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REMARKS ON A THEOREM OF EELLS AND SAMPSON

GIULIO COLOMBO, MARCO MARIANI, AND MARCO RIGOLI

Abstract. We prove an extension of Eells and Sampson’s rigidity theorem for harmonic maps
from a closed manifold of non-negative Ricci curvature to a manifold of non-positive sectional
curvature. We give an application of our result in the setting of harmonic-Einstein (or Ricci-
harmonic) metrics and as a consequence we recover a classical rigidity result of Hamilton for the
problem of prescribed positive definite Ricci curvature.
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1. Introduction

It is well known from the seminal work of J. Eells and J. H. Sampson, [13], that any harmonic map
ϕ : (M, g) → (N, h) between a closed Riemannian manifold (M, g) of non-negative Ricci curvature
and a Riemannian manifold (N, h) of non-positive sectional curvature is a totally geodesic map,
that is, it carries geodesics of M to geodesics of N . Furthermore, if ϕ is non-constant then Ricg
cannot be positive definite at any point on M and, depending on the (constant) value of the rank
of dϕ : TM → TN , we have either

i) rank(dϕ) = 1 and ϕ maps M onto a closed geodesic of N , or
ii) rank(dϕ) ≥ 2 and the sectional curvature of (N, h) vanishes on all 2-planes contained in

the subbundle dϕ(TM) ⊆ TN , so that ϕ maps M onto a closed, flat, totally geodesic
submanifold of N .

In both cases i)-ii), if rank(dϕ) = dimM , that is, if ϕ is a totally geodesic immersion, thenM itself
must also be flat and ifM is irreducible then one further concludes that the immersion ϕ :M → N
is homothetic, [21, Corollary 2.4], that is,

ϕ∗h = µg

for some constant µ > 0, while this is not generally true ifM is reducible (for an example, consider
the case of two flat tori (M, g) = R

k/Λ1 and (N, h) = R
k/Λ2 of equal dimension k ≥ 2 defined

by non-homothetic lattices Λ1,Λ2 ⊆ R
k, and ϕ : M → N the totally geodesic, affine, necessarily

non-homothetic diffeomorphism induced by any affine map ψ : Rk → R
k satisfying ψ(Λ1) = Λ2).

On the other hand, if 1 ≤ rank(dϕ) < dimM , then as a consequence of a general structure theorem
for totally geodesic maps between complete manifolds due to J. Vilms, [21, Theorem 2.2], ϕ factors
as the composition ϕ = ϕ0 ◦ π of a totally geodesic submersion π : M → B onto a closed, flat
manifold B of dimension r = rank(dϕ) followed by a totally geodesic immersion ϕ0 : B → N .
Moreover, if this latter case is verified then M is necessarily reducible, [21, Proposition 2.3], and
if M is also simply connected then M is in fact a Riemannian product and π :M → B is just the
projection onto one of the factors, [21, Corollary 3.7].

The above theorem, together with the subsequent observations, can be proved by analysis of
the Bochner identity for harmonic maps (see formula 3.13 in [12])

1

2
∆|dϕ|2 = |∇dϕ|2 +Q(dϕ) (1.1)

where |dϕ|2 = gijhabϕ
a
i ϕ

b
j is twice the energy density of ϕ, ∇dϕ : TM ⊗ TM → TN is the second

fundamental form of the map ϕ, defined as the covariant derivative of dϕ regarded as a section of
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T ∗M ⊗ ϕ−1TN equipped with the connection ∇g ⊗ ϕ∗∇h induced by the Levi-Civita connections
∇g and ∇h of M and N , and Q(dϕ) is a Ricci curvature term given by

Q(dϕ) = gikgjlhabRijϕ
a
kϕ

b
l − gikgjlRN

abcdϕ
a
i ϕ

b
jϕ

c
kϕ

d
l .

