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REMARKS ON A THEOREM OF EELLS AND SAMPSON
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ABSTRACT. We prove an extension of Eells and Sampson’s rigidity theorem for harmonic maps
from a closed manifold of non-negative Ricci curvature to a manifold of non-positive sectional
curvature. We give an application of our result in the setting of harmonic-Einstein (or Ricci-
harmonic) metrics and as a consequence we recover a classical rigidity result of Hamilton for the
problem of prescribed positive definite Ricci curvature.
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1. INTRODUCTION

It is well known from the seminal work of J. Eells and J. H. Sampson, [13], that any harmonic map
©w:(M,g) — (N, h) between a closed Riemannian manifold (M, g) of non-negative Ricci curvature
and a Riemannian manifold (N, k) of non-positive sectional curvature is a totally geodesic map,
that is, it carries geodesics of M to geodesics of N. Furthermore, if ¢ is non-constant then Ric,
cannot be positive definite at any point on M and, depending on the (constant) value of the rank
of dp : TM — TN, we have either

i) rank(dy) = 1 and ¢ maps M onto a closed geodesic of N, or

ii) rank(dy) > 2 and the sectional curvature of (N, h) vanishes on all 2-planes contained in
the subbundle dp(T'M) C TN, so that ¢ maps M onto a closed, flat, totally geodesic
submanifold of N.

In both cases 1)-ii), if rank(dy) = dim M, that is, if ¢ is a totally geodesic immersion, then M itself
must also be flat and if M is irreducible then one further concludes that the immersion ¢ : M — N
is homothetic, [21], Corollary 2.4], that is,
©*h = pg

for some constant p > 0, while this is not generally true if M is reducible (for an example, consider
the case of two flat tori (M,g) = R¥/A; and (N,h) = R¥/A, of equal dimension k > 2 defined
by non-homothetic lattices A1, A; € R*, and ¢ : M — N the totally geodesic, affine, necessarily
non-homothetic diffeomorphism induced by any affine map 1 : R¥ — RF satisfying ¢(A1) = As).
On the other hand, if 1 < rank(dy) < dim M, then as a consequence of a general structure theorem
for totally geodesic maps between complete manifolds due to J. Vilms, [21] Theorem 2.2], ¢ factors
as the composition ¢ = ¢y o ™ of a totally geodesic submersion 7 : M — B onto a closed, flat
manifold B of dimension r = rank(dy) followed by a totally geodesic immersion ¢g : B — N.
Moreover, if this latter case is verified then M is necessarily reducible, [2T, Proposition 2.3], and
if M is also simply connected then M is in fact a Riemannian product and 7 : M — B is just the
projection onto one of the factors, [21], Corollary 3.7].

The above theorem, together with the subsequent observations, can be proved by analysis of
the Bochner identity for harmonic maps (see formula 3.13 in [12])

1
FAldel* = [Vdg|* + Q(dy) (1.1)

where |dp|? = g% happf b is twice the energy density of ¢, Vdp : TM @ TM — TN is the second
fundamental form of the map ¢, defined as the covariant derivative of dy regarded as a section of
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T*M ® o~ 'TN equipped with the connection V9 ® ¢*V" induced by the Levi-Civita connections
V9 and V" of M and N, and Q(dyp) is a Ricci curvature term given by

Q(dp) = g™ g hap Rijpipl — g™ g7 R capi @05t -
Here gij, Rij, hab, B .4 and ¢ = 9(y® o ¢)/0x" denote the local components of g, Ricg, h, Riemy,
and de in local charts {2} and {y*} for M and N, respectively, and ¢g*/ stand as usual for the
coefficients of the inverse matrix of (g;;). We recall that the condition of ¢ being totally geodesic is
equivalent to Vdy = 0, since for any curve 7 : (a,b) — M the accelerations 4 = Vfﬂ and ¢ = VZ{T
of v and o := ¢ oy are related by
¢ =dp(¥) + (Vde)(1,79) -

Under assumptions Ric, > 0 and secy, < 0 the term Q(dyp) is non-negative, so |dg|? is a subhar-
monic function on the closed manifold M and then it must be a constant function by the maximum
principle. Thus, the right hand side of (1)) vanishes and one deduces Vdp = 0 and Q(dy) = 0,
so in particular ¢ must be totally geodesic; in case ¢ is non-constant, further conclusions on

the geometry of ¢ follow by refined analysis of the implications of the equation @Q(dy) = 0 (for
completeness, we include a detailed argument at the end of the paper, see Proposition 2.3)).

