRβhRβ

−1
ghR

)

= Ad
(

(wg (βgL ⊗ βgR) (wh))
−1 wgh

)

.
(10)

By Lemma B.1 of [O3], we see that there exists a unitary v(g, h) ∈ U(AR) such that

Ad(v(g, h)) = βgRβhRβ
−1
ghR. (11)

We denote by V (βR) the set of all such v := {v(g, h))}g,h∈G. For each v :=
{v(g, h))}g,h∈G ∈ V (βR) we have

βgRβhRβkR = Ad(v(g, h))βghRβkR = Ad(v(g, h)v(gh, k))βghkR (12)

and

βgRβhRβkR = βgR Ad(v(h, k))βhkR = Ad (βgR (v(h, k)))βgRβhkR

= Ad (βgR (v(h, k)) v(g, hk))βghkR.
(13)

Comparing them, with AR ∩A′R = C11, we conclude that there exists c(g, h, k) ∈ U(1)
such that

βgR (v(h, k)) v(g, hk) = c(g, h, k)v(g, h)v(gh, k) (14)
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Let us show now that c satisfies the 3-cocyle condition

c(g, h, k)c(g, hk, l)c(h, k, l) = c(g, h, kl)c(gh, k, l). (15)

For that, let us consider the operator v(g, h)v(gh, k)v(ghk, l). Using (14) repeatedly,
we can write

v(g, h)v(gh, k)v(ghk, l) =
1

c(g, h, k)
βgR (v(h, k)) v(g, hk)v(ghk, l) =

1

c(g, h, k)c(g, hk, l)
βgR (v(h, k)v(hk, l)) v(g, hkl) =

1

c(g, h, k)c(g, hk, l)c(h, k, l)
βgR (βhR (v(k, l)))βgR (v(h, kl)) v(g, hkl) =

c(g, h, kl)

c(g, h, k)c(g, hk, l)c(h, k, l)
βgR (βhR (v(k, l))) v(g, h)v(gh, kl).

Finally, considering that (11) implies

βgR (βhR (v(k, l))) v(g, h) = v(g, h)βghR (v(k, l)) ,

we can further write

v(g, h)v(gh, k)v(ghk, l) =
c(g, h, kl)

c(g, h, k)c(g, hk, l)c(h, k, l)
v(g, h)βghR (v(k, l)) v(gh, kl)

=
c(g, h, kl)c(gh, k, l)

c(g, h, k)c(g, hk, l)c(h, k, l)
v(g, h)v(gh, k)v(ghk, l),

and thus, as v(g, h)v(gh, k)v(ghk, l) 6= 0, (15) holds. We denote this c ∈ Z3(G,U(1))
by c (βR,v).

Let us show that the equivalence class of the 3-cocycle does not depend on the
choice of βR ∈ BR, v ∈ V (βR). Let β̂R ∈ BR, v̂ := {v̂(g, h)} ∈ V (β̂R) be a different

choice. Comparing the two expressions ((2) and corresponding decomposition for β̂gR)
for βg, we obtain

Ad(ŵ−1g wg) = β̂gLβ
−1
gL ⊗ β̂gRβ

−1
gR ,

with some unitaries wg, ŵg ∈ A and thus, by Lemma B.1 of [O3], there exists a unitary
ag ∈ U(AR) such that

Ad (ag) = β̂gRβ
−1
gR .

We can thus express Ad (v̂(g, h)) as

Ad (v̂(g, h)) = β̂gR Ad(ah)βhRβ̂
−1
ghR = Ad

(

β̂gR(ah)
)

β̂gRβhRβ̂
−1
ghR =

= Ad
(

β̂gR(ah)ag

)

βgRβhRβ
−1
ghR Ad

(

a−1gh

)

= Ad
(

β̂gR(ah)agv(g, h)a
−1
gh

)

.
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This means that there is z(g, h) ∈ U(1) such that

v̂(g, h) = z(g, h)β̂gR(ah)agv(g, h)a
−1
gh = z(g, h)agβgR(ah)v(g, h)a

−1
gh .

We also obtain

β̂gR (v̂(h, k)) v̂(g, hk) = z(h, k)z(g, hk)β̂gR

(

β̂hR(ak)ahv(h, k)
)

agv(g, hk)a
−1
ghk

= z(h, k)z(g, hk)β̂gR(ah)β̂gR (βhR(ak)v(h, k)) agv(g, hk)a
−1
ghk

= z(h, k)z(g, hk)β̂gR(ah)agβgR (βhR(ak)v(h, k)) v(g, hk)a
−1
ghk

= z(h, k)z(g, hk)β̂gR(ah)agβgR (βhR(ak))βgR (v(h, k)) v(g, hk)a−1ghk

= z(h, k)z(g, hk)c(g, h, k)β̂gR(ah)agβgR (βhR(ak)) v(g, h)v(gh, k)a
−1
ghk

= z(h, k)z(g, hk)c(g, h, k)β̂gR(ah)agv(g, h)βghR(ak)v(gh, k)a
−1
ghk

=
z(h, k)z(g, hk)

z(gh, k)
c(g, h, k)β̂gR(ah)agv(g, h)a

−1
gh v̂(gh, k)

=
z(h, k)z(g, hk)

z(g, h)z(gh, k)
c(g, h, k)v̂(g, h)v̂(gh, k).

Therefore

ĉ(g, h, k) =
z(h, k)z(g, hk)

z(g, h)z(gh, k)
c(g, h, k).

Hence [c (βR,v)]H3(G,U(1)) =
[

c
(

β̂R, v̂
)]

H3(G,U(1))
, i.e. the equivalence class

[c]H3(G,U(1)) of the 3-cocycle c does not depend on the choice of wg, βgL, βgR.

2.3 Index of the symmetry acting on the split states

In this section we derive an index I(ω) for each ω ∈ S. By the split property, for each
ω := {ωx}x∈X ∈ S, each ωx satisfies

ωx ≃u.e. ωxL ⊗ ωxR. (16)

Here, ωxL and ωxR are pure states on AL, AR respectively and ≃u.e. denotes (unitary)
equivalence. For each ω ∈ S, we denote by OR(ω) the set of all such ωR := {ωxR}x∈X .

Let ωR = {ωxR}x∈X ∈ OR(ω). Consider (H,π) = (Hx, πx)x∈X , where (Hx, πx)
is a GNS representation of ωxR for each x ∈ X . We denote by GNS(ωR) the set of
such tuples of GNS representations. By definition, we obtain

ωxLβgL ⊗ ωxRβgR ≃u.e. ωxβg = ωx·g ≃u.e. ωx·g,L ⊗ ωx·g,R (17)

Restricting this to AR, we obtain

ωx,RβgR ≃u.e. ωx·g,R. (18)
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Hence for each (H,π) = (Hx, πx)x∈X ∈ GNS(ωR), there is a unitary

ux,g : Hxg → Hx (19)

such that

Ad (ux,g)πxg = πxβgR. (20)

We denote by U(ωR,βR,H,π) the set of such u := {ux,g}x∈X,g∈G. For each v ∈
V (βR), we have

Ad
(

ux,guxg,hu
−1
x,gh

)

πx = πxβgRβhRβ
−1
ghR = Ad (πx(v(g, h)))πx. (21)

Because ωx,R is irreducible, this means there exists σx(g, h) ∈ U(1) such that

ux,guxg,hu
−1
x,gh = σx(g, h)πx(v(g, h)). (22)

We denote by σ (u,v,ωR,βR,H,π) this σ := {σx(g, h)}g,h∈G,x∈X. We then have

ux,guxg,huxgh,ku
−1
x,ghk = ux,guxg,hu

−1
x,ghux,ghuxgh,ku

−1
x,ghk

= σx(g, h)πx(v(g, h))σx(gh, k)πx(v(gh, k)),
(23)

and

ux,guxg,huxgh,ku
−1
x,ghk = ux,guxg,huxgh,ku

−1
xg,hkuxg,hku

−1
x,ghk

= ux,gσxg(h, k)πxg(v(h, k))u
−1
x,gux,guxg,hku

−1
x,ghk

= σxg(h, k)πxβgR(v(h, k))σx(g, hk)πx(v(g, hk))

(24)

Comparing with (14), we obtain

σx(g, h)σx(gh, k) = c(g, h, k)σxg(h, k)σx(g, hk), (25)

for c (βR,v) = {c(g, h, k)}. We note that this equation corresponds to the pentagon
equation of a module category over the fusion category VeccG [EO]. This equation has
several consequences. For trivial 3-cocycle, c = 1, it corresponds to the classification
of symmetry broken phases for on-site global symmetries. In that case, if, moreover,
X consists of a single point, the equation corresponds to the 2-cocycle equation for
the invariants of SPT phases [O2]. It also shows that if X consists of single point,
c has trivial cohomology. This means that for an automorphism with non-trivial 3-
cocycle, c 6= 1, X cannot be a single point, i.e. there is no unique ground state phase.
This result has been derived before in the MPS setting [CLW]. Let us define H ⊆ G
as H = {h ∈ H,x · h = x, ∀x ∈ X}, the so-called unbroken symmetry group. Then,
Eq.(25) restricted to the elements of H reads:

σx(h1, h2)σx(h1h2, h3) = c(h1, h2, h3)σx(h2, h3)σx(h1, h2h3), (26)
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which implies that c restricted toH is a trivial 3-cocycle and then, as argued in [GLM],
σx restricted to H is a 2-cocycle of H .

Finally Eq. (25) also leads to a well-defined index of ω.
Theorem 2. Let ω ∈ S. Then

I(ω) := [σ (u,v,ωR,βR,H,π) , c (βR,v)]T ∈ T (27)

is independent of the choice of βR ∈ BR, v ∈ V (βR), ωR ∈ OR(ω), (H,π) ∈
GNS(ωR), u ∈ U(ωR,βR,H,π).

Proof. Let β̂R ∈ BR, v̂ ∈ V (β̂R), ω̂R ∈ OR(ω), (Ĥ, π̂) ∈ GNS(ω̂R),

û ∈ U(ω̂R, β̂R, Ĥ, π̂) be another choice, and let ĉ := c
(

β̂R, v̂
)

and σ̂ :=

σ
(

û, v̂, ω̂R, β̂R, Ĥ, π̂
)

.

By the subsection 2.2, there are unitaries bg ∈ AR and z ∈ C2(G,U(1)) such that

β̂g,R = Ad bgβg,R and

v̂(g, h) = z(g, h)bgβgR(bh)v(g, h)b
∗
gh ∈ V (β̂R), (28)

and ĉ = c · dz. Because (Ĥx, π̂x), (Hx, πx) are GNS-representations of ωx,R, ω̂x,R for

each x ∈ X , and ω̂x,R ≃u.e. ωx,R there exists a unitary Wx : Hx → Ĥx such that

π̂x = Ad(Wx) ◦ πx. From Ad ûx,gπ̂xg = π̂xβ̂g,R, we have

Ad ûx,gπ̂xg = π̂xβ̂g,R = Ad(Wxπx(bg)ux,gW
∗
xg)π̂xg. (29)

Because π̂xg is irreducible, there exists a ζx(g) ∈ U(1) such that

ûx,g = ζx(g)Wxπx(bg)ux,gW
∗
xg. (30)

Substituting this to the definition of σ̂, we have

σ̂x(g, h)π̂x(v̂(g, h))

= ûx,gûxg,hû
−1
x,gh

= ζx(g)ζxg(h)ζx(gh)Wxπx(bg)Ad ux,g (πxg(bh))ux,guxg,hu
∗
x,ghπx(b

∗
gh)W

∗
x

= ζx(g)ζxg(h)ζx(gh)σx(g, h)Wxπx
(

bgβgR(bh)v(g, h)b
∗
gh

)

W ∗x

= ζx(g)ζxg(h)ζx(gh)σx(g, h)z(g, h)π̂x(v̂(g, h)),

(31)

and σ̂ = dζ z̄σ. Hence we obtain (σ, c) ∼ (σ̂, ĉ).

