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Abstract

In this paper, we investigate θ-derivations on Banach algebra L
∞

0 (w)∗.
First, we study the range of them and prove the Singer-Wermer
conjucture. We also give a characterization of the space of all θ-
derivations on L

∞

0 (w)∗. Then, we prove automatic continuity and
Posner’s theorems for θ-derivations.
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1 Introduction

Let A be a Banach algebra with the center Z(A) and the right annihilator;

i.e.,

Z(A) = {a ∈ A : ax = xa for all x ∈ A}

and

ran(A) = {r ∈ A : ar = 0 for all a ∈ A}.

Let D : A→ A be a linear map and k ∈ N. Then D is called k-centralizing

if for every m ∈ A, we have

[D(m), mk] := D(m)mk −mkD(m) ∈ Z(A).
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In particular, if [D(m), mk] = 0, then D is called k-commuting. Assume

now that θ : A→ A is a homomorphism. Then D is called a θ-derivation if

D(mn) = D(m)θ(n) + θ(m)D(n)

for all m,n ∈ A. If θ is the identity map, then D is called a derivation.

Let us recall that a continuous function w : [0,∞) → [1,∞) is called a

weight function if w(0) = 1 and for all x, y ∈ [0,∞)

w(x+ y) ≤ w(x)w(y).

Let L1(w) be the Banach space of all Lebesgue measurable functions f

on [0,∞) such that wf ∈ L1([0,∞)), the Banach algebra of all Lebesque

integrable functions on [0,∞). It is well-known that L1(w) is a Banach

algebra with the convolution product

ϕ ∗ ψ(x) =

∫

∞

0

ϕ(y)ψ(x− y)d(y), (ϕ, ψ ∈ L1([0,∞))

and the norm

‖ϕ‖w =

∫

∞

0

w(x)|ϕ|(x)dx (ϕ ∈ L1([0,∞));

see [4, 15]. Let also L∞

0 (w) be the Banach space of all Lebesgue measure

functions f on [0,∞) such that

lim
x→∞

ess sup

{

f(y)χ(x,∞)(y)

w(y)
: y ≥ 0

}

= 0,

where χ(x,∞) is the characteristic function of (x,∞) on [0,∞). It is well-

known that the dual of L∞

0 (w), represented by L∞

0 (w)∗, is a Banach algebra

with the first Arens product defined by

〈mn, f〉 = 〈m,nf〉,
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where 〈nf, ϕ〉 = 〈n, fϕ〉, in which

fϕ(x) =

∫

∞

0

f(x+ y)ϕ(y)dy

for all m,n ∈ L∞

0 (w)∗, f ∈ L∞

0 (w), ϕ ∈ L1(w) and x ≥ 0; see [7, 8, 11,

12]. Note that every element ϕ ∈ L1(w) can be regarded as an element of

L∞

0 (w)∗,

〈ϕ, f〉 =

∫

ϕ(x)f(x)dx

for all f ∈ L∞

0 (w). We denoted by Λ(L∞

0 (w)∗) the set of all right identities

of L∞

0 (w)∗) with bounded one. For every u ∈ Λ(L∞

0 (w)∗) and m ∈ L∞

0 (w)∗,

we have m− um ∈ ran(L∞

0 (w)∗) and

m = um+ (m− um).

It follows that

L∞

0 (w)∗ = uL∞

0 (w)∗ ⊕ ran(L∞

0 (w)∗).

One can prove that the radical of L∞

0 (w)∗ is equal to ran(L∞

0 (w)∗); see [13].

Derivations and θ-derivations were studied by several authors [1-3, 9,

10, 13, 14]. For example, derivations on L∞

0 (w)∗ investigated in [13]. They

proved that the range of a derivation on L∞

0 (w)∗ is contained into ran(L∞

0 (w)∗).

They also showed that the zero map is the only k-centralizing derivation on

L∞

0 (w)∗.

In this paper, we investigate θ-derivations on L∞

0 (w)∗. In the case where,

θ is an isomorphism, we prove that the range of θ-derivations on L∞

0 (w)∗

is contained into the radical of L∞

0 (w)∗. If θ is also continuous, then D is

continuous if and only if D|ran(L∞

0
(w)∗) is continuous. In this case, D|uL∞

0
(w)∗

is always continuous. Finally, we study Posner first and second theorems

for θ-derivations on L∞

0 (w)∗.
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2 Main Results

Singer and Wermer [16] showed that the range of a continuous derivation on

a commutative Banach algebra is a subset of its radical. They conjectured

that the continuity requirement for the derivations can be removed. Thomas

[17] proved the conjecture. In the sequal, we investigate this conjecture for

θ-derivation on non-commutative Banach algebra L∞

0 (w)∗.