In this note we prove a result related to Eells and Sampson’s theorem, replacing the condition
Ricy > 0 and sec;, < 0 with the assumption that
Ricy > (m — 1)K ¢*h and secy, < K

for some constant K > 0, where m = dim M. In case K = 0 this would clearly reduce to Eells and
Sampson’s condition. In our setting, we still conclude that ¢ is totally geodesic if harmonic, with
a more stringent conclusion in the case of a non-constant map.

Theorem 1.1. Let ¢ : (M™22 g) — (N, h) be a harmonic map between Riemannian manifolds.
Assume that M is closed and that there exists K > 0 such that
Ricy > (m — 1)K ¢*h and secp, < K. (1.2)
Then ¢ is a totally geodesic map. In particular, either
i) ¢ is constant, or
ii) ¢ is a homothetic immersion, g has positive constant curvature and the inequalities in (L2])
hold with equality sign on M and o(M), respectively, that is,
Ricy, = (m — 1)K ¢*h and secp,(IT) = K
for any 2-plane 11 contained in dp(TM) C TN.

Remark 1.2. In case ii) of Theorem [[I] the constant value K, > 0 of the sectional curvatures of ¢
and the homothety parameter p > 0 such that ¢*h = ug are related by

K, =uK
and the image ¢(M) C N is a totally geodesic submanifold with constant sectional curvature K.

Remark 1.3. We remark that the validity of (L2) for some K > 0 is invariant with respect to
rescalings of g and h (as is harmonicity of ¢): if (M,g), (N,h) and ¢ : M — N satisfy (2]
for some K > 0, then for any two constants ci,co > 0 the metrics § = c1g and h = coh satisfy
Ricy = Ric, and secj, = ¢; ' secy, so for K = c; ' K > 0 we have

Ric; > (m — 1)K ¢*h and sec;, < K.

Our main motivation for considering an inequality on Ric, as in (I2)) comes from the study
of harmonic-Einstein (or Ricci-harmonic) metrics: given a fixed Riemannian manifold (N, k), a
metric g on a smooth manifold M is said to be harmonic-Einstein (with respect to h) if there exists
a harmonic map ¢ : (M, g) — (N, h) such that

Ricg —ap*h = Ayg (1.3)
for some constants @ € R\ {0} and A € R. If g is harmonic-Einstein and ¢ : (M, g) — (N, h) is

a harmonic map realizing the defining condition (L3)) for g, then we also refer collectively to the
pair (g,¢) as a harmonic-Einstein structure on M.
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Harmonic-Einstein structures arise as fixed points of the (normalized) harmonic-Ricci flow stud-
ied by R. Buzano, [16], a geometric flow obtained by coupling Hamilton’s Ricci flow with Eells-
Sampson’s heat flow for harmonic maps. In the last decade it has been proved that many key con-
cepts in the theory of the Ricci flow can be extended with due modifications to the harmonic-Ricci
flow, see for instance [6], [15], [20], and that solitons of the harmonic-Ricci flow and quasi-harmonic-
FEinstein (or quasi-Ricci-harmonic) metrics (a notion which relates to harmonic-Einstein structures
in pretty much the same way as quasi-Einstein metrics relate to Einstein metrics, see the paper [19]
for a precise definition) exhibit similar features as their Ricci flow and quasi-Einstein counterparts,
[20], [19], [18], 23], [22], [], [2], [3], [8]. We remark that equation (L3) also naturally arises in
General Relativity for a Lorentzian metric g as the system of Einstein field equations (with possibly
non-zero cosmological constant) for a spacetime (M, g) having a wave map ¢ : (M, g) — (N, h) as
gravitational energy source, [7, Section I11.6.5].

In the setting of (Riemannian) harmonic-Einstein structures, Theorem [[LT] immediately implies
the following result.

