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Abstract

In real systems impurities and defects play an important role in determining their
properties. Here we will consider what probabilists have called the contact process
in a random environment and what physicists have more precisely named the contact
process with quenched disorder. We will concentrate our efforts on the special case
called the random dilution model, in which sites independently and with probability p
are active and particles on them give birth at rate λ, while the other sites are inert and
particles on them do not give birth. We show that the resulting inhomogeniety can
make dramatic changes in the behavior in the supercritical, subcritical, and critical
behavior. In particular, the usual exponential decay of the desnity of particles in the
subcritical phase becomes a power law (the Griffiths phase), and polynomial decay at
the critical value becomes a power of log.

1 Mathematics of random environments

The first process to be studied in a random environment was

Random walk. In the discrete time case this is a Markov chain Xn with transtion proba-
bility

p(x, x+ 1) = αx p(x, x− 1) = βx = 1− αx

where the αx are i.i.d. and we suppose for simplicity that αx ∈ [ϵ, 1 − ϵ]. When the envi-
ronment is fixed Xn is a birth and death chain, so we can take advantage of the theory that
has been developed for that general class of examples. The first step is to find a harmonic
function for the chain, i.e., one that makes h(Xn) a martingale. For this to hold we must
have

h(x) = αxh(x+ 1) + βxh(x− 1)

or rearranging

h(x+ 1)− h(x) =
βx

αx

(h(x)− h(x− 1)) (1)

Let ρx = βx/αx. From the resulting properties of h we can conclude easily that.
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Theorem 1.1. (i) If E log(ρ) < 0 then Xn →∞ as n→∞.
(ii) If E log(ρ) > 0 then Xn → −∞ as n→∞.
(iii) If E log(ρx) = 0 then −∞ = lim infn→∞Xn < lim supn→∞Xn =∞,
so Xn is recurrent, i.e., for any y it has Xm = y infinitely many times.

To check this note that in case (i), the harmonic function defined in (1) has h(x) → ∞ as
x→ −∞ and h(x)→ 0 as x→∞ which implies that Xn →∞ as n→∞.

To delve further into the properties of Xn it is useful to let Tm be the time of the first
visit to m. Theorem (1.16) of Solomon (1975) implies that

Theorem 1.2. (i) If Eρ < 1 then

lim
n→∞

Tn/n =
1 + E(ρ)

1− E(ρ)
lim
n→∞

Xn/n =
1− E(ρ)

1 + E(ρ)

(ii) If (Eρ)−1 ≤ 1 ≤ E(ρ−1) then

lim
n→∞

Tn/n =∞ lim
n→∞

Xn/n = 0

Kesten, Kozlov, and Spitzer (1975) analyzed the possible behaviors of Xn in great detail.
They have five conclusions that depend on the size of κ, but the case κ < 1 is the most
relevant to our investigation.

Theorem 1.3. Suppose that E log(ρ) < 0, E(ρ) < 1, the distribution of log(ρ) is nonarith-
metic, and there is a κ ∈ (0, 1) so that E(ρκ) = 1. If Fκ is the distribution of the one sides
stable law with index κ then

lim
n→∞

P (n−1/κTn ≤ x) = Fκ(x) lim
n→∞

P (t−κXt ≤ x) = 1− Fκ(x
−1/κ)

In Theorems 1.1 and 1.2 the conclusion holds for almost every enrionment. In Theorem 1.3
the limiting distribution occurs when we average over the environment, so in the language of
physics the limit theorem is for the annealed system. The results for RWRE become much
different in the quenched setting when we first fix the environment, see the work of Jonathan
Peterson and friends (2009, 2013). For much more about RWRE see Zeitouni (2004).

The biased voter model in a random environment (BVRE) can be analyzed using
the results developed for RWRE. In the ordinary baised voter model we imagine that there
is a war between the two opinions on each 0, 1 edge. The 1 converts the 0 to 1 at rate λ
and the 0 converts the 1 to 0 at rate δ. In the random environment version we consider, λ
remains constant while a 1 at x is converted to 0 by either neighbor at rate δx.

To study this process it is convenient to construct it from a family of Poisson processes
that is called a graphical representation. For each ordered pair of adjacent sites (x, y)
with x ∈ Z and y = x± 1 we have to Poisson processes

• D
(x,y)
n , n ≥ 1 with rate δx. At arrival times when ξt(x) = 1, ξt(y) = 0, x flips to 0.

• B
(x,y)
n , n ≥ 1 with rate λ. At arrival times when ξt(x) = 0, ξt(y) = 1, x flips to 1.
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Lemma 1.1. Let ξ+t be the process starting from ξ+0 = (−∞, 0] ∩ Z. At any time the state
of the process is (−∞, rt] for some rt. If E log(λ/δx < 0 then rt →∞ with probability 1. If
E log(λ/δx) > 0 then rt → −∞ with probability 1.

Proof. Since the location of the right edge is a Markov chain that, when it moves, jumps
from x to x+1 with probability αx = λ/(λ+ δx and jumps from x to x− 1 with probability
βx = δx)(λ+ δx, this follows from Theorem 1.1.

Let ξ−t be the process starting from ξ−0 = [0,∞) ∩ Z. At any time the state of the
process is [ℓt,∞). Since the edge moves to the left at rate λ and to the right at rate δ(ℓt), if
E log(λ/δx) < 0 then ℓt → −∞ with probability 1. If E log(λ/δx) > 0 then ℓt → −∞ with
probability 1.

The graphical representation allows us to define ξ+t , ξ
−
t and ξ0t on the same space . If we

do this then

Lemma 1.2. Ωt = {ξ0t ̸= ∅} = {ℓs ≤ rs for all 0 ≤ s ≤ t} and on Ωt we have ξ0t = [ℓt, rt].

This gives us a result from Irene Ferreira’s (1990) thesis at Cornell.

Theorem 1.4. The BVRE dies out when E log(λ/δ(x)) > 0, survives with positive proba-
bility when E log(λ/δ(x)) < 0, but [ℓt, rt] only grows linearly if E(λ/δ(x)) < 1.

The contact process in a random environment (CPRE) was introduced by Bramson,
Durrett, and Schonmann (1991). Each integer is independently designated as bad with
probability p and good with probability 1 − p. In this environment we have a contact
process in which sites in ξt are occupied by particle. (i) Particles are born at vacant sites at
a rate equal to the number of occupied neighbors. (ii) A particle at x dies at rate ∆ if the
site is bad and at rate δ ≤ ∆ if the site is good.