Here gij , Rij , hab, R
N
abcd and ϕa

i = ∂(ya ◦ϕ)/∂xi denote the local components of g, Ricg, h, Riemh

and dϕ in local charts {xi} and {ya} for M and N , respectively, and gij stand as usual for the
coefficients of the inverse matrix of (gij). We recall that the condition of ϕ being totally geodesic is
equivalent to ∇dϕ = 0, since for any curve γ : (a, b) →M the accelerations γ̈ = ∇g

γ̇ γ̇ and σ̈ = ∇h
σ̇σ̇

of γ and σ := ϕ ◦ γ are related by

σ̈ = dϕ(γ̈) + (∇dϕ)(γ̇, γ̇) .

Under assumptions Ricg ≥ 0 and sech ≤ 0 the term Q(dϕ) is non-negative, so |dϕ|2 is a subhar-
monic function on the closed manifoldM and then it must be a constant function by the maximum
principle. Thus, the right hand side of (1.1) vanishes and one deduces ∇dϕ = 0 and Q(dϕ) = 0,
so in particular ϕ must be totally geodesic; in case ϕ is non-constant, further conclusions on
the geometry of ϕ follow by refined analysis of the implications of the equation Q(dϕ) = 0 (for
completeness, we include a detailed argument at the end of the paper, see Proposition 2.3).

In this note we prove a result related to Eells and Sampson’s theorem, replacing the condition
Ricg ≥ 0 and sech ≤ 0 with the assumption that

Ricg ≥ (m− 1)K ϕ∗h and sech ≤ K

for some constant K > 0, where m = dimM . In case K = 0 this would clearly reduce to Eells and
Sampson’s condition. In our setting, we still conclude that ϕ is totally geodesic if harmonic, with
a more stringent conclusion in the case of a non-constant map.

Theorem 1.1. Let ϕ : (Mm≥2, g) → (N, h) be a harmonic map between Riemannian manifolds.
Assume that M is closed and that there exists K > 0 such that

Ricg ≥ (m− 1)K ϕ∗h and sech ≤ K . (1.2)

Then ϕ is a totally geodesic map. In particular, either

i) ϕ is constant, or
ii) ϕ is a homothetic immersion, g has positive constant curvature and the inequalities in (1.2)

hold with equality sign on M and ϕ(M), respectively, that is,

Ricg = (m− 1)K ϕ∗h and sech(Π) = K

for any 2-plane Π contained in dϕ(TM) ⊆ TN .

Remark 1.2. In case ii) of Theorem 1.1 the constant value Kg > 0 of the sectional curvatures of g
and the homothety parameter µ > 0 such that ϕ∗h = µg are related by

Kg = µK

and the image ϕ(M) ⊆ N is a totally geodesic submanifold with constant sectional curvature K.

Remark 1.3. We remark that the validity of (1.2) for some K > 0 is invariant with respect to
rescalings of g and h (as is harmonicity of ϕ): if (M, g), (N, h) and ϕ : M → N satisfy (1.2)
for some K > 0, then for any two constants c1, c2 > 0 the metrics ḡ = c1g and h̄ = c2h satisfy
Ricḡ = Ricg and sech̄ = c−1

2 sech, so for K̄ = c−1
2 K > 0 we have

Ricḡ ≥ (m− 1)K̄ ϕ∗h̄ and sech̄ ≤ K̄ .

Our main motivation for considering an inequality on Ricg as in (1.2) comes from the study
of harmonic-Einstein (or Ricci-harmonic) metrics: given a fixed Riemannian manifold (N, h), a
metric g on a smooth manifoldM is said to be harmonic-Einstein (with respect to h) if there exists
a harmonic map ϕ : (M, g) → (N, h) such that

Ricg − αϕ∗h = λ g (1.3)