2.4 Proof of Theorem 1

We give the proof of Theorem 1. It suffices to show that I(ω) obtained above is an
invariant.
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Proof. Let α ∈ AutG,0A with decomposition (4). Set ω̂ := {ω̂x := ωxα}. It suffices
to show that I(ω̂) = I(ω). Let βR ∈ BR, v ∈ V (βR), ωR ∈ OR(ω), (H,π) ∈
GNS(ωR), u ∈ U(ωR,βR,H,π). Let σ := σ (u,v,ωR,βR,H,π).

With a decomposition (2) for this βR, we have

Ad(βg(V )wg) ◦ (βgLαL ⊗ βgRαR) = βgα = αβg = Ad(α(wg)V ) (αLβgL ⊗ αRβgR) .
(32)

From this, there exists a unitary ag ∈ AR such that

Ad(ag)βgRαR = αRβgR. (33)

Therefore, we have

β̂R := {β̂gR := α−1R βgRαR} ∈ BR. (34)

By

β̂gRβ̂hRβ̂
−1
ghR = α−1R βgRβhRβ

−1
ghRαR = Ad

(

α−1R (v(g, h))
)

, (35)

we have

v̂ := {v̂(g, h) := α−1R (v(g, h))} ∈ V (β̂R),

c
(

β̂R, v̂
)

= c (βR,v) .
(36)

With the decomposition (16) for our ωR, we also have

ω̂x := ωxα ≃ ωxLαL ⊗ ωxRαR. (37)

Set

ω̂R := {ω̂x,R := ωx,RαR}, π̂ := {π̂x := πxαR}. (38)

Clearly ω̂R ∈ OR(ω̂), (H, π̂) ∈ GNS(ω̂R). From

Ad ux,gπ̂xg = Ad ux,gπxgαR = πxβgRαR = πxαRβ̂gR = π̂xβ̂gR, (39)

we have u ∈ U(ω̂R, β̂R,H, π̂). Therefore, for σ̂ := σ
(

u, v̂, ω̂R, β̂R,H, π̂
)

we have

σx(g, h)πx(v(g, h)) = ux,guxg,hu
−1
x,gh = σ̂x(g, h)π̂x(v̂(g, h)) = σ̂x(g, h)πx(v(g, h)).

(40)
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Therefore, we get σ̂ = σ, and obtain

I(ω̂) =
[

σ
(

u, v̂, ω̂R, β̂R,H, π̂
)

, c
(

β̂R, v̂
)]

T

= [σ (u,v,ωR,βR,H,π) , c (βR,v)]T = I(ω).
(41)

This completes the proof.

3 Translation invariant case

In this section, we restrict our attention to the translation invariant case. Let τ be the
space translation of A, one site to the right. Throughout this section, we assume that
the action β is translation invariant:

βgτ = τβg , g ∈ G. (42)

We furthermore suppose that βgR, βgL in (2) can be chosen so that they act non-
trivially only on A[r,∞) and A(−∞,−r−1] respectively for some 2 ≤ r, and we do fix
such βR ∈ BR and v ∈ V (βR).

We denote by Sτ the set of ω = {ωx} ∈ S such that

ωxτ = ωx, for all x ∈ X. (43)

In this setting we derive MPS-like representation of ω ∈ Sτ . Throughout this section
we fix ω ∈ Sτ and ωR ∈ OR(ω), (H,π) ∈ GNS(ωR), u ∈ U(ωR,βR,H,π).

3.1 Representations of ωxβgR, ωxβgRβhR

We show the MPS-like representation of states, following the standard argument
[BJP][A].

Proposition 3. For any x ∈ X and g ∈ G, there are {S
(x),g
µ }x∈X,g∈G,µ=1,...,d ⊂ B(Hx)

and a density matrix ρx on Hx such that

S(x),g
µ

(

S(x),g
ν

)∗

= πxβgR

(

e(0)µν

)

,

πxβgRτ(A) =
∑

µ

S(x),g
µ πxβgR(A)

(

S(x),g
µ

)∗

, A ∈ AR,

(S(x),g
µ )∗S(x),g

ν = δµ,ν11,

(44)

ωxβgR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · ⊗ e(N)
µNνN

)

= Tr ρx

(

S(x),g
µ0

S(x),g
µ1

· · ·S(x),g
µN

S(x),g
νN

∗
· · ·S(x),g

ν1

∗
S(x),g
ν0

∗
)

.
(45)

Here {e
(k)
µ,ν}µ,ν=1,...,d is the system of standard matrix units of Md ≃ A{0}.
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Proof. This follows from a standard argument [BJP], [A] but for the reader’s
convenience we give a proof here.

First note that by the irreducibility of πxβgR, we have

πxβgRτ(AR)
′ = πxβgR

(

A[1,∞)

)′
= πxβgR(A{0}). (46)

We claim that there exists an endomorphism ϕx,g : B(Hx) → B(Hx) such that

ϕx,g (πxβgR(A)) = πxβgRτ(A), A ∈ AR. (47)

To see this, note that

(ωx,L ⊗ ωx,R) (βgL ⊗ βgR) τ (βgL ⊗ βgR)
−1

≃u.e. ωxβgτβ
−1
g = ωx ≃u.e. ωx,L ⊗ ωx,R.

(48)

Let (HxL, πxL,ΩxL), (Hx, πx,Ωx) GNS triples for ωxL and ωxR respectively. Then

(

HxL ⊗Hx, π1 := (πxL ⊗ πx) (βgL ⊗ βgR) τ (βgL ⊗ βgR)
−1 ,ΩxL ⊗ Ωx

)

(49)

is a GNS triple of (ωx,L ⊗ ωx,R) (βgL ⊗ βgR) τ (βgL ⊗ βgR)
−1

, while

(HxL ⊗Hx, π2 := πxL ⊗ πx,ΩxL ⊗ Ωx)

is a GNS triple of ωx,L ⊗ ωx,R. From (48), π1 and π2 are unitarily equivalent.
Restricting this to AR, π1|AR

and π2|AR
are quasi-equivalent. Note that π1|AR

and
πxβgRτ (βgR)

−1
are quasi-equivalent and π2|AR

and πx are quasi-equivalent. This and
the irreducibility of πxβgR implies (47).

This ϕx,g in (47) is an endomorphism of B(Hx) with Powers index d, from (46).

Therefore, from [BJP], [A], there exists
˜
S
(x),g
µ ∈ B(Hx), µ = 1, . . . , d such that

(
˜
S
(x),g
µ )∗

˜
S
(x),g
ν = δµ,ν11,

ϕx,g (a) =
∑

µ

˜
S
(x),g
µ a

(

˜
S
(x),g
µ

)∗

, a ∈ B(Hx).
(50)

In particular, we have

πxβgRτ(A) = ϕx,g (πxβgR(A)) =
∑

µ

˜
S
(x),g
µ πxβgR(A)

(

˜
S
(x),g
µ

)∗

, A ∈ AR. (51)

We claim that

πxβgR
(

A{0}
)

= C −

{

˜
S
(x),g
µ

(

˜
S
(x),g
ν

)∗

| µ, ν = 1, . . . , d

}

. (52)
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Here C− means C-linear span. Multiplying (51) by
˜
S
(x),g
µ

(

˜
S
(x),g
ν

)∗

from right and

left gives the same result, therefore, we see that

˜
S
(x),g
µ

(

˜
S
(x),g
ν

)∗

∈ πxβgRτ(AR)
′ = πxβgR(A{0}), (53)

from (52). On the other hand, for any B ∈ A{0} and A ∈ AR, we have

0 = [πxβgRτ(A), πxβgR(B)]

=
∑

µ

(

˜
S
(x),g
µ πxβgR(A)

(

˜
S
(x),g
µ

)∗

πxβgR(B)− πxβgR(B)
˜
S
(x),g
µ πxβgR(A)

(

˜
S
(x),g
µ

)∗)

.

(54)

Multiplying

(

˜
S
(x),g
ν

)∗

from left and
˜
S
(x),g
µ from right, we obtain

[

πxβgR(A),

(

˜
S
(x),g
ν

)∗

πxβgR(B)
˜
S
(x),g
µ

]

= 0 (55)

for any B ∈ A0 and A ∈ AR. Because πxβgR is irreducible, we have

(

˜
S
(x),g
ν

)∗

πxβgR(B)
˜
S
(x),g
µ = cνµ(B)11, (56)

with some cνµ(B) ∈ C, for any B ∈ A{0} . Therefore, for any B ∈ A{0}, we obtain

πxβgR(B) =
∑

µ,ν

˜
S
(x),g
ν

(

˜
S
(x),g
ν

)∗

πxβgR(B)
˜
S
(x),g
µ

(

˜
S
(x),g
µ

)∗

=
∑

µ,ν

cνµ(B)
˜
S
(x),g
ν

(

˜
S
(x),g
µ

)∗

,

(57)

proving the claim.

Let {e
(0)
µν } be the standard system of matrix units of Md ≃ A{0}. Note that

{
˜
S
(x),g
µ

(

˜
S
(x),g
ν

)∗

}µ,ν=1,...,d is a system of matrix units of πxβgR
(

A{0}
)

. Hence there

is some unitary U ∈ Ud such that

˜
S
(x),g
µ

(

˜
S
(x),g
ν

)∗

= πxβgR

(

U∗e(0)µνU
)

. (58)

Setting

S(x),g
µ :=

∑

λ

Uλµ
˜
S
(x),g
λ , (59)
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we obtain

S(x),g
µ

(

S(x),g
ν

)∗

=
∑

λ,ζ

UλµUζν
˜
S
(x),g
λ

(

˜
S
(x),g
ζ

)∗

=
∑

λ,ζ

UλµUζνπxβgR

(

U∗e
(0)
λζ U

)

= πxβgR

(

U∗Ue(0)µνU
∗U
)

= πxβgR

(

e(0)µν

)

,

πxβgRτ(A) =
∑

µ

S(x),g
µ πxβgR(A)

(

S(x),g
µ

)∗

, A ∈ AR,

(S(x),g
µ )∗S(x),g

ν = δµ,ν11.

(60)

From this, we obtain

πxβgR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · ⊗ e(N)
µNνN

)

= πxβgR

(

e(0)µ0ν0τ
(

e(0)µ1ν1

)

· · · τN
(

e(0)µNνN

))

,

= S(x),g
µ0

S(x),g
µ1

· · ·S(x),g
µN

S(x),g
νN

∗
· · ·S(x),g

ν1

∗
S(x),g
ν0

∗
.

(61)

Note that ωx|AR
is quasi-equivalent to ωxR because of the definition of ωxR and

the purity of ωx. Therefore, there exists a density matrix ρx on Hx such that

ωx|AR
= Tr ρxπx.

Then we have

ωxβgR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · ⊗ e(N)
µNνN

)

= Tr ρxπxβgR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · ⊗ e(N)
µNνN

)

= Tr ρx

(

S(x),g
µ0

S(x),g
µ1

· · ·S(x),g
µN

S(x),g
νN

∗
· · ·S(x),g

ν1

∗
S(x),g
ν0

∗
.
)

.

This completes the proof of Proposition (3).

Now we consider the action of ux,g on S
(x)g
µ s.

