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Abstract

Generating graphs that preserve characteristic structures while promoting sample diversity
can be challenging, especially when the number of graph observations is small. Here, we
tackle the problem of graph generation from only one observed graph.

The classical approach of graph generation from parametric models relies on the
estimation of parameters, which can be inconsistent or expensive to compute due to
intractable normalisation constants. Generative modelling based on machine learning
techniques to generate high-quality graph samples avoids parameter estimation but usually
requires abundant training samples. Our proposed generating procedure, SteinGen, which
is phrased in the setting of graphs as realisations of exponential random graph models,
combines ideas from Stein’s method and MCMC by employing Markovian dynamics which
are based on a Stein operator for the target model. SteinGen uses the Glauber dynamics
associated with an estimated Stein operator to generate a sample, and re-estimates the Stein
operator from the sample after every sampling step. We show that on a class of exponential
random graph models this novel “estimation and re-estimation” generation strategy yields
high distributional similarity (high fidelity) to the original data, combined with high sample
diversity.

Keywords: Stein’s method, graph generation, sample diversity, Glauber dynamics,
network statistics

1 Introduction

Synthetic data generation is a key ingredient for many modern statistics and machine
learning tasks such as Monte Carlo tests, enabling privacy-preserving data analysis, data
augmentation, or visualising representative samples. Synthetically generated data can be
useful even when in principle the original data set is the only focus of interest, as using
the original data for machine learning tasks can be problematic, for example when training
models on small or imbalanced samples, or even prohibitive for example due to authority
regularisation on privacy-sensitive information; see for example Figueira and Vaz (2022).
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Reinert and Xu

Synthetic data generation learns a procedure to generate samples that capture the
main features of an original dataset. In particular, data in the form of graphs (or, used
interchangeably, networks) have been explored in the machine learning community to tackle
tasks including community detection, prediction and graph representational learning (Chami
et al., 2022; Abbe and Sandon, 2015; Hein et al., 2007). Viewing the observed dataset
as a realisation from a learnable probability distribution, model learning and generating
graph samples have been challenging tasks due to the complex dependencies within graphs.
Statistical methods for model fitting and simulation from such models are available, see
for example Part III in Newman (2018) and Chapter 6 in Kolaczyk (2009). However, for
complex network models such as exponential random graph models, intractable normalisation
constants can pose a major challenge for parametric modelling, see Handcock et al. (2008).

Thus from a computational viewpoint it may be advantageous to assume that edges are
generated independently. Edge independent models include the inhomogeneous random
graph model by Bollobás et al. (2007), and graphon models which originated in Lovász and
Szegedy (2006); latent space models introduced in Hoff et al. (2002), of which stochastic
blockmodels are a special case, create an embedding in a latent space and then assume that
edges occur independently with probabilities described through the latent space, see also the
survey Sosa and Buitrago (2021). However, Chanpuriya et al. (2021) showed that synthetic
network generators which assume independently generated edges tend to generate many
more triangles and 4-cycles than are present in the data.

Various deep generative models for graphs have been developed, such as methods using
a variational autoencoder (VAE) (Simonovsky and Komodakis, 2018); using recurrent
neural networks (GraphRNN) (You et al., 2018); based on a generative adversarial network
(NetGAN) (Bojchevski et al., 2018) or score-based approaches (Niu et al., 2020). Goyal et al.
(2020) convert networks into sequences and then use an Long Short-Term Memory (LSTM)
network to generate samples from these sequences. DiGress (Vignac et al., 2022) develops a
diffusion approach with denoising. A survey on applications of deep generative models for
graphs can be found in Guo and Zhao (2022). While achieving superior performances in
some graph generation tasks and being able to adaptively learn implicit network features,
these deep-learning approaches typically rely heavily on a large number of training samples
for stochastic optimisation (Kingma and Ba, 2014). However, often only a single graph is
observed. Only having one observed graph considerably limits the advantages and flexibility
of many deep generative models on graphs trained via stochastic optimisation.

Instead, these flexible architectures can be used to sample a larger number of subgraphs
to create the training set. For example, Liu et al. (2017) constructs hierarchical layers
of a graph and trains a GAN for each layer. Graph generation based on representation
learning and augmentation have also been considered in Han et al. (2022) using re-sampled
subgraphs with contrastive learning objectives. The CELL method from Rendsburg et al.
(2020) learns a probability distribution on networks from a single realisation by using an
underlying random walk. Like NetGAN, it is however an approach which assumes edge
independence. These “black-box” models are hence expected to suffer from the deficiencies
pointed out in Chanpuriya et al. (2021). Although these methods may reproduce some
features of the original data very well, fidelity issues may arise for subgraph counts.

While fidelity to the original network is one criterion for synthetic network generators,
it is also desirable that the generated synthetic networks show some variability around
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Figure 1: The SteinGen procedure: x0 is the input network; in step k we pick a vertex pair
uniformly at random and re-sample its edge indicator from the (re-)estimated
conditional probability q̂(k), given the current graph sample xk−1 but excluding
the picked vertex pair, to generate the next graph sample xk. Changes in the
intermediate steps are highlighted: the thicker red solid line in x1, x3, x19, x20
denotes that an edge is added, the green dashed line in x2 indicates that an edge
is removed. Only samples are shown which differ from the previous sample. The
generated sample x20 is visually different from the input graph x0.

the original network. When there is not much training data available, there is a risk that
graph generation methods may create graphs which are not only similar to each other in
their underlying probability distribution, but that are actually very similar or even close to
identical to the original graph and between generated samples, see for example the discussion
in Karwa et al. (2016). Such samples may not reflect the true diversity of the underlying
graph distribution and may hence lead to erroneous statistical inference.

Here, we focus on the setting that the graph generative model takes a simple, undirected,
unweighted network as input and has the task to generate synthetic networks that could
be viewed as plausibly coming from the same probability distribution as the one which
generated the input network, while reflecting the diversity of networks under this probability
distribution. Motivated by insights from social network analysis (Wasserman and Faust,
1994) we phrase our method in the setting of so-called exponential random graph models
(ERGMs). For such models, a kernelised goodness of fit test similar to those in Chwialkowski
et al. (2016); Liu et al. (2016) called gKSS (Xu and Reinert, 2021) is available. We use the
proportion of rejected gKSS goodness-of-fit tests to assess the quality of graph generators.
For a particular graph sample, the fidelity is assessed via the total variation distance between
empirical degree distributions and the diversity is assessed by the pairwise Hamming distance.

A key ingredient of gKSS is a Stein operator. This paper proposes to use a Stein operator
not only for assessing goodness of fit, but also for generating graph samples. Inspired by
Glauber dynamics-based Stein operators for exponential random graph models (Reinert
and Ross, 2019), we propose SteinGen, a novel synthetic sample generating procedure
that generates graph samples by running an estimated Glauber dynamics; in contrast to
a classical Markov chain, the target Glauber dynamics are iteratively re-estimated from
the current sample. An illustration of SteinGen is shown in Figure 1. This procedure not
only avoids parameter estimation and dealing with intractable normalising constants but
also promotes sample diversity by exploring a rich set of graph configurations. Moreover,
in contrast to deep models, SteinGen does not require a complicated training phase. The
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procedure is related to MCMC methods, but while MCMC methods would run the same
Glauber dynamics for each sample, in SteinGen the parameters of the Glauber dynamics
are updated after every step. We also introduce its classical MCMC version SteinGen nr,
which does not carry out re-estimation after every step and is hence faster. The theoretical
underpinning for SteinGen draws on approximation results for ERGMs from Reinert and
Ross (2019) and Xu and Reinert (2021). In the spirit of Xu and Reinert (2022b), SteinGen
could be generalised to input graphs without any underlying assumptions about a statistical
model which generated the graph; the estimation procedure is then related to the one in
Bresler et al. (2017) where Glauber dynamics is used to estimate an undirected graphical
model from data. However, to illustrate and assess the performance of SteinGen we here we
concentrate on the ERGM setting.

This paper is organised as follows. Section 2 gives notation and background on generation
of ERGMs, an ERGM Stein operator, the graph kernel Stein statistic gKSS, generalisations
to other random graphs and the approximate graph Stein statistic AgraSSt as a non-model
based goodness-of-fit statistic. Our SteinGen procedure for graph generation is presented
in Section 3, with theoretical guarantees for SteinGen regarding consistency, diversity and
mixing time given in Section 4. Section 4 also introduces the total variation distance
between empirical degree distributions as a measure of sample fidelity. Numerical results
on simulation studies and a real network data case study on a teenager friendship network
described in Steglich et al. (2006) are provided in Section 5. Section 5 also contains figures
of the Hamming distance against (1 minus the total variation distance between the empirical
degree distributions) to illustrate the performance of SteinGen as well as CELL and NetGAN
regarding fidelity and diversity. A concluding discussion is found in Section 6. The Appendix
contains more details on parameter estimation as well as additional experiments on synthetic
and real data sets, including Padgett’s Florentine marriage network (Padgett and Ansell,
1993), and protein-protein interaction networks for the Epstein-Barr virus (Hara et al.,
2022) and for yeast (Von Mering et al., 2002). The code for the experiments is available at
https://github.com/wenkaixl/SteinGen_code.git.

2 Assessing the quality and diversity of graph samples

Notation. First we introduce some notation. We denote by Glab
n the set of vertex-labeled

graphs on n vertices, with N = n(n−1)/2 possible undirected edges, and we encode x ∈ Glab
n

by an ordered collection of {0, 1}-valued variables x = (x(ij))1≤i<j≤n ∈ {0, 1}N , where
x(ij) = 1 if and only if there is an edge between i and j.

We denote an (ordered) vertex-pair s = (i, j) by s ∈ [N ] := {1, . . . , N}. Let es ∈ {0, 1}N
be a vector with 1 in coordinate s and 0 in all others; x(s,1) = x+ (1−x(s))es has the s-entry
replaced of x by the value 1, and x(s,0) = x − x(s)es has the s-entry of x replaced by the
value 0; moreover, x−s is the set of edge indicators with entry s removed. More generally,
for a graph H, its vertex set is denoted by V (H) and its edge set is denoted by E(H).

