θ -derivations on convolution algebras

M. Eisaei¹ and Gh. R. Moghimi^{1*}

¹ Department of Mathematics, Payame Noor University (PNU), Tehran 19395-4697, Iran mojdehessaei59@student.pnu.ac.ir moghimimath@pnu.ac.ir

Abstract

In this paper, we investigate θ -derivations on Banach algebra $L_0^{\infty}(w)^*$. First, we study the range of them and prove the Singer-Wermer conjucture. We also give a characterization of the space of all θ derivations on $L_0^{\infty}(w)^*$. Then, we prove automatic continuity and Posner's theorems for θ -derivations.

Keywords: Convolution algebras, θ-derivations, Singer-Wermer conjucture, automatic continuity, Posner's theorems.
2020 MSC: 47B47, 46H40, 16W25.

1 Introduction

Let A be a Banach algebra with the center Z(A) and the right annihilator; i.e.,

$$Z(A) = \{ a \in A : ax = xa \text{ for all } x \in A \}$$

and

$$\operatorname{ran}(A) = \{ r \in A : ar = 0 \text{ for all } a \in A \}.$$

Let $D: A \to A$ be a linear map and $k \in \mathbb{N}$. Then D is called k-centralizing if for every $m \in A$, we have

$$[D(m), m^k] := D(m)m^k - m^k D(m) \in Z(A).$$

^{*}Corresponding author

In particular, if $[D(m), m^k] = 0$, then D is called *k*-commuting. Assume now that $\theta : A \to A$ is a homomorphism. Then D is called a θ -derivation if

$$D(mn) = D(m)\theta(n) + \theta(m)D(n)$$

for all $m, n \in A$. If θ is the identity map, then D is called a *derivation*.

Let us recall that a continuous function $w : [0, \infty) \to [1, \infty)$ is called a weight function if w(0) = 1 and for all $x, y \in [0, \infty)$

$$w(x+y) \le w(x)w(y).$$

Let $L^1(w)$ be the Banach space of all Lebesgue measurable functions fon $[0, \infty)$ such that $wf \in L^1([0, \infty))$, the Banach algebra of all Lebesque integrable functions on $[0, \infty)$. It is well-known that $L^1(w)$ is a Banach algebra with the convolution product

$$\varphi * \psi(x) = \int_0^\infty \varphi(y)\psi(x-y)d(y), \quad (\varphi, \psi \in L^1([0,\infty))$$

and the norm

$$\|\varphi\|_{w} = \int_{0}^{\infty} w(x) |\varphi|(x) dx \quad (\varphi \in L^{1}([0,\infty));$$

see [4, 15]. Let also $L_0^{\infty}(w)$ be the Banach space of all Lebesgue measure functions f on $[0, \infty)$ such that

$$\lim_{x \to \infty} \operatorname{ess \, sup} \left\{ \frac{f(y)\chi_{(x,\infty)}(y)}{w(y)} : y \ge 0 \right\} = 0,$$

where $\chi_{(x,\infty)}$ is the characteristic function of (x,∞) on $[0,\infty)$. It is wellknown that the dual of $L_0^{\infty}(w)$, represented by $L_0^{\infty}(w)^*$, is a Banach algebra with the first Arens product defined by

$$\langle mn, f \rangle = \langle m, nf \rangle,$$

where $\langle nf, \varphi \rangle = \langle n, f\varphi \rangle$, in which

$$f\varphi(x) = \int_0^\infty f(x+y)\varphi(y)dy$$

for all $m, n \in L_0^{\infty}(w)^*$, $f \in L_0^{\infty}(w)$, $\varphi \in L^1(w)$ and $x \ge 0$; see [7, 8, 11, 12]. Note that every element $\varphi \in L^1(w)$ can be regarded as an element of $L_0^{\infty}(w)^*$,

$$\langle \varphi, f \rangle = \int \varphi(x) f(x) dx$$

for all $f \in L_0^{\infty}(w)$. We denoted by $\Lambda(L_0^{\infty}(w)^*)$ the set of all right identities of $L_0^{\infty}(w)^*$) with bounded one. For every $u \in \Lambda(L_0^{\infty}(w)^*)$ and $m \in L_0^{\infty}(w)^*$, we have $m - um \in \operatorname{ran}(L_0^{\infty}(w)^*)$ and

$$m = um + (m - um).$$

It follows that

$$L_0^{\infty}(w)^* = uL_0^{\infty}(w)^* \oplus \operatorname{ran}(L_0^{\infty}(w)^*).$$