Lemma 4. For any x ∈ X , g ∈ G there exits c2((x), g) ∈ U(1) such that

Ad
(

u∗xg−1,g

)

(

S(xg−1),g
µ

)

= c2((x), g)S
(x),e
µ . (62)

Proof. Consider

X(x),g
µ := Ad

(

u∗x,g
)

(

S(x),g
µ

)

∈ B(Hxg), x ∈ X. (63)

It is straightforward to check that X
(xg−1),g
µ satisfies the same relation as S

(x),e
µ s in

Proposition 3. Therefore, by the standard argument (see [OT] for example), there
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exists c2((x), g) ∈ U(1) such that

Ad
(

u∗xg−1,g

)

(

S(xg−1),g
µ

)

= X(xg−1),g
µ = c2((x), g)S

(x),e
µ . (64)

We also introduce S(x),g,h corresponding to the state ωxβgβh:

Proposition 5. For any x ∈ X and g, h ∈ G, there are {S
(x),g,h
µ }x∈X,g,h∈G,µ=1,...,d ⊂

B(Hx) and a density matrix ρx,g,h on Hx such that

S(x),g,h
µ

(

S(x),g,h
ν

)∗

= πxβgRβhR

(

e(0)µν

)

,

πxβgRβhRτ(A) =
∑

µ

S(x),g,h
µ πxβgRβhR(A)

(

S(x),g,h
µ

)∗

, A ∈ AR,

(S(x),g,h
µ )∗S(x),g,h

ν = δµ,ν11,

(65)

ωxβgRβhR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · ⊗ e(N)
µNνN

)

= Tr ρx,g,h

(

S(x),g,h
µ0

S(x),g,h
µ1

· · ·S(x),g,h
µN

S(x),g,h
νN

∗
· · ·S(x),g,h

ν1

∗
S(x),g,h
ν0

∗
)

.
(66)

Here {e
(k)
µ,ν}µ,ν=1,...,d is the system of standard matrix units of Md.

Next, similar to Lemma 4, we have
Lemma 1. There exists c3(xg, g, h) ∈ U(1) such that

S(x),g,h = c3(xg, g, h) ·Ad (πx(v(g, h)))
(

S(x),gh
)

.

We also have
Lemma 2. There exists c′2(x, g, h) ∈ U(1) such that

S(x),g,h = c′2(x, g, h) · Ad(ux,g)
(

S(xg),h
)

.

Let us express now S
(x),g,h
µ in two different ways using Lemma 1 and 2. First, using

Lemma 2 we obtain

S(x),g,h
µ = c′2(x, g, h) ·Ad(ux,g)

(

S(xg),h
µ

)

Using now Eq. (64), we obtain

S(x),g,h
µ = c′2(x, g, h)c2(xgh, h) · Ad(ux,guxg,h)

(

S(xgh),e
µ

)

.
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Let us express now S
(x),g,h
µ with the help of Lemma 1:

S(x),g,h
µ = c3(xg, g, h) · Ad (πx(v(g, h)))

(

S(x),gh
µ

)

.

Using again Eq. (64), we obtain

S(x),g,h
µ = c3(xg, g, h)c2(xgh, gh) ·Ad (πx(v(g, h)ux,gh))

(

S(xgh),e
µ

)

.

Finally comparing the two different expressions for S(x),g,h, we obtain

c′2(x, g, h)c2(xgh, h) · Ad(ux,guxg,h)
(

S(xgh),e
µ

)

=c3(xg, g, h)c2(xgh, gh) ·Ad (πx(v(g, h)ux,gh))
(

S(xgh),e
µ

)

.

3.2 Reduction to MPS

Now we apply the general theory in the previous subsection to MPS. Assume now
that ωx are injective MPS.

For each x ∈ X , let Φx be a parent interaction of ωx. Let P
(x),g be the orthogonal

projection onto
∩X⊂[0,∞) kerπxβgR (Φxg(X)) ⊂ Hx,

for x ∈ X and g ∈ G. Set

B(x),g
µ := P (x),gS(x),g

µ P (x),g.

for x ∈ X and g ∈ G. By [O1], we know that P (x),e is equal to the support projection
of the density matrix ρx, and that

B(x),e
µ = P (x),eS(x),e

µ (67)

and that the tuple of matrices on P (x),eHx {B
(x),e
µ }µ gives an injective MPS. Because

Ad(ux,g) (πxg (Φxg(X))) = πxβgR (Φxg(X)) ,

we see that
Ad
(

u∗x,g
)

(P (x),g) = P (xg),e.

By this, (64), and (69), we have

B(x),g
µ = c2((xg), g)Ad ux,g

(

B(xg),e
µ

)

. (68)

From this, we have

B(x),g
µ = P (x),gS(x),g

µ , (69)

16



and the tuple of matrices {B
(x),g
µ }µ on P (x),gHx gives an injective tensor.

Similarly, let P (x),g,h be an orthogonal projection onto

∩X⊂[0,∞) kerπxβgRβhR (Φxgh(X)) .

Then because πxβgRβhR (Φxgh(X)) = Ad πx (v(g, h)) (πxβgh,R(Φxgh(X))), we have

Ad (πx (v(g, h)))
(

P (x),gh
)

= P (x),g,h.

Setting

B(x),g,h
µ := P (x),g,hS(x),g,h

µ P (x),g,h,

we get

B(x),g,h
µ = P (x),g,hS(x),g,h

µ = c3(xg, g, h)Ad (πx (v(g, h)))
(

B(x),gh
µ

)

. (70)

By this formula, the tuple of matrices {B
(x),g,h
µ } on P (x),g,hHx gives an injective tensor.

Finally, by πxβgRβhR (Φxgh(X)) = Ad (ux,g)πxgβhR (Φxgh(X)), we get

Ad (ux,g)
(

P (xg),h
)

= P (x),g,h.

Therefore, we obtain

B(x),g,h
µ = c′2(x, g, h)Adux,g

(

B(xg),h
µ

)

. (71)

Let us express now B
(x),g,h
µ in two different ways. First we obtain

B(x),g,h
µ = c′2(x, g, h) ·Ad(ux,g)

(

B(xg),h
µ

)

Using now Eq. (68), we obtain

B(x),g,h
µ = c′2(x, g, h)c2(xgh, h) · Ad(ux,guxg,h)

(

B(xgh),e
µ

)

.

Let us express now B
(x),g,h
µ with the help of (70)

B(x),g,h
µ = c3(xg, g, h) ·Ad (πx(v(g, h)))

(

B(x),gh
µ

)

.

Using again Eq. (68), we obtain

B(x),g,h
µ = c3(xg, g, h)c2(xgh, gh) · Ad (πx(v(g, h)ux,gh))

(

B(xgh),e
µ

)

.
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Finally comparing the two different expressions for S(x),g,h, we obtain

c′2(x, g, h)c2(xgh, h) ·Ad(ux,guxg,h)
(

B(xgh),e
µ

)

=c3(xg, g, h)c2(xgh, gh) ·Ad (πx(v(g, h)ux,gh))
(

B(xgh),e
µ

)

.

From injectivity, we derive (22) from this.

4 Matrix product state approach and its GNS
representation

In this section we develop a dictionary between the tensor network approach and
the operator algebra formalism used in the previous sections. We show how the GNS
representation of MPS works writing explicitly all the ingredients (see also [FSWCP]).
We hope this section helps to connect both approaches.

4.1 The finite size MPS and MPU setup

We assume that for every g ∈ G we are given an integer Dg and a tensor u(g) ∈

Md ⊗MDg
,

u(g) =
∑

ij

|i〉〈j| ⊗ uij(g) =
∑

αβ

uαβ(g)⊗ |α〉〈β|,

such that the finite size matrix product operator (MPO) Un(g) ∈ M
⊗n
d generated by

this tensor,

Un(g) =
∑

ij

Tr{ui1j1(g) · ui2j2(g) · · ·uinjn(g)} · |i1i2 . . . in〉〈j1j2 . . . jn|

=
∑

α1...αn

uα1α2(g)⊗ uα2α3(g)⊗ · · · ⊗ uαnα1(g) ,

form a unitary representation of G: Un(g)Un(h) = Un(gh), Un(1) = 1⊗n (note that
this is also an MPO with D1 = 1), and Un(g)

∗Un(g) = 1⊗n for all g, h ∈ G and n ∈ N

so that it is a matrix product unitary (MPU).
We also assume that for every x ∈ X we are given an integer Dx and an MPS

tensor a(x) ∈ Cd ⊗MDx
,

a(x) =
∑

αβ

aαβ(x)⊗ |α〉〈β| =
∑

i

|i〉 ⊗ ai(x),

such that the finite size MPS, ψn(x) ∈ (Cd)⊗n, defined by

ψn(x) =
∑

i

Tr{ai1(x) · ai2(x) · · · ain(x)} · |i1i2 . . . in〉
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=
∑

α1...αn

aα1α2(x) ⊗ aα2α3(x) ⊗ · · · ⊗ aαnα1(x),

satisfies the equations Un(g)
∗ψn(x) = ψn(xg) for all x ∈ X , g ∈ G, and n ∈ N.

We further assume that the MPS tensors a(x) and u(g) are injective after blocking,
that is, there is K0 ∈ N such that for all k ≥ K0 the maps MDx

→ C and MDg
→ Md

defined by

X 7→
∑

α1...αk

〈αk+1|X |α1〉 · aα1α2(x)⊗ · · · ⊗ aαkαk+1
(x),

Y 7→
∑

α1...αk

〈αk+1|Y |α1〉 · uα1α2(g)⊗ · · · ⊗ uαkαk+1
(g),

are injective1. The transfer matrices of these MPS and MPO tensors are defined as
the completely positive maps

Tx(ρ) =
∑

i

ai(x)ρai(x)
∗ and Tg(ρ) =

∑

ij

uij(g)ρuij(g)
∗.

Let us assume that the MPS tensors are normalized in such a way that the spectral
radius of Tx is 1; as Un is unitary, Tr(T n

g ) = Tr(U∗nUn) = dn, and thus the spectral
radius of Tg is d. Through the Perron-Frobenius theorem, the spectral radius of each of
these maps is an eigenvalue of the map. Due to the injectivity condition, this eigenvalue
is non-degenerate and the corresponding eigenvector is positive and full rank [EHK].
Using the fact that given an invertible matrix X the MPS tensors defined by matrices
ai and XaiX

−1 generate the same MPS for all system sizes, we can assume w.l.o.g.
that these eigenvectors are the identity (that is, the tensor is in the right canonical
form [FNW, PVWC]),

∑

i

ai(x)ai(x)
∗ = 1, and

∑

ij

uij(g)uij(g)
∗ = d · 1. (72)

Similarly, let ρ(x) and ρ(g) be the positive full rank matrices uniquely defined by the
equations

∑

i

ai(x)
∗ρ(x)ai(x) = ρ(x) and

∑

ij

uij(g)
∗ρ(g)uij(g) = d · ρ(g). (73)

Furthermore, we will write a(n)(x) and u(n)(g) for the tensors obtained by blocking n
sites:

a
(n)
αβ (x) =

∑

γ1...γn

aαγ1(x)⊗ aγ1γ2(x)⊗ · · · ⊗ aγn−1β(x),

1Note that if these maps are injective for some k ∈ N, then they are also injective for any n > k, and
thus this assumption is redundant.
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u
(n)
αβ (g) =

∑

γ1...γn

uαγ1(g)⊗ uγ1γ2(g)⊗ · · · ⊗ uγn−1β(g),

4.2 Graphical notation

As some of the formulas that we will write are quite cumbersome, we will use a graph-
ical language customary in the study of tensor networks to express those equations. In
this notation tensors are denoted with various shapes, and their indices are denoted
as lines attached to the shape. For example, the tensor u(g) is denoted by

u(g) =

Dg
∑

α,β=1

uαβ(g)⊗ |α〉〈β| =
g

, (74)

where the vertical indices correspond to the indices of the matrix uαβ ∈ Md, while
the horizontal indices correspond to the indices of |α〉〈β| ∈ MD. We have attached a
label g on the horizontal line to denote the g-dependence of the tensor. The arrows
differentiate between the input and output indices of the matrices: the vertical matrix
acts from bottom to top, while the horizontal one from right to left. Similarly, the
MPS tensor a(x) is denoted as

a(x) =

Dx
∑

α,β=1

aαβ(g)⊗ |α〉〈β| =
x
. (75)

Here, the index x indicates the x-dependence of the tensor a and it is written on the
horizontal line.

As usual, joining lines corresponds to index contraction. Let us remark here that
when working with matrices we think about column vectors, so the product is opposite
to composition: AB means B acts first, A second, or graphically,

A B
=

AB
.