Theorem 2.1. Let θ be a homomorphism on L∞

0 (w)∗ andD be a θ-derivation

on L∞

0 (w)∗. Then the following statements hold.

(i) D maps ran(L∞

0 (w)∗) and Λ(L∞

0 (w)∗) into ran(L∞

0 (w)∗).

(ii) If θ is an isomorphism, then D maps L∞

0 (w)∗ into ran(L∞

0 (w)∗).

Proof. (i) First, note that if u ∈ Λ(L∞

0 (w)∗) and r ∈ ran(L∞

0 (w)∗), then

θ(r) ∈ ran(L∞

0 (w)∗) and

θ(u) = u+ r0

for some r0 ∈ ran(L∞

0 (w)∗); see Lemma 2.1 of [5]. So for every k ∈ L∞

0 (w)∗,

we have

kD(r) = k(u+ r0).D(r)

= kθ(u)D(r)

= k[D(ur)−D(u)θ(r)] = 0.

This shows that D(r) ∈ ran(L∞

0 (w)∗). We also have

D(uu) = D(u)θ(u) + θ(u)D(u)

= D(u) + θ(u)D(u).

Hence θ(u)D(u) = 0. It follows that

kD(u) = kθ(u)D(u) = 0

4



for all k ∈ L∞

0 (w)∗. Therefore, D(u) ∈ ran(L∞

0 (w)∗).

(ii) Let θ be an isomorphism. Then θ−1D is a derivation on L∞

0 (w)∗. By

Theorem 2.1 of [5],

θ−1D(L∞

0 (w)∗) ⊆ ran(L∞

0 (w)∗).

Thus

D(L∞

0 (w)∗) ⊆ θ(ran(L∞

0 (w)∗)) ⊆ ran(L∞

0 (w)∗),

as claimed.

A mapping T : L∞

0 (w)∗ → L∞

0 (w)∗ is called spectrally bounded if there

exists c ≥ 0 such that r(T (m)) ≤ αr(m) for all m ∈ L∞

0 (w)∗, where r(m)

denotes the spectral radius of m.

Corollary 2.2. Let θ be a homomorphism on L∞

0 (w)∗. Then the following

statements hold.

(i) The product of two θ-derivations on L∞

0 (w)∗ is a θ-derivation on

ran(L∞

0 (w)∗).

(ii) Every θ-derivation on ran(L∞

0 (w)∗) is spectrally bounded.

In the next result, we investigate the automatic continuity of θ-derivation

on L∞

0 (w)∗; see [6] for the automatic continuity of derivation on commuta-

tive semisimple Banach algebras.

Proposition 2.3. Let θ be a continuous isomorphism on L∞

0 (w)∗ and D be

a θ-derivation on L∞

0 (w)∗. Then the following statements hold.

(i) D|uL∞

0
(w)∗ is always continuous for all u ∈ Λ(L∞

0 (w)∗).

(ii) D is continuous if and only if D|
ran(L∞

0
(w)∗) is continuous.
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Proof. Let θ be a continuous isomorphism on L∞

0 (w)∗ andD be a θ-derivation

on L∞

0 (w)∗. Then D maps L∞

0 (w)∗ into ran(L∞

0 (w)∗) and so

D(um) = D(u)θ(m) + θ(u)D(m)

= D(u)θ(m) = D(u)θ(u)θ(m)

= D(u)θ(um)

for all m ∈ L∞

0 (w)∗ and u ∈ Λ(L∞

0 (w)∗). Thus

‖D(um)‖ = ‖D(u)θ(um)‖

≤ ‖D(u)‖‖θ(um)‖

≤ ‖D(u)‖‖θ‖‖um‖.

For (ii), let D be continuous on ran(L∞

0 (w)∗). Then there exist c1, c2 ≥ 0

such that for every m ∈ L∞

0 (w)∗, u ∈ Λ(L∞

0 (w)∗) and r ∈ ran(L∞

0 (w)∗),

‖D(r)‖ ≤ c1‖r‖ and ‖D(um)‖ ≤ c2‖um‖.

Assume that m ∈ L∞

0 (w)∗. Then

m = um+ r,

where r = m− um ∈ ran(L∞

0 (w)∗). So by (i), we obtain

‖D(m)‖ = ‖D(um) +D(r)‖

≤ ‖D(um)‖+ ‖D(r)‖

≤ c2‖um‖+ c1‖r‖

≤ c2‖u‖‖m‖+ c1(‖m‖+ ‖u‖‖m‖)

= (c2 + 2c1)‖m‖.