One can prove that the radical of $L_0^{\infty}(w)^*$ is equal to $\operatorname{ran}(L_0^{\infty}(w)^*)$; see [13].

Derivations and θ -derivations were studied by several authors [1-3, 9, 10, 13, 14]. For example, derivations on $L_0^{\infty}(w)^*$ investigated in [13]. They proved that the range of a derivation on $L_0^{\infty}(w)^*$ is contained into $\operatorname{ran}(L_0^{\infty}(w)^*)$. They also showed that the zero map is the only k-centralizing derivation on $L_0^{\infty}(w)^*$.

In this paper, we investigate θ -derivations on $L_0^{\infty}(w)^*$. In the case where, θ is an isomorphism, we prove that the range of θ -derivations on $L_0^{\infty}(w)^*$ is contained into the radical of $L_0^{\infty}(w)^*$. If θ is also continuous, then D is continuous if and only if $D|_{\operatorname{ran}(L_0^{\infty}(w)^*)}$ is continuous. In this case, $D|_{uL_0^{\infty}(w)^*}$ is always continuous. Finally, we study Posner first and second theorems for θ -derivations on $L_0^{\infty}(w)^*$.

2 Main Results

Singer and Wermer [16] showed that the range of a continuous derivation on a commutative Banach algebra is a subset of its radical. They conjectured that the continuity requirement for the derivations can be removed. Thomas [17] proved the conjecture. In the sequal, we investigate this conjecture for θ -derivation on non-commutative Banach algebra $L_0^{\infty}(w)^*$.

Theorem 2.1. Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and D be a θ -derivation on $L_0^{\infty}(w)^*$. Then the following statements hold.

- (i) D maps $\operatorname{ran}(L_0^{\infty}(w)^*)$ and $\Lambda(L_0^{\infty}(w)^*)$ into $\operatorname{ran}(L_0^{\infty}(w)^*)$.
- (ii) If θ is an isomorphism, then D maps $L_0^{\infty}(w)^*$ into $\operatorname{ran}(L_0^{\infty}(w)^*)$.

Proof. (i) First, note that if $u \in \Lambda(L_0^{\infty}(w)^*)$ and $r \in \operatorname{ran}(L_0^{\infty}(w)^*)$, then $\theta(r) \in \operatorname{ran}(L_0^{\infty}(w)^*)$ and

$$\theta(u) = u + r_0$$

for some $r_0 \in \operatorname{ran}(L_0^{\infty}(w)^*)$; see Lemma 2.1 of [5]. So for every $k \in L_0^{\infty}(w)^*$, we have

$$kD(r) = k(u+r_0).D(r)$$

= $k\theta(u)D(r)$
= $k[D(ur) - D(u)\theta(r)] = 0.$

This shows that $D(r) \in \operatorname{ran}(L_0^{\infty}(w)^*)$. We also have

$$D(uu) = D(u)\theta(u) + \theta(u)D(u)$$
$$= D(u) + \theta(u)D(u).$$

Hence $\theta(u)D(u) = 0$. It follows that

$$kD(u) = k\theta(u)D(u) = 0$$

for all $k \in L_0^{\infty}(w)^*$. Therefore, $D(u) \in \operatorname{ran}(L_0^{\infty}(w)^*)$.