From now on, we will only indicate explicitly the reading direction of the matrices
when they are not from left to right, or bottom to top, respectively. In this notation,
the MPS ψn(x) and the MPU Un(g) reads as

ψn(x) =
∑

α1...αn

aα1α2(x) ⊗ aα2α3(x)⊗ · · · ⊗ aαnα1(x) =
x . . . ,

Un(g) =
∑

α1...αn

uα1α2(g)⊗ uα2α3(g)⊗ · · · ⊗ uαnα1(g) =
g . . . .
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In this notation, the equation Un(g)Un(h) = Un(gh) reads as

Un(g)Un(h) =
g

h . . .

. . .
=

gh . . . = Un(gh). (76)

The adjoint of the MPS ψn(x) (that is, the linear functional φ 7→ 〈ψn(x)|φ〉) and of
the MPU Un(g) are described by the MPS and MPO tensors

u(g)∗ =

Dg
∑

α,β=1

uαβ(g)
∗ ⊗ |β〉〈α| =

g

,

a(x)∗ =

Dx
∑

α,β=1

aαβ(g)
∗ ⊗ |β〉〈α| =

x
,

where again the arrows indicate which index is input and which is output. Specifically,
on both of the horizontal lines, the index |β〉 of the matrix unit is on the right side
of the tensor, while the index 〈α| of the matrix unit is on the left side of the tensor.
From now on, we do not display the orientation of these tensors; they will always
be oriented from bottom to top and left to right. Using these tensors the equation
Un(g)

∗ψn(x) = ψn(xg) reads as

g

x . . .

. . . =
xg . . . . (77)

As Un(g)
† = Un(g

−1), and both u(g−1) and u(g)∗ are injective MPO tensors, using
the fundamental theorem of MPS we obtain that there is Xg ∈ CD ⊗ CD and X−1g ∈
(

CD
)∗

⊗
(

CD
)∗

such that

g−1g−1

=
gg g−1g−1

Xg X−1g

,
g g−1g−1

Xg X−1g

= 1 and
g−1 gg

X−1g Xg

= 1. (78)

The eigenvalue equations (72) and (73) read as

ρ(x) = ρ(x) , = ,

ρ(g) = ρ(g) , = .
(79)
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Graphically, injectivity reads as the map

X 7→

K

X

. . . .

being injective.

4.3 The main tools for the finite size MPS setup

In the following we repeatedly use the following lemma. For a proof, see [MGSC].
Lemma 3. Let a ∈ Cd⊗MD be an MPS tensor that becomes injective after blocking
and b ∈ Cd ⊗MD′ be an MPS tensor such that for all n ∈ N,

a a a
. . .

n

=
b b b

. . .

n

. (80)

Then there is V ∈ MD,D′ and W ∈ MD′,D such that VW = 1D and for all n ∈ N,

b b bV W

. . .

n

=
a a a

. . .

n

. (81)

Moreover, if a, b and V,W are such that both Eq. (80) and Eq. (81) holds, then there
is M ∈ N, referred to as the nilpotency length corresponding to V and W , such that
for all m, k, n ∈ N, m, k ≥M ,

b b b

. . .

n+m+ k

=
b b a a b bW V

. . . . . . . . .

m n k

. (82)

Note that as every MPU is an injective MPS, this lemma also applies to MPUs.
We will also use the following simple consequence of injectivity:
Lemma 4. Let a ∈ Cd ⊗ MD be an MPS tensor that is injective after blocking K
tensors. Let HL and HR be arbitrary finite dimensional vector spaces and v, w ∈
HL ⊗ CD and u, z ∈ HR ⊗ CD be vectors such that

∑

αβ

vα ⊗ a
(n)
αβ ⊗ uβ =

∑

αβ

wα ⊗ a
(n)
αβ ⊗ zβ

holds for some n ≥ K. Then ∃µ ∈ C, µ 6= 0 such that

v = µw and u = µ−1z.
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Graphically, the statement of the lemma reads as

v a a u
. . . =

w a a z
. . . ⇒ v = µw and u = µ−1z.

Proof. Fix a basis on HL and HR, and apply an element of the dual basis on each
space to obtain

∑

αβ

viαu
j
β · a

(n)
αβ =

∑

αβ

wi
αz

j
β · a

(n)
αβ .

Due to injectivity of a(n), this implies

viαu
j
β = wi

αz
j
β,

for all i, j and α, β. This is equivalent to the statement of the lemma.

This lemma lets us now prove a simple corollary of Lemma 3:
Corollary 6. Let a ∈ Cd ⊗MD, b ∈ Cd ⊗MD′ , V ∈ MD,D′ , W ∈ MD′,D and M ∈ N

such that both Eq. (80) and Eq. (81) holds for all n ≥ 0. Then for all k > M ,

∑

αβ

b
(k)
αβ ⊗ V eαβ =

∑

αβγδ

aαβ ⊗ b
(k−1)
γδ ⊗ eαβV eγδ,

∑

αβ

b
(k)
αβ ⊗ eαβW =

∑

αβγδ

b
(k−1)
αβ ⊗ aγδ ⊗ eαβWeγδ,

or graphically,

b b bV

. . .

k

=
a b bV

. . .

k − 1

,

b b b W

. . .

k

=
b b aW

. . .

k − 1

.

(83)

Proof. Let us apply Lemma 3 to this situation. As V and W satisfy Eq. (81), there
is an M ∈ N such that Eq. (82) holds for any n and m, k ≥ M . Let us consider this
equation twice, once with m,n, k and once with m,n + 1, k − 1 such that m, k > M
and n ≥ L, where L is the injectivity length of a. We obtain

b b a a b bW V

. . . . . . . . .

m n k

=

b b a a a b bW V

. . . . . . . . .

m n k − 1

.
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Given that n that is larger than the injectivity length of the tensor a, using Lemma 4
and recognizing that the two tensors on the left side of a(n) are the same in both sides
of the equation, we conclude that for all k > M

b b bV

. . .

k

=
a b bV

. . .

k − 1

.

The other equation is obtained similarly, by changing m instead of k.

Finally we also obtain that, while V and W are not unique, different choices can
be compared to each other:
Lemma 5. Let a, b be two MPS tensors and V,W and V̂ , Ŵ be two pairs of operators
such that VW = V̂ Ŵ = 1 and such that both Eq. (80) and Eq. (81) holds for all
m, k > M and n. Then ∃λ ∈ C, λ 6= 0 such that ∀m ≥M

b b bV

. . .

m

= λ ·
b b bV̂

. . .

m

,

b b b W

. . .

m

=
1

λ
·

b b b Ŵ

. . .

m

.

(84)

Proof. As both of the pairs (V,W ) and (V̂ , Ŵ ) satisfy Eq. (81), there is anM ∈ N such
that Eq. (82) holds for any n and m, k ≥M , for both (V,W ) and (V̂ , Ŵ ). Therefore

b b a a b bW V

. . . . . . . . .

m n k

=

b b a a b bŴ V̂

. . . . . . . . .

m n k

.

This equation is true with n that is larger than the injectivity length of a, and thus
using Lemma 4 leads to

b b bV

. . .

k

= λm,k ·
b b bV̂

. . .

k

,

b b b W

. . .

m

=
1

λm,k
·

b b b Ŵ

. . .

m

.
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The first equation implies that λm,k in independent of m, while the second implies
that λm,k is independent of k, and thus λm,k is independent from both m and k.

4.4 Connection between the 3-cocycle index of finite MPU

and the one in Section 2.2

In this subsection we show that the 3-cocycle index derived for βg in Section2.2 coin-
cides with the one of the finite size MPU when the βg is defined as a “conjugation with
an MPU representation of g” (finite state automaton). We first defined the index cor-
responding to the finite size MPU representation of a finite group G. Then we define
βg rigorously using MPUs and we show that βg defined in this way satisfies the local
decomposable assumption. We finally prove that the 3-cocycle obtained from this cal-
culation coincides with the cocycle obtained from the finite size MPU representation
of the group G.

4.4.1 Third cohomology index of the finite size MPU

representations

We note that the index measuring translations defined in Ref. [CPSV] for MPU
representations of a finite group is trivial since the index is additive under MPU

multiplication so that 0 = ind(Ue) = ind(U
|G|
g ) = |G| × ind(Ug).

Let us use Lemma 3 for the MPU representation of the finite groupG. The equation
UgUh = Ugh guarantees that there exists a pair of rank-three tensors V (g, h) and
W (g, h) such that V (g, h)W (g, h) = 1gh and such that for all n ∈ N,

. . .

. . .
h

g

gh

h

g

gh

n

= . . .gh gh

n

. (85)

From now on, let us fix such a pair of tensor for each g, h ∈ G. We call these tensors
fusion tensors. The nilpotency length corresponding to these operators is M(g, h) and
we will write M = maxg,hM(g, h). Considering the product of three group elements,
we observe that

. . .

. . .

. . .g

h

k

hk

ghk

g

h

k

hk

ghk

n

= . . .ghk ghk

n

=
. . .

. . .

. . .g

h

k

g

h

k

gh

ghk

gh

ghk

n

.

These equations hold for n = 0 as well in the sense that

g

h

k

hk

ghk

g

h

k

hk

ghk

= 1ghk =

g

h

k

g

h

k

gh

ghk

gh

ghk

.
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Using Lemma 5, there is ω(g, h, k) ∈ C and M ∈ N such that for all m > M

. . .

. . .

. . .g

h

k

g

h

k

hk

ghk

m

= ω(g, h, k) ·
. . .

. . .

. . .g

h

k

g

h

k

gh

ghk

m

,

. . .

. . .

. . . g

h

k

g

h

k

hk

ghk

m

=
1

ω(g, h, k)
·

. . .

. . .

. . . g

h

k

g

h

k

gh

ghk

m

.

(86)

One can show (see for example [CLW]) that ω satisfies the 3-cocycle condition Eq. (15).
Different choices of V (g, h) and W (g, h) lead to different ω, but all of these ω are
related to each other through a 2-coboundary. For instance, as Un(1) = id⊗n is a
rank-one MPO, the tensors V (g, 1), V (1, g),W (g, 1),W (1, g) are all rank-two instead
of rank three. In fact, one can choose them such that

V (g, 1) =W (g, 1) = V (1, g) =W (1, g) = idDg
.

With this choice,
ω(g, h, 1) = ω(g, 1, h) = ω(1, g, h) = 1.

4.4.2 Defining βg from MPUs

In this section we define an automorphism group, its elements denoted by βg (g ∈ G),
of the quasi-local observables using the an MPU representation of a finite group G.
We define βg first on local observables then, we show that it is an automorphism, that
it is norm-contractive and also that βgβh = βgh. Finally we extend βg to the whole
set of quasi-local observables.

Let us recall that given an MPU representation of a finite groupG we have obtained
certain rank-three tensors V (g, h) and W (g, h), called fusion tensors, such that (85)
holds. If h = g−1, then Un(gh) = id⊗n is an MPO with bond dimension one, and thus
V (g, g−1) and W (g, g−1) are rank-two tensors instead of rank-three. These tensors
satisfy the equation (see (81))

. . .

. . .
g−1

g

g−1

g

n

= id⊗n (87)
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for all n ∈ N, as well as the equation

. . .

. . .
g−1

g

g−1

g

n+ k +m

= . . .

. . .

. . .

. . .
. . .g−1

g

g−1

g

g−1

g

g−1

g

k n m

(88)

for all n ≥ 0, k,m ≥M . In particular, (83) reads as (remember that µm,k = 1)

. . .

. . .
g−1

g

g−1

g

k

= . . .

. . .
g−1

g

g−1

g

k − 1

⊗ id,

. . .

. . .
g−1

g

g−1

g

k

= . . .