For V (H) ≤ n and for x ∈ {0, 1}N , denote by t(H,x) the number of edge-preserving
injections from V (H) to V (x); an injection σ preserves edges if for all edges vw of H with
σ(v) < σ(w), xσ(v)σ(w) = 1 (here assuming σ(v) < σ(w)). For vH = |V (H)| ≥ 3 set

tH(x) =
t(H,x)

n(n− 1) · · · (n− vH + 3)
. (1)
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SteinGen: Fidelitous and Diverse Graph Generation

For e ∈ E(H), define the graph H−e to be H with the edge e removed, but retaining
all vertices. For h : {0, 1}N → R we let ∆sh(x) = h(x(s,1)) − h(x(s,0)) and ||∆h|| =
maxs∈[N ] maxx∈Glab

n
|∆sh(x)|. The Hamming distance between two graphs x and y is

dH(x, y) =
N∑
s=1

|x(s) − y(s)|. (2)

The total variation distance dTV between two distributions P and Q on {0, 1, 2, . . .} is

dTV (P,Q) =
1

2

∞∑
k=0

|P ({k}) −Q({k})|. (3)

For a distribution q and a function f the expectation is Eqf = Ef(X) where X has
distribution q. Vectors in RL are column vectors; the superscript ⊤ denotes the transpose.
The function 1(A) is the indicator function which equals 1 if A holds, and 0 otherwise. The
norm ∥ · ∥p denotes the Lp-norm.

2.1 Exponential random graphs

Exponential random graph models (ERGMs) have been extensively studied in social network
analysis (Wasserman and Faust, 1994; Holland and Leinhardt, 1981); a special case are
Bernoulli random graphs. Fix n ∈ N and k connected graphs H1, . . . ,HL with H1 a single
edge, and for ℓ = 1, . . . , L abbreviate vℓ := |V (Hℓ)| (so v1 = 2). Recalling (1) let

tℓ(x) =
t(Hℓ, x)

n(n− 1) · · · (n− vℓ + 3)
. (4)

If H= H1 is a single edge, then tH(x) is twice the number of edges of x. In the exponent
this scaling of counts matches Definition 1 in Bhamidi et al. (2011) and Sections 3 and 4 of
Chatterjee and Diaconis (2013). An ERGM as a random graph model for the collection
x ∈ {0, 1}N can be defined as follows. see Reinert and Ross (2019).

Definition 1 (Definition 1.5 in Reinert and Ross (2019)). Fix n ∈ N and L ∈ N. Let H1 be
a single edge and for l = 2, . . . , L let Hl be a connected graph on at most n vertices. With
the notation (4), for β = (β1, . . . , βL)⊤∈ RL we say that X ∈ Glab

n follows the exponential
random graph model X ∼ ERGM(β, t) if for for all x ∈ Glab

n ,

P(X = x) =
1

κn(β)
exp

(
L∑
l=1

βltl(x)

)
. (5)

In (5), κn(β) is a normalisation constant, which even for moderately sized graphs is
usually intractable. When L = 1 then ERGM(β) has the same distribution as an Erdös-
Rényi (ER) graph with parameter p, in which edges appear independently with probability
p = eβ/(1 + e(β).

Parameter estimation β̂ for β is only possible when the statistic t(x) = (t1(x), . . . , tL(x)),
which is a sufficient statistic for the parameter β = (β1, . . . , βL)⊤, is specified a priori. As
the normalising constant κn(β) is usually intractable, often Markov Chain Monte Carlo
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(MCMC) procedures are used for MLE-type parameter estimation (Snijders, 2002); these are
abbreviated MCMCMLE. A computationally efficient but often less accurate to MCMCMLE
is provided by the Maximum Pseudo-Likelihood Estimator (MPLE) (Besag, 1975), (Strauss
and Ikeda, 1990; Schmid and Desmarais, 2017). Contrastive divergence (Hinton, 2002) has
also been used for parameter estimation in ERGMs (Hunter and Handcock, 2006). Additional
material on parameter estimation methods can be found in Appendix A.

Apart from specific models such as ER graphs or an Edge-2Star (E2S) model (Mukherjee
and Xu, 2023), parameter estimation for β in (5) may not be consistent (Shalizi and Rinaldo,
2013). Convergence results for restricted exponential family models are discussed in Jiang
et al. (2018). For an ERGM with specified sufficient statistic t(x), parameter estimation
and graph generation is implemented in the R package ergm (Hunter et al., 2008b), see also
Handcock et al. (2008); this implementation is used as a baseline for our investigation.

2.2 Glauber dynamics and Stein operators for ERGMs

SteinGen is based on Glauber dynamics and a Stein operator for ERGMs. To explain these
notions, we start with a Stein operator. For a probability distribution q on a measureable
space X , an operator Aq acting on functions f : X → Rd for some d is called a Stein operator
with Stein class F of functions f : X → Rd if for all f ∈ F the so-called Stein identity holds:
Eq[Aqf ] = 0. A particular instance of such a Stein operator is an infinitesimal operator
of a Markov process which has the target distribution q as unique stationary distribution,
see for example Barbour (1990). In Reinert and Ross (2019), it was shown that a suitable
Markov process for q the distribution of an ERGM(β, t) given in (5) is provided by Glauber
dynamics on {0, 1}N , with transition probabilities

P(x → x(s,1)) =
1

N
− P(x → x(s,0)) =

1

N
qX(s, 1|x−s), (6)

where qX(s, 1|x−s) := P(X(s) = 1|X−s = x−s). From (5),

qX(s, 1|x−s) =
exp

{∑L
ℓ=1 βℓtℓ(x

(s,1))
}

exp
{∑L

ℓ=1 βℓtℓ(x
(s,1))

}
+ exp

{∑L
ℓ=1 βℓtℓ(x

(s,0))
} .

As ∆stℓ(x) = tℓ(x
(s,1)) − tℓ(x

(s,0)) depends only on x−s, cancelling out common factors,

q(s, 1|x−s) = exp

{
L∑

ℓ=1

βℓ∆st(x)

}(
exp

{
L∑

ℓ=1

βℓ∆st(x)

}
+ 1

)−1

=: q(s, 1|∆st(x)). (7)

Thus, the transition probability in (6) depends only on ∆st(x). Similarly, exchanging 1 and
0 in this formula gives q(s, 0|x−s). The Stein operator from Reinert and Ross (2019) is the
generator Aβ,t of this Markov process;

Aβ,t = Aqf(x) =
1

N

∑
s∈[N ]

A(s)
q f(x) (8)

with summands

A(s)
q f(x) = q(s, 1|∆st(x)) ∆sf(x) +

(
f(x(s,0)) − f(x)

)
. (9)
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Lemma 2. Each operator given in (9)satisfies the Stein identity; for each s ∈ [N ],

EqA(s)
q f = 0. (10)

Proof By conditioning and using that q(s, 1|x−s) = q(s, 1|∆st(x)),

EqA(s)
q f =

∑
x

q(x−s;x
(s,1))A(s)

q f(x(s,1)) + q(x−s;x
(s,0))A(s)

q f(x(s,0))

=
∑
x

q(x−s)
(
q(s, 1|∆st(x))A(s)

q f(x(s,1)) + q(s, 0|∆st(x))A(s)
q f(x(s,0))

)
.

Here we used that ∆sf(x(s,1)) = ∆sf(x(s,0)) = ∆sf(x) does not depend on x(s). Substituting
x(s,1) and x(s,0) in (9) gives

A(s)
q f(x(s,1)) = q(s, 1|∆st(x))∆sf(x) + (f(x(s,0)) − f(x(s,1)))

= (1 − q(s, 0|∆st(x)))∆sf(x) + (f(x(s,0)) − f(x(s,1)))

= −q(s, 0|∆st(x))∆sf(x)

and A(s)
q f(x(s,0)) = q(s, 1|∆st(x))∆sf(x). Thus,

q(s, 1|∆st(x))A(s)
q f(x(s,1)) + q(s, 0|∆st(x))A(s)

q f(x(s,0))

= −q(s, 1|∆st(x))q(s,0|∆st(x))∆sf(x) + q(s, 0|∆st(x))q(s, 1|∆st(x))∆sf(x) = 0.

Under suitable conditions, the ERGM Stein operator in (8) is close to the G(n, p) Stein
operator, see Reinert and Ross (2019), Theorem 1.7, with details provided in the proof of
Theorem 1 in Xu and Reinert (2021). To state the result, a technical assumption is required,
which originates in Chatterjee and Diaconis (2013). With the notation in Definition 1 for
ERGM(β, t), for a ∈ [0, 1] we set Φ(a) :=

∑L
ℓ=1 βℓeℓa

eℓ−1, and φ(a) := (1 + tanh(Φ(a)))/2,

where eℓ is the number of edges in Hℓ. For a polynomial f(x) =
∑k

i=1 akx
k we use the

notation |f |(x) =
∑k

i=1 |ak|xk.

Assumption 1. There is a unique a∗ ∈ [0, 1] that solves φ(a∗) = a∗; moreover 1
2 |Φ|′(1) < 1.

Such a value a∗ will be used as edge probability in an approximating Bernoulli random
graph, ER(a∗). The following result holds.

Proposition 3 (Xu and Reinert (2022a)Proposition A.4). Let q(x) = ERGM(β, t) satisfy
Assumption 1 and let q̃ denote the distribution of ER(a∗). Then there is an explicit constant

C = C(β, t,K) such that for all ϵ > 0, 1
N

∑
s∈N E|(A(s)

q f(Y )−A(s)
q̃ f(Y ))| ≤ ||∆f ||

(
n
2

)C(β,t)√
n

.