for some constants α ∈ R \ {0} and λ ∈ R. If g is harmonic-Einstein and ϕ : (M, g) → (N, h) is
a harmonic map realizing the defining condition (1.3) for g, then we also refer collectively to the
pair (g, ϕ) as a harmonic-Einstein structure on M .
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Harmonic-Einstein structures arise as fixed points of the (normalized) harmonic-Ricci flow stud-
ied by R. Buzano, [16], a geometric flow obtained by coupling Hamilton’s Ricci flow with Eells-
Sampson’s heat flow for harmonic maps. In the last decade it has been proved that many key con-
cepts in the theory of the Ricci flow can be extended with due modifications to the harmonic-Ricci
flow, see for instance [6], [15], [20], and that solitons of the harmonic-Ricci flow and quasi-harmonic-
Einstein (or quasi-Ricci-harmonic) metrics (a notion which relates to harmonic-Einstein structures
in pretty much the same way as quasi-Einstein metrics relate to Einstein metrics, see the paper [19]
for a precise definition) exhibit similar features as their Ricci flow and quasi-Einstein counterparts,
[20], [19], [18], [23], [22], [4], [2], [3], [8]. We remark that equation (1.3) also naturally arises in
General Relativity for a Lorentzian metric g as the system of Einstein field equations (with possibly
non-zero cosmological constant) for a spacetime (M, g) having a wave map ϕ : (M, g) → (N, h) as
gravitational energy source, [7, Section III.6.5].

In the setting of (Riemannian) harmonic-Einstein structures, Theorem 1.1 immediately implies
the following result.

Theorem 1.4. Let (N, h) be a Riemannian manifold and let (g, ϕ) be a harmonic-Einstein struc-
ture (with respect to h) on a closed manifold M of dimension m ≥ 2. If α > 0, λ ≥ 0 and

sech ≤
α

m− 1
(1.4)

then ϕ is either constant or a homothetic immersion. Moreover, in the latter case necessarily
λ = 0, g has constant curvature and (1.4) holds with equality sign on any 2-plane in dϕ(TM).

It is worth pointing out that the condition of harmonicity of ϕ is not independent from the
validity of (1.3): if (M, g) and (N, h) are (semi-)Riemannian manifolds and ϕ : M → N is any
smooth map satisfying (1.3) for some constants α 6= 0 and λ, then ϕ is conservative, that is,

〈τ(ϕ), dϕ〉h = 0 ,

see [4, Proposition 2.15]. If ϕ is additionally a submersion, this implies τ(ϕ) = 0. This observation
relates the study of harmonic-Einstein metrics with λ = 0 to the problem of the prescribed Ricci
curvature. The problem can be stated as follows: given a symmetric 2-covariant tensor field h on
a smooth manifold M , to find a Riemannian metric g on M and a constant c > 0 such that

Ricg = c h . (1.5)

(The presence of the parameter c compensates for the lack of homogeneity inherent to the problem.)
Local solvability of the problem and regularity of the solutions were first addressed by D. DeTurck,
[9], and by DeTurck and J. Kazdan, [10], respectively. Later, R. Hamilton, [14], and DeTurck and
N. Koiso, [11], established uniqueness and non-existence results for global solutions g of (1.5) in
particular cases where h is everywhere positive definite (we also refer to [5, Chapter 5] as a further
reference on the topic.) In this latter case, h can be regarded as a Riemannian metric itself on
M , so that equation (1.5) takes the form (1.3) with α = c, λ = 0, N = M and ϕ = idM , and if g
satisfies (1.5) then idM : (M, g) → (M,h) is automatically harmonic by the previous observations
(see also [14, Corollary 3.3] for a direct proof). In this setting, a direct consequence of Theorem
1.4 is the following corollary, which recovers Theorems 4.1 and 4.3 of [14].

Corollary 1.5. Let (M,h) be a closed Riemannian manifold with sectional curvature ≤ 1. If there
exists a Riemannian metric g on M such that

Ricg = (m− 1)h (1.6)

then the metrics g and h are homothetic (that is, there exists a constant µ > 0 such that g = µh)
and the original metric h must have constant sectional curvature exacly 1 everywhere on M .

In particular, if sech < 1 somewhere on M then there exists no metric g satisfying (1.6).