The ordinary one dimensional contact process (physicists call this the “clean” version)
starting from a finite set the process grows linearly when it does not die out. The main point
of the paper by BDS is to show that the CPRE, like the BVRE and the RWRE, has one
threshold for survival of the process and a higher one for linear growth of the set of occupied
sites. To state the result let ζ0t be the ordinary contact process with births at rate 1 and
deaths at rate δ, starting with only 0 occupied. Let Ω∞ = {ζ0t ̸= ∅ for all t} be the event
that the process survives. Let

δc = sup{δ : Pδ(Ω∞) > 0}, r0t = sup ζ0t , and R0 = sup
t≥0

r0t .

By considering the state of the process at the first time n ∈ ζ0t , it is easy to see that

P (R0 ≥ n+m|R0 ≥ n) ≥ P (R0 ≥ m)

If we let an = − logP (R0 ≥ n) then an+m ≤ an + am so

an/n→ inf
m≥1

am/m = γ−
⊥(δ) (2)

and P (R0 ≥ n) ≤ exp(−γ−
⊥(δ)n). L−

⊥ = 1/γ−
⊥ is the subcrtical spatial correlation

length. For the proof of (2) and more on the correlation lengths, see Section 3
Let Ω∞ = {ξ0t ̸= ∅ for all t} and Tn = inf{t : n ∈ ξ0t }.
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Theorem 1.5. Suppose ∆ > δc, δ = 0, and let µ = γ−
⊥(∆)/ log(1/p) where p = P (δx = ∆).

(a) If µ < 1 then there is a c > 0 so that ρn/n→ c a.s. on Ω∞.
(b) If µ ≥ 1 then (log Tn)/ log n→ µ in probability on Ω∞.

Here Xn → a in probability on Ω∞ means that for any η > 0

P (|Xn − a| > η,Ω∞)→ 0

where P is the law for the CPRE,

In words on Ω∞ the right edge

r0t = sup ξ0t ≈

{
t/c if µ < 1

t1/µ if µ > 1

Since δ = 0, if the process ever has a particle on the good environment then ξ0t survives. To
explain the result note that the longest interval of ∆’s in [1, n] is, by Lemma 5.1

∼ (log n)/ log(1/p).

The time it takes the CPRE to cross this bad interval for the first time is

≈ exp[γ−
⊥(∆) log n/ log(1/p)] = nµ

so if µ > 1 the CPRE does not spread linearly.
Theorem 1.5 provides upper bounds on the rate of growth when δ > 0. To prove the

contact process has two phase transitions it is enough to shwo

Theorem 1.6. Suppose p = P (δx = ∆) < 1. There is a δ0(∆, p) > 0 so that if δ < δ0(∆, p)
then the CPRE survivies. That is, for almost every envirnment

P e(ξ0t ̸= ∅ for all t) > 0

Here e = {δx : x ∈ Z} and P e is the probability law of the contact process in the fixed
environment e. Cafiero, Gabrielli, and Muñoz (1998) have verified “the presence of the sub-
linear regime predicted by Bramson, Durret, and Schnmann.” We refer the reader to the
paper for ideas about a non-Markovian representation that is the key to their analysis.

There are a number of other results for CPRE. Liggett (1992) considered the inhomoge-
neous contact process in which the recovery rate at k is δ(k), births from k − 1 → k occur
at rate λ(k) and from k + 1 → k at rate ρ(k). Suppose that the rates are independent,
the δ(k) have a common the distribution and the birth rates λ(k) and ρ(k) have a common
distribution. The next result has surprisingly explicit and simple conditions

Theorem 1.7. Let R = δ(λ+ ρ+ δ)/λρ Then the process survives if

ER < 1

The right edge rt of the process starting from 1’s on the nonpositive integers and 0 otherwise
has lim sup rt =∞ if

E logR < 0
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Jensen’s inequality implies logER < E logR so the second condition implies the first. In
his paper Liggett conjectures that E logR < 0 implies survival while ER < 1 implies that
rt/t → α > 0. Liggett also gives results for periodic environments. The proofs are based
on the powerful but diificult methods that Holley and Liggett (1978) used to prove that the
nearest neighbor contact process in d = 1 has λc ≤ 2.

Newman and Volchan (1996) considered the one-dimensional contact process in a random
environment in which the recovery rates at a site are i.i.d. positive random variables δ(x)
bounded above, while the infection rate is ϵ. They showed that the condtion

uP (− log δ(x) > u)→∞ as u→∞

implies that the process survives for all ϵ > 0. Much less is known in higher dimensions but
Klein (1994) has given a condition that guarantees extinction of the process on Zd.

An interesting, but difficult, open problem is to show

Conjecture. In d ≥ 2 CPRE expands linearly when it does not die out.

Intuitively this holds because the process is not forced to go through bad regions, but can go
around them. The conjecture has been confirmed by simulations of Moreira and Dickman
(1996), see page R3093.

How might one prove this? The Bezuidenhout and Grimmett (1990) argument shows
that if the ordinary contact process does not die out then for any ϵ > 0 it dominates an
M -dependent oriented percolation (with M independent of ϵ) in which sites are open with
probability 1− ϵ. If this result could be generalized to the CPRE (and that is a big IF) then
the desired result would follow. See Section I.2 of Liggett’s (1999) book for a nicely written
version of their argument. Garret and Marchand (2012) have proved a “shape theorem”
for the asymptotic behavior of two-dimensonal CPRE but they assumed that all of the
environments are supercritical

1.1 Results from the physics literature

Physicists tell us, see e.g., Janssen (1981), that all systems exhibiting a continuous transition
into a unique absorbing state, without any any other extra symmetry or conservation laws,
belong to the same universality class, namely that of the contact process, and its discrete time
version directed percolation (DP), which can be of the site or bond variety). A consequence
of this is that the critical exponents of these systems agree and that the they take their
mean-field values above the critical dimension dc = 4.

Kinzel (1985), who was inspired at least in part by Wolfram’s (1983) work on cellular
automata, asked if impurities or other forms of disorder changed the critical exponents of
DP-systems This question was investigated by Noest in (1986), who phrased his investigation
in terms of stochastic cellular automata (SCA) in D + 1 dimensional space-time satisfying

P (si(t+ 1) = 1) = Fi

(∑
j

cijsj(t)

)
(3)

with Fi(x) = 0 for x ≤ 0, 0 < Fi(x) < 1 when x > 0, and the site updates are done
independently. Here we will take cij = c when i and j are nearest neighbors so the lattice is
not random.