The behaviour of Bernoulli random graphs is relatively well understood due to the
independence of the edge indicators in this model. Many of the theoretical guarantees in this
paper are based on first showing that the ERGM in question is close to a suitable Bernoulli
random graph, and then deriving the guarantee in question for the Bernoulli random graph.
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2.3 The graph kernel Stein statistic gKSS

Based on the heuristic that if a distribution p is close to q then Ep[Aqf(x)] ≈ 0, the quantity
supf∈F |Ep[Aqf(x)]| can be used to assess a distributional distance between q and p. The
choice of F is crucial for making this quantity computable; see Gorham and Mackey (2015).
In Chwialkowski et al. (2016) and Liu et al. (2016) it was suggested to use as F the unit ball
of a reproducing kernel Hilbert space (RKHS). A corresponding distributional difference
measure, the graph kernel Stein statistic (gKSS) based on the ERGM Stein operator (8),
is introduced in Xu and Reinert (2021) to perform a goodness-of-fit testing procedure for
explicit exponential random graph models even when only a single network is observed. For
a fixed graph x, and an RKHS H, to test goodness-of-fit to a q = ERGM(β, t) distribution,
gKSS is defined as

gKSS(q;x) = sup
∥f∥H⩽1

∣∣∣∣∣ 1

N

∑
s∈[N ]

A(s)
q,tf(x, )

∣∣∣∣∣, (11)

where the function f is chosen to best distinguish q from x. For an RKHS H associated
with kernel K, by the reproducing property of H, the squared version of gKSS admits an
explicit quadratic form representation which can be readily computed,

gKSS2(q;x) =

〈
1

N

∑
s∈[N ]

A(s)
q,tK(x, ·), 1

N

∑
u∈[N ]

A(u)
q,t K(x, ·)

〉
. (12)

2.4 Beyond ERGMs

While gKSS is only available for ERGMs, in practice, instead of assuming an ERGM, as in
Xu and Reinert (2022b), in (6) we could use more general conditional probabilities, based
on network statistics. Let t(x) be a (possibly vector-valued) network statistic which takes
on finitely many values k, and let qk(s, 1|∆st(x) = k) = P(X(s) = 1|∆st(x) = k); we assume
that qk(x) > 0 for all k under consideration. In analogy with (7), we introduce a Markov
chain on Glab

n which transitions from x to x(s,1) with probability

qk(s, 1|∆st(x)) = P(Xs = 1|∆st(x)), (13)

and from x to x(s,0) with probability q(s, 0|∆st(x)) = 1−qt(s, 1|∆st(x)); no other transitions

occur. The corresponding Stein operator is Aq,tf(x) = 1
N

∑
s∈[N ]A

(s)
q,tf(x) with

A(s)
q,tf(x) = q(s, 1|∆st(x))f(x(s,1)) + q(s, 0|∆st(x))f(x(s,0)) − f(x). (14)

For an ERGM, t(x) could be taken as a vector of the sufficient statistics but here we do not
even assume a parametric network model q(x), and t(x) is specified by the user.

If there is no closed-form conditional probability q(s, 1|∆st(x)) in (13) available, the
Glauber dynamics in (6) can be carried out for an estimated conditional distribution
q̂(s, 1|∆st(x)). To compare the estimated model q̂(x(s,1)|∆st(x)) and the sample x, the
Approximate graph Stein statistic (AgraSSt) from Xu and Reinert (2022b) takes functions
in an appropriate RKHS to distinguish the model from the data, and is defined as

AgraSSt(q̂, t;x) = sup
∥f∥H⩽1

∣∣∣N−1
∑
s

A(s)
q̂,tf(x)

∣∣∣. (15)
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Algorithm 1 Estimating the conditional probability q̂(x(s,1)|∆st(x))

Input:
network x; network statistics t(·);

Procedure:
Estimate the conditional probability q(s, 1|∆st(x) = k) of the edge s being present
conditional on ∆st(x) = k by the relative frequency q̂(s, 1|∆st(x) = k) of an edge at s
when ∆st(x) = k.

Output:
q̂(s, 1|∆st(x) = k) that estimates q(s, 1|∆st(x) = k) in (13).

Due to the reproducing property of the RKHS, AgraSSt admits a quadratic form,

AgraSSt2(q;x) = N−2
∑
s∈[N ]

∑
s′∈[N ]

〈
A(s)

q̂,tK(x, ·),A(s′)
q̂,t K(·, x)

〉
H
. (16)

In practice, N can be large and AgraSSt takes N2 steps to compute the double sum, which
can be computationally inefficient. Xu and Reinert (2022b) considers an edge re-sampled
form that improves the computational efficiency; it is given by

̂AgraSSt(q̂, t;x) = B−2
∑

b,b′∈[B]

〈
A(sb)

q̂,t K(x, ·),A(sb′ )
q̂,t K(·, x)

〉
H
. (17)

While in principle, any multivariate statistic t(x) can be used in this formalism, estimating
the conditional probabilities using relative frequencies can be computationally prohibitive.
Instead, here we consider simple summary statistics, such as edge density, degree statistics
or the number of neighbours connected to both vertices of s. The estimation procedure
for the transition probabilities is presented in Algorithm 1 which is adapted from Xu and
Reinert (2022b) by estimating the conditional probability using only one network.

3 SteinGen: generating fidelitous graph samples with diversity

The idea behind SteinGen is as follows. If A is the generator of a Markov process (Xt, t ≥ 0)
with unique stationary distribution µ then, under regularity conditions, running the Markov
process from an initial distribution, Xt converges to the stationary distribution in probability
as t → ∞. In particular, Glauber dynamics as in (6) preserves the stationary distribution.
Thus, the original sample together with the sample after one step of the Glauber dynamics
can be used to re-estimate the transition probabilities given by (13). This idea is translated
into the SteinGen procedure as follows.

1. We estimate the conditional probability q(s, 1|∆st(x)) from the observed graph x using
Algorithm 1; denote the estimator as q̂(s, 1|∆st(x)).

2. Given the current graph x we pick a vertex pair s ∈ [N ] uniformly at random and
replace x(s) by (x(s))′ drawn to equal 1 with probability q̂(s, 1|∆st(x)), and 0 otherwise.
Keeping all other edge indicators as in x results in a new graph x′ which differs from
x by at most one edge indicator.

9
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Algorithm 2 The SteinGen procedure for generating one network sample

Input:
The observed network x; network statistics t(·); number of steps r to be executed

Objective:
Generate one network sample

Procedure:
1: Set x(0) = x.
2: for i = 1 : r do
3: Uniformly sample a vertex pair s ∈ [N ]
4: Estimate the conditional distribution q̂(s, 1|∆st(x(i− 1))) using Algorithm 1.
5: With probability q̂(s, 1|∆st(x(i− 1))) set x(i)(s) = 1; otherwise, set x(i)(s) = 0.
6: Set x(i)(s

′) = x(i− 1)(s
′), for all s′ ∈ [N ], s′ ̸= s.

7: If x(i) ̸= x(i− 1), re-estimate q̂(s, 1|∆st(x(i))) using Algorithm 1;
8: end for
9: Record x(r) as the generated sample

Output:
The generated network sample x(r)

3. Starting with this new graph x′, we estimate q(s, 1|∆st(x
′)), draw a vertex pair, and

replace it by an edge indicator drawn from the re-estimated conditional distribution,
again estimated using Algorithm 1.

4. This procedure is iterated r times, which r chosen by the user.

The SteinGen procedure is illustrated in Figure 1 and the algorithm is given in Algorithm 2.
The fact that A is a Stein operator for the distribution q of an ERGM will be used to obtain
theoretical guarantees. We end this section with some remarks on the SteinGen procedure.

Remark 4. 1. Direct estimation of the conditional probability using Algorithm 1 avoids
the often intractable normalising constant involved in parameter estimation.

2. A standard MCMC method estimates the Glauber dynamics transition probabilities only
once. As q(s, 1|∆st(x) is estimated from only one graph, the standard MCMC sampler
may not explore the sample space very well. The re-estimation steps in SteinGen
increase the variability.

3. We also propose a variant, SteinGen with no re-estimate (SteinGen nr), which estimates
the target q(s, 1|∆st(x)) only once, from the input graph x, and then proceeds via Gibbs
sampling starting from x.This variant differs from the MCMC procedure in the R

packages sna and ergm, which uses x only for parameter estimation and then generates
samples using the Markov chain with the estimated parameters.

4. A guideline for choosing the number r of steps is r = N logN + γN + 1
2 , where γ is the

Euler-Mascheroni constant, as will be derived in Subsection 4.3. Similarly to MCMC
procedures, one could alternatively add a stopping rule which depends on the observed
difference between sample summaries.

10
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4 Theoretical analysis

In this section we give theoretical guarantees under which, first, SteinGen is fidelitous in the
sense that it generates networks from approximately the correct distribution (Section 4.1),
and second, we give guarantees on the diversity of the resulting networks (Section 4.2).
Section 4.3 discusses the mixing time of SteinGen, whereas Section 4.4 addresses the stability
of the network generation. We start with a result that underpins the SteinGen procedure,
showing that the Glauber dynamics preserves its underlying ERGM(β, t) distribution.

Proposition 5. If X follows the ERGM(β, t) distribution and if the corresponding Glauber
Markov process is irreducible, then any sample from its Glauber dynamics (6) also follows
the ERGM(β, t) distribution.

Proof It is shown in Lemma 2.3 of Reinert and Ross (2019) that under the assumptions
of Proposition 5, ERGM(β, t) is the stationary distribution of its Glauber Markov process.
Thus, when started from the stationary distribution, X ∼ ERGM(β, t), then at every time
s > 0 the state X(s) of the Glauber Markov process has distribution ERGM(β, t).

From here onwards we make the standing assumption that the ERGM(β, t) distribution is
such that the corresponding Glauber Markov process is irreducible.

4.1 Consistency of the estimation

In SteinGen we estimate the transition probabilities from the sampled network by counting.
Our theoretical justification of this procedure holds in the so-called high temperature regime,
as follows. We recall the definition for ERGM(β, t) in (5) and Assumption 1.