Theorem 1.4. Let (N, k) be a Riemannian manifold and let (g, ) be a harmonic-Einstein struc-
ture (with respect to h) on a closed manifold M of dimension m > 2. If « >0, A > 0 and

secy, < (1.4)

m—1
then ¢ is either constant or a homothetic immersion. Moreover, in the latter case necessarily
A =0, g has constant curvature and ([L4) holds with equality sign on any 2-plane in dp(TM).

It is worth pointing out that the condition of harmonicity of ¢ is not independent from the
validity of (L3): if (M,g) and (N,h) are (semi-)Riemannian manifolds and ¢ : M — N is any
smooth map satisfying ([L3]) for some constants a # 0 and A, then ¢ is conservative, that is,

<T((p)a d(,0>h =0,

see [4, Proposition 2.15]. If ¢ is additionally a submersion, this implies 7(¢) = 0. This observation
relates the study of harmonic-Einstein metrics with A = 0 to the problem of the prescribed Ricci
curvature. The problem can be stated as follows: given a symmetric 2-covariant tensor field h on
a smooth manifold M, to find a Riemannian metric g on M and a constant ¢ > 0 such that

Ricg =ch. (1.5)

(The presence of the parameter ¢ compensates for the lack of homogeneity inherent to the problem.)
Local solvability of the problem and regularity of the solutions were first addressed by D. DeTurck,
[9], and by DeTurck and J. Kazdan, [I0], respectively. Later, R. Hamilton, [14], and DeTurck and
N. Koiso, [I1], established uniqueness and non-existence results for global solutions g of (L) in
particular cases where h is everywhere positive definite (we also refer to [0, Chapter 5] as a further
reference on the topic.) In this latter case, h can be regarded as a Riemannian metric itself on
M, so that equation ([LH]) takes the form (L3) with « =¢, A =0, N = M and ¢ =idy, and if ¢
satisfies (LH]) then idys : (M, g) — (M, h) is automatically harmonic by the previous observations
(see also [14} Corollary 3.3] for a direct proof). In this setting, a direct consequence of Theorem
[C4 is the following corollary, which recovers Theorems 4.1 and 4.3 of [I4].

Corollary 1.5. Let (M, h) be a closed Riemannian manifold with sectional curvature < 1. If there
ezists a Riemannian metric g on M such that

Ric, = (m — 1)h (1.6)

then the metrics g and h are homothetic (that is, there exists a constant p > 0 such that g = ph)
and the original metric h must have constant sectional curvature exacly 1 everywhere on M.
In particular, if sec, < 1 somewhere on M then there exists no metric g satisfying (L0)).

2. PrROOF OF THEOREM [I.1]

To prove Theorem [[J] we have to rewrite the term Q(dy) in the Bochner identity () as
Q(dyp) = Qo(dy) + Q1(dy) (2.1)
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with
_ ik _jl a, b ik gl a, b c d
Qo(dy) = 9" ¢ hav Rijpipi — (m = 1)K g™ g” haahves; Wksaz : (2.2)
Q1(dy) = (m — 1)K g™ g haahoepi 05 k0l — 9™ 9" Rajeai 050501 - (2:3)
The next two lemmas show that Qo(dy) > 0 and Q1(dy) > 0 provided Ricy > (m — 1)K¢p*h and

secy, < K, respectively, and also characterizes the equality case Q1(dy) = 0 when secy, < K.

Lemma 2.1. Let ¢ : (M, g) — (N, gn) be a smooth map between Riemannian manifolds such that
Ricg > (m — 1)K ¢*h (2.4)

for some K € R. Then Qo(dy) > 0 on M.

Proof. The bilinear form A = Ric, — (m — 1)K ¢*h is positive semidefinite by (2.4) and we have

Qo(dp) = (A, ¢9"h) = hay A7 i}
where
A = g% g7 Ay = g™ (Ra — (m = 1) Khavpiipy) -
Let 2 € M be given and fix local coordinates {z'} on M around z such that the matrix (A7) is
diagonal at . Then we have A” = 0 whenever i # j and A* > 0 for each 1 <i <m = dim M, so

m m

Qol(dp) =Y A"happie) =Y A"|dp(0,)lz >0 at .