That is, D is continuous. The converse is clear.
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Let A be a Banach algebra and A be a closed subalgebra of A. We

denote by Der(A, A) the space of all θ-derivations from A into A, where

θ is a homomorphism on A. We also denote by B(A, A) the space of all

bounded linear operators from A into A. We write Der(A) := Der(A, A)

and B(A) := B(A, A).

Theorem 2.4. Let θ be an isometrically isomorphism on L∞

0 (w)∗ and u ∈

Λ(L∞

0 (w)∗). Then

Der(L∞

0 (w)∗) = Der(L∞

0 (w)∗, uL∞

0 (w)∗)⊕ Der(L∞

0 (w)∗, ran(L∞

0 (w)∗))

Proof. Let D ∈ Der(L∞

0 (w)∗). We define d : L∞

0 (w)∗ → uL∞

0 (w)∗ and

T : L∞

0 (w)∗ → L∞

0 (w)∗ by

d(m) = D(um) and T (m) = D(m− um)

for all m ∈ L∞

0 (w)∗. Note that

D(m) = D(um+ (m− um))

= D(um) +D(m− um)

= d(m) + T (m)

for all m ∈ L∞

0 (w)∗. Let m1, m2 ∈ L∞

0 (w)∗. Since θ is an isometrically

isomorphism, θ(u) = u. Thus

d(m1m2) = D(um1um2)

= D(um1)θ(um2) + θ(um1)D(um2)

= D(um1)θ(u)θ(m2) + θ(u)θ(m1)D(um2)

= D(um1)θ(m2) + θ(m1)D(um2)

= d(m1)θ(m2) + θ(m1)d(m2).
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Hence d ∈ Der(L∞

0 (w)∗, uL∞

0 (w)∗). On the other hand,

uL∞

0 (w)∗ ∩ ran(L∞

0 (w)∗) = {0}.

These facts prove the result.

In the following, let C0(w) be the Banach space of all complex-valued

continuous functions f on [0,∞) such that f/w vanishes at infinity.

Proposition 2.5. Let θ be a homomorphism on L∞

0 (w)∗, D : L∞

0 (w)∗ →

ran(L∞

0 (w)∗) be a θ-derivation and m ∈ L∞

0 (w)∗. If D(m) is positive, then

D(m) = 0.

Proof. Let m ∈ L∞

0 (w)∗ and D(m) be positive. Then

‖D(m)‖ = ‖D(m)|C0(w)‖ = 0;

see [8].

Corollary 2.6. Let θ be an isomorphism on L∞

0 (w)∗ andD be a θ-derivation

on L∞

0 (w)∗. If m ∈ L∞

0 (w)∗ such that is positive, then D(m) = 0.

Proof. Let θ be an isomorphism on L∞

0 (w)∗. It follows from Theorem 2.1

that D maps L∞

0 (w)∗ into ran(L∞

0 (w)∗). Now, apply Proposition 2.5.

Theorem 2.7. Let θ be a homomorphism on L∞

0 (w)∗ andD be a θ-derivation

on L∞

0 (w)∗. Then D is k-centralizing if and only if D is k-commuting. In

this case, if θ is an isometrically isomorphism, then D maps L∞

0 (w)∗ into

uL∞

0 (w)∗ and D(m) = θ(u)D(m) for all m ∈ L∞

0 (w)∗ and u ∈ Λ(L∞

0 (w)∗).

Proof. Let D be k-centralizing. Then [D(m), mk] ∈ Z(L∞

0 (w)∗) for all m ∈
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L∞

0 (w)∗. Let u ∈ Λ(L∞

0 (w)∗). Then

[D(m), mk] = [D(m), mk]u

= u[D(m), mk]

= uD(m)mk − umkD(m)

= 0.

ThusD is k-commuting. The converse is trivial. SinceD(u) ∈ ran(L∞

0 (w)∗),

we have

D(u) = [D(u), uk] = 0. (2.1)

For every r ∈ ran(L∞

0 (w)∗), we have r + u = (r + u)k. Thus

0 = [D(r + u), (r + u)k]

= [D(r), r + u]

= D(r)u− uD(r)

= D(r),

because D(r) ⊆ ran(L∞

0 (w)∗). Hence D(r) = 0. Therefore, by (2.1) we

obtain

D(m) = D(um) +D(m− um)

= D(um) = D(u)θ(m) + θ(u)D(m)

= θ(u)D(m).

To complete the proof, we only recall that by Lemma 2.1 of [5], θ(u) ∈

Λ(L∞

0 (w)∗).
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