Proposition 6. Let q(x) = ERGM(β, t) satisfy Assumption 1. For x a realisation of
ERGM(β, t), let Nk(x)=

∑
s∈[N ] 1(∆st(x) = k) be the number of vertex pairs s ∈ [N ] such

that ∆st(x) = k, and let nk(x)=
∑

s∈[N ] x
(s)
1(∆st(x) = k) be the number of vertex pairs s ∈

[N ] such that ∆st(x) = k and s is present in x. Then q̂(s, 1|∆st(x) = k) =
nk(x)

Nk(x)
1(Nk ≥ 1)

is a consistent estimator of q(s, 1|∆st(x) = k) as n → ∞.

Proof Let a∗ be as in Assumption 1; let X ∼ ERGM(β, t) and Z ∼ ER(a∗). Theorem 1.7

from Reinert and Ross (2019) gives that, for any h : {0, 1}(n2) → R, we have

|Eh(X) −Eh(Z)| ⩽ ∥∆h∥
(
n

2

)(
4
(
1 − 1

2 |Φ|′(1)
))−1

L∑
ℓ=2

|βℓ|
√

Var(∆12tℓ(Z)). (18)

In particular if h(x) = t(H,x)n−|v(H)| is the density of appearances of graph H in x, then
||∆h|| = O(n−2), and Var(∆12tℓ(Z)) = O(n−1). Thus for such functions h the bound will
tend to 0 with n → ∞; the statistics tℓ(x) are of this type. Also, as h(x) is bounded
by aut(H), the number of automorphisms of H, we have for g(x) = h(x)/aut(H) that
0 ≤ g(x) ≤ 1 and g(x) = O(1) as well as ∥ ∆(gm) ∥= O(n−2) for any m > 0. Thus,
for independent realisations of X and Z on the same probability space, all moments of
T (X,Z) = g(X) − g(Z) converge to 0 as n → ∞ and are uniformly bounded. From the
convergence of all moments it follows that T (X,Z) converges to 0 in probability and hence

11
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the difference between counts in the two network models converges to 0 in probability,Thus,

with the convention that 0/0 = 0,
nk(X)

Nk(X) −
nk(Z)

Nk(Z) converges to 0 in probability as n → ∞.

It remains to show that
nk(Z)

Nk(Z) is a consistent estimator for a∗, the edge probability of the

ER graph Z. To see this, we use Proposition A.2 in the supplementary information for Xu

and Reinert (2022a), which gives that
nk(Z)

Nk(Z) converges to a∗ in probability as n → ∞.

4.2 Diversity guarantee

The next result shows that SteinGen samples are expected to be well separated.

Proposition 7. Under Assumption 1, the expected Hamming distance between two consecu-
tive steps in the Glauber dynamics converges to 2a∗(1 − a∗).

Proof In the Glauber dynamics at each step at most one edge is flipped. The Hamming
distance dH from (2) between two consecutive instances is 1 when there is a flip, and
otherwise, it is 0. Thus, if X(u) and X(u + 1) are two consecutive steps in the Glauber
dynamics of ERGM(β, t), and if Z(u) and Z(u + 1) are two consecutive steps of the ER(a∗)
Glauber dynamics, then by the triangle inequality

EdH(X(u), X(u + 1))

≤ EdH(X(u), Z(u)) +EdH(Z(u), Z(u + 1)) +EdH(Z(u + 1), X(u + 1)).

This inequality holds for any coupling between X(u) and Z(u), and for any coupling between
X(u + 1) and Z(u + 1). In the Bernoulli random graph, edge indicators are independent,
and thus, with S denoting the randomly chosen index from [N ],

EdH(Z(u), Z(u + 1))

=
1

N

∑
s∈[N ]

P(Z(u) ̸= Z(u + 1)|S = s))

=
1

N

∑
s∈[N ]

{
P(Z(u)(s) = 1, Z(u + 1)(s) = 0|S = s) + P(Z(u)(s) = 0, Zs(u + 1) = 1|S = s)

}
= 2a∗(1 − a∗).

Moreover, from Remark 1.14 in Reinert and Ross (2019) it follows that we can couple X(u)
and Z(u) so that there are on average O(n3/2) edges that do not match. For this coupling,

EdH(X(u), Z(u)) = O(n− 1
2 ), and the same argument gives that we can couple X(u+ 1) and

Z(u + 1) such that EdH(X(u + 1), Z(u + 1)) = O(n− 1
2 ). Hence, as n → ∞, the expected

Hamming distance converges to the value 2a∗(1 − a∗).

We note that 2a∗(1 − a∗) is the expected Hamming distance between two consecutive
networks generated by the Glauber dynamics of an ER(a∗) model. Thus, the expected
Hamming distance between two independent ER(a∗) graphs Y and Z is EdH(Y, Z) =∑

s∈[N ] P(Y (s) ̸= Z(s)) = 2Na∗(1 − a∗). As EdH(Y,Z)/N is independent of the number of
vertices n, in our experiments we scale the Hamming distance by 1/N .

12
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4.3 Mixing time considerations

Although the distributions of the generated graphs are close to that of the model generating
the input graph x, the Glauber Markov process quickly ‘forgets’ its starting point x. Indeed
Theorem 5 in Bhamidi et al. (2011) gives that under Assumption 1, the mixing time of the
Glauber Markov chain is of order Ω(N logN); we recall that the mixing time of a Markov
chain is the number of steps needed in order to guarantee that the chain, starting from an
arbitrary state, is within distance e−1 from the stationary distribution. As in each step of
the Glauber dynamic, a vertex pair is chosen independently with the same probability, the
time until all N possible vertex pairs have been sampled has the “coupon collector problem”
distribution, with mean N logN + γN + 1

2 + O(N−1) (where γ is the Euler-Mascheroni
constant) and variance bounded by π2N2/6. the time of mixing, two chains started in
different initial conditions will both be close to the stationary distribution. Hence, as stopping
rule in the SteinGen algorithm Algorithm 2 we suggest to use r = ⌊N logN + γN + 1

2⌋. For
example when n = 50 then r = 9419.

4.4 Stability of SteinGen

To show the stability of the network generation we use Theorem 2.1 from Reinert and
Ross (2019), as follows. Define the N ×N influence matrix R̂ for the Glauber dynamics of

the distribution of X by R̂rs := maxx∈{0,1}N
∣∣∣qX((x(s,1))(r,1)|x(s,1))− qX

(
(x(s,0))(r,1)|x(s,0)

)∣∣∣.
Then R̂rs is the maximum amount that the conditional distribution of the rth coordinate of
x can change due to a change in the sth coordinate of x. For 1 ⩽ p ⩽ ∞, let ∥ · ∥p be the

p-norm on RN , and define the matrix operator p-norm ∥A∥p := supv ̸=0
∥Av∥p
∥v∥p .

Assumption 2. Assume that the distribution of X is such that there is an N ×N matrix
R satisfying that for all r, s ∈ [N ], and some 1 ⩽ p ⩽ ∞ and ε = εp > 0, we have R̂rs ⩽ Rrs

and ∥R∥p ⩽ 1 − ε < 1.

If X ∼ ERGM(β, t) then Reinert and Ross (2019) show that Assumption 1 implies
Assumption 2. However, for a stability result, we may be interested in comparing X and
Y having possibly different distributions, such as X and Y having the distribution of two
consecutive steps in the Glauber dynamics. The general result is as follows.

Theorem 8 (Theorem 2.1 in Reinert and Ross (2019)). Let X,Y ∈ {0, 1}N be random
vectors, h : {0, 1}N → R, and assume that the continuous time Glauber dynamics for the
distribution of X is irreducible and satisfies Assumption 2. For s ∈ [N ], set cs := ∥∆sh∥ and
vs(y) := |qX(y(s,1)|y) − qY (y(s,1)|y)|, and c := (c1, . . . , cN ) and v(Y ) := (v1(Y ), . . . , vN (Y )).
Then for q := p/(p− 1), we have

∣∣Eh(X) −Eh(Y )
∣∣ ⩽ ε−1∥c∥q E∥v(Y )∥p.

Thus, if the conditional probabilities qX satisfy Assumption 2 and if the differences vs
between qX and qY are small then the networks which they generate are close, measured by
expectations of test functions. If the networks X and Y are from two consecutive steps of
the Glauber dynamics, Proposition 6 shows that for large n the corresponding estimated
conditional probabilities will indeed be close in probability.
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4.5 Measuring sample fidelity via total variation distance

In this paper we assess the goodness of fit of the generated data to the hypothesised model
using gKSS and AgraSSt. To assess fidelity of graph samples empirically, we use the total
variation distance dTV from (3) between the empirical degree distributions of a synthetically
generated network and the input network. For two networks X(i), i = 1, 2 the empirical
probability mass function of their degrees is G(i)(k) = 1

n

∑n
v=1 1(deg(i)(v) = k), i = 1, 2,

with deg(i)(v) denoting the degree of vertex v in X(i), i = 1, 2. The total variation distance
between these empirical distribution functions is

dTV (G(1), G(2)) =
1

2

n−1∑
k=0

∣∣∣∣∣ 1n
n∑

v=1

1(deg(1)(v) = k) − 1

n

n∑
v=1

1(deg(2)(v) = k)

∣∣∣∣∣ .
For a collection of r generated networks with G(0) the degree distribution in the observed
network and G(i), i = 1, 2, the degree distribution in the ith simulated network, as in Xu
and Reinert (2021) we measure fidelity by the average empirical total variation distance

1

r

r∑
i=1

dTV (G(0), G(i)). (19)

To interpret this measure we note that even if two networks are independently generated
from the same distribution, their empirical degree distributions G(1) and G(2) may not
completely agree. Assume that P(G(1)(k) = G(2)(k)) < 1; this is the case for example in
Bernoulli random graphs with edge probability 0 < p < 1. While EG(1)(k) = EG(2)(k) for
all k, the expectation of the empirical total variation distance does not vanish. To see this,
as G(1)(k) and G(2)(k) are exchangeable if they are generated from the same distribution,

EdTV (G(1), G(2)) =
1

2

n−1∑
k=0

E

∣∣∣G(1)(k) −G(2)(k)
∣∣∣

=
n−1∑
k=0

E(G(1)(k) −G(2)(k))1(G(1)(k) > G(2)(k))

by symmetry. As E(G(1)(k)) = E(G(2)(k)) and as P(G(1)(k) ̸= G(2)(k)) > 0 it follows that
EdTV (G(1), G(2)) > 0 so that even if the distributions were identical, the average empirical
total variation distance would not vanish.