=1 i=1

O

Lemma 2.2. Let ¢ : (M™22,g) — (N, gn) be a smooth map between Riemannian manifolds, with
sec, < K (2.5)
for some K > 0. Then Q1(dy) > 0 on M. Moreover, if Q1(dp) = 0 at some point x € M, then

considering the differential
dgﬁz : TIM — Tw(m)N

we have either

i) rank(dy,) > 2 and sec,(Il) = K for each 2-plane 11 < dgp, (T, M), or

ii) rank(dp,) <1,
and if K > 0 then we further have

") ¢*h is a multiple of g at = in case i),

ii") dyz =0 in case ii).

Proof. Let © € M be given and {e;}; be an orthonormal basis for T,M. Let {z‘} be normal

coordinates centered at x such that d,: = e; for 1 <i < m, and let us set Y; = dy(e;) for 1 < i < m.

Then, with respect to any local chart {y®} for N centered at ¢(x), for each 1 <4, j < m we have
hadhvef 950505 = h(Y3,Y5)?,  Ropeawiooie] = Riemp(Vi,Y5,Y5,Y;)  at

(no summation over ¢ or j is intended in the above formulas). For each pair (z,j) we choose a
2-plane Il in T,,(;)N containing Y; and Y; (which is clearly uniquely determined in case Y; and
Y; are linearly independent) and we let k;; = secy(Il;;). Then

Riem" (V;, Y}, Y3, Y;) = g [h(Y2, Y)R(Y;,Y) — h(Yi,Y)?] .

For ease of notation let us set ¢;; = h(Y;,Y;) for each 1 < 4,5 < m. Then from the above
observations we have
Q1(dp) =(m - 1)K Z C?j — Z Kij(Ciicj; — c?j) at x. (2.6)
ij=1 ij=1

Noting that

m
— 2 o
Cu - CJJ =(m—1) E Cii — 2 E , CiiCjj

i=1 1<i<j<m

Z (i — cj5)* =

1<i<j<m

| =
H'M3
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we express

m

2 _ 2 2

E Cij = E ci+2 E Cij
i i=1

1<i,j<m 1<i<j<m
1 2
=— > (-t ——= > cucy+2 Y .
1<i<j<m 1<i<j<m 1<i<j<m
Since we also have c;;c;; — cfj = 0 whenever i = j, we can restate (2.0) as
Ql(d@) = Z [K(C” — ij>2 =+ 2 (K — fiij) Ciicjj 4+ 2((m — 1>K + Hw‘)C?j} . (27)
1<i<j<m

Now the conclusion that Q1 (dy) > 0 at = follows since all terms in the sum on the RHS of [2.7)
are non-negative, that is,

K(cii —cjj)? + 2(K — kij) ciiciy +2((m — 1)K + fiij)cfj >0 (2.8)
for each 1 <14 < j < m. Indeed, if (4, ) is a pair such that x;; < 0 then we have
K(cii — ¢j;)” + 2 (K — ki) ciicjj +2((m — 1)K + kij)e
= K [(cii — ¢j5)* + 2ciicy; + 2(m — 1)es] — 2ri(ciicj; — cj)
= K [¢f + ¢y +2(m = 1)efy] = 245(cuicy; — ci))

> —2#5(ciicsj — ;) 2 0

(2.9)

since K > 0 and c;c55 — c%j > 0 by positivity of h, while if x;; > 0 then by [2.3) we get
K(Cii — ij)Q + 2 (K — fiij) CiiCjj + 2((m — 1)K + Hij>012j Z 2 (K — fiij) CiiCjj >0. (210)

Now, suppose that Q1(dp) = 0 at . We shall prove that if rank(dy,) > 2 then sec,(II) = K
for each 2-plane II < T\,(,)IV, and subsequently we shall also prove that if K > 0 then one further
concludes that i”) or ii’) hold, according to whether rank(dy,) > 2 or rank(de,) < 1.