5



Bond percolation is obtained by setting

Fi(x) = 1− exp(−rx) for x > 0. (4)

To check this note that if sj(t) = 1 for k neighbors of i then

P (si(t+ 1) = 0) = exp(−rck) ≡ qk

so bonds are closed with probability q = exp(−rc).
Site percolation, also known as the threshold-1 contact process, is obtained by setting

Fi(x) = cr for x > 0. (5)

Note that cr is a constant independent of x

Spatial disorder is introduced by letting the Fi depend randomly on i or in the two
concrete examples, taking the ri to be i.i.d. In this case we call the disorder quenched
since randomness is generated initially and we study what occurs for one fixed realization.To
quote Noest (1986)

The first question is whether even small spatial disorder is compatible with the-
univesality class of DP. An argument in the style of A.B. Harris (1974) shows
that this is not the case. Assume that there was a transition with the normal
exponents and let the disorder, parameterized by r, couple smoothly to the crit-
ical value c∗ of some global SCA rule parameter c. Because of the time invariant
rules, the fluctuations σ(r) ∼ (c − c∗) that affect the large space time clusters
depend only on their spatial correlation length Ls ∼ (c− c∗)−ν⊥ . Thus

σ(r) ∼ (c− c∗) ∼ L−D/2
s ∼ (c− c∗)−ν⊥D/2

Self-consistency demands that the fluctuations go to zero faster than c− c∗ near
criticality and so we should have Dν⊥ > 2.

Here and other excerpts that follow, it is not an exact quote since we have changed notation
and some terminology, but we think it faithfully reproduces the ideas in the original.

The correlation length and its critical exponent ν⊥ will be defined in Section 3. The
inequality Dν⊥ > 2 is the Harris criterion for the system to not be changed by randomness.
We will return to it in the open problems in Section 2.6. Numerical values for critical
exponents for the DP universality class given in Henrischen (2000) suggest that the critical
exponents are changed in d < 4.

d 1 2 3 ≥ 4
ν⊥ 1.097 0.73 0.58 1/2

We will now introduced a simple special case that will be our main focus here. In
dimensions D > 1 it is possible to set ri = 1 with probability p and = 0 with probability
1 − p. This is called the random dilution form of the model and is the version we will
concentrate on. There is a probability p∗ so that when p ≤ p∗ the network of cells and
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Figure 1: Phase diagram in D > 1 for randomly diluted site percolation as a function of the
dilution probability p and the birth probability which he denotes by c.

edges does not form a percolating cluster. On such a network, the existence of a nontrivial
stationary distribution for the process is not possible. Noest (1986) has drawn the picture
of the phase diagram for a random dllution model that we repoduce in Figure 1

A second more recent set of results in the physics literature concerns the quenched contact
process on Erdös-Rényi graphs. See e.g., Muñoz, Juhász, Castellano, and Ódor (2010). Each
site in the graph is independently assigned a birth rate, which is λ with probability p = 1−q,
and rλ with probability q. Again, we will restrict our attention to the case r = 0. the random
dilution model. Juhász, Ódor, Castellano and Muñoz (2012) have derived the phase diagram
which we have redrawn in Figure 2.
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Figure 2: Phase diagram of the random dilution model on an Erdös-Rényi graph with mean
degree µ = 3, as a function of the fraction of active nodes p and birth rate λ and The
percolation threshold is p∗ = 1/3.
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Understanding the phase diagrams in the two Figures will be the main goal of this paper.
We will concentrate on four main features.

Supercritical behavior. In D > 1 and on Erdös-Rényi graphs the critical value remains
bounded as the fraction of active sites decreases to the critical value. Intuitively this occurs
because whenever there is percolation in either of these two settings then there is a copy of
Z contained in the cluster, so as shown in Figure 1 the multicrtical point X ≤ c∗1, the critical
value in one dimension.

The Griffiths phase is labeled in Figure 2. It is the striped region in the Figure 1. Griffiths’
(1969) paper concerned the randomly diluted Ising model and showed that the magnetization
fails to be analytic function of the external field h when h = 0 for a range of temperatures
above the critical temperature (which is the subcritical phase of the Ising model). In the
case of the contact process (or oriented percolation) the phrase refers to the fact that in
the subcritical region decay to the empty state occurs at a power law rate rather than the
usual exponential rate. Intuitively, all percolation clusters are finite with a size distribution
that has an exponential tail. However the contact process survives for a time that grows
exponentially in the size of the cluster so if we start with all sites in state 1 then the density
decays to 0 at rate t−β(p) with β(p)→ 0 as p ↑ p∗.

Behavior on the critical line p = p∗ has been studied by Moreira and Dickman (1996)
and their mirror image twins Dickman and Moreira (1997). They have found a number of
properties of the QCP that are radically different from the homogeneous contact process.
One that we can give a rigorous explanation for is the fact that when p = p∗ the probability
of surviving until time t, P (t) ≈ 1/(log t)a. The intuition is similar to the explanation of the
Griffiths’ phse but now the largest cluster sizes are O(nα) so the survival time is exp(γnα).

Behavior on the critical curve λc(p), p > pc when p is fixed and λ varies is interesting
but little is known rigorously. Having heard the claim that critical exponents are constant
in the DP universality class, the reader may be surprised to learn that the critical exponents
vary along the critical curve. Simulations of Moreira and Dickman (1996) have shown, see
Table 1 on page R3091, that if a fraction x of sites are removed in D = 2 then the critical
value λc(1− x) and the critical value for the equilbrium density are (recall that the critical
value for site percolation is 0.5927)

x 0 0.02 0.05 0.1 0.2 0.3 0.35
λc 1.6488 1.6850 1.7409 1.8464 2.1080 2.470 2.719
β 0.586 0.566 0.79 0.89 0.99 1.07 1.01

It is hard to think about the situation when x→ 1−pc, but based on the table and discussion
in their papers it is tempting to conjecture that β → 1.