When the underlying network model is a Bernoulli random graph, ER(p), the degree of
a randomly picked vertex is binomially distributed with parameters n− 1 and p. However,
due to the dependence in the degrees, the random variables G(1) and G(2) are not quite
binomially distributed. Using the binomial approximation from Soon (1996) with the
coupling from Goldstein and Rinott (1996), we can approximate the degree distribution by
the distribution of a collection of independent binomially distributed random variables Dk ∼
Binomial(n− 1, pk) with pk = P(deg(1)(v) = k) =

(
n−1
k

)
pk(1 − p)n−1−k, for k = 0, . . . , n− 1.

Then G(i)(k) ≈ 1
nD

(i)
k where D

(i)
k ∼ Binomial(n− 1, pk) are independent, and

E(|G(1)(k) −G(2)(k)| ≈ 1

n
E|D(1)

k −D
(2)
k | =

1

n
E{(D

(1)
k + D

(2)
k − 2 min(D

(1)
k , D

(2)
k )}.
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In Craig (1962) it is shown that 1
2

√
n
π ≤ min(D

(1)
k , D

(2)
k ) ≤ np + 2p(1 − p)

√
n
π , and hence

1

n
E|D(1)

k −D
(2)
k | ∈

[
4p(1 − p)

√
1

nπ
,

√
1

nπ

]
. (20)

We use the upper bound
√

1
nπ as guideline.

As the underlying network generation method is unlikely to be G(n, p), we give the
bound here for heuristic consideration only. In our synthetic experiments, we simulate the
empirical total variation distance between the degree distributions under the null hypothesis.

5 Experimental results

In our experiments, we assess the two SteinGen generators from Section 3: SteinGen nr
uses a fixed q(s, 1|∆st(x)), s ∈ [N ], estimated from the input graph; SteinGen re-estimates
q(s, 1|∆st(x)) using the generated graph samples. We compare the SteinGen generators
against two types of graph generation methods. The first type estimates the parameters
β in (5) and then uses MCMC to generate samples from the estimated distribution. Here
we use for parameter estimation MLE, the maximum likelihood estimator based on an
MCMC approximation (Snijders, 2002); MPLE, a maximum pseudo-likelihood estimator,
see Schmid and Desmarais (2017), and CD, an estimator based on the contrastive divergence
approach (Asuncion et al., 2010). Our implementation uses the sna suite (Butts, 2008)
and the ergm package (Krivitsky et al., 2023) in R. The second type of graph generation
method is implicit. Here we explore the implicit graph generators CELL (Rendsburg et al.,
2020) and NetGAN (Bojchevski et al., 2018). CELL is a cross-entropy low-rank logit
approximation that learns underlying random walks for the graph generation1. NetGAN is
a graph generative adversarial network method. Both CELL and NetGAN can learn and
generate graphs from a single observation.

5.1 Measuring fidelity and diversity

To assess sample quality in terms of fidelity to the distribution generating the input network,
we report various network statistics for the generated networks. Moreover, for networks
generated from synthetic models, we report rejection rates of a gKSS test as described in
Section 2.3; for real-world networks, we use an AgraSSt test as described in Section 2.4.
As kernel we use a Weisfeiler-Lehman (WL) graph kernel (Shervashidze et al., 2011) with
level parameter 3, because WL graph kernels have been shown to be effective for graph
assessment problems (Weckbecker et al., 2022; Xu and Reinert, 2021). The gKSS test uses a
Monte-Carlo based test threshold which in the synthetic experiments is determined using
200 samples generated from the true generating model. When AgraSSt and SteinGen nr use
the same network statistics, as both estimate the conditional probability once, we expect
the rejection rate of SteinGen nr to be close to the test level. We report the proportion
of rejected gKSS or AgraSSt tests for a test at level α = 0.05; we aim for a proportion of
rejected tests being close to this level.

1. The CELL implementation is adapted from the code at https://github.com/hheidrich/CELL.
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We also assess the fidelity of individual samples. For a sample of m generated networks
x(1), . . . , x(m) and x(0) the initial network, we use as sample-based measure for fidelity the
average empirical total variation distance (19) between the empirical degree distributions of
the generated network samples and the input network, a measure which is also employed
in Xu and Reinert (2021) and motivated by the graphical test in Hunter et al. (2008a),
see Section 4.5. To assess sample diversity, for a trial i we first generate a network x(0, i)
which we then use as input network for generating a sample x(1, i), . . . , x(m, i) of size
m. We report the scaled average Hamming distance d̄H(i) := 1

mN

∑m
j=1 dH(x(j, i), x(0, i))

between the generated samples and the input network. Here we divide by N , the maximal
Hamming distance on networks with n vertices and N potential edges, to keep the measure
bounded between 0 and 1; see Section 4.2. If we run w trials then we report the average
d̄H = 1

w

∑w
i=1 d̄H(i) where d̄H(i) is the average Hamming distance in trial i. To indicate

variability we also report the average standard deviation sd := 1
w

∑w
i=1 sd(dH(i)), where

sd(dH(i)) =
(

1
m

∑m
j=1(dH(x(j, i), x(0, i)) − d̄H(i))2

)1/2
is the standard deviation of the

Hamming distance in trial i. The variability of the Hamming distance is used to illustrate
the variability in the generated samples.

To visualise the fidelity-diversity trade-off we plot (1 - average empirical total variation
distance of the degree distributions), abbreviated 1 − TV Distance, against the average
Hamming distance. For 1 − TV Distance again we average over w trials. The closer to
the top-right corner, the more fidelitous and diverse are the generated samples. In the
interpretation of the plots, we take note of the theoretical bounds from Section 4.5.

5.2 Synthetic network simulations

In our synthetic experiments, input networks are generated under four different ERGMs.
With E(x) the number of edges, S2(x) the number of 2Stars, and T (x) the number of
triangles in a network x, we generate networks on n = 50 vertices from

1. an Edge-2Star (E2S) model (Mukherjee and Xu, 2023), with unnormalised density
q(x) ∝ exp{β1E(x) + β2S2(x)};

2. an Edge-Triangle (ET) model (Yin et al., 2016) with unnormalised density q(x) ∝
exp{β1E(x) + β2T (x)};

3. an Edge-2Star-Triangle (E2ST) model (Yang et al., 2018; Xu and Reinert, 2021) with
unnormalised density q(x) ∝ exp{β1E(x) + β2S2(x) + β3T (x)}; and

4. an ER(β1) model.

We choose β1 = −2, β2 = 1
n , β3 = − 1

n . These models satisfy the fast mixing condition in
Bhamidi et al. (2011) and Assumption 1, and are unimodal. In this example, the choice of
r = N logN + γN + 0.5 gives r = 9419 as number of steps.

Sample quality via gKSS We first compare the quality of generated samples using the
rejection rate of gKSS tests at test level 0.05. For an input graph generated from each
ERGM, we generate m =30 samples from each graph-generating method as one trial. We
run w = 50 trials The average gKSS value over these 50 trials is shown in Table 1. In
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Figure 2: Hamming distance between generated samples and the initial synthetic network for
a networks on n =50 vertices; average and standard deviation of m =50 trials. In
E2S, 2a∗(1−a∗) = 0.263; in E2ST, 2a∗(1−a∗) = 0.248; in ET, 2a∗(1−a∗) = 0.217.

addition, we report the rejection rate for the 50 “observed” input samples as a baseline.
The gKSS rejection rates which are closest to the true level 0.05 are coloured red and the
second-closest are coloured blue.

Table 1: Rejection rates of gKSS tests for 50 trials, with
30 generated samples for each trial, at test level
α = 0.05; the closest value to the test level is
in red, and the second closest is in blue.

Model E2S ET E2ST ER

MPLE 0.393 0.133 0.370 0.040
CD 0.413 0.200 0.403 0.030
MLE 0.253 0.127 0.250 0.036
CELL 0.080 0.100 0.190 0.020
NetGAN 0.110 0.160 0.280 0.086
SteinGen nr 0.021 0.075 0.105 0.050
SteinGen 0.030 0.040 0.100 0.035

Observed 0.040 0.050 0.080 0.030

Table 1 shows that for E2S, ET
and E2ST, the parameter estima-
tion methods have much higher
gKSS rejection rates than the
other methods. The best perfor-
mance is achieved by SteinGen,
followed by its faster variant Stein-
Gen nr. For the ER model, all
generation methods achieve rea-
sonable rejection rates, with Stein-
Gen nr being completely on target
in our simulation and MPLE not
far behind.

Sample diversity via Hamming distance If all generated samples are near-identical to
the input network then the synthetic data may be of limited value. To assess variability,
Figure 2 shows the average Hamming distance between each generated sample and the
input network for samples from the different methods for the above ERGMs (excluding ER),
plus/minus one standard deviation (sd), with the x-axis indicating the number r of steps
generated for SteinGen and SteinGen nr. The other methods do not generate consecutive
samples and their Hamming distances are hence drawn as straight lines. For comparison we
also give the theoretical bound 2a∗(1 − a∗) on the Hamming distance from Proposition 7.

