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Abstract

In this paper, we investigate #-derivations on Banach algebra Ly (w)*.
First, we study the range of them and prove the Singer-Wermer
conjucture. We also give a characterization of the space of all 6-
derivations on L (w)*. Then, we prove automatic continuity and

Posner’s theorems for -derivations.
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1 Introduction

Let A be a Banach algebra with the center Z(A) and the right annihilator;
ie.,

Z(A)={a€A: ar==xa forall xe A}

and

ran(A) ={re A: ar=0 forall aec A}

Let D: A — A be a linear map and k£ € N. Then D is called k-centralizing

if for every m € A, we have

[D(m), m*] :== D(m)m* —m"D(m) € Z(A).
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In particular, if [D(m), m¥] = 0, then D is called k-commuting. Assume

now that 6 : A — A is a homomorphism. Then D is called a 0-derivation if
D(mn) = D(m)é(n) + 6(m)D(n)

for all m,n € A. If 0 is the identity map, then D is called a derivation.
Let us recall that a continuous function w : [0, 00) — [1,00) is called a

weight function if w(0) =1 and for all z,y € [0, c0)
w(z +y) < wx)w(y).

Let L'(w) be the Banach space of all Lebesgue measurable functions f
on [0,00) such that wf € L'(]0,0)), the Banach algebra of all Lebesque
integrable functions on [0,00). It is well-known that L!'(w) is a Banach

algebra with the convolution product

oxd(x) = / e —)dy), (96 € (0, )

and the norm

lellw = /Ooow(fﬁ)lﬂ(w)dx (¢ € L'([0,00));

see [4, 15]. Let also LF(w) be the Banach space of all Lebesgue measure

functions f on [0, 00) such that

lim ess sup{w ty > O} =0,

a—+00 w(y)

where X(z,00) 15 the characteristic function of (x,00) on [0,00). It is well-
known that the dual of L (w), represented by L3°(w)*, is a Banach algebra
with the first Arens product defined by

(mn, ) = (m,nf),



where (nf, p) = (n, fy), in which

Folz) = / T i+ y)ey)dy

for all m,n € LF(w)*, f € L(w), ¢ € L'(w) and x > 0; see [7, 8, 11,
12]. Note that every element p € L'(w) can be regarded as an element of
L2 (w),

(9.8) = [ ol
for all f € L (w). We denoted by A(L°(w)*) the set of all right identities
of LF(w)*) with bounded one. For every u € A(L§°(w)*) and m € LF(w)*,

we have m — um € ran(L§°(w)*) and
m = um + (m — um).

It follows that
L ()" = L (w)” ® ran(L§(w)").

One can prove that the radical of L§°(w)* is equal to ran(L{(w)*); see [13].

Derivations and 6-derivations were studied by several authors [1-3, 9,
10, 13, 14|. For example, derivations on LI (w)* investigated in [13|. They
proved that the range of a derivation on Lj°(w)* is contained into ran( L& (w)*).
They also showed that the zero map is the only k-centralizing derivation on
L (w)*.

In this paper, we investigate #-derivations on L§°(w)*. In the case where,
0 is an isomorphism, we prove that the range of 6-derivations on L (w)*
is contained into the radical of L{(w)*. If # is also continuous, then D is
continuous if and only if D|ran(Lg° (w)+) 18 continuous. In this case, D|uL8°(w)*
is always continuous. Finally, we study Posner first and second theorems

for #-derivations on L (w)*.



2 Main Results

Singer and Wermer [16] showed that the range of a continuous derivation on
a commutative Banach algebra is a subset of its radical. They conjectured
that the continuity requirement for the derivations can be removed. Thomas
[17] proved the conjecture. In the sequal, we investigate this conjecture for

f-derivation on non-commutative Banach algebra LJ°(w)*.

Theorem 2.1. Let 0 be a homomorphism on L (w)* and D be a 0-derivation
on LE(w)*. Then the following statements hold.
(i) D maps ran(Lg°(w)*) and AL (w)*) into ran(Lg°(w)*).

(i) If 0 is an isomorphism, then D maps L (w)* into ran(LyP (w)*).

Proof. (i) First, note that if v € A(LP(w)*) and r € ran(LP(w)*), then
O(r) € ran(Lg°(w)*) and

O(u) =u+ro

for some 1y € ran(Lg°(w)*); see Lemma 2.1 of [5]. So for every k € L (w)*,

we have

kD(r) = k(u+ry).D(r)
= kO(u)D(r)

= k[D(ur) — D(u)f(r)] = 0.
This shows that D(r) € ran(L°(w)*). We also have

D(uu) = D(u)f(u)+ 0(u)D(u)

= D(u) + 6(u)D(u).

Hence 0(u)D(u) = 0. It follows that



for all k € Li°(w)*. Therefore, D(u) € ran(Lg®(w)*).
(ii) Let 6 be an isomorphism. Then 671D is a derivation on L{°(w)*. By

Theorem 2.1 of [5],
6~ DL (w)") C ran(L(w)").
Thus
D(LE (w)") € Bran(L§ (w)")) € ran(L§ (w)").
as claimed. O

A mapping T : L§®(w)* — Li°(w)* is called spectrally bounded if there
exists ¢ > 0 such that r(7'(m)) < ar(m) for all m € L (w)*, where r(m)

denotes the spectral radius of m.

Corollary 2.2. Let 8 be a homomorphism on Ly°(w)*. Then the following
statements hold.