If we start with an Erdös-Rényi(N,µ/N) graph and delete a fraction x = 1 − p of the
edges we end up with a Erdös-Rényi(N, pµ/N) graph. If we delete a fraction x = 1 − p of
the vertices then we end up with a Erdös-Rényi(pN, µ/N) graph, which is the same thing
except with M = Np vertices. This says that in the Erdös-Rényi case we can understand
the critical curve if we look at Erdös-Rényi(N, λ/N) with λ ≥ 1 but in this case the critical
exponents are constant.

8



2 New Rigorous Results

To describe our contributions to the understanding of the behavior of the quenched contact
process, we need to first recall a result of Durrett and Schonmann (1988) that will be stated
formally in Theorem 3.2: the contact process on [1, L] starting from all sites occupied survives
for time σL where

(1/L) log σL → γ2(λ) (6)

The same result, with different constants, holds for oriented bond and site percolation, and
presumably for all members of the DP universality class.

2.1 Griffiths phase in D = 1

In contrast to the work of Bramson, Durrett, and Schonmann (1991), we consider the contact
process in a random environment in which the death rate is always 1, while the rate of births
from i are i.i.d. random variables λi. To simplify things, we explore the subcritical region in
the random dilution version of the model, in which sites are active with probability p and
have λi = λ or inert with probability 1−p and have λi = 0. The critical value for percolation
in D = 1 is p∗ = 1, but that is not a problem, since we are only interested in the subcritical
phase.

For ease of exposition we state our rigorous result before the result of Noest (1988)

Theorem 2.1. Suppose p < 1, λ > λc(Z), and δ > 0. The randomly dliuted contact process
on [1, N ] starting from all sites occupied survives for time

σN ≥ N (1−δ)γ2(λ)/ log(1/p) for large N. (7)

Note that the power of N tends to ∞ as p ↑ 1. The proof is easy: straightforward compu-
tations, see Lemma 5.1, show that the largest interval of active sites in [1, N ],

L(p) ∼ logN/ log(1/p).

Then we use the result for the contact process on a finite set given in (6). It should be
possible to show that replacing (1− δ) by (1+ δ) in (7) gives an upper bound on the survival
time. However to do this we would have to consider the survivial times on all of the intervals
of active sites and bound the maximum survival time. Since the lower bound on the survival
time is the more interesting result, we leave this more technical computation as an exercise
for a reader.

Noest (1998) studied oriented site percolation. Using the notation introduced in Section
1.1, the ri are i.i.d. with ri = 1 with probability p and 0 otherwise. We have changed the
probability sites are open from c to θ in the definition in (5), since there are already too
many things called c. Noest begins with observation that the probability a string of length
n sites has not reached the empty state by time t

P (σn > t) = exp(−t/Tn) where Tn ∼ exp(a(θ)n)

Here a(θ) = γ2(θ) is the constant in Theorem 3.2 for oriented site percolation. After taking
into account the distribution of the lengths of intervals of active sites, he arrives at Theorem
2.2. See Section 5 for details of his proof.
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Theorem 2.2. The fraction of occupied sites at time u(t) satisfies

u(t) = (at/b)−b/a log(at/b) (8)

where a = γ2(θ), and b = log(1/p).

To connect with (7), note that if we forget about the log factor and the constants then
u(t) = 1/N (and there are O(1) occupied sites) when

t = Na/b = Nγ2(θ)/ log(1/p) (9)

2.2 Percolating regime on Erdös-Rényi graphs

When the mean degree of an Erdös-Rényi graph is µ > 1 there is a giant component. Ajtai,
Komlos, and Szemeredi (1981) were among the first to prove the surprising fact that when
µ > 1 there is a path with length O(n). Using depth-first search (DFS), Krivelevich and
Sudakov (2012) have given a simple proof of this result and Enriquez, Faraud, and Ménard
(2017) have proved a result with a sharp constant.

Lemma 2.1. There is a function κ : (1,∞)→ (0, 1) so that the Erdös-Rényi random graph
with mean degree µ contains a path of length at least κ(µ)N .

The existence of a path of length ≥ κ(µ)N in combination with Theorem 3.2 implies that

Theorem 2.3. Suppose ν = µp > 1, λ > λc(Z), and δ > 0. The randomly diluted contact
process on Erdös-Rényi(N,µ/N) started from all sites occupied survives for time

σN ≥ exp((1− δ)γ2(λ)κ(µ)N) for large N.

Thus we have demonstrated the phenomenon shown in Figures 1 and 2: the critical birth
rate λ for long term survival does not →∞ as ν ↓ 1.

2.3 Griffiths phase on Erdös-Rényi graphs

The methodof proof is the same as for the result Noest (1988) but, as we will explain, the
gap between the physics result and the rigorous one is larger for Erdös-Rényi graphs. We
begin by giving the argument from Section II.C of Juhász et al (2012).

The network of active nodes is fragmented and consists of finite clusters whose
distribution is given by

P (s) ∼ 1

ν
√
2π

s−3/2e−sα(ν) where α(ν) = ν − 1− ln(ν) (10)

and ν = µp is the average number of edges per vertex in the reduced graph.
The long-time decay of the fraction of occupied sites u(t) can be written as the
following convolution integral

u(t) ∼
∫

ds sP (s) exp(−t/τ(s)) (11)
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where the characteristic decay time τ(s) of a region of size s grows exponentially
(Arrhenius law) with the cluster size

τ(s) = exp(A(λ)s) (12)

and A(λ) does not depend on s.

Using a saddle-point approximation, see Section 6 for details, one obtains

Theorem 2.4. The fraction of occupied sites

u(t) ∼ t−θ(ν,λ) where θ(ν, λ) = −α(ν)/A(λ)

Again to convert the density result into a survival time we note that u(t) = 1/N when

t = NA(λ)/α(ν) (13)

To begin to prove our rigorous lower bound on the survival time we note that if we
start with Erdös-Rényi(N,µ/N) and we delete a fraction 1 − p of the sites then the result
is Erdös-Rényi(Np, µ/N). Let ν = µp. Lemma 6.1 shows that as N → ∞ the longest path
∼ (logN)/ log(1/ν). Using Theorem 3.2 now gives

Theorem 2.5. Suppose ν = µp > 1, λ > λc(Z), and δ > 0. The randomly diluted contact
process on Erdös-Rényi(N,µ/N) starting from all sites occupied survives for time

σN ≥ N (1−δ)γ2(λ)/ log(1/ν) for large N . (14)

To compare (13) and (14) we note that the assertion that τ(s) = exp(A(λ)s) where A(λ) does
not depend on s implies that in computing the logarithm of the survival time of the contact
process on a finite cluster, only the size matters, a fact we call the Only Size Matters
hypothesis. If this was true (and in Section 6 we will show that it is not) then we would
have A(λ) = γ2(λ), the survival time on an interval.