First, note that if Q1(dy) = 0 then, whichever orthonormal basis {e;} for T, M is chosen,
inequality (2.8) must hold with equality sign for each 1 < ¢ < j < m, so in particular it must be

K(Cll — 022)2 + 2 (K — H12> C11C22 + 2((m — 1)K + H12>C?2 = 0 . (211)

If rank(dp,) > 2 and IT < T,y N is a 2-plane, then we can suppose that {e;} has been chosen so
that IT = 112 = span{Yy, Ya}. Then c11, 22, c11¢22 — ¢35 > 0 by linear independence of Y7 and Ya.
We distinguish the cases K =0 and K > 0.
o If K = 0, then necessarily k12 < 0 by assumption (23], and since the last inequality in
239) (for i =1, j = 2) must hold with equality sign we conclude that k12 = 0.
o If K >0, then K[c}; + 3y +2(m —1)ci,y] > 0, so if it were k12 < 0 then the second-to-last
inequality in (Z3) would be strict and therefore (Z8]) would not hold with equality sign for
i = 1, j = 2. Therefore, it must be k12 > 0 and all inequalities in ([ZI0) must hold with
equality sign. Since cj1c99 > 0, this yields k12 = K.
In both cases, we obtained that sec, (I) = K.

Lastly, suppose that K > 0. We first observe that r = rank(dp,) € {0, ..., m} must be either 0
or m: by contradiction, if it were 1 < r < m — 1 then we could choose an orthonormal basis {e;}
for T,,M such that Y1 = dp(e;) # 0 and Y2 = dy(ea) = 0, yielding ¢;; > 0, ca2 = ¢12 = 0, and
therefore the LHS of ([2.I1)) would be equal to Kc?; > 0, contradiction. Now, if = 0 then clearly
dg, = 0 and this proves ii’). On the other hand, if » = m then for any orthonormal basis {e;}
for T, M we have that Y; = dy(e;), Y; = dy(e;) are linearly independent, so «;; is the sectional
curvature of a 2-plane in T,(;)N and we have ;; = K > 0 from what we proved above. Since (Z.8)
must hold with equality sign, we conclude that in this case ¢;; = ¢j; and ¢;; =0for 1 <i < j <m.
In other words, the matrix (c;;j)1<i j<m representing the bilinear form (¢*h), with respect to the
orthonormal basis {e;} is a (positive) multiple of the identity matrix, and so ¢*h is a positive
multiple of g at z, which proves 1’). a

Proof of Theorem [I1l We rewrite the Bochner identity (IT)) as

S AP = [Vl + Qo(d) + Qu(dy) (212)
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with Qo(dy) and Q1(dy) as in (Z2)-(Z3). By Lemmas 2] and 22 under the assumption (2]
we have that the three terms appearing on the RHS of ([2I2) are all non-negative. So |dp|? is
a subharmonic function on the closed manifold M. By the maximum principle, |dp|? must be
constant on M. Consequently, the RHS of (2.I2]) must vanish and therefore

Vdp=0, Qo(dg)=0, Qu(dp)=0 on M. (2.13)

In particular, ¢ is a totally geodesic map (Vdp = 0). If ¢ is constant, then there is nothing else
to show. So, suppose that ¢ is non-constant. Then |dp|? > 0. From dp # 0 and Q1(dy) = 0 we
deduce from Lemma that dy has rank m = dim M everywhere on M and ¢ : M — N is a
conformal immersion, that is, there exists a positive function p: M — (0, +00) such that

©"h = pg
on M. Tracing both sides of this equality we get |dp|? = mu, so u = |dp|?/m is a positive constant
and the immersion ¢ : M — N is in fact homothetic. Since ¢ is also totally geodesic and N has
constant positive sectional curvature K on any 2-plane tangent to (M), by Gauss’s equations we
have that M also has constant positive sectional curvature. Moreover, the constant value of the
sectional curvature of M is

K, =uK
so that the Ricci curvature of M satisfies

Ricg = (m —1)Kpug = (m — 1)K ¢*h.
a

As anticipated in the introduction, we conclude the paper by giving a proof of the further claims
about the geometry of the map ¢ in the non-constancy case of the original theorem by Eells and
Sampson.