(ii) Let θ be an isomorphism. Then $\theta^{-1}D$ is a derivation on $L_0^{\infty}(w)^*$. By Theorem 2.1 of [5],

$$\theta^{-1}D(L_0^{\infty}(w)^*) \subseteq \operatorname{ran}(L_0^{\infty}(w)^*).$$

Thus

$$D(L_0^{\infty}(w)^*) \subseteq \theta(\operatorname{ran}(L_0^{\infty}(w)^*)) \subseteq \operatorname{ran}(L_0^{\infty}(w)^*),$$

as claimed.

A mapping $T: L_0^{\infty}(w)^* \to L_0^{\infty}(w)^*$ is called *spectrally bounded* if there exists $c \ge 0$ such that $r(T(m)) \le \alpha r(m)$ for all $m \in L_0^{\infty}(w)^*$, where r(m) denotes the spectral radius of m.

Corollary 2.2. Let θ be a homomorphism on $L_0^{\infty}(w)^*$. Then the following statements hold.

(i) The product of two θ -derivations on $L_0^{\infty}(w)^*$ is a θ -derivation on $\operatorname{ran}(L_0^{\infty}(w)^*)$.

(ii) Every θ -derivation on ran $(L_0^{\infty}(w)^*)$ is spectrally bounded.

In the next result, we investigate the automatic continuity of θ -derivation on $L_0^{\infty}(w)^*$; see [6] for the automatic continuity of derivation on commutative semisimple Banach algebras.

Proposition 2.3. Let θ be a continuous isomorphism on $L_0^{\infty}(w)^*$ and D be a θ -derivation on $L_0^{\infty}(w)^*$. Then the following statements hold.

- (i) $D|_{uL_0^{\infty}(w)^*}$ is always continuous for all $u \in \Lambda(L_0^{\infty}(w)^*)$.
- (ii) D is continuous if and only if $D|_{\operatorname{ran}(L_0^{\infty}(w)^*)}$ is continuous.

Proof. Let θ be a continuous isomorphism on $L_0^{\infty}(w)^*$ and D be a θ -derivation on $L_0^{\infty}(w)^*$. Then D maps $L_0^{\infty}(w)^*$ into $\operatorname{ran}(L_0^{\infty}(w)^*)$ and so

$$D(um) = D(u)\theta(m) + \theta(u)D(m)$$
$$= D(u)\theta(m) = D(u)\theta(u)\theta(m)$$
$$= D(u)\theta(um)$$

for all $m \in L_0^{\infty}(w)^*$ and $u \in \Lambda(L_0^{\infty}(w)^*)$. Thus

$$\begin{aligned} \|D(um)\| &= \|D(u)\theta(um)\| \\ &\leq \|D(u)\|\|\theta(um)\| \\ &\leq \|D(u)\|\|\theta\|\|um\|. \end{aligned}$$

For (ii), let D be continuous on $\operatorname{ran}(L_0^{\infty}(w)^*)$. Then there exist $c_1, c_2 \ge 0$ such that for every $m \in L_0^{\infty}(w)^*$, $u \in \Lambda(L_0^{\infty}(w)^*)$ and $r \in \operatorname{ran}(L_0^{\infty}(w)^*)$,

$$||D(r)|| \le c_1 ||r||$$
 and $||D(um)|| \le c_2 ||um||$.

Assume that $m \in L_0^{\infty}(w)^*$. Then

$$m = um + r,$$

where $r = m - um \in \operatorname{ran}(L_0^{\infty}(w)^*)$. So by (i), we obtain

$$\begin{aligned} \|D(m)\| &= \|D(um) + D(r)\| \\ &\leq \|D(um)\| + \|D(r)\| \\ &\leq c_2 \|um\| + c_1 \|r\| \\ &\leq c_2 \|u\| \|m\| + c_1 (\|m\| + \|u\|\|m\|) \\ &= (c_2 + 2c_1) \|m\|. \end{aligned}$$

That is, D is continuous. The converse is clear.