Of course even if the constants were equal then there is the difference in the predicted
survival time since the physics result uses the largest cluster while the rigorous result uses a
long path. Corollary 5.11 of Bollobás (2001) the largest cluster in graph with n vertices

=
1

α(ν)

(
log n−

(
5

2
+ o(1)

)
log log n

)
.

In constrast Lemma 6.1 shows that there are paths of length ≥ (1− δ) log(1/ν). To compare
the two sizes we note that if ν = 1− ϵ then

log(ν) = −ϵ− ϵ2

2
− ϵ3

3
. . .

so α(ν) = log(1− ϵ)− ϵ ∼ ϵ2/2.
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2.4 Results in two dimensions

We start with Z2 (or [1, L]2 with L = N1/2) with edges to nearest neighbors and do bond di-
lution, where we keep edges with probability p, and each site x gives birth across (unoriented)
edges {x, y} at rate λ.

2.4.1 Percolating regime

One important reason for deleting edges is that in two dimensional bond percolation we
are able to exploit planar graph duality between percolation on Z2 and on a dual graph
described in Section 7. Using the duality and some well-known facts about sponge crossings
we are able to show that with high probability we have a path of length ≥ κ2(p)N/ logN .
The existence of such a path in combination with Theorem 3.2 implies that

Theorem 2.6. Suppose p > 1/2, λ > λc(Z), and δ > 0. The nearest neighbor contact process
with randomly deleted edges on L2 ∩ [0, N1/2]2 starting from all sites occupied survives for
time

σN ≥ exp(γ2(λ)κ2(p)N/ logN) when N is large.

This falls short of the gold standard of survival for time exp(cN) but if the grid is 100× 100
this gives survival for a time longer than any possible simulation.

2.4.2 Griffiths phase

As with one dimensional systems and Erdös-Rényi graphs, we establish the long time per-
sistence in the Griffiths phase by showing the existence of paths of length O(log n). Thanks
to a result of Grimmett (1981) given in Lemma 7.2 which proves the existence of paths of
length β2(p) log n in subcritical two-dimensional percolation this is easy

Theorem 2.7. Suppose p > 1/2, λ > λc(Z), and δ > 0. The nearest neighbor contact process
with randomly deleted edges on L2 ∩ [0, N1/2]2 starting from all sites occupied survives for
time

σN ≥ N (1−δ)β2(p)γ2(λ) for large N . (15)

2.5 On the critical line for Erdös-Rényi and in D = 2

In each setting we will show that the longest path is O(Nα) so using Theorem 3.2 the
system survives for time ≥ exp(γ2n

α). Computing as we have several times before if u(t) =
1/(log t)1/α then u(t) = 1/n when

t = exp(Nα).

Proof for the Erdös-Rényi graph. We claim that at criticality the longest path will
be O(N1/3). To argue this informally, it is known that the largest cluster at criticality has
O(N2/3) vertices. Critical clusters are like critical branching processes. A critical branching
process that survives for time T has O(T 2) individuals, so skipping more than a few steps
the longest path should be O(N1/3). For a rigorous proof see Addario-Berry, Broutin, and

12



Goldschmidt (2009,2010), who show that critical Erdös-Rényi clusters rescaled by n−1/3

converge to a sequence of compact metric spaces,

Proof for two dimensions. At criticality crossings of an L×L box have probability ≈ 1/2,
so taking L = N1/2 we see that the longest path has length ≥ cN1/2 with probability ≥ 1/2..
To argue that we have a path of this length with high probability, we divide the L×L square
into k2, L/k × L/k squares and note that the probability they all fail to have crossings is
exp(−(log 2)k2).

2.6 Open problems

1. In the random dilution model if we fix p > p∗ and vary λ then there is a phase transition
at λc(p). Numerical results suggest that the critical exponents vary as a function of p and
the power of log decay of the density holds at the critical value λc(p). See Dickman and
Moreira (1997).

2. Understanding the behavior of two dimensional contact process with two birth rates λ
and rλ is difficult, since the critical value no longer coincides with the onset of percolation.
See Vojta and Dickison (2005) and Vojta, Farquahr, and Mast (2009) where the intriguing
notation of an infiinite randomness fixed point is discussed. In both papers this is
discussed in Section II.C.

3. There are a number of verbal arguments for the Harris criterion. See page 10 of Vojta’s
(2006) or pages 1686–1687 A.B. Harris’ (1974) paper for his original proof. It would be
nice to have a mathematical argument in the style of Kesten’s (1987) derivation of scsling
relations for percolation. There is a rigorous proof by Chayes, Chayes, Fisher, and Spencer
(1986), but it uses finite size scaling variables, which are are difficult (for me at least) to
connect that argument with the properties of the QCP.

3 Correlation lengths and survival times

Our two goals in this section are (i) to define correlation length and (ii) state results about
the survival time of the contact process on [1, N ]. The same results can be proved for oriented
percolaiton. To formulate our definitions, we need to prove that certain limits exist, which
is done using what is commnly known as supermultiplicativity. Suppose An are events
with

P (An+m) ≥ P (An)P (Am)

If we set an = − logP (An) then the an are subadditive

an+m ≤ an + am

A standard argument, see (6.4.2) in Durrett (2019) shows that

an/n→ inf
m≥1

am/m ≡ γ (16)

and hence we have P (An) ≤ e−γn

13



We need to define correlation lengths in space and time for subcritical and supercritical
contact processes. Here we follow Durrett, Schonmann, and Tanaka (1989).

Definition 1. Since |ξ0n| ≥ 1 when ξ0n ̸= ∅

P (τ 0 ≥ n+m|τ 0 ≥ m) ≥ P (τ 0 ≥ n)

so when λ < λc using (16) gives

−1

t
logP (τ 0 > t)→ γ−

∥ (λ)

and we can define the subcritical temporal correlation length L−
∥ = 1/γ−

∥ . Here the

superscript − means λ < λc and ∥ means we are considering the time direction

Definition 2. As noted in the introduction, see the discussion of Theorem 1.5, if r0t = sup ξ0t ,
and R0 = supt≥0 r

0
t then

P (R0 ≥ m+ n) ≥ P (R0 ≥ m)P (R0 ≥ n)

for λ < λc, so using (16) gives

− 1

n
logP (R0 > n)→ γ−

⊥(δ)

and we can define the subcritical spatial correlation length L−
⊥ = 1/γ⊥, with a subscript

⊥ indicating that we are looing at space, which is perpendicular to time.