From Figure 2, we see that the parameter estimation methods have largest Hamming
distance from the input network. As these methods use the input network only for parameter
estimation and then generate networks at random, this finding is perhaps not surprising.
However, SteinGen samples have much higher Hamming distance compared to those from
CELL, indicating higher sample diversity. With the number of steps in SteinGen,the
Hamming distance for both SteinGen nr and SteinGen samples increases and then stabilises
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Figure 3: Hamming distance versus TV distance of degree using generated samples; r is the
number of steps in SteinGen. The estimated error is estimated from simulations,
the error bound is the bound (

√
πn)−1 from (20).

and approaches the theoretical limit 2a∗(1−a∗) from Proposition 7; this stabilisation provides
another natural criterion for the number of steps for which to run SteinGen and SteinGen nr.
While in Section 4.3 the theoretical underpinning gives N logN + γN + 0.5 = 9419 as
guideline for the number of steps, in Figure 2 the results are already close to stable for step
sizes of around r = 4000, less than half of N logN +γN + 0.5. The variance of the Hamming
distance for SteinGen after stabilisation is higher than that of SteinGen nr, indicating that
the re-estimation procedure increases sample diversity. The sample diversity achieved by
SteinGen and SteinGen nr is close to that achieved by the parameter estimation methods.

Fidelity-diversity trade-off Figure 3 shows the trade-off between fidelity and diversity
in the simulated networks. The dotted red line shows the estimated 1 − TV Distance using
50 simulated networks under the null model. As expected, as the number of steps r increases,
the Hamming distances (diversity) for SteinGen samples increases while 1 − TV Distance
(fidelity) decreases. However, the sample fidelity decreases only a by small amount and
approaches the empirical total variation distance (the red dashed line). Compared to CELL
and NetGAN, SteinGen with large r produces samples with simultaneously higher diversity
and higher fidelity. The bound (

√
nπ)−1 from (20) is not too far off.

More synthetic experiments can be found in Appendix B, including different re-estimation
intervals for updating the estimates of q̂ (Appendix B.1), examples with multiple graph
observations (Section B.2), and improving the sample quality by selecting samples with the
smallest gKSS value (Section B.3). The choice of graph kernels in gKSS is explored in detail
in Weckbecker et al. (2022).

Runtime comparison The time, in seconds, for generating a sample from each method
for our E2ST model, are, in order of speed: SteinGen nr (0.0244), CELL (0.0487), NetGAN
(0.5265), SteinGen (0.0559), MPLE (0.0929), and MLE (0.5090). SteinGen nr is the fastest
method, but it has a less accurate gKSS test rejection rate than SteinGen.

5.3 Real network applications

As a real network example we use a teenager friendship network with 50 vertices described
in Steglich et al. (2006); Xu and Reinert (2021) propose an E2ST ERGM. Table 2 shows
some of its network summary statistics.
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Table 2: Teenager friendship network. Closest to observed is in red, second-closest in blue.

Density 2Stars Triangles AgraSSt Hamming

MPLE 0.0421 (2.42e-2) 329 (80.4) 75.52 (43.4) 0.68 0.106 (2.22e-2)
CD 0.2900 (1.10e-2) 4537 (538) 4146 (668) 0.92 0.211 (1.03e-2)

CELL 0.0450 (3.46e-4) 220 (14.1) 22.50 (7.73) 0.12 0.0423 (3.32e-3)
NetGAN 0.1120 (1.38e-6) 227 (13.3) 9.28 (2.53) 0.34 0.0820 (5.07e-3)

SteinGen nr 0.0516 (1.02e-3) 362 (14.9) 88.90 (24.8) 0.06 0.0912 (9.95e-3)
SteinGen 0.0445 (9.49e-4) 364 (84.1) 85.75 (10.7) 0.08 0.107 (1.32e-2)

Teenager 0.0458 368 86.00 pval=0.64

We generate 50 samples from the input graph and compute the sufficient statistics Edge
Density, Number of 2Stars and Number of Triangles for the generated samples from each
method; their averages and standard deviations are shown in Table 2. The reported SteinGen
values use r = 600 steps.

For this network, the MCMCMLE estimation procedure in ergm does not converge. CELL
captures the edge density and 2-Star statistics well, but not the triangle counts. CD has the
highest variability but does not capture the sufficient network statistics. MPLE estimates
the sufficient statistics reasonably well but is outperformed by SteinGen. SteinGen nr also
performs well in capturing the sufficient statistics. As the true model for the teenager
network is unknown and hence the gKSS test does not apply, in Table 2 we also report the
proportion of rejections of the kernel-based Approximate graph Stein Statistic (AgraSSt)
goodness-of-fit test (15) to assess the sample quality; see Section 2.4 for details. This test
uses an approximate model which estimates the conditional probabilities in Equation (13),
given the number of edges, 2stars, and triangles, from the observed Teenager network,
without an explicit underlying ERGM.
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Figure 4: Hamming distance versus 1 − TV
Distance of degree for the teenager
network; r is the number of steps
in SteinGen, the blue line is the
error bound (nπ)−

1
2 from (20).

We generate 100 samples from each
method and perform the AgraSSt test using
200 samples generated from the approximate
model to determine the rejection threshold
at test level α = 0.05. We also report the
AgraSSt test p-value of the Teenager network;
the value indicates that the observed network
can plausibly be viewed as having the esti-
mated conditional distribution.

Table 2 shows that SteinGen has the rejec-
tion rate which is closest to the test level 0.05,
followed by SteinGen nr and CELL, while the
parameter estimation methods MPLE and CD
have a much higher rejection rate. Regarding
diversity, the Hamming distance from CELL
is the lowest, indicating that perhaps the generated samples are very similar to the original
Teenager network. CD produces the largest Hamming distances on average, but the sample
quality is low. The next highest diversity is produced by SteinGen.
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Table 3: Additional network statistics.

SP LCC Assortat. Clust. Max(deg)

Teenager 3.39 33.00 0.172 0.9056 5.00
SteinGen 3.49 (0.299) 33.20 (0.678) 0.163 (0.031) 1.027 (0.018) 11.50 (1.688)
SteinGen nr 3.76 (0.464) 35.25 (2.66) 0.144 (0.056) 1.226 (0.098) 13.00 (1.712)
CELL 5.38 (0.905) 45.30 (5.56) 0.103 (0.089) 0.191 (0.025) 11.20 (0.980)
NetGAN 2.66 (0.034) 33.00 (0.) 0.098 (0.085) 0.132 (0.035) 9.333 (1.014)
MPLE 2.048 (1.17) 20.05 (8.48) 0.765 (0.143) 0.187 (0.024) 11.30 (1.269)
CD 1.148 (0.224) 25.00 (0.100) 0.985 (0.020) 0.190 (0.027) 12.00 (1.673)

Moreover, Table 3 shows some additional standard network statistics to match those used
in Rendsburg et al. (2020), except the power law exponent which is not often informative
for small networks: shortest path (SP), largest connected components (LCC), assortativity
(Assortat.), clustering coefficient (Clust.) and Maximum degree of the network. SteinGen
performs the best on first four of these statistics, within one standard deviation of the
observed values, closely followed by SteinGen nr, while the other methods show statistically
significant deviation from the observed statistics. However for the maximum degree, NetGAN
performs best, although closely followed by SteinGen.

Moreover, we plot the Hamming distance versus 1 − TV Distance to visualise the
trade-off between the quality of generated samples and the diversity. Figure 4 shows that
with increasing number of SteinGen steps, the increase in total variation distance is small
compared to the gain in Hamming distance. SteinGen produces samples with higher fidelity
and, for r = 600 or r = 2000, also with larger diversity than CELL and NetGAN.

As an aside, for a network of size n the crude upper bound on the total variation distance
of (nπ)−

1
2 derived in (20) gives 0.9202115; SteinGen samples are not far off. The effect of

different kernel choices for the teenager network is explored in Section C.1, Table 5. While
there are numerical differences, the AgraSSt rejection rates are qualitatively similar for the
different kernels.

6 Conclusion and discussions

SteinGen is a synthetic network generation method which is based on Stein’s method and
can be used even when only one input network is available; no training samples are required.
In our experiments SteinGen achieves a good balance between a high sample quality as well
as a good sample diversity. In Section C of the Appendix we include additional experiments
on real network experiments, namely the Florentine marriage network from Padgett and
Ansell (1993), and two protein interaction networks, for EBV (Hara et al., 2022) and for
yeast (Von Mering et al., 2002). In these experiments the general pattern is confirmed, but
with sometimes different orderings of CELL and NetGAN. With only one observed network,
we find that SteinGen generates synthetic samples which are close in distribution to the
observed network while being dissimilar from it. Moreover, SteinGen comes with theoretical
guarantees.

SteinGen outperforms its competitors partly through its re-estimation step which implic-
itly captures variability in the distribution from which the observed network is generated.
We also propose a faster method, SteinGen nr, which avoids the re-estimation step and
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also performs well. As an intermediary method, one could re-estimate q̂(s, 1|∆st(x)) in
Algorithm 2 only after a fixed number of samples have been generated, see Appendix B.1
for details and additional experimental results.

While here SteinGen is presented in the setting of ERGMs, using the AgraSSt approach
from Xu and Reinert (2022b), it is straightforward to generalise the approach to networks
for which the underlying distribution family is unknown. Moreover, SteinGen can easily
be expanded to take multiple graphs as input, gaining strength in conditional probability
estimation; for details see Section B.2 in the Appendix. One could also generate multiple
samples and use AgraSSt to select the best samples for the next network generation step, see
Section B.3 in the Appendix; this could be viewed as related to particle filtering. Moreover,
learning suitable network statistics t(x) could be an interesting future research direction.

SteinGen has some shortcomings: It disregards any attributes on the network. It does
not naturally apply to time series of networks. It also does not come with any privacy
preserving guarantees. Extending SteinGen to these settings will be part of future work.