2. Proof of Theorem 1.1

To prove Theorem 1.1 we have to rewrite the term Q(dϕ) in the Bochner identity (1.1) as

Q(dϕ) = Q0(dϕ) +Q1(dϕ) (2.1)
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with

Q0(dϕ) = gikgjlhabRijϕ
a
kϕ

b
l − (m− 1)Kgikgjlhadhbcϕ

a
i ϕ

b
jϕ

c
kϕ

d
l , (2.2)

Q1(dϕ) = (m− 1)Kgikgjlhadhbcϕ
a
i ϕ

b
jϕ

c
kϕ

d
l − gikgjlRN

abcdϕ
a
i ϕ

b
jϕ

c
kϕ

d
l . (2.3)

The next two lemmas show that Q0(dϕ) ≥ 0 and Q1(dϕ) ≥ 0 provided Ricg ≥ (m− 1)Kϕ∗h and
sech ≤ K, respectively, and also characterizes the equality case Q1(dϕ) = 0 when sech ≤ K.

Lemma 2.1. Let ϕ : (M, g) → (N, gN ) be a smooth map between Riemannian manifolds such that

Ricg ≥ (m− 1)K ϕ∗h (2.4)

for some K ∈ R. Then Q0(dϕ) ≥ 0 on M .

Proof. The bilinear form A = Ricg − (m− 1)K ϕ∗h is positive semidefinite by (2.4) and we have

Q0(dϕ) = 〈A,ϕ∗h〉 = habA
ijϕa

i ϕ
b
j

where

Aij = gikgjlAkl = gikgjl(Rkl − (m− 1)Khabϕ
a
kϕ

b
l ) .

Let x ∈ M be given and fix local coordinates {xi} on M around x such that the matrix (Aij) is
diagonal at x. Then we have Aij = 0 whenever i 6= j and Aii ≥ 0 for each 1 ≤ i ≤ m = dimM , so

Q0(dϕ) =

m
∑

i=1

Aiihabϕ
a
i ϕ

b
i =

m
∑

i=1

Aii|dϕ(∂xi)|2h ≥ 0 at x .

�

Lemma 2.2. Let ϕ : (Mm≥2, g) → (N, gN ) be a smooth map between Riemannian manifolds, with

sech ≤ K (2.5)

for some K ≥ 0. Then Q1(dϕ) ≥ 0 on M . Moreover, if Q1(dϕ) = 0 at some point x ∈ M , then
considering the differential

dϕx : TxM → Tϕ(x)N

we have either

i) rank(dϕx) ≥ 2 and sech(Π) = K for each 2-plane Π ≤ dϕx(TxM), or
ii) rank(dϕx) ≤ 1,

and if K > 0 then we further have

i’) ϕ∗h is a multiple of g at x in case i),
ii’) dϕx = 0 in case ii).

Proof. Let x ∈ M be given and {ei}
m
i=1 be an orthonormal basis for TxM . Let {xi} be normal

coordinates centered at x such that ∂xi = ei for 1 ≤ i ≤ m, and let us set Yi = dϕ(ei) for 1 ≤ i ≤ m.
Then, with respect to any local chart {ya} for N centered at ϕ(x), for each 1 ≤ i, j ≤ m we have

hadhbcϕ
a
i ϕ

b
jϕ

c
iϕ

d
j = h(Yi, Yj)

2 , RN
abcdϕ

a
i ϕ

b
jϕ

c
iϕ

d
j = Riemh(Yi, Yj , Yi, Yj) at x

(no summation over i or j is intended in the above formulas). For each pair (i, j) we choose a
2-plane Πij in Tϕ(x)N containing Yi and Yj (which is clearly uniquely determined in case Yi and
Yj are linearly independent) and we let κij = sech(Πij). Then

RiemN (Yi, Yj , Yi, Yj) = κij
[

h(Yi, Yi)h(Yj , Yj)− h(Yi, Yj)
2
]

.

For ease of notation let us set cij = h(Yi, Yj) for each 1 ≤ i, j ≤ m. Then from the above
observations we have

Q1(dϕ) = (m− 1)K
m
∑

i,j=1

c2ij −
m
∑

i,j=1

κij(ciicjj − c2ij) at x . (2.6)

Noting that

∑

1≤i<j≤m

(cii − cjj)
2 =

1

2

m
∑

i,j=1

(cii − cjj)
2 = (m− 1)

m
∑

i=1

c2ii − 2
∑

1≤i<j≤m

ciicjj
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we express

∑

1≤i,j≤m

c2ij =
m
∑

i=1

c2ii + 2
∑

1≤i<j≤m

c2ij

=
1

m− 1

∑

1≤i<j≤m

(cii − cjj)
2 +

2

m− 1

∑

1≤i<j≤m

ciicjj + 2
∑

1≤i<j≤m

c2ij .