Let \mathcal{A} be a Banach algebra and A be a closed subalgebra of \mathcal{A} . We denote by $Der(\mathcal{A}, A)$ the space of all θ -derivations from \mathcal{A} into A, where θ is a homomorphism on \mathcal{A} . We also denote by $\mathcal{B}(\mathcal{A}, A)$ the space of all bounded linear operators from \mathcal{A} into A. We write $Der(\mathcal{A}) := Der(\mathcal{A}, A)$ and $\mathcal{B}(\mathcal{A}) := \mathcal{B}(\mathcal{A}, A)$.

Theorem 2.4. Let θ be an isometrically isomorphism on $L_0^{\infty}(w)^*$ and $u \in \Lambda(L_0^{\infty}(w)^*)$. Then

$$Der(L_0^{\infty}(w)^*) = Der(L_0^{\infty}(w)^*, uL_0^{\infty}(w)^*) \oplus Der(L_0^{\infty}(w)^*, ran(L_0^{\infty}(w)^*))$$

Proof. Let $D \in Der(L_0^{\infty}(w)^*)$. We define $d : L_0^{\infty}(w)^* \to uL_0^{\infty}(w)^*$ and $T : L_0^{\infty}(w)^* \to L_0^{\infty}(w)^*$ by

$$d(m) = D(um)$$
 and $T(m) = D(m - um)$

for all $m \in L_0^{\infty}(w)^*$. Note that

$$D(m) = D(um + (m - um))$$
$$= D(um) + D(m - um)$$
$$= d(m) + T(m)$$

for all $m \in L_0^{\infty}(w)^*$. Let $m_1, m_2 \in L_0^{\infty}(w)^*$. Since θ is an isometrically isomorphism, $\theta(u) = u$. Thus

$$d(m_1m_2) = D(um_1um_2)$$

= $D(um_1)\theta(um_2) + \theta(um_1)D(um_2)$
= $D(um_1)\theta(u)\theta(m_2) + \theta(u)\theta(m_1)D(um_2)$
= $D(um_1)\theta(m_2) + \theta(m_1)D(um_2)$
= $d(m_1)\theta(m_2) + \theta(m_1)d(m_2).$

Hence $d \in Der(L_0^{\infty}(w)^*, uL_0^{\infty}(w)^*)$. On the other hand,

$$uL_0^{\infty}(w)^* \cap \operatorname{ran}(L_0^{\infty}(w)^*) = \{0\}.$$

These facts prove the result.

In the following, let $C_0(w)$ be the Banach space of all complex-valued continuous functions f on $[0, \infty)$ such that f/w vanishes at infinity.

Proposition 2.5. Let θ be a homomorphism on $L_0^{\infty}(w)^*$, $D : L_0^{\infty}(w)^* \to \operatorname{ran}(L_0^{\infty}(w)^*)$ be a θ -derivation and $m \in L_0^{\infty}(w)^*$. If D(m) is positive, then D(m) = 0.

Proof. Let $m \in L_0^{\infty}(w)^*$ and D(m) be positive. Then

$$||D(m)|| = ||D(m)|_{C_0(w)}|| = 0;$$

see [8].

Corollary 2.6. Let θ be an isomorphism on $L_0^{\infty}(w)^*$ and D be a θ -derivation on $L_0^{\infty}(w)^*$. If $m \in L_0^{\infty}(w)^*$ such that is positive, then D(m) = 0.

Proof. Let θ be an isomorphism on $L_0^{\infty}(w)^*$. It follows from Theorem 2.1 that D maps $L_0^{\infty}(w)^*$ into $\operatorname{ran}(L_0^{\infty}(w)^*)$. Now, apply Proposition 2.5.

Theorem 2.7. Let θ be a homomorphism on $L_0^{\infty}(w)^*$ and D be a θ -derivation on $L_0^{\infty}(w)^*$. Then D is k-centralizing if and only if D is k-commuting. In this case, if θ is an isometrically isomorphism, then D maps $L_0^{\infty}(w)^*$ into $uL_0^{\infty}(w)^*$ and $D(m) = \theta(u)D(m)$ for all $m \in L_0^{\infty}(w)^*$ and $u \in \Lambda(L_0^{\infty}(w)^*)$.