. . .
g−1

g

g−1

g

k − 1

⊗ id,

(89)

for all k > M .
Let us now define the maps βn,m,k

g : M
⊗n
d → M

⊗(n+m+k)
d for every n and m, k ≥M

as

βn,m,k
g : X

n

7→

g

g−1
X

m kn

, (90)

for any X ∈ M
⊗n
d , for any n. Through the application of (89) (remember that we have

shown that µ = 1), we see that βn,m,k behaves nicely when tensoring with the identity:

βn+1,m,k
g (1 ⊗X) = βn,m+1,k

g (X) = 1 ⊗ βn,m,k
g (X),

βn+1,m,k
g (X ⊗ 1) = βn,m,k+1

g (X) = βn,m,k
g (X)⊗ 1.

Because of these equations we can define a single map βg acting on the algebra of local
observables consistently. To denote βg : Aloc → Aloc we will use the same graphical
notation as for βn,m,k

g , but without specifying n,m and k. In the following we show
that βg is a ∗-automorphism of Aloc that is norm-contractive and that g 7→ βg is a
representation of G. Strictly speaking, we prove all these properties for βn,m,k

g , but
the proof trivially lifts to βg.
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Notice now that βg(1) = 1. One can then easily see that this operation is an
algebra isomorphism, as

βg(X)βg(Y ) =

g

g−1

g

g−1

X

Y

=

g

g−1

g

g−1

X

Y

=

g

g−1

g

g−1

X · Y

=

g

g−1

g

g−1

X · Y

= βg(XY )

where in the second equality we have used (88), and in the fourth one we have used
it again in the other direction. In the last equality we have used βg(1) = 1.

Let us check that g 7→ βg is a group representation. First, β1 = id trivially. Second,
we need to check that βg(βh(X)) = βgh(X). We can write βg(βh(X)) as

βg(βh(X)) =

g−1

h−1

h

g

X . (91)

Notice that, using Eq. (86), we obtain

g−1

h−1

h

g

=
g−1

h−1

h

g

=
1

ω(h, h−1, g−1)
g−1

h−1

h

g

,

and thus, using Eq. (86) again, we obtain that

g−1

h−1

h

g

=
ω(g, h, h−1)

ω(h, h−1, g−1)
g−1

h−1

h

g

.
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Similarly,

g−1

h−1

h

g

=
ω(h, h−1, g−1)

ω(g, h, h−1)
g−1

h−1

h

g

.

Therefore,

βg(βh(X)) =

g−1

h−1

h

g

X = βgh(X),

where in the second equality we have used (85).
Let us show now that the operation βg is a ∗-isomorphism and that it is norm-

contractive. Combining (89) with (78), we obtain

. . .

. . .
g

g

g

g

k

= . . .

. . .
g

g

g

g

k − 1

⊗ 1,

. . .

. . .
g

g

g

g

k

= 1 ⊗ . . .

. . .
g

g

g

g

k − 1

,

(92)

for all k large enough where we have introduced

g

g

=

Xg

g

g−1g and g

g

=

Xg

g

g−1 g . (93)

Tracing the physical indices in this equation, we obtain that the matrices

ρrg =
1

dM . . .

. . .
g

g

g

g

M

and ρlg =
1

dM . . .

. . .
g

g

g

g

M

(94)

are right and left eigenvectors of the transfer matrix T of u(g), respectively, with
eigenvalue d. Therefore they are proportional to the right and left Frobenius-Perron
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eigenvectors of T . Notice that Tr ρlgρ
r
g = 1, and thus, in fact,

ρlg ⊗ ρrg = ρg ⊗ 1. (95)

Using the phase degree of freedom of Xg, we can also assume that ρlg = ρg and ρrg = 1.
Notice now that using (78) in (90) and tracing out a sufficient amount of physical
indices at the two ends, we can equally write

βg(X) =

g

g

Xρg .

As ρg is positive, βg(X) can be written in the form βg(X) =
∑

i Ug,iXU
∗
g,i with

∑

i Ug,iU
†
g,i = id. This means that

βg(X
∗) =

(

∑

i

Ug,iXU
∗
g,i

)∗

=
∑

i

Ug,iX
∗U∗g,i = βg(X)∗,

i.e. that it is a ∗-isomorphism, and that

‖βg(X)‖ ≤ ‖βg(1)‖ · ‖X‖ = ‖X‖,

i.e. that it is norm-contractive.
As βg is norm-contractive, it can be extended to the whole set of quasi-local oper-

ators such that it remains an automorphism and a group representation. We call this
map βg the conjugation by Ug.

4.4.3 The βg defined from MPUs decomposes locally

Let us show now that βg satisfies

βg = Aut(wg) · (βg,L ⊗ βg,R), (96)

for some unitary wg. For that, let L be larger than M and let us define a new MPU
tensor u(L)(g) ∈ M

⊗L
d ⊗MD as

u(L)(g) =
∑

α

uα1α2(g)⊗ · · · ⊗ uαLαL+1(g)⊗ |α1〉〈αL+1|,

or graphically,

= . . . .
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The conjugate tensor is defined similarly:

= . . . .

Considering (88) once with n = 0 and once with n = 2M , we obtain that these tensors
satisfy

. . .

. . .

2M

=
. . .

. . .

M

⊗
. . .

. . .

M

= ⊗ 1
2M ⊗ .

Tracing out the middle 2M physical index in the last equality and dividing by d2M ,
using Eq. (94) together with the fact that ρlg = ρg and ρrg = 1 we obtain that

ρg = ⊗ = , (97)

where in the last equality we have used again (88) with n = 0 and m, k = L. Similarly,

ρg = = 1
2L. (98)

Similar arguments show that there are ρ̂Lg , ρ̂
R
g positive definite matrices such that

= ρ̂rg ρ̂lg and ρ̂lg ρ̂rg = 1 ⊗ 1, (99)

Let us reproduce the results in [CPSV] to be certain that we cite them right.
Following [CPSV], let us consider a minimal rank decomposition of the MPO tensors:

= = and = = . (100)

As the two tensors are the adjoint of each other, we can choose the minimal rank
decompositions such that the two decompositions denoted by red (resp. blue) lines are
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adjoint to each other. By formulas,

∑

αβ

u
(L)
αβ (g)⊗ |α〉 ⊗ 〈β| = S2314





lg(L)
∑

i=1

|xi〉⊗ |yi〉



 = S1324





rg(L)
∑

i=1

|zi〉⊗ |vi〉



 ,

∑

αβ

(

u
(L)
αβ (g)

)†

⊗ 〈α| ⊗ |β〉 = S2314





rg(L)
∑

i=1

〈zi| ⊗ 〈vi|



 = S1324





rg(L)
∑

i=1

〈xi| ⊗ 〈yi|



 ,

where Sijkl denotes the rearrangement of the tensor components according to the
permutation 1 7→ i, 2 7→ j, 3 7→ k and 4 7→ l. The vectors |xi〉, |yi〉, |zi〉 and |wi〉 are
elements of the vector spaces |xi〉 ∈ V ∗⊗W , |yi〉 ∈ V ⊗W ∗, |zi〉 ∈ V ∗⊗W and |vi〉 ∈

V ∗ ⊗W ∗, where V =
(

Cd
)⊗L

, and W = CD. Here 〈x| denotes the linear functional
|y〉 7→ 〈x|y〉, and thus |x〉 7→ 〈x| is an anti-linear map, and we have noticed that for

a matrix u ∈ V ⊗ V ∗, u =
∑

ij uij |i〉〈j|, we can write u† = S12

(

∑

ij ūij〈i| ⊗ |j〉
)

.

We have colored the tensor product sign to make it easier to identify which formula
belongs to which picture. The rank-three tensors in (100) are then defined as

=

lg(L)
∑

i=1

|xi〉 ⊗ |i〉 ∈ V ∗ ⊗W ⊗ Ul,g,L, =

lg(L)
∑

i=1

〈xi| ⊗ 〈i| ∈ V ⊗W ∗ ⊗ U∗l,g,L,

=

lg(L)
∑

i=1

|yi〉 ⊗ 〈i| ∈ V ⊗W ∗ ⊗ U∗l,g,L, =

lg(L)
∑

i=1

〈yi| ⊗ |i〉 ∈ V ∗ ⊗W ⊗ Ul,g,L,

=

rg(L)
∑

i=1

|zi〉 ⊗ |i〉 ∈ V ⊗W ⊗ Ur,g,L, =

rg(L)
∑

i=1

〈xi| ⊗ 〈i| ∈ V ∗ ⊗W ∗ ⊗ U∗r,g,L,

=

rg(L)
∑

i=1

|vi〉 ⊗ 〈i| ∈ V ∗ ⊗W ∗ ⊗ U∗r,g,L, =

rg(L)
∑

i=1

〈vi| ⊗ |i〉 ∈ V ⊗W ⊗ Ur,g,L,

where we have introduced the complex inner product vector spaces Ul,g,L and
Ur,g,L with dimensions lg(L) and rg(L), respectively, and orthonormal basis |i〉 (i =
1, . . . , lg(L), and i = 1, . . . , rg(L), respectively).

As ρg, ρ̂
l
g, 1 and ρ̂rg are full rank, and positive, the overlap matrices Λ1,Λ2,Λ3 and

Λ4 defined as
〈xi|1 ⊗ ρg|xj〉 = (Λ1)ij ,

〈yi|1 ⊗
(

ρ̂rg
)T

|yj〉 = (Λ2)ij ,

〈zi|1 ⊗ ρ̂lg|zj〉 = (Λ3)ij ,

〈vi|1 ⊗ 1|vj〉 = (Λ4)ij ,

are positive definite matrices. As Λ1 and Λ4 are positive definite, we can write

Λ1 =M †1M1 and Λ4 =M †4M4,
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with invertible matrices M1 and M4. We can thus modify the minimal rank
decomposition to

|x̂i〉 =
∑

j

(

M−11

)

ji
|xj〉 and |ŷi〉 =

∑

j

(M1)ij |yj〉,

|v̂i〉 =
∑

j

(

M−14

)

ji
|v̂i〉 and |ẑi〉 =

∑

j

(M4)ij |ẑi〉.
(101)

The vectors |x̂i〉 and |ẑi〉 are now orthonormal:

〈x̂i|x̂j〉 = δij and 〈v̂i|v̂j〉 = δij .

The vectors |yi〉 and |zi〉 are not orthonormal, but the matrices

(Λr)ij = 〈ŷi|ŷj〉 =
(

M̄1Λ2M
T
1

)

ij
and (Λl)ij = 〈ẑi|ẑj〉 =

(

M̄4Λ3M
T
4

)

ij

are positive definite. Choosing this minimal rank decomposition in (100), the above
equations can be expressed using the graphical language as

ρg = 1, ρ̂rg = Λr, ρ̂lg = Λl and = 1. (102)

Using the decomposition (100) together with these equations (notice that by
construction Λr and Λl are invertible), (97) can be simplified to

= ρg = 1 ⊗ 1.

Similarly, (98) simplifies to

= 1 ⊗ 1, (103)

and (99) simplifies to

= ρ̂rg ρ̂lg = Λr ⊗ Λl and Λl Λr = 1 ⊗ 1.
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Let us finally notice that

Λ2
r ⊗ Λ2

l = = = Λr ⊗ Λl,

where in the second equality we have used (103). As Λl and Λr are positive definite,
this implies that Λl = 1 and Λr = 1. We thus obtain that the matrices

wg = and vg = , (104)

are unitary matrices, and in particular, the product of the two Schmidt ranks lg(L) and
rg(L) (corresponding to the blue and the red cut, respectively) is lg(L)rg(L) = d2L.

In [CPSV] it is proven that ig = lg(L)/rg(L) is independent of L and that ign =
(ig)

n, for any n ∈ N. If G is a finite group, then, as i1 = 1, this implies ig = 1 as well,
and thus lg(L) = rg(L) = dL. Therefore in the above decomposition of wg and vg all
free indices have dimension dL. As the rank of the minimal rank decomposition is dL,
we can write

≡ and ≡ . (105)

Let us now define the maps βn,m
g,R and βn,m

g,L for n > M and m ≥M through

βn,m
g,R : X

n

7→

g

g

X

n m

=

g

g−1
X

n m

, (106)

βn,m
g,L : X

n

7→

g

g

Xρg

nm

=

g

g−1
X

nm

, (107)

where the gray tensors are defined as the gaugeXg (X
−1
g ) applied on the white tensors.