Finally a note of caution: when applying SteinGen, ethical aspects should be taken
into consideration. One could think of situations in which synthetic networks distort the
sensitive narrative of the data. Moreover, if the synthetic networks are used for crucial
decision making such as in healthcare, extra care is advised.
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Appendix A. More on parameter estimation methods

As shown in Section 5, parameter estimation methods based on MPLE, CD and MLE can
achieve high sample diversity but in our experiment they usually show low sample fidelity. To
better understand this behaviour here we estimate the parameters in the three models E2S,
E2ST and ET in the same setup as in Section 5.2, with n = 50 vertices and the same true
parameter values β1 = −2, β2 = 1

n , β3 = − 1
n . We note that parameter estimation methods

estimate the parameters jointly for maximising the likelihood; for an observed network x the
linear combination

∑L
l=1 βltl(x) is the basis of the estimation. Hence we would not expect

to see unique parameter estimates, but we would expect a linear combination of them to
stay approximately constant.

Figure 5 shows the results for the estimates of β1 versus β2; the true parameter combina-
tion is indicated by a magenta star. In the E2S model, which is arguably the easiest of the
three models considered, in all three methods there is an approximately linear relationship
between the estimates of β1 and β2, relating to maintaining a similar density of the generated
graphs. However, in the E2ST and ET models, the parameter estimation can be very
inaccurate, for all three methods. Hence, a higher rejection rate in a gKSS test for the
parameter estimation methods, as observed in Table 1 in the main text, is not unexpected.

Appendix B. More synthetic experiments

In this section, we provide additional experimental results on synthetic networks. When we
refer to specific ERGMs we use the same parameters as in Section 5.2 in the main text.

B.1 Re-estimation after k steps

In the main text, we present SteinGen with re-estimation after one step in the Glauber
dynamics chain; we re-estimate the transition probability when the sampled network differs
from the previous network. By construction, the two networks will deviate in one edge
indicator, rendering the re-estimation procedure to be not very computationally efficient.
Hence it may be of interest to re-estimate the transition probability only after k different
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Figure 5: Estimated parameters β1, β2 for n = 50. The plot shows considerable variability
in the parameter estimation.
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Figure 6: Hamming distance ±1 standard deviation between generated samples and an initial
network from each model for different re-estimation steps, including SteinGen nr
as a benchmark. The number of vertices is set to 30. For each re-estimation step
size k we record the first observations after k × n/2 steps to unify the comparison
by accounting for the number of steps in the Glauber process.
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(c) ET Model

Figure 7: Hamming distance versus 1-TV distance of degree with generated samples; r is
the number of steps in SteinGen; k is the number of steps between re-estimation;
n = 30; Est Error is estimated from simulations; Error Bound is (nπ)−

1
2 in (20).

networks have been obtained. Here we investigate the setting where the re-estimation happens
after k changes in the network (where networks could be repeated, but not consecutively),
for networks on 30 vertices. We also consider the setting of SteinGen nr where no re-estimate
applies; one could view this case as k = ∞.
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We plot the Hamming distance for various models, varying the number of re-estimation
steps, in Figure 6. From the plot we see that, with higher number of re-estimation steps k, the
Hamming distance converges to the limit faster, which is expected and echoes the behavior
of SteinGen nr. Moreover, as k increases, the variance of Hamming distance increases as well,
implying an increase in sample variety. Figure 7 shows the relationship between diversity
and fidelity; the number of steps in SteinGen has a more substantial effect on diversity than
the number of steps between re-estimation. As expected, re-estimation after every step
achieves highest fidelity; there is a trade-off between fidelity and computational efficiency.

B.2 Graph generation from multiple network observations

Table 4: Rejection rate for the the gKSS test
with 5 observed network samples; net-
work size n = 30; test level α = 0.05.
The closest value to the test level is
marked in red and the second closest
in blue.

Model E2S ET E2ST ER

MPLE 0.09 0.07 0.08 0.06
CD 0.13 0.17 0.19 0.09

MLE 0.06 0.11 0.07 0.07
SteinGen nr 0.03 0.06 0.05 0.06

SteinGen 0.04 0.05 0.06 0.04

As mentioned in Section 6, SteinGen can
easily be expanded to multiple graph inputs.
Heuristically, the estimation of the condi-
tional distribution should be improved when
multiple input graphs are available, as it
can then be estimated from the collection
of graphs. Here we show some experiments
to illustrate this extension; we use the same
setup as in Section 5.2, on 30 vertices, but
now with 5 observed network samples from
each model. For the parameter estimation
counterparts, we use the ergm.multi imple-
mentation recently added to the statnet

suite (Krivitsky et al., 2022). To estimate
the conditional distribution in Algorithm 1, if there are c observed network samples x1, . . . , xc
from each model, on n vertices each, we denote by Ni the set of pairs of vertices in network
i, for i = 1, . . . , c, so that |Ni| = N for all i. Then we estimate

q(x(s,1)|∆st(x) = k) =

∑c
i=1

∑
s∈Ni

I(xsi = 1)I(∆st(x) = k)∑c
i=1

∑
s∈Ni

I(∆st(x) = k)

where I(A) is the indicator function of an event A which equals 1 if A holds and 0 otherwise.
Similarly to what was was carried out for Table 1, a gKSS test is performed; the rejection
rates are reported in Table 4. Compared to Table 1, the rejection rates show a marked
improvement for all methods; for SteinGen and SteinGen nr they are now very close to the
desired 0.05 even for E2ST. Except on the simple ER network for which SteinGen nr ties
with MPLE, SteinGen and SteinGen nr again outperform the other methods.

B.3 Improving sample quality with gKSS selection

The standard SteinGen procedure may produce a sampled network which may not be very
representative of the true network, judged by gKSS. As mentioned in Section 6, gKSS
could also be used as a criterion to select samples for potential downstream tasks. As an
illustration, we generate 30 network samples on 30 vertices from the E2S model in Section 5.2,
calculate the gKSS for each of these 30 samples, and select the 10 samples with the smallest
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Figure 8: Hamming distance versus 1-TV distance of degree using generated samples with
and without batch selection; r is the number of steps in SteinGen; Est Error,
in red, is estimated from simulations, while Error Bound, in blue, is the bound
(
√
πn)−1 from (20).

gKSS value. We repeat this experiment 50 times. Figure 8 shows a slight improvement in
fidelity, but there can be a slight deterioration in diversity, according to our measures.

C Additional real data experiments

Here we report results from experiments on additional real network data. In the absence
of a ground truth model, we consider a method as performing well if the observed network
statistic in the real network is within two standard deviations of the average in the generated
samples. In addition we judge diversity by the Hamming distance to the observed real
network; the larger the Hamming distance, the more diverse the samples.

C.1 Additional results for the teenager network: kernel choice

In this subsection present further experimental results on the teenager friendship network
(Steglich et al., 2006) discussed in Section 5.3.

Table 5: AgraSSt rejection rate at 5% level with different
graph kernel choices for the teenager network

MPLE CD CELL SteinGen SteinGen nr

WL 0.68 0.92 0.12 0.06 0.08
GVEH 0.46 0.74 0.36 0.08 0.04
SP 0.34 0.62 0.10 0.02 0.04
Const 0.24 0.32 0.10 0.04 0.06

We investigate the qual-
ity of generated samples
from various schemes with
AgraSSt using different graph
kernels. WL: Weisfeiler-
Lehman (WL) graph kernels
(Shervashidze et al., 2011)
with level parameter 3 as
presented in the main text;
GVEH Gaussian Vertex-
Edge Histogram kernel (Sugiyama and Borgwardt, 2015) with unit bandwidth; SP: the
Short Path kernel (Borgwardt and Kriegel, 2005); and Const: the “constant” kernel as
considered in Weckbecker et al. (2022). From the rejection rate in Table 5, we see that
SteinGen and SteinGen nr achieve rejection rates which are much closer to the significance
level 0.05 compare to MPLE, CD and CELL. The WL kernel and the constant kernel yield
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Table 6: Statistics for generated samples from Lazega’s lawyer network; 50 networks are
generated from each methods; reporting average(avg) and standard deviation (sd).

MPLE CD MLE CELL NetGAN SteinGen SteinGen nr Lazega

Density(avg) 0.184 0.191 0.180 0.182 0.205 0.182 0.183 0.183
Density(sd) 0.023 0.018 0.017 0.001 0.003 0.025 0.015 -

2Star(avg) 729.0 785.4 693.1 921.3 899.2 722.3 755.0 926
2Star(sd) 173.2 143.8 126.7 23.7 38.6 133.6 82.7 -

Triangles(avg) 46.2 50.9 42.9 105.4 84.2 139.8 124.8 120
Triangles(sd) 16.4 14.8 12.1 8.25 11.59 38.2 27.8 -

SP (avg) 2.09 2.05 2.10 2.22 2.02 2.12 2.09 2.14
SP (sd) 0.148 0.101 0.096 0.042 0.034 0.073 0.048 -

LCC (avg) 35.9 36.0 35.9 35.9 34.0 36.0 36.0 34
LCC(sd) 0.180 0. 0.300 0.359 0. 0. 0. -

Assortat.(avg) -0.071 -0.046 -0.079 -0.164 -0.040 -0.139 -0.033 -0.168
Assortat.(sd) 0.098 0.065 0.091 0.058 0.081 0.069 0.058 -

Clust.(avg) 0.1850 0.1911 0.1831 0.3429 0.2885 0.3418 0.4869 0.3887
Clust.(sd) 0.0281 0.0276 0.0271 0.0222 0.0287 0.0981 0.0903 -

Max deg (avg) 11.30 12.00 11.20 15.53 15.67 11.60 12.10 15.00
Max deg (sd) 1.2688 1.4605 0.9451 1.0241 0.9428 1.6248 1.3747 -

AgraSSt(avg) 0.184 0.214 0.132 0.084 0.135 0.095 0.113 0.054
AgraSSt(sd) 0.182 0.067 0.102 0.034 0.158 0.077 0.066 -

Hamming(avg) 0.293 0.296 0.287 0.056 0.145 0.212 0.215 -
Hamming(sd) 0.019 0.017 0.018 0.007 0.008 0.010 0.012 -
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Figure 9: Hamming distance versus 1-TV distance of degree for the Florentine marriage
network.

rejection rates which match the 5% level most closely for SteinGen, but other kernels perform
fairly similarly, confirming the findings in Weckbecker et al. (2022).