Definition 3. The natural way to extend Definition 1 to λ > λc is to look at {t ≤ τ 0 <∞}.
This time we cannot use supermultiplicativity to assert the existence of a limit. It takes
some work to prove that the limit exists but this has been done by Durrett, Schonmann,
and Tanaka (1989).

−1

t
logP (t ≤ τ 0 <∞)→ γ+

∥ (λ)

and we can define the supercritical temporal correlation length L+
∥ = 1/γ+

∥ .

Definition 4. In Section 10 of Durrett (1984) it is shown that if A and B are disjoint initial
conditions for the contact process

P (τA∪B <∞) = P (τA <∞, τB <∞) ≥ P (τA <∞, τB <∞)

by an inequality proved in Harris (1960): increasing functions of independent random vari-
ables are positively correlated. See e.g., Theorem 2.4 in Grimmett (1999). Using (16)

− 1

N
logP

(
τ {1,...N} <∞

)
→ γ+

⊥(λ)

when λ > λc and we can define the supercritical spatial correlation length L+
⊥ = 1/γ+

⊥ .
Let σN be the extinction time for the contact process on {1, . . . N} starting from all sites

occupied. Durrett and Liu (1988) proved
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Theorem 3.1. If λ < λc then as N →∞, σN/(logN)→ 1/γ1 where γ1 = γ−
∥ (λ)

They also proved exponentially long survival in the supercritical regime but the sharp result
with the exstence of a limit had to wait for Durrett and Schonmann (1988)

Theorem 3.2. If λ > λc then (1/N) log(σN)→ γ2 where γ2 = γ+
⊥(λ).

Soft arguments can be used to improve the conclusion to

Theorem 3.3. Let βN = inf{t : P (σN > t) ≤ e−1. As N →∞,

(a) P (σN/βN > x)→ e−x (b) EσN/βN → 1.

Theorem 3.3 was proved by Cassandro, Galves, Olivieri, and Vares (1984) for large λ and
by Schonmann (1985) for all λ > λc. Part (a) is established by showing that subsequential
limits of σN/βN have the lack of memory property and hence are exponential. For part (b),
Using the lack of memory leads to an exponetial bound on the tail of the distribution, and
justifies the use of dominated convergence to show EσN/βN → 1. This result is known as
metastability. The lack of memory property of the limit of σN/βN exponential suggests
that the system persists in a quasistationary distribution until suddenly and without
warning it dies.

4 Planar graph duality for oriented percolation

Theorem 3.2 is proved by using planar graph duality to show that the following definitions
are equivalent for the one-dimensional contact process

− 1

N
logP

(
τ {1,...N} <∞

)
→ γ+

⊥(λ)

− 1

N
logP

(
τ̂ {1,...N} <∞

)
→ γ+

⊥(λ)

− 1

N
logP

(
τ eq∩{1,...N} <∞

)
→ γ+

⊥(λ)

The first process takes place on the interval [1, N ]. On the second line, τ̂ is the survival
time for the contact process on the positive integers starting from [1, N ] occupied. The third
contact process takes place on Z and eq ∩ {1, . . . N} indicates that the initial condition is
the equilibrium distribution restricted to {1, . . . , N}. The third event is equivalent to the
existence of a dual path from (N + 1/2, 0) to (1/2, 0), although the reader will have to wait
until the end of the section to see the definition of dual path.

To begin we discuss planar graph duality for oriented percolation on

L = {(m,n) ∈ Z2 : m+ n is even}.

The dual percolation takes place on

L∗ = {(m,n) ∈ Z2 : m+ n is odd}.
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An edge on L is paired with the edge on L∗ obtained by rotating the edge −90 degrees
around its midpoint. (See see the picture on the left in Figure 4.) Exactly one of each edge
pair is open. On L upward edges are open with probability p, while downward edges are
open with probability 0. This leads to dual edge probabilities in which edges to the right
are always open and those to the left are open with probability 1− p.
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Figure 3: Pairing between edges on L and L∗. Edge probabilities for oriented percolation on
L and its dual on L∗.

If we have a finite cluster on L then there is a path in the dual graph that is the contour
assoicated with the finite cluster. To define the contour let A = {(m,n) ∈ L : m ∈ ξ0n} and
make this into a solid blob by letting B = ∪(m,n)∈A(m,n)+D where D = {(x, y) : |x|+ |y| ≤
1}. The boundary of the unbounded component of Bc is the contour. It is oriented so that
(0,−1)→ (1, 0).
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Figure 4: Cluster on L (black dots) and dual contour on L∗. Open edges are indicated by
arrows. Segments of the contour which move to the left cut a closed edge. Those that move
to the right do not.
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To prove results for the one dimensional contact process, we take a limit of oriented
percolation. Without the constraint that the approximating process is a planar graph this
is easy. We let Lϵ = {(j, kϵ) : j, k ∈ Z}. Edges (m,nϵ) → (m, (n + 1)ϵ) are open with
probability 1 − ϵ while edges (m,nϵ) → (m ± 1, (n + 1)ϵ) are open with probabillity λϵ. In
the limit as ϵ → 0 we have a rate 1 Poisson process of holes (closed edges) on each vertical
line that kill particles, and Poisson processes of arrow from m → n + 1 and m → m + 1 at
rate λ that cause births to occur.

To approximate by oriented percolation on a planar graph, we use the lattice on Lϵ/2 =
{(j, kϵ/2) : j, k ∈ Z} where edges are open with the indiccated probabilities.

(m,nϵ)→ (m− 1, (n+ 1/2)ϵ) λϵ

(m,nϵ)→ (m, (n+ 1/2)ϵ) 1− (ϵ/2)

(m, (n+ 1/2)ϵ)→ (m+ 1, (n+ 1)ϵ) λϵ

(m, (n+ 1/2)ϵ)→ (m, (n+ 1)ϵ) 1− (ϵ/2)

When we let ϵ→ 0 the oriented percolation again becomes the graphical representation of the
contact process. The dual percolation process primarily moves on lines at the half-integers.