Using (89) (remember that µ = 1) we obtain that these maps behave well under
tensoring with the identity:

βn,m
g,R (X ⊗ 1) = βn,m+1

g,R (X) = βn,m
g,R (X)⊗ 1

βm,n
g,L (1 ⊗X) = βm+1,n

g,R (X) = 1 ⊗ βn,m
g,R (X),

and thus we can define maps βg,L and βg,R acting on Aloc that correspond to these
two families of maps. We denote these maps with the same graphical notation as the
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maps βn,m
g,L/R, but without specifying n and m. Using these maps, we arrive at the

following decomposition of βg:

βg(X) =

g

g

Xρg =

g

g

X

w(g)

w(g)†

ρg ,

or
βg(X) = Ad(wg) ◦ (βg,L ⊗ βg,R)(X).

Let us prove now that βg,L and βg,R are ∗-automorphisms that are norm contractive,
and thus they can be extended to the quasi-local observables such that this equation
still holds. First note that using (102), we obtain that for any n ≥ 0 and m ≥ L

g

g

mL+ n

= ρg

g

g

mL+ n

= id⊗(L+n)⊗ ρg

g

g

m

,

g

g

m L+ n

=
g

g

m L+ n

=
g

g

m

⊗ id⊗(L+n) .

Similarly, for any n ≥ 0,

g

g

n

= ρg

g

g

n

= 1,

ρg

g

g

n

= ρg

g

g

n

= 1.

These equations directly imply that βg,L(1) = 1 and βg,R(1) = 1. To see that βg,L
and βg,R are norm contractive ∗-automorphisms, note that

βg,L(X) = Ad(wg)
−1 ◦ βg(1 ⊗X),

and thus βg,L (and βg,R as well) arises as a composition of norm-contractive
∗-automorphisms.
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4.4.4 Equivalence between both 3-cocycle indices

Notice that
g

g =
g

g−1 = 1. (108)

Let us multiply this equation with an operator of MPO form Xg ∈ M
⊗(L+n)
d ⊗CD as

follows:

Xg =
g

. (109)

We obtain that

Xg =

g

g−1

g
=

1

ω(g, g−1, g)

g

g−1

g
=

1

ω(g, g−1, g)

g

g−1

g
,

(110)
and thus, as Xg is left invertible,

ρ̂rg

g

g = 1,

we obtain that
g−1

g = ω(g, g−1, g) · 1. (111)

We can now express v(g, h) explicitly. It can be chosen (notice the phase degree of
freedom) as:

v(g, h) =

g

h

(gh)−1
. (112)

Let us multiply this expression with Xgh. We obtain

(v(g, h)⊗ 1) ·Xgh =

g

h

(gh)−1

gh

=
1

ω(gh, (gh)−1, gh)

g

h

(gh)−1

gh

=

(113)

=
g

h . (114)
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Let us consider now the MPO

g

h

k

=
gh

k

v(g, h)

=
ghk

v(g, h)

v(gh, k) . (115)

It can also be written as

g

h

k

= ω(g, h, k)·

g

h

k

=
1

ω(g, h, k)
·

g

hk

v(h, k) .

Inserting the identity below v(h, k), we can also write

g

h

k

=
1

ω(g, h, k) · ω(g, g−1, g)
·

g

g−1

g

hk

v(h, k) .

Reordering the fusion tensors, we obtain

ω(g, h, k) ·

g

h

k

=

g

g−1

g

hk

v(h, k)

=
ghk

βgR(v(g, h))

v(g, hk) .

Comparing the this equation with (115), using invertibility of Xghk, we obtain the
cocycle equation

βgR(v(h, k)) · v(g, hk) = ω(g, h, k) · v(g, h) · v(gh, k), (116)

and thus the two cocycles coincide.

4.5 Injective MPSs satisfy the assumptions

Let A(x) be injective MPS tensors for each x ∈ X and ψn(x) be the corresponding
MPS on n sites such that for each n ∈ N, x ∈ X and g ∈ G,

Un(g)
∗ψn(x) = ψn(xg),
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or graphically,
g

x . . .

. . . =
xg . . . . (117)

Let us assume that A(x) is in the right canonical form,
∑

µA
(x)
µ (A

(x)
µ )∗ = 1, or

graphically,

= 1.

Let ωx be the translation invariant pure state defined by the matrices A
(x)
µ , that is,

ωx(e
(0)
ν0µ0

e(1)ν1µ1
. . . e(k)νkµk

) = tr{ρ(x)A(x)
µ0
A(x)

µ1
. . . A(x)

µk
(A(x)

νk
)∗ . . . (A(x)

ν1 )∗(A(x)
ν0 )∗},

or graphically,

ωx(X) = ρ(x) X , (118)

where ρ(x) is the left fixed point of the transfer matrix,

ρ(x) =
∑

µ

(A(x)
µ )∗ρ(x)A(x)

µ = ρ(x).

Let us show that these states satisfy ωxβg = ωxg. For that, observe first that Lemma 3
can be applied on the situation described by (117), and thus exist operators V (x, g)
and W (x, g), denoted graphically as

V (x, g) = x

g

xg

and W (x, g) = x

g

xg

, (119)

such that that V (x, g)W (x, g) = 1 and such that for all n > 0,

. . .

. . .
x

g

xg

x

g

xg

n

= . . .xg xg

n

. (120)

Additionally, there is M ′ > 0 such any n ≥ 0, k > M ′ and m > M ′,

. . .

. . .
x

g

x

g

n+ k +m

= . . .

. . .

. . .

. . .
. . .

x

g

x

g

x

g

x

g

k n m

. (121)
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Using Corollary 6, the equations

. . .

. . .
x

g

x

g

k

= . . .

. . .
x

g

x

g

k − 1

,

. . .

. . .
x

g

x

g

k

= . . .

. . .
x

g

x

g

k − 1

,

(122)

are also satisfied for any k > M ′. For g = e the MPO is one-dimensional, and the
tensors V (x, e) and W (x, e) are chosen to be the identity:

V (x, e) = x

e

x = 1 and W (x, e) = x

e

x = 1 . (123)

Let us denote V (x, g)∗ andW (x, g)∗ as (notice that the tensors are rotated 180 degrees
w.r.t. V and W)

V (x, g)∗ =
x

g

xg

and W (x, g)∗ =
x

g

xg

.

These tensors satisfy the adjoint of the Eqns. (120), (121) and (122). We will need the
following lemma:
Lemma 6. For large enough k,

ρ(x)

. . .

. . .

. . .

. . .

x

g

x

g

k

⊗

. . .

. . .

. . .

. . .

x

g

x

g

k

= ρ(xg) ⊗ 1 . (124)

Proof. Eqs. (122) and their conjugate imply for large enough k

. . .

. . .

. . .

. . .

xx

gg

gg

xx

k

=

. . .

. . .

. . .

. . .

xx

gg

gg

xx

k − 1

,

ρ(x)

. . .

. . .

. . .

. . .

x x

g g

g g

x x

k

= ρ(x)

. . .

. . .

. . .

. . .

x x

g g

g g

x x

k − 1

,
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and thus these matrices are proportional to the right and left fixed point of the transfer
matrix belonging to the state ωxg; their tensor product is thus κ · ρ(xg) ⊗ id for some
κ ∈ C. But

1 = ωx ◦ βg(1) =

. . .

. . .

. . .

. . .

x x

g g

g g

x x

2k

,

and thus, using Eq. (121) with m = k and n = 0, we obtain

1 = ρ(x)

. . . . . .

. . . . . .

. . . . . .

. . . . . .

x x

g g

g g

x x

kk

= κ · Tr ρ(xg),

so κ = 1.

We are now in the position to show that ωxβg = ωgx. For that, consider a local
operator X and express ωxβg(X) as:

ωxβg(X) = ρ(x) ρg

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

X

m mk

.

The value of this expression is independent of m given that it is sufficiently large.
Choosing now a large enough m and applying (121), we obtain that

ωxβg(X) = ρ(x) ρg

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

X

m mk

.

Finally using (124) we obtain that ωxβg(X) = ωxg(X) for any local operator X ,
and thus ωxβg = ωxg.

4.6 Injective MPS are split

For the MPS ωx generated by injective tensor of normal form a(x), let Φx be the
parent interaction associated to a(x) given by Definition 1.4 of [O1]. By [FNW], ωx

is a frustration free gapped ground state for Φx. Therefore, by [M2], ωx satisfies the
split property. As a result, we may take a GNS representation of ωx of the form
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(H = HL ⊗HR, π = πL ⊗ πR,Ω). Here πL (resp. πR) is an irreducible representation
of AL (resp. AR) on HL (resp. HR). Let

Ω =
∑

j

√

λjξ
(L)
j ⊗ ξ

(R)
j (125)

be a Schmidt decomposition, with λj 6= 0. Choose and fix unit vectors ξLj , ξ
R
j in the

decomposition and set

ωL(AL) :=
(

ξLj , ALξ
L
j

)

, AL ∈ AL, ωR(AR) :=
(

ξRj , ARξ
R
j

)

, AR ∈ AR. (126)

They give pure states ωL, ωR on AL, AR. Because ω is frustration free, we have

ωL(Φx(XL)) = 0, XL ⊂ (−∞,−1], ωR(Φx(XR)) = 0, XR ⊂ [0,∞). (127)

Therefore, by Lemma 3.16 of [O1], there exist one rank projections pL, pR in MDx

such that

ωR

(

e(0)µ0ν0 ⊗ e(1)µ1ν1 ⊗ · · · e(l)µlνl

)

= Tr pRaµ0(x) · · · aµl
(x)a∗νl (x) · · · aν0(x)

∗,

ωL

(

e(−l)µ−lν−l
⊗ · · · e(−1)µ−1ν−1

)

= Tr pLρ
− 1

2
x aν−1(x)

∗ · · · aν−l
(x)∗ρxaµ−l

(x) · · · aµ−1(x)(x)ρ
− 1

2
x .

(128)

By Kadison transitivity, there exists a unitary U ∈ A such that

ωAdU = ωL ⊗ ωR. (129)

As pL and pR are rank one, ωL(X) and ωR(X) are described as

ωL(X) =

〈φL|

|φL〉
ρ(x) X

k

, ωR(X) =

|φR〉

〈φR| X

k

, (130)

for any X ∈ A that is localized on k particles. Here we have written pL = |ΦL〉〈ΦL|
and pR = |ΦR〉〈ΦR|.

4.7 Index from the finite size MPU action on the MPS

The equation
g

h

xgh . . .

. . . =
x . . . ,
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hold for all system size n, and thus there exist V (g, h, x) and W (g, h, x) such that
Eq. (81) holds. In fact, we can construct these matrices directly, in two different ways.
First, let us introduce

xg

g

x
=

Xg

xg

g−1 g

x
and xg

g

x
=

X−1g

xg

g−1g

x
. (131)

these tensors satisfy

. . .

. . .
xg

g

x
xg

g

x

n

= . . .x x

n

, (132)

and thus we can consider

V (g, h, x) = xg

x

xgh

h

g

and W (g, h, x) = xg

x

xgh

h

g

,

and second,

V̂ (g, h, x) =
gh

x

g

h

xgh
and Ŵ (g, h, x) =

gh

x

g

h

xgh
.

Using then Lemma 5, we obtain that there is σ̂x(g, h) such that

. . .

. . .

. . .g

h

xgh

g

h

xgh

xg

x

m

= σ̂x(g, h) ·
. . .

. . .

. . .g

h

xgh

g

h

xgh

gh

x

m

,

. . .

. . .

. . . g

h

xgh

g

h

xgh

xg

x

m

=
1

σ̂x(g, h)
·

. . .