C.2 Padgett’s Florentine marriage network

Padgett’s Florentine marriage network (Padgett and Ansell, 1993), with 16 vertices repre-
senting Florentine families during the Renaissance and 20 edges representing their marriage
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Table 7: Statistics for generated samples from the Florentine marriage network; reporting
average(avg) and standard deviation (sd).

MPLE CD MLE CELL NetGAN SteinGen SteinGen nr Florentine

Hamming 0.268 0.253 0.257 0.048 0.133 0.301 0.268
AgraSSt 0.08 0.10 0.06 0.04 0.06 0.05 0.04 pval=0.15

Density (avg) 0.169 0.160 0.162 0.167 0.190 0.172 0.165 0.167
Density (sd) 0.0361 0.0379 0.0347 2.77e-3 7.75e-4 0.0298 0.0254 -

2Star (avg) 47.66 44.12 44.10 45.86 47.82 63.64 48.80 47
2Star (sd) 20.38 21.39 17.96 3.86 4.59 38.87 15.61 -

Triangles (avg) 2.80 2.72 2.22 2.10 2.42 5.41 4.5 3
Triangles (sd) 2.51 2.36 1.57 1.04 1.47 3.18 2.04 -

SP (avg) 2.543 2.564 2.574 2.704 2.600 2.510 2.439 2.486
SP (sd) 0.339 0.502 0.325 0.188 0.219 0.439 0.254 -

LCC (avg) 14.60 13.86 14.20 15.96 15 15.78 16.00 15
LCC (sd) 1.70 1.91 0.943 0.101 0. 0.229 0.229 -

Assortat. (avg) -0.141 -0.131 -0.123 -0.328 -0.249 -0.093 -0.132 -0.375
Assortat. (sd) 0.141 0.156 0.158 0.114 0.105 0.107 0.124 -

Clust. (avg) 0.1532 0.1665 0.1474 0.1386 0.2103 0.1532 0.1665 0.1474
Clust. (std) 0.1046 0.1098 0.0841 0.0700 0.0945 0.1046 0.1098 -

Max deg (avg) 4.980 5.060 5.120 6.000 5.167 4.980 5.060 5.120
Max deg (std) 0.1532 0.1665 0.1474 0.1386 1.067 0.1532 0.1665 -

ties, is a benchmark network for network analysis. In Reinert and Ross (2019) and Xu
and Reinert (2021), an ER model was considered a good fit. Our simulation setup is as in
Section 5.3 and we report the same summary statistics in Table 7. The heuristic bound (20)
would give a lower bound on the expected value of 0.8589526 for 1 − TV Distance.

Figure 9 shows fidelity and diversity for the different methods; here, for large enough r,
SteinGen achieves considerably higher diversity, and slightly higher fidelity, than CELL or
NetGAN.

Table 7 gives the result from generating 30 samples each for the different network
generators. SteinGen has the largest Hamming distance. While SteinGen samples deviates
from some of the observed network statistics more than the other methods, all observed
values of the sufficient statistics are well within one standard deviation of the values in the
Florentine marriage network. We note that the methods based on parameter estimation
perform best for this small benchmark data set.

C.3 Protein-Protein Interaction (PPI) networks

Protein-protein interactions (PPI) are crucial for various biological processes; for a survey
see for example Silverman et al. (2020). Here we consider two examples, the Epstein-Barr
virus and yeast.

An Epstein-Barr Virus (EBV) network We first examine a relatively small PPI
network, the Epstein-Barr Virus (EBV) network used in (Ali et al., 2014); see also (Hara
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et al., 2022)2. This network has one connected component that consists of 60 vertices and
208 edges, thus having edge density 0.11751.
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Figure 10: Hamming distance for the Epstein-Barr Virus PPI network

Using different network statistics t(x) we obtain the Hamming distance to the original
network in Figure 10. The statistics t(x) used in the models are found in the captions,
with E denoting the number of edges, 2S the number of 2-stars, and T the number of
triangles. We also show the Hamming distance for networks generated by CELL and
NetGAN. While SteinGen performs similarly across models, achieving the largest Hamming
distance, SteinGen nr is more erratic in models which include the number of 2-stars. The
average and standard deviation are taken over 50 network samples from each method. The
heuristic bound (20) would give a lower bound on the expected value of 0.9271634 for 1−TV
Distance.

Table 8 shows various network summaries for generated networks from SteinGen and
SteinGen nr, with t(x) the number of edges and 2-stars, as well as CELL and NetGAN.
The network statistics from SteinGen samples are closest or second closest to the observed
EBV samples, with a larger standard deviation (std) than CELL or NetGAN samples.The
achieved Hamming distances of SteinGen and SteinGen nr exceed both CELL and NetGAN.
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Figure 11: Hamming distance versus 1-TV distance of degree for the EBV network; r is the
number of steps in SteinGen.

We show the corresponding fidelity-diversity trade-off plot in Figure 11. The empirical
TV distance and Hamming distance are computed from averaging over 50 samples from

2. The dataset can be downloaded from the https://github.com/alan-turing-institute/

network-comparison/blob/master/data/virusppi.rda.
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Table 8: EBV network statistics

density 2Star Triangle Short. Path LCC Assortat. Clust. Max(deg)

SteinGen 0.1170 1956 214.3 2.318 60.0 -0.1664 0.3524 19.02
std 0.0260 418.7 162.4 0.1447 0.0 0.0586 0.1248 5.863
SteinGen nr 0.1627 1913 567.5 2.285 59.82 -0.2761 0.5699 25.78
std 0.0281 520.2 206.9 0.1152 0.4331 0.0400 0.1180 3.651
CELL 0.1176 1865 116.0 2.335 60.0 -0.1469 0.1862 21.04
std 1.388e-5 66.78 15.14 0.0323 0.0 0.0581 0.0205 2.441
NetGAN 0.1174 1981 146.5 2.318 60.0 -0.1521 0.2216 22.66
std 1.388e-6 61.38 13.94 0.03699 0.0 0.06409 0.01745 2.405

EBV 0.1175 2277 209.0 2.442 60.0 -0.1930 0.2753 27.0

Table 9: AgraSSt rejection rates for SteinGen on the EBV network with different t(x)

E + 2S E + T E + 2S + T E(Bernoulli)

SteinGen 0.06 0.18 0.12 0.04
SteinGen nr 0.32 0.58 0.38 0.02

CELL 0.24 0.24 0.22 0.20
NetGAN 0.18 0.20 0.20 0.18

each generation method. With r > 1000, the SteinGen achieves higher fidelity while keeping
better diversity compare to CELL and NetGAN. Moreover, the TV distance does not change
much from r = 2000 to r = 6000.

Table 9 gives the rejection rates of AgraSSt tests with different choice of network statistics
t(x), based on 50 trials. From the table, we see that the SteinGen samples based on the edges
and 2-stars (E + 2S) and both SteinGen and SteinGen nr samples based on the Bernoulli
model (E) tend to be not rejected at 5% significance level. The rejection rate for CELL and
NetGAN samples tend to be higher.

A PPI network for yeast Finally we examine a relatively larger scale standard PPI
network, that of yeast based on Von Mering et al. (2002)3 The network contains 2617 vertices
and 11855 edges. We use the largest component (for CELL and NetGAN comparison) as
our observed network, which contains 2375 vertices and 11693 edges; giving the edge density
of 0.004148. The bound (20) would give a heuristic lower bound on the expected value of
0.9884231 for 1 − TV Distance. For both PPI networks, the heuristic bound is much closer
to 1, compared to the 1-TV distance of generated samples, indicating that perhaps the
independence assumptions in the heuristic are violated. Here the theoretical guideline for
the choice of r, namely r = N logN + γN + 0.5, yields r = 43, 496, 711. For computational
reasons we chose much smaller values of r. We report the fidelity-diversity trade-off in
Figure 12, where the conditional distribution is estimated using edge and 2-stars. From the
plot, we see that the SteinGen method already achieves higher fidelity than NetGAN, while

3. The data was adapted from the R package igraphdata, originally downloaded from http://www.nature.

com/nature/journal/v417/n6887/suppinfo/nature750.html.

33

http://www.nature.com/nature/journal/v417/n6887/suppinfo/ nature750.html
http://www.nature.com/nature/journal/v417/n6887/suppinfo/ nature750.html


Reinert and Xu

0.000 0.005 0.010 0.015 0.020 0.025
Hamming Distance

0.0

0.2

0.4

0.6

0.8

1.0

1-
TV

 D
ist

an
ce

 (D
eg

re
e) r=10

r=100/200
r=500

r=1000
r=1500

r=2000
r= 4000

CELL

NetGAN

SteinGen
CELL

NetGAN
Error Bound

Figure 12: Hamming distance versus 1-TV distance of degree for the yeast PPI network; r
is the number of steps in SteinGen.

Table 10: PPI network statistics

density(10−3) 2Star(102) Triangle(10) SP(10−3) LCC Assortat(10−4). Clust.(10−4) Max(deg)

SteinGen 4.158 3884 6070 5076 2375 4527 4688 118.0
std 6.812e-04 1.241 0.7980 6.149 0. 1.900 1.230 0.

SteinGen nr 4.159 3885 6072 5067 2375 4521 4689 118.0
std 8.128e-04 2.896 2.517 10.01 0. 5.750 3.890 0.

CELL 4.148 3153 3034 4523 2372 3761 2887 102.5
std 0. 19.63 46.98 25.80 0.8292 101.5 36.60 1.118

NetGAN 3.416 1080 12.23 3821 2617 30.67 33.98 22.67
std 1.479 467.7 5.321 165.4 1133 68.15 14.78 9.849

PPI 4.148 3885 6070 5096 2375 4539 4687 118.0

having larger diversity compared to the CELL and NetGAN samples when the number of
steps r > 500, which is relatively moderate compared to the large graph size of 2375. When
r increases, SteinGen samples achieve higher diversity with minimal sacrifice in sample
fidelity.
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