OP dual
↓ is impossible → is always allowed
• marks a hole ← is alllowed through holes
→ open makes ↑ closed
← open makes ↓ closed

These rules give rise to the continuous time contours of Gray and Griffeath (1982)
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•

Figure 5: Continuous time contour. The contour can move to the right through holes that
cause deaths and when going down can move to the left once the site next to it is vacant.
The latter moves are shifted down for clarity.
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5 Proofs in one dimension

Proof of Theorem 2.1. Inert sites cannot become occupied, so the contact processes on the
(maximal) intervals of active sites are independent. Suppose that 1 is inert. The interval
[1, N ] begins with an inert interval of length B1 that has

P (B1 = k) = (1− p)k−1p

followed by an active interval with length A1 with

P (A1 = k) = pk−1(1− p)

so EB1 = 1/p and EAi = 1/(1− p). We can repeat these definitions until the interval [1, N ]
is used up. A cycle Bi, Ai has expected length

EBi + EAi =
1

p
+

1

1− p
=

1

p(1− p)
.

So if N is large the number of active intervals, M(p), in [1, N ] has

M(p) ∼ Np(1− p)

Lemma 5.1. Suppose that Ai, i ≥ 1 are independent geometric(1 − p) and let L(p) =
max1≤i≤M(p) Ai Then

L(p)/ logN → 1/ log(1/p).

Proof. To prove this we note that P (Ai > K) = pK . Let Lm = max1≤i≤m Ai

P (Lm > (1 + δ)(logm)/ log(1/p)) ≤ mp(1+δ)(logm)/ log(1/p)

= m exp(log(p)(1 + δ)(logm)/ log(1/p)) = m−δ → 0

Let Yδ be the expected number of Ai with 1 ≤ i ≤ m and Ai > (1 − δ)(logm)/ log(1/p).
EYδ ∼ mδ. Since Yδ is binomial with a small success probability, the variance is also mδ, so
Chebyshev’s inequality implies

P (Yδ ≤ mδ/2) ≤ mδ

m2δ/4
→ 0

This shows that Lm/ logm → 1/ log(1/p). Plugging in m = Np(1 − p) gives the desired
result

Using Theorem 3.2 we see that for any δ > 0 the contact process on the longest active
interval in [1, N ] survives for time.

≥ exp((1− δ)γ2(λ) logN/ log(1/p))

which proves Theorem 2.1.
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Proof of Theorem 2.2. Here we reproduce the proof as Noest (1988) wrote it. Not every
claim is correct but quibbling over minor details gives mathematicians a bad name. The
probability a string of length n of active sites has not reached the all 0’s state at time n

un(t) = P (σn > t) = exp(−t/Tn) where Tn ∼ exp(a(θ)n)

The probability of occurrence of a string of n good sites is pn(1− p)2.
The fraction of occupied sites u(t) =

∑
n nPnun(t). Thus the “effective decay time”

T =
∑
t

u(t) =
∑
n

nPnTn

∼ (1− p)2
∑
n

(Ap)n = Ap(1− p)2(1− Ap)−2

if p < 1/A. The asymptotic behavior of u(t) can be obtained from

u(t) =
∑
n

npn exp(−t exp(−an)) (17)

≈
∫ ∞

0

dx x exp[−bx− t exp(−ax)] (18)

where b = − log p. The large t behavior can be found from Laplace’s method. Let

ϕ(x) = −bx− t exp(−ax)
ϕ′(x) = −b+ at exp(−ax) = 0 when x∗ = (1/a) log(at/b)

ϕ′′(x) = −a2t exp(−ax) so ϕ′′(x∗) = −ab

At the maximum

ϕ(x∗) = −(b/a) log(at/b)− t exp(− log(at/b)) = −(b/a)[log(at/b) + 1]

which means exp(ϕ(x∗) = (at/b)−b/a · e−b/a

6 Proofs for Erdös-Rényi graphs

Completion of the proof of Theorem 2.4. Plugging (12) and (10) into (11) gives

u(t) ∼
∫

ds s
1√
2πp

s−3/2e−sα(ν) exp(−t exp(−A(λ)s)

To maximize the integrand (ignoring the s−1/2) we let M(s) = −sα(ν)− t exp(−A(λ)s) and
compute look only at what is inside the exponential

d

ds
M)s) = −α(ν) + tA(λ) exp(−A(λ)s)

This is = 0 when

exp(−A(λ)s0) =
α(ν)

tA(λ)
or s0 =

log t+O(1)

A(λ)
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Dropping the constant

M(s0)− = −α(ν)(log t)

A(λ)
− t

α(ν)

tA(s)

The second term is O(1) so the maximum value is indeed t−θ(ν,λ) with θ(ν, λ) = α(ν)/A(λ).

Proof of Theorem 2.5. The first step is to prove

Lemma 6.1. If ν < 1 then as N →∞ the longest path ∼ (logN)/ log(1/ν).

Proof. If k2/N → 0, which we assume throughout the proof, then the expected number of
(self-avoiding) paths of length k in an Erdös-Rény(N, ν/N) graph

Π(N, k, ν) = N(N − 1) · · · (N − k + 1)(ν/N)k−1 ∼ Nνk−1

iΠ(N, k1, ν) ≈ 1 when k1(ν,N) = (logN)/ log(1/ν). If k̄ = (1 + δ)k1 then

Π(N, k̄, ν) ≤ N−δ → 0

which gives the upper bound on the length of the longest path.
If k = (1− δ)k1 then Π(N, k, ν) ∼ N δ. To prove the lower bound let π be a sequence of

distinct vertices of length k, let Aπ be the event that π is a path of length k in the graph,
and let Yδ be the number of path of length k. If π and σ do not share an edge in common
then Aπ and Aσ are independent. Let Σj be the sum over all π and σ that have exactly
j edges in common. We get a lower bound on Σ0 by assuming all vertices in the path are
different.

N(N − 1) · · · (N − 2k − 1)(ν/n)2k−2 ≤ Σ0 ≤ Π2

so Σ0 ∼ Π2. In Σ1 we need to pick the edge to be the same.

Σ1 ≤ Nk · kNk−2 · (ν/N)(k−1)+(k−2) ∼ kNν2k−3 = (Π)2 · kν−1/n = o(Σ0)

When it comes to Σ2 the two edges can be adjacent in the path or not

Σ2 ≈ Nk · [kNk−3 + k2Nk−4] · (ν/N (k−1)+(k−3)) ≤ (Π)2 · ν−2[k/N + k2/N2] = o(Σ0)

The number of possibilities increases as the number of duplicates increases but the best case
occurs when all the agreements are in a row. Since σ0 ∼ Π2 the square of the mean, it
follows that the variance is o(Π2), and Yδ/EYδ → 1.