Proposition 2.3 ([13],[12],[21]). Let ¢ : (M, g) — (N, h) be a harmonic map between Riemannian
manifolds. Assume that M is closed and that

Ricg >0 and secy, < 0. (2.14)

Then ¢ is a totally geodesic map and either
i) ¢ is constant, or
ii) ¢ is non-constant, dp has constant rank r > 1 and there exists a closed, flat r-dimensional
manifold (B, gp) such that ¢ factors as the composition ¢ = g o 7 of a totally geodesic
Riemannian submersion m : M — B and of a totally geodesic immersion ¢y : B — N. In
particular:
a) if r =1 then (M) = po(B) is the image of a closed geodesic in N;
b) if r > 2 then

Ricy(X,Y) =0 and secg(Ilp) = secp(II1) =0

for any pair of vectors X,Y in the horizontal distribution ker(dp)t C TM and for
any pair of 2-planes My < ker(dp)* and I} < dp(T'M).

Proof. We reason as in the first part of the proof of Theorem [Tl to conclude that also in this case
we have
|dp|? = constant , Vdp =0, Qo(dp) =0, Q1(dp) =0

where in this case Qo(dy) and Q1(dy) are

Qo(dy) = g* "' hayRijeier . Qi(de) = —g™ g RN a0t oboief -
If |[de|? = 0 then ¢ is constant, otherwise we have that dyp : TM — TN has constant rank due to
condition Vdy = 0 (see for instance [12, page 9]) and setting r = rank(dy) > 1 we have by [21]
Theorem 2.2] that there exists a closed r-dimensional Riemannian manifold (B, gp) such that ¢
factors as the composition of a totally geodesic Riemannian submersion 7 : M — B and of a totally
geodesic immersion g : B — N. From condition Qo(dy) = 0 it follows in this case that Ric,
vanishes on the horizontal distribution ker(dyp)t C TM. If r = 1 then (M) is one-dimensional
and by the definition of totally geodesic map and compactness of M one concludes that it must be
a closed geodesic of N; moreover, in this case B is obviously flat. Hence, it remains to show that
also in case r > 2 the induced metric on B is flat and secy(Ily) = secy(II1) = 0 for any 2-planes
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Iy < ker(dp)t and I} < dp(TM). The claim about II; is a direct consequence of Lemma
and of Q1(dy) = 0. We now prove that B is flat. (If the totally geodesic immersion o : B — N
is also isometric, this is obviously a consequence of Gauss’s equations together with Riem; = 0 on
dpo(TB) = dp(TM).) Let x € B be given and let {z°};<;<, be local normal coordinates on B
centered at z. By the rank theorem, we can choose a local chart {y*}1<q<n=dim v on N around
wo(z) such that

(p0)¢ ::w:cﬁ’ at x for 1<i<r,1<a<n (2.15)
xl

with § the Kronecker delta, and
R =0 at oo(z) whenever 1 <a<r<b<n. (2.16)

Then, from the commutation Ricci identities for the components (‘PO)%k of the second covariant
derivative VVdypg : TB®3 — TN of dyg, see for example [I} formula 1.174], we have

! b d
(20)ii = (Po)fiy + 9B REz k(90 — B REca(0)] (0)5(0)i
for any 1 < 4,5,k < r and 1 < a < n, with repeated summation intended over 1 < ¢,1 < r and
1<b,¢,d,e <n. From (ZTI3) and (ZI8) and normalcy of {«'} at  we further have

T
(¢0)ije = (wo)ik; + Rfijk - Z haejok at x
e=1
for any 1 < a,i,j,k < r. Since g is totally geodesic we have (800)?jk = (gao)gkj =0, and since N
has vanishing sectional curvature on any 2-plane contained in dp(TM) = dpo(T'B) we also have

Ré\l(jk = 0 for any 1 < e,4,j,k < r by polarization. Therefore, we conclude Rfijk = 0 for each

1 < a,i,j,k <r, that is, the Riemann tensor of B vanishes. Lastly, by [2I, Theorem 3.3], since
m: M — B is a totally geodesic Riemannian submersion we have that the horizontal distribution
ker(dr)t is integrable, hence involutive, so from O’Neill’s formula (see [I7, Corollary 1] or [5]
Corollary 9.29]) we have sec,(Il) = sec,, (dr(Ilp)) = 0 for any 2-plane Iy < ker(dp)*. O
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