Since we also have ciicjj − c2ij = 0 whenever i = j, we can restate (2.6) as

Q1(dϕ) =
∑

1≤i<j≤m

[

K(cii − cjj)
2 + 2 (K − κij) ciicjj + 2((m− 1)K + κij)c

2
ij

]

. (2.7)

Now the conclusion that Q1(dϕ) ≥ 0 at x follows since all terms in the sum on the RHS of (2.7)
are non-negative, that is,

K(cii − cjj)
2 + 2 (K − κij) ciicjj + 2((m− 1)K + κij)c

2
ij ≥ 0 (2.8)

for each 1 ≤ i < j ≤ m. Indeed, if (i, j) is a pair such that κij ≤ 0 then we have

K(cii − cjj)
2 + 2 (K − κij) ciicjj + 2((m− 1)K + κij)c

2
ij

= K
[

(cii − cjj)
2 + 2ciicjj + 2(m− 1)c2ij

]

− 2κij(ciicjj − c2ij)

= K
[

c2ii + c2jj + 2(m− 1)c2ij
]

− 2κij(ciicjj − c2ij)

≥ −2κij(ciicjj − c2ij) ≥ 0

(2.9)

since K ≥ 0 and ciicjj − c2ij ≥ 0 by positivity of h, while if κij > 0 then by (2.5) we get

K(cii − cjj)
2 + 2 (K − κij) ciicjj + 2((m− 1)K + κij)c

2
ij ≥ 2 (K − κij) ciicjj ≥ 0 . (2.10)

Now, suppose that Q1(dϕ) = 0 at x. We shall prove that if rank(dϕx) ≥ 2 then sech(Π) = K
for each 2-plane Π ≤ Tϕ(x)N , and subsequently we shall also prove that if K > 0 then one further
concludes that i’) or ii’) hold, according to whether rank(dϕx) ≥ 2 or rank(dϕx) ≤ 1.

First, note that if Q1(dϕ) = 0 then, whichever orthonormal basis {ei} for TxM is chosen,
inequality (2.8) must hold with equality sign for each 1 ≤ i < j ≤ m, so in particular it must be

K(c11 − c22)
2 + 2 (K − κ12) c11c22 + 2((m− 1)K + κ12)c

2
12 = 0 . (2.11)

If rank(dϕx) ≥ 2 and Π ≤ Tϕ(x)N is a 2-plane, then we can suppose that {ei} has been chosen so

that Π = Π12 = span{Y1, Y2}. Then c11, c22, c11c22 − c212 > 0 by linear independence of Y1 and Y2.
We distinguish the cases K = 0 and K > 0.

• If K = 0, then necessarily κ12 ≤ 0 by assumption (2.5), and since the last inequality in
(2.9) (for i = 1, j = 2) must hold with equality sign we conclude that κ12 = 0.

• If K > 0, then K[c211 + c222 +2(m− 1)c212] > 0, so if it were κ12 ≤ 0 then the second-to-last
inequality in (2.9) would be strict and therefore (2.8) would not hold with equality sign for
i = 1, j = 2. Therefore, it must be κ12 > 0 and all inequalities in (2.10) must hold with
equality sign. Since c11c22 > 0, this yields κ12 = K.