The Only Size Matters hypothesis is false. Let V = {0, 1, 2, . . . N}. On these vertices
consider G1 = an interval with N edges, and G2 a star graph with center 0 and leaves
{1, 2, . . . N}. On G1 in order for the contact process to survive for time ec1(λ)N with c1(λ) > 0
we must have λ > λc(Z). For the star graph Theorem 1.4 in Huang and Durrett (2020) says

Theorem 6.1. Let λ > 0 and let L = (1− 4δ)λN with δ > 0. If η > 0 is small enough

PL,1

(
T0,0 ≥

1

λ2n
e(1−η)λ2n

)
→ 1 as n→∞.
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Here L, 1 is the initial state in which the center and L leaves are occupied, and T0,0 is the
time to hit the all vacant state. Thus on the star graph survival for ec2(λ)N occurs with
c2(λ) > 0 for all λ > 0.

The last calculation shows that c1(λ) ̸= c2(λ) but some may object that is not relevant
for the Erdös-Rényi graph since the central vertex in the star has degree N . For this reason
we will consider another example that has bounded degree: let G3 = Td

ℓ be a a d-regular tree
truncated at height ℓ. To be precise, the root has degree d, vertices at distance 0 < k < ℓ
from the root have degree d + 1, while those at distance ℓ have degree 1. Stacey (2001)
studied the survival time of the contact process on Td

ℓ . Cranston, Mountford, Mourrat, and
Valesin (2014) improved Stacey’s result to establish that the time to extinction starting from
all sites occupied, τ dℓ , satisfies

Theorem 6.2. (a) For any 0 < λ < λ2(Td) there is an α ∈ (0,∞) so that as ℓ→∞

τ dℓ / log |Td
ℓ | → α in probability.

(b) For any λ2(Td) < λ <∞ there is a β ∈ (0,∞) so that as ℓ→∞

log(τ dℓ )/|Td
ℓ | → β in probability.

Moreover τ dℓ /Eτ dℓ converges to a mean one exponential.

Here λ2(Td) is the threshold for strong survival

λ2 = inf{λ : P (0 ∈ ξt infinitely often) > 0}

It is known that λ2 ≥ 1/2
√
d. Pemantle (1992) has shown an upper bound on λ2(d) that is

asymptotically e/
√
d. Hence for large d we have λ2(d) < 1 < λc(Z). For λ ∈ [λ2(d), λc(Z)]

we have c3(λ) = β > 0 and c1(λ) = 0.

7 Proofs in two dimensions

Percolating phase. Recall that L2 is the graph with vertex set Z2 and edges connecting
nearest neighbors. We begin by describing planar graph duality for L2. Each edge in L2

is associated with the edge in (1/2, 1/2) + L2 that intersects it, see Figure 7. We begin by
making the edges in L2 independently open with probability p, and then declaring an edge
in (1/2, 1/2) + L2 to be open if and only if it is paired with a closed edge.

The picture drawn in Figure 7 led to Ted Harris’ (1960) proof that the critical value for
two dimensional bond percolation is≥ 1/2. This was the starting point for developments that
led to Kesten’s (1980) proof that the critical probability was 1/2. To reach this conclusion
required the development of a machinery for estimating sponge crossing probabilities. See
Chapters 4, 6, and 7 in Kesten (1982), or Chapter 11 in Grimmett (1999). We will avoid
this machinery by using the fact that in the subcritical regime there is expoential bound on
the radius of clusters.

Lemma 7.1. Consider bond percolation with p > 1/2. There is a constant γ(p) > 0 so that
the probability of a left-to-right crossing of [0, L]× [0, K] is

≥ 1− L exp(−γ(p)K).
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Figure 6: Planar graph duality. If there is a left-to-right crossing of [0, n+ 1]× [0, n] if and
only if there is no top-to-bottom crossing of (1/2,−1/2) + [0, n] × [0, n + 1]. When bonds
are open with probability 1/2 the two crossings have the same probability and add up to 1,
so they are both = 1/2.

From Lemma 7.1 follows that if K = C logL and C > 3/γ then the probability of a left-to-
right crossing of [0, L]× [0, C logL] ≥ 1− L−3. Given this result if we let L = N1/2 then we
can create a path of length O(N/ logN) in [0, L]2 by combining

• left-to-right crossings of [0, L]× [(k − 1)C logL, kC logL] for k odd ≤ L/C logL]

• right-to-left crossings of [0, L]× [(k − 1)C logL, kC logL] for k even ≤ L/C logL]

• bottom-to-top crossings of [L− C logL,L]× [(k − 1)C logL, (k + 1)C logL] for k odd
≤ L/C logL]

• bottom to top crossings of [0, C logL,L] × [(k − 1)C logL, (k + 1)C logL] for k even
≤ N/C logN ]

The left to right crossings have length ≥ L while the number of horizontal strips is
≥ ⌊N/C logN⌋, so we have a path of length ≥ κ2(p)N/ logN . The existence of such a path
in combination with Lemma 3.2 gives Theorem 2.6

Griffiths phase. As in one dimension and for Erdös-Rényi graph we establish the long time
peristence in the Griffiths phase by showing the existence of long paths. Thanks to a result
of Grimmett (1981) this is easy
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Figure 7: Picture of the construction of a long path.

Lemma 7.2. Consider bond percolation on the square lattice with p < 1/2. Let S(L) be
the probability that some open path joins the longer sides of a sponge with dimensions L by
a logL. There is a positive constant α which depends on p so that as L→∞

S(L)→

{
0 if aα > 1

1 if aα < 1

Let L = N1/2. This implies the existence of paths of length β2(p) logL where β2(p) =
1/2α(p). Combining this result with Theorem 3.2 proves Theorem 2.7.

References

Addario-Berry, L., Boutin, N., and Goldschmidt, C. (2009) The continuum limit of critical
random graphs. arXiv:0903.4739

Addario-Berry, L., Boutin, N., and Goldschmidt, C. (2010) Critical random graphs: limiting
constructions and distributional properties. Electron. J. Probab. 15, paper 25, pages 741–775
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