. . .

. . . g

h

xgh

g

h

xgh

gh

x

m

.

(133)

It is straightforward to check that σ̂x(g, h) satisfies Eq. (25) with the three-cocycle ω,
that is,

σ̂x(g, h)σ̂x(gh, k) = ω(g, h, k)σ̂xg(h, k)σ̂x(g, hk). (134)

The value of σ̂x(g, h) depends on the concrete choice of the action and fusion tensors;
given fixed fusion tensors, different choices of the action tensors, using Lemma 5, lead
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to other values, denoted by σ̂′x(g, h), that are related to σ̂x(g, h) by

σ̂′x(g, h) = σ̂x(g, h) ·
α(x, gh)

α(xg, h)α(x, g)
∀g, h ∈ G , (135)

for some values α(x, g). We will call σ̂ and σ̂′ equivalent,

σ̂x(g, h) ∼ σ̂x(g, h) ·
α(x, gh)

α(xg, h)α(x, g)
∀g, h ∈ G . (136)

This defines the equivalent classes of σ̂x(g, h) denoted by [σ̂x(g, h)] satisfying Eq. (25).
In the following we show that the index defined this way coincides with the index
defined through the general formalism.

4.8 The GNS representation of a MPS

Here we give an explicit construction for the GNS representation of a MPS. Intuitively,
the Hilbert space is defined as finite range deformations of the infinite MPS and the
action of the local operators is the obvious one; the cyclic vector is the MPS itself.

Let ω be the state defined by the injective/normal MPS A given by matrices
Ai ∈ MD, i = 1 . . . d. Another way to think of the MPS tensor is as a collection
of vectors aαβ ∈ Cd, with α, β = 1 . . .D defined implicitly through the equation
A =

∑

i |i〉⊗Ai =
∑

αβ aαβ⊗eαβ. Due to the injectivity condition, the transfer matrix
has a unique left and right fixed point, both of which are positive and full rank. W.l.o.g.
we assume that the MPS in the right canonical form, that is, the right fixed point is
the identity, while the left fixed point is an invertible positive operator ρ ∈ MD:

∑

i

AiA
†
i = 1MD

and
∑

i

A†iρAi = ρ, (137)

or graphically,

= 1 and ρ = ρ.

Let us express these equations with the vectors aαβ :

∑

β

〈aγβ |aαβ〉 = δαγ and
∑

βγ

ργβ · 〈aγδ|aβα〉 = ρδα.

For every interval I ⊂ Z, let KI := ⊗i∈IC
d and let us define finite dimensional

Hilbert spaces HI as
HI = KI ⊗MD,

with scalar product
〈v ⊗m|w ⊗ n〉I := 〈v|w〉 · tr(m†ρn). (138)

Elements of this space are depicted as

. . .
∈ HI .
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Let J be the interval obtained by extending I by one point to the right. Let us define
the map φJ←I : HI → HJ as the linear extension of

φJ←I (v ⊗m) =
∑

αβ

v ⊗ aαβ ⊗meαβ.

Graphically,

φJ←I :
. . .

7→
. . .

.

This map respects the scalar product of any two vectors as:

〈φJ←I (v ⊗m)|φJ←I (w ⊗ n)〉J =
∑

αβγδ

〈v|w〉 · 〈aαβ |aγδ〉 · tr(eβαm
†ρneγδ) =

∑

αβγ

〈v|w〉 · 〈aαβ |aγβ〉 · tr(m
†ρneγα) =

∑

αγ

〈v|w〉 · δαγ · tr(m†ρneγα) =

〈v|w〉 · tr(m†ρn) = 〈v ⊗m|w ⊗ n〉I .

The same calculation in graphical language reads as

. . .ρ = . . .ρ ,

where in the equality we have used Eq. (137).
Similarly, if J is the interval obtained by extending I by one point to the left, then

let us define the map φJ←I : HI → HJ as

φJ←I (v ⊗m) =
∑

αβ

aαβ ⊗ v ⊗ eαβm.

Graphically,

φJ←I :
. . .

7→
. . .

.

This map also preserves the scalar product:

〈φJ←I (v ⊗m)|φJ←I (w ⊗ n)〉J =
∑

αβγδ

〈aαβ |aγδ〉 · 〈v|w〉 · tr(m
†eβαρeγδn) =

〈v|w〉
∑

αβγδ

ραγ〈aαβ |aγδ〉 · tr(m
†eβδn) = 〈v|w〉

∑

βδ

ρβδ · tr(m
†eβδn) =

〈v|w〉 · tr(m†ρn) = 〈v ⊗m|w ⊗ n〉I .

The same calculation in graphical language reads as

. . .ρ = . . .ρ ,

where in the equality we have used Eq. (137).
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Concatenating these maps, we obtain a unique map φJ←I for any two intervals I
and J such that I ⊂ J . Graphically,

φJ←I :
. . .
I

7→
. . .

. . . . . .

J

.

The maps φJ←I are isometries and they satisfy the relation

φK←I = φK←J ◦ φJ←I ∀I ⊂ J ⊂ K.

Using these maps, we can construct the direct limit

Hloc = lim
I→Z

HI .

As φJ←I are an isometries, we can extend the scalar product 〈.|.〉I to this vector space.
We can then complete Hloc w.r.t. this scalar product obtaining a Hilbert space H.
Let I ⊂ Z be a finite interval, φ∞←I : HI → H be the embedding of HI into H and
O ∈ AI . For any J ⊃ I finite interval we set

πJ (O) := O ⊗ 11(Cd)J\I ⊗ 11MD
, (139)

and we define π(O) as

π(O)φ∞←J (ξ) := φ∞←J

(

πJ (O)ξ
)

(140)

for any ξ ∈ HJ. This defines a well-defined bounded operator on Hloc whose norm
satisfies ‖π(O)‖ ≤ ‖O‖. Because Hloc is dense in H, it extends uniquely to a bounded
operator on H, which we denote by the same symbol.

Let ΩI denote the MPS on the interval I = [n, n+ 1, . . . ,m], i.e.

ΩI =
∑

α...ω

a
(n)
αβ a

(n+1)
βγ . . . a

(m)
ζω ⊗ eαω.

Graphically,

ΩI = . . .

I

.

These vectors obviously satisfy φJ←I(ΩI) = ΩJ . Their limit Ω = limI→Z ΩI thus exist
in H. It is the infinite MPS. It is cyclic for the representation π: on any (large enough)
finite interval I, through injectivity of A, Span{(O ⊗ 1)ΩI |O ∈ AI} = HI , and thus
π (Aloc)Ω ⊂ π (A)Ω is dense in H. Finally notice that, by construction, for any finite
interval I and O ∈ AI , 〈ΩI |OΩI〉 = ω(O), and thus 〈Ω|OΩ〉 = ω(O) holds as well.

Therefore the triple (H, π,Ω) is a GNS triple for the state ω defined by the MPS.
Let us note that the construction also works for half-infinite MPS. In this case we

can consider only intervals such that one of their endpoint is {0}.
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4.9 The invariants of the phases coincide

In this section we give an explicit representation of the unitaries ux,g : Hxg → Hx

defined in Eq. (20) for states and automorphisms that are given by MPS and MPO.
We will show then that the index derived from the MPS theory [GLM] coincides with
the index derived in this paper.

Let G be a finite group and X be a finite G-set. Let Ax be normal MPS tensors
for all x ∈ X and Bg be injective MPO tensors for all g ∈ G such that Eq. (76) and
Eq. (117) holds. As the MPS defined by the tensors Ax are normal, they each define
a split state ωx on A through Eq. (118) and thus also a state ωx,R on AR through
Eq. (130).

Let us consider the GNS triple (Hx, πx,Ωx) of each ωx,R. An explicit representation
is given as in the previous section; we denote the finite dimensional Hilbert spaces

corresponding to the interval [0, n] byH
(n)
x and the corresponding injections by φ

(m,n)
x :

H
(n)
x → H

(m)
x for each x ∈ X and n,m ∈ Z such that m > n. We denote by π

(m)
x the

representation of A[0,m] on H
(m)
x constructed as in (139). Likewise we use notation

φ
(m,n)
x , φ

(∞,n)
x etc.

In the following we give an explicit representation of ux,g defined in Eq. (20).
Through this explicit representation we connect the index defined in Eq. (22) to the
index defined in Eq. (133).

Before giving the explicit representation, notice that for all n,

〈ψn(x)|U
∗
n(g)ψn(xg)〉 = 1,

or graphically,
x

g

xg . . .

. . .

. . .

= 1,

where the blue dots with xg drawn on the horizontal line correspond to the MPS
tensors describing |ψn(xg)〉, the black dots with g written on the horizontal line to
the MPO tensors describing the MPU Un(g) and the white dots with x written on the
horizontal line to the MPS tensors describing 〈ψn(x)|. Here and in the following the
empty dots denote the dagger of the corresponding full dots.

As 1 ∈ C is an injective MPS (with bond dimension 1 and physical dimension 1),
we can apply Lemma 3 to conclude that there exists V0(x, g) and W0(x, g) such that
(81) holds. We can actually construct them explicitly, in two different ways. First, we
can consider

V0(x, g) =
xg

x

g

xgρ(xg) and W0(x, g) =
xg

x

g

xg
.

The second way to construct such operators is a bit more involved. First, note that the
MPO tensors describing Un(g

−1) and Un(g)
∗ are related to each other with a gauge
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transformation as described in Eq. (78), and thus

V̂0(x, g) = x
xg

g

x

ρ(x) and Ŵ0(x, g) = x
xg

g

x

also satisfy Eq. (81), where the light blue tensors were introduced in Eq. (131). Using
now Lemma 5, we conclude that there is a non-zero c4(x, g) ∈ C and N ∈ N such that
for all n > N

c4(x, g) ·

x

g

xg

x

g

xg. . .

. . .

. . .

n

=

x

g

xg

x

g

xg. . .

. . .

. . .

n

. (141)

Let m,n ∈ Z such that m − n is large enough and let us define the operators

u
(m,n)
x,g : H

(n)
xg → H

(m)
x and w

(m,n)
x,g : H

(n)
x → H

(m)
xg as

w(m,n)
x,g :

x
. . .

n

7→
1

λ
·

xg

g

x

. . . . . .

. . .

n m− n

, (142)

u(m,n)
x,g :

xg
. . .

n

7→
c4(x, g)

λ
· x

xg

g. . . . . .

. . .

n m− n

, (143)

where λ ∈ R+ is a constant that we fix later and the light blue tensor is the one defined
in Eq. (131).

Let us note here that using (122) together with (78), we obtain that for large
enough k,

. . .

. . .
xg

g

xg

g

x

k

= . . .

. . .
xg

g

xg

g

x

k − 1

,

. . .

. . .
xg

g

xg

g

x

k

= . . .

. . .
xg

g

xg

g

x

k − 1

.

(144)

We will prove that the series u
(m,n)
x,g extends to a unitary ux,g : Hxg → Hx defined

in Eq. (20), and the series w
(m,n)
x,g extends to the unitary (ux,g)

∗
: Hx → Hxg. For that,

we need to first understand the properties of u
(m,n)
x,g . First we show that the operators

u
(m,n)
x,g and w

(m,n)
x,g are compatible with the growing procedure of the Hilbert spaces

H
(n)
x .
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Lemma 7. The operators u
(m,n)
x,g and w

(m,n)
x,g satisfy the compatibility equations

u(k,m)
x,g ◦ φ(m,n)

xg = φ(k,m)
x ◦ u(m,n)

x,g ,

w(k,m)
x,g ◦ φ(m,n)

x = φ(k,m)
xg ◦ w(m,n)

x,g ,

for all k > m > n such that m− n is large enough.

Proof. The map φ
(m,n)
x acts on a vector v ∈ H

(n)
x by adding m− n MPS tensors to it.