In both cases, we obtained that sech(Π) = K.
Lastly, suppose that K > 0. We first observe that r = rank(dϕx) ∈ {0, . . . ,m} must be either 0

or m: by contradiction, if it were 1 ≤ r ≤ m− 1 then we could choose an orthonormal basis {ei}
for TxM such that Y1 = dϕ(e1) 6= 0 and Y2 = dϕ(e2) = 0, yielding c11 > 0, c22 = c12 = 0, and
therefore the LHS of (2.11) would be equal to Kc211 > 0, contradiction. Now, if r = 0 then clearly
dϕx = 0 and this proves ii’). On the other hand, if r = m then for any orthonormal basis {ei}
for TxM we have that Yi = dϕ(ei), Yj = dϕ(ej) are linearly independent, so κij is the sectional
curvature of a 2-plane in Tϕ(x)N and we have κij = K > 0 from what we proved above. Since (2.8)
must hold with equality sign, we conclude that in this case cii = cjj and cij = 0 for 1 ≤ i < j ≤ m.
In other words, the matrix (cij)1≤i,j≤m representing the bilinear form (ϕ∗h)x with respect to the
orthonormal basis {ei} is a (positive) multiple of the identity matrix, and so ϕ∗h is a positive
multiple of g at x, which proves i’). �

Proof of Theorem 1.1. We rewrite the Bochner identity (1.1) as

1

2
∆|dϕ|2 = |∇dϕ|2 +Q0(dϕ) +Q1(dϕ) (2.12)
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with Q0(dϕ) and Q1(dϕ) as in (2.2)-(2.3). By Lemmas 2.1 and 2.2, under the assumption (1.2)
we have that the three terms appearing on the RHS of (2.12) are all non-negative. So |dϕ|2 is
a subharmonic function on the closed manifold M . By the maximum principle, |dϕ|2 must be
constant on M . Consequently, the RHS of (2.12) must vanish and therefore

∇dϕ = 0 , Q0(dϕ) = 0 , Q1(dϕ) = 0 on M . (2.13)

In particular, ϕ is a totally geodesic map (∇dϕ ≡ 0). If ϕ is constant, then there is nothing else
to show. So, suppose that ϕ is non-constant. Then |dϕ|2 > 0. From dϕ 6= 0 and Q1(dϕ) = 0 we
deduce from Lemma 2.2 that dϕ has rank m = dimM everywhere on M and ϕ : M → N is a
conformal immersion, that is, there exists a positive function µ :M → (0,+∞) such that

ϕ∗h = µg

onM . Tracing both sides of this equality we get |dϕ|2 = mµ, so µ = |dϕ|2/m is a positive constant
and the immersion ϕ : M → N is in fact homothetic. Since ϕ is also totally geodesic and N has
constant positive sectional curvature K on any 2-plane tangent to ϕ(M), by Gauss’s equations we
have that M also has constant positive sectional curvature. Moreover, the constant value of the
sectional curvature of M is

Kg = µK

so that the Ricci curvature of M satisfies

Ricg = (m− 1)Kµg = (m− 1)K ϕ∗h .

�

As anticipated in the introduction, we conclude the paper by giving a proof of the further claims
about the geometry of the map ϕ in the non-constancy case of the original theorem by Eells and
Sampson.

Proposition 2.3 ([13],[12],[21]). Let ϕ : (M, g) → (N, h) be a harmonic map between Riemannian
manifolds. Assume that M is closed and that

Ricg ≥ 0 and sech ≤ 0 . (2.14)

Then ϕ is a totally geodesic map and either

i) ϕ is constant, or
ii) ϕ is non-constant, dϕ has constant rank r ≥ 1 and there exists a closed, flat r-dimensional

manifold (B, gB) such that ϕ factors as the composition ϕ = ϕ0 ◦ π of a totally geodesic
Riemannian submersion π : M → B and of a totally geodesic immersion ϕ0 : B → N . In
particular:
a) if r = 1 then ϕ(M) = ϕ0(B) is the image of a closed geodesic in N ;
b) if r ≥ 2 then

Ricg(X,Y ) = 0 and secg(Π0) = sech(Π1) = 0

for any pair of vectors X,Y in the horizontal distribution ker(dϕ)⊥ ⊆ TM and for
any pair of 2-planes Π0 ≤ ker(dϕ)⊥ and Π1 ≤ dϕ(TM).