*

(i) The product of two O-derivations on L (w)* is a 0-derivation on
ran(Lg°(w)*).

(ii) Every 0-derivation on ran(L(w)*) is spectrally bounded.

In the next result, we investigate the automatic continuity of -derivation
on Lg°(w)*; see [6] for the automatic continuity of derivation on commuta-

tive semisimple Banach algebras.

Proposition 2.3. Let 0 be a continuous isomorphism on Li°(w)* and D be
a O-derivation on L (w)*. Then the following statements hold.
(1) Dlurgeqw)+ s always continuous for all u € A(LG(w)*).

(ii) D is continuous if and only if Dlian(rge(w)+) 18 continuous.



Proof. Let 0 be a continuous isomorphism on L°(w)* and D be a §-derivation

on L¥(w)*. Then D maps LF(w)* into ran(Lg°(w)*) and so

D(um) = D(u)0(m)+ 0(u)D(m)
= D(u)f(m) = D(u)f(u)f(m)

= D(u)f(um)
for all m € LP(w)* and v € A(LP(w)*). Thus

[Dum)|| = [[D(w)d(um)]]
< [D@@)][[|6Cum)]

< [ D@)][[|6[[{[wml]]-

For (ii), let D be continuous on ran(L(w)*). Then there exist ¢,co > 0

such that for every m € L¥(w)*, u € A(LF°(w)*) and r € ran(L®(w)*),
D) < el and  [[D(um)]] < coffuml].
Assume that m € Lg°(w)*. Then
m=um-+r,
where r = m — um € ran(LP(w)*). So by (i), we obtain

[Dm)[| = [|D(um) + D(r)]|

IA

1D um)|| + [[D(r)]]

IA

Collum|| + ||

IN

colulll[ml] + ex(llmll + [[ull{lm]})

(c2 + 2¢1)[[ml].

That is, D is continuous. The converse is clear. O



Let A be a Banach algebra and A be a closed subalgebra of A. We
denote by Der(A, A) the space of all #-derivations from A4 into A, where
0 is a homomorphism on A. We also denote by B(A, A) the space of all
bounded linear operators from A into A. We write Der(A) := Der(A, A)
and B(A) := B(A, A).

Theorem 2.4. Let 0 be an isometrically isomorphism on Li°(w)* and u €

A(LE(w)*). Then
Der(L(w)") = Der(L3(w)", uLi(w)") & Der(L(w)", ran( L (w)"))

Proof. Let D € Der(L¥(w)*). We define d : LF(w)* — uli®(w)* and
T:LP(w)* — LF(w)* by

d(m) = D(um) and T(m)= D(m — um)

for all m € Ly (w)*. Note that

= d(m)+T(m)

for all m € L§°(w)*. Let my,my € L3°(w)*. Since  is an isometrically

isomorphism, 6(u) = u. Thus

d(mimsy) = D(umqums)

umy)0(ums) + 6(umy) D(ums)

I~

)
mq)0(uw)f(ms) + 0(w)d(my)D(ums)
umy)f(ms) + 0(my)D(ums)

(



Hence d € Der(L§®(w)*, uLg(w)*). On the other hand,
uL®(w)* Nran(Ly®(w)*) = {0}.
These facts prove the result. O

In the following, let Cy(w) be the Banach space of all complex-valued

continuous functions f on [0, 00) such that f/w vanishes at infinity.

Proposition 2.5. Let 6 be a homomorphism on L3°(w)*, D : Ly (w)* —
ran(Lg°(w)*) be a O-derivation and m € LF(w)*. If D(m) is positive, then

D(m) = 0.
Proof. Let m € L (w)* and D(m) be positive. Then
ID(m)|| = [[D(m)|cyw)ll = 0;
see [8]. O

Corollary 2.6. Let 6 be an isomorphism on LY (w)* and D be a 0-derivation

on L (w)*. If m € L§®(w)* such that is positive, then D(m) = 0.

*

Proof. Let 6 be an isomorphism on L§°(w)*. It follows from Theorem 2.1

that D maps L°(w)* into ran(Lg°(w)*). Now, apply Proposition 2.5. O

Theorem 2.7. Let 6 be a homomorphism on L (w)* and D be a 0-derivation
on L®(w)*. Then D is k-centralizing if and only if D is k-commuting. In
this case, if 0 is an isometrically isomorphism, then D maps LF(w)* into

uLg®(w)* and D(m) = 0(u)D(m) for all m € LP(w)* and v € AL (w)*).

Proof. Let D be k-centralizing. Then [D(m), m*] € Z(Lg(w)*) for all m €



LyF(w)*. Let u e AL (w)*).

[D(m), m"]

Then
= [D(m),m"]u
= u[D(m), m"]

Thus D is k-commuting. The converse is trivial. Since D(u) € ran(L(w)*),

we have

D(u)

[D(u),u*] = 0. (2.1)

For every r € ran(L3°(w)*), we have 7 + u = (r + u)*. Thus

because D(r) C ran(Lg°(w)*).

obtain

D(m)

[D(r +u), (r +u)"]
[D(r),r + u]
D(r)u —uD(r)

D(r),

Hence D(r) = 0. Therefore, by (2.1]) we

D(um) + D(m — um)
D(um) = D(u)f(m) + 6(u)D(m)

O(u)D(m).

To complete the proof, we only recall that by Lemma 2.1 of [5], 6(u) €

A(LG (w)").

O
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