Then w
(k,m)
x,g adds k−m more MPS tensors and multiplies with k MPO tensors. That

is,

w(k,m)
x,g ◦ φ(m,n)

x : x
. . .

n

7→
1

λ
·

xg

g

x

. . . . . .

. . .

k

.

Given that n−m is large enough, we can use Eq. (122) k −m times to arrive at the
equivalent expression

w(k,m)
x,g ◦ φ(m,n)

x : x
. . .

n

7→
1

λ
·

xg

g

x

. . . . . .

. . .
. . .

n m− n
k −m

.

Finally notice that this action is the same as the action of φ
(k,m)
xg ◦ w

(m,n)
x,g . The other

equation is proven analogously, using Eq. (144).

We then show that – after to growing the Hilbert spaces to matching sizes– u
(m,n)
x,g

and w
(m,n)
x,g are the adjoint of each other.

Lemma 8. Let χ ∈ H
(n)
xg and ψ ∈ H

(n)
x be arbitrary. The operators u

(m,n)
x,g and w

(m,n)
x,g

satisfy
〈

φ(m,n)
x (ψ)

∣

∣

∣u(m,n)
x,g (χ)

〉(m)

x
=
〈

w(m,n)
x,g (ψ)

∣

∣

∣φ(m,n)
xg (χ)

〉(m)

xg
,

where the scalar product 〈.|.〉
(m)
x on H

(m)
x for the interval [0,m] is defined in Eq. (138).

Proof. Let us represent the l.h.s. using the graphical representation:

〈

φ(m,n)
x (ψ)

∣

∣

∣u(m,n)
x,g (χ)

〉(m)

x
=
c4(x, g)

λ
· x

xg

g

x

. . . . . .

. . .

n m− n

,

where the long empty tensor represents 〈ψ|. Using Eq. (141), the r.h.s. can be changed
to

〈

φ(m,n)
x (ψ)

∣

∣

∣
u(m,n)
x,g (χ)

〉(m)

x
=

1

λ
·

xg

xg

x

g. . . . . .

. . .

n m− n

.
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This expression is exactly
〈

w
(m,n)
x (ψ)

∣

∣

∣φ
(m,n)
xg (χ)

〉(m)

xg
finishing the proof.

Let us also show that the two operators are the inverses of each other – again, up
to growing the system size.

Lemma 9. There is a choice of λ =: λ(x, g) > 0 such that the operators u
(m,n)
x,g and

w
(m,n)
x,g satisfy

u(k,m)
x,g ◦ w(m,n)

x,g = φ(k,n)x ,

w(k,m)
x,g ◦ u(m,n)

x,g = φ(k,n)xg ,

for all k > m > n such that m− n and k −m is large enough.

Proof. Let us first calculate u
(k,m)
x,g ◦ w

(m,n)
x,g (ψ) for some ψ ∈ H

(n)
x :

u(k,m)
x,g ◦ w(m,n)

x,g (ψ) =
c4(x, g)

λ2
· xg xg

x

g

g g

. . .

. . .

. . .

. . .

. . .

. . .

. . .

n m− n k −m

Using now Eq. (122) k −m times, we obtain

u(k,m)
x,g ◦ w(m,n)

x,g (ψ) =
c4(x, g)

λ2
· xg

x

g. . .

. . .

. . .

. . .

. . .

n k − n

.

Using now the tensors defined in Eq. (93) together with Eq. (133), we obtain

u(k,m)
x,g ◦ w(m,n)

x,g (ψ) =
c4(x, g)

λ2
· σ̂x(g, g

−1) ·

e

x

x
g

g

. . .

. . .

. . .

. . .

. . .

n k − n

.

Here the black action tensor is the identity. Using now Eq. (108), we obtain that

u(k,m)
x,g ◦ w(m,n)

x,g (ψ) =
c4(x, g)

λ2
· σ̂x(g, g

−1) · φk,nx (ψ).

Let us show that this constant is positive. For that, let us choose ψ such that ‖ψ‖ = 1,
then

c4(x, g)

λ2
· σ̂x(g, g

−1) =
〈

φ(k,n)x (ψ)
∣

∣

∣u(k,m)
x,g ◦ w(m,n)

x,g (ψ)
〉(k)

x
=

〈

w(k,n)
x,g (ψ)

∣

∣

∣φ(k,m)
x ◦ w(m,n)

x,g (ψ)
〉(k)

x
=
〈

w(m,n)
x,g (ψ)

∣

∣

∣w(m,n)
x,g (ψ)

〉(m)

x
> 0,
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where in the second equality we have used Lemma 8 and in the last one Lemma 7.
This implies that there is a choice of λ ∈ R+ such that the expression is 1.

Lemma 10. Let O ∈ A[0,n] and k > m > n with k −m, m − n large enough. The

operators u
(m,n)
x,g and w

(m,n)
x,g satisfy

u(k,m)
x,g ◦ π(m)

xg (O) ◦ w(m,n)
x,g = φ(k,m)

x ◦ π(m)
x

(

β(m,n)
g (O)

)

◦ φ(m,n)
x .

Proof. Let us apply u
(k,m)
x,g ◦ π

(m)
xg (O) ◦ w

(m,n)
x,g on a vector χ ∈ H

(n)
x . This can be

represented using the graphical language as

u(k,m)
x,g ◦ π(m)

xg (O) ◦ w(m,n)
x,g (χ) =

c4(x, g)

λ2
· . . .

. . .

. . .

. . .

. . .

. . .

. . .

x

g

g

xg

g

x

n m− n k −m

.

Using Eq. (144) k −m times, we obtain

u(k,m)
x,g ◦ π(m)

xg (O) ◦ w(m,n)
x,g (χ) =

c4(x, g)

λ2
· . . .

. . .

. . .

. . .

. . .

x

g

g

xg

g

x

n k − n

.

Using now (133) together with the fact that in Lemma 9 we have chosen λ such that
c4(x, g) · σ̂x(g, g

−1) = λ2, we obtain

u(k,m)
x,g ◦ π(m)

xg (O) ◦ w(m,n)
x,g (χ) = . . .

. . .

. . .

. . .

. . .

x

g

g

n k − n

.

Finally using (92), we obtain

u(k,m)
x,g ◦ π(m)

xg (O) ◦ w(m,n)
x,g (χ) = . . .

. . .

. . .

. . .

. . .

. . .x

g

g

n m− n

k −m .

The r.h.s. is φ
(k,m)
x ◦ π

(m)
x

(

β
(m,n)
g (O)

)

◦ φ
(m,n)
x (χ) finishing the proof.
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Lemma 11. Letm−n, k−m be large enough. The operators u
(k,m)
x,g ,u

(m,n)
xg,h u

(k,n)
x,gh satisfy

u(k,m)
x,g u

(m,n)
xg,h = σ′x(g, h)π

(k)
x (v(g, h))u

(k,n)
x,gh , (145)

for some σ′x(g, h) such that [σ′x(g, h)] = [σ̂x(g, h)], see Eq.(136).

Proof. Let χ ∈ H
(n)
xg . Then

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
· xg

xgh

x
h

g

xg

g

. . .

. . . . . .

. . .

. . .
. . .

. . .

n m− n k −m

Using Eq. (144), we obtain

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
· xg

xgh

x
h

g

. . .

. . . . . .

. . .

. . .

n k − n

Let us use now Eq. (133) to obtain

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
· σ̂x(g, h) ·

gh

xgh

x
h

g

. . .

. . . . . .

. . .

. . .

n k − n

Let us insert now the identity in the middle:

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
· σ̂x(g, h) ·

1

ω(gh, (gh)−1, gh)
·

xgh

xgh

x

gh

gh

h

g

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

n k − n

Using now Eq. (133), we obtain

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
·

σ̂x(g, h)

σ̂xgh((gh)−1, gh)
·

1

ω(gh, (gh)−1, gh)
·
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xgh

xgh

x

gh

gh

h

g

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

n k − n

Using again Eq. (133), we obtain

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
·

σ̂x(g, h)

σ̂xgh((gh)−1, gh)
·
σ̂x(gh, (gh)

−1)

ω(gh, (gh)−1, gh)
·

e

xgh

x

gh

gh

h

g

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

n k − n

Finally notice using the definition of v(g, h) (see Eq. (112)) and the definition of uk,nx,g

(see Eq. (143)) that this is

u(k,m)
x,g u

(m,n)
xg,h (χ) =

c4(x, g)

λ(x, g)
·
c4(xg, h)

λ(xg, h)
·

σ̂x(g, h)

σ̂xgh((gh)−1, gh)
·
σ̂x(gh, (gh)

−1)

ω(gh, (gh)−1, gh)
·
λ(x, gh)

c4(x, gh)

· π(k)
x (v(g, h)) · u

(k,n)
x,gh (χ).

Note that part of this expression can be simplified using Eq. (25): we can write

σ̂x(gh, (gh)
−1)

ω(gh, (gh)−1, gh)σ̂xgh((gh)−1, gh)
=
σ̂x(gh, e)

σ̂x(e, gh)
= 1 ,

and denoting α(x, g) = λ(x,g)
c4(x,g)

we obtain

u(k,m)
x,g u

(m,n)
xg,h (χ) =

α(x, gh)

α(x, g) · α(xg, h)
σ̂x(g, h)π

(k)
x (v(g, h)) · u

(k,n)
x,gh (χ)

We thus obtain that Eq. (145) holds with

σ̂′x(g, h) =
α(x, gh)

α(x, g) · α(xg, h)
σ̂x(g, h),

and that σ̂′x(g, h) is in the same equivalence class (see Eq.(136)) as σ̂x(g, h).

Theorem 7. The operators u
(m,n)
x,g can be extended to unitary operators ux,g : Hxg →

Hx such that
Ad(ux,g)πxg = πxβg,R,
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and such that
uxg,hux,gh = σ′x(g, h)πx(v(g, h))ux,gh,

where [σ′x(g, h)] = [σ̂x(g, h)].
This, combined with subsection 4.4.4 shows then that the index defined from the

MPS formalism coincides with the index defined from the general formalism when
applied to MPS and MPO.

Proof. Lemma 7 allows one to define ux,g : Hloc
xg → Hloc

x and wx,g : Hloc
x → Hloc

xg as

the inductive limit of u
(m,n)
x,g and w

(m,n)
x,g , respectively. For example, given ξ ∈ Hloc

xg ,

there is a representative ξn ∈ H
(n)
xg such that ξ = φ

(∞,n)
x (ξn) for some n ∈ N. Given

this representative, ux,g acts as ξ 7→ φ
(∞,m)
x

(

u
(m,n)
x,g ξn

)

. Lemma 7 shows

φ(∞,k)
x u(k,m)

x,g

(

φ(m,n)
xg (ξn)

)

= φ(∞,k)
x φ(k,m)

x

(

u(m,n)
x,g ξn

)

= φ(∞,m)
x u(m,n)

x,g ξn, (146)

hence the resulting equivalence class is independent of the representative ξn of ξ.
Due to Lemma 9, the operators ux,g and wx,g are invertible and u−1x,g = wx,g: given

a vector ξ ∈ Hloc
xg and a representative ξn ∈ H

[0,n]
x,g , Lemma 9 shows that wx,gux,gξ =

φ∞←[0,k]

(

w
(k,m)
x,g u

(m,n)
x,g ξn

)

= φ∞←[0,n](ξn) = ξ, and similarly, ux,gwx,gξ = ξ for any

ξ ∈ Hx. Similarly, due to Lemma 8, u†x,g = wx,g. In particular, their norm is bounded,
and thus they can be extended to the whole Hilbert space. The extension keeps all
the above properties.

Lemma 10 shows that the obtained ux,g satisfies Eq. 20, and thus by uniqueness, it
coincides (up to a phase) with ux,g obtained in Section 2.3. Finally Lemma 11 shows
that the index obtained from the MPS formalism is in the same equivalence class as
the equivalence class of the index obtained in this paper.
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Fernández-González, N. Schuch, M. M. Wolf, J. I. Cirac, D. Pérez-Garćıa,
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