Proof. We reason as in the first part of the proof of Theorem 1.1 to conclude that also in this case
we have

|dϕ|2 = constant , ∇dϕ = 0 , Q0(dϕ) = 0 , Q1(dϕ) = 0

where in this case Q0(dϕ) and Q1(dϕ) are

Q0(dϕ) = gikgjlhabRijϕ
a
kϕ

b
l , Q1(dϕ) = −gikgjlRN

abcdϕ
a
i ϕ

b
jϕ

c
kϕ

d
l .

If |dϕ|2 = 0 then ϕ is constant, otherwise we have that dϕ : TM → TN has constant rank due to
condition ∇dϕ = 0 (see for instance [12, page 9]) and setting r = rank(dϕ) ≥ 1 we have by [21,
Theorem 2.2] that there exists a closed r-dimensional Riemannian manifold (B, gB) such that ϕ
factors as the composition of a totally geodesic Riemannian submersion π : M → B and of a totally
geodesic immersion ϕ0 : B → N . From condition Q0(dϕ) = 0 it follows in this case that Ricg
vanishes on the horizontal distribution ker(dϕ)⊥ ⊆ TM . If r = 1 then ϕ(M) is one-dimensional
and by the definition of totally geodesic map and compactness of M one concludes that it must be
a closed geodesic of N ; moreover, in this case B is obviously flat. Hence, it remains to show that
also in case r ≥ 2 the induced metric on B is flat and secg(Π0) = sech(Π1) = 0 for any 2-planes
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Π0 ≤ ker(dϕ)⊥ and Π1 ≤ dϕ(TM). The claim about Π1 is a direct consequence of Lemma 2.2
and of Q1(dϕ) = 0. We now prove that B is flat. (If the totally geodesic immersion ϕ0 : B → N
is also isometric, this is obviously a consequence of Gauss’s equations together with Riemh = 0 on
dϕ0(TB) = dϕ(TM).) Let x ∈ B be given and let {xi}1≤i≤r be local normal coordinates on B
centered at x. By the rank theorem, we can choose a local chart {ya}1≤a≤n=dimN on N around
ϕ0(x) such that

(ϕ0)
a
i :=

∂(ya ◦ ϕ0)

∂xi
= δai at x for 1 ≤ i ≤ r, 1 ≤ a ≤ n (2.15)

with δ the Kronecker delta, and

hab = 0 at ϕ0(x) whenever 1 ≤ a ≤ r < b ≤ n . (2.16)

Then, from the commutation Ricci identities for the components (ϕ0)
a
ijk of the second covariant

derivative ∇∇dϕ0 : TB⊗3 → TN of dϕ0, see for example [1, formula 1.174], we have

(ϕ0)
a
ijk = (ϕ0)

a
ikj + gtlBR

B
tijk(ϕ0)

a
l − haeRN

ebcd(ϕ0)
b
i (ϕ0)

c
j(ϕ0)

d
k

for any 1 ≤ i, j, k ≤ r and 1 ≤ a ≤ n, with repeated summation intended over 1 ≤ t, l ≤ r and
1 ≤ b, c, d, e ≤ n. From (2.15) and (2.16) and normalcy of {xi} at x we further have

(ϕ0)
a
ijk = (ϕ0)

a
ikj +RB

aijk −
r

∑

e=1

haeRN
eijk at x

for any 1 ≤ a, i, j, k ≤ r. Since ϕ0 is totally geodesic we have (ϕ0)
a
ijk = (ϕ0)

a
ikj = 0, and since N

has vanishing sectional curvature on any 2-plane contained in dϕ(TM) ≡ dϕ0(TB) we also have
RN

eijk = 0 for any 1 ≤ e, i, j, k ≤ r by polarization. Therefore, we conclude RB
aijk = 0 for each

1 ≤ a, i, j, k ≤ r, that is, the Riemann tensor of B vanishes. Lastly, by [21, Theorem 3.3], since
π : M → B is a totally geodesic Riemannian submersion we have that the horizontal distribution
ker(dπ)⊥ is integrable, hence involutive, so from O’Neill’s formula (see [17, Corollary 1] or [5,
Corollary 9.29]) we have secg(Π0) = secgB (dπ(Π0)) = 0 for any 2-plane Π0 ≤ ker(dϕ)⊥. �
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