Proof. Let D be k-centralizing. Then $[D(m), m^k] \in Z(L_0^{\infty}(w)^*)$ for all $m \in \mathbb{R}$

 $L_0^{\infty}(w)^*$. Let $u \in \Lambda(L_0^{\infty}(w)^*)$. Then

$$[D(m), m^k] = [D(m), m^k]u$$
$$= u[D(m), m^k]$$
$$= uD(m)m^k - um^k D(m)$$
$$= 0.$$

Thus D is k-commuting. The converse is trivial. Since $D(u) \in \operatorname{ran}(L_0^{\infty}(w)^*)$, we have

$$D(u) = [D(u), u^k] = 0.$$
(2.1)

For every $r \in \operatorname{ran}(L_0^{\infty}(w)^*)$, we have $r + u = (r + u)^k$. Thus

$$0 = [D(r+u), (r+u)^{k}]$$

= [D(r), r+u]
= D(r)u - uD(r)
= D(r),

because $D(r) \subseteq \operatorname{ran}(L_0^\infty(w)^*)$. Hence D(r) = 0. Therefore, by (2.1) we obtain

$$D(m) = D(um) + D(m - um)$$

= $D(um) = D(u)\theta(m) + \theta(u)D(m)$
= $\theta(u)D(m).$

To complete the proof, we only recall that by Lemma 2.1 of [5], $\theta(u) \in \Lambda(L_0^{\infty}(w)^*)$.

References

- M. H. Ahmadi Gandomani and M. J. Mehdipour, Generalized derivations on some convolution algebras. Aequationes Math. 92 (2018), no. 2, 223–241.
- [2] M. H. Ahmadi Gandomani and M. J. Mehdipour, Symmetric biderivations and their generalizations on group algebras. Filomat 35 (2021), no. 4, 1233–1240.
- M. Bresar and M. Mathieu, Derivations mapping into the radical. III.
 J. Funct. Anal. 133 (1995), no. 1, 21–29.
- [4] H. G. Dales and A. T. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc., 177 (2005), no. 836, 1–191.
- [5] M. Eisaei, M. J. Mehdipour and Gh. R. Moghimi, Left θ-derivations on weighted convolution algebras, arXiv:2403.16036.
- [6] B. E. Johnson, Continuity of derivations on commutative algebras. Amer. J. Math. 91 (1969), 1–10.
- [7] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group. J. London Math. Soc. (2) 41 (1990), no. 3, 445–460.
- [8] S. Maghsoudi, R. Nasr-Isfahani and A. Rejali, Arens multiplication on Banach algebras related to locally compact semigroups. Math. Nachr. 281 (2008), no. 10, 1495–1510.
- [9] M. Mathieu and G. J. Murphy, Derivations mapping into the radical. Arch. Math. (Basel) 57 (1991), no. 5, 469–474.

- [10] M. Mathieu and V. Runde, Derivations mapping into the radical. II. Bull. London Math. Soc. 24 (1992), no. 5, 485–487.
- [11] M. J. Mehdipour and Gh. R. Moghimi, The existence of nonzero compact right multipliers and Arens regularity of weighted Banach algebras. Rocky Mountain J. Math. 52 (2022), no. 6, 2101–2112.
- [12] M. J. Mehdipour and R. Nasr-Isfahani, Weakly compact multipliers on Banach algebras related to a locally compact group. Acta Math. Hungar. 127 (2010), no. 3, 195–206.
- [13] M. J. Mehdipour and Z. Saeedi, Derivations on convolution algebras.Bull. Korean Math. Soc. 52 (2015), no. 4, 1123–1132.
- [14] E. C. Posner, Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [15] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, Second edition, London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000.
- [16] I. M. Singer and J. Wermer, Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260–264.
- [17] M. Thomas, The image of a derivation is contained in the radical. Ann. of Math. (2) 128 (1988), no. 3, 435–460.