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Abstract. Federated neuromorphic learning (FedNL) leverages event-
driven spiking neural networks and federated learning frameworks to
effectively execute intelligent analysis tasks over amounts of distributed
low-power devices but also perform vulnerability to poisoning attacks. The
threat of backdoor attacks on traditional deep neural networks typically
comes from time-invariant data. However, in FedNL, unknown threats
may be hidden in time-varying spike signals. In this paper, we start to
explore a novel vulnerability of FedNL-based systems with the concept of
time division multiplexing, termed Spikewhisper, which allows attackers
to evade detection as much as possible, as multiple malicious clients
can imperceptibly poison with different triggers at different timeslices.
In particular, the stealthiness of Spikewhisper is derived from the time-
domain divisibility of global triggers, in which each malicious client pastes
only one local trigger to a certain timeslice in the neuromorphic sample,
and also the polarity and motion of each local trigger can be configured
by attackers. Extensive experiments based on two different neuromorphic
datasets demonstrate that the attack success rate of Spikewispher is
higher than the temporally centralized attacks. Besides, it is validated
that the effect of Spikewispher is sensitive to the trigger duration.

Keywords: Federated Learning · Backdoor Attacks · Spiking Neural
Networks.

1 Introduction

Federated neuromorphic learning (FedNL), a combination of federated learning
(FL) and spiking neural networks (SNNs), enables substantial low-power devices
to quickly and energy-efficiently obtain Artificial Intelligence (AI) models from
large amounts of distributed data while protecting data privacy. In federated
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Fig. 1: Overview of Temporal Spike Backdoor Attacks on FedNL. In the training
phase, the Central Server aggregates parameters from local benign and malicious
participants in the previous round t, updating the global SNN model parameters
ωt+1. The attackers use only a subset of the global trigger’s temporal sequence as
the local trigger for implementing the backdoor attack. In the inference phase, all
clients with the global SNN model will misclassify input with the global trigger
into the target class.

learning, each device trains an AI model locally and then uploads the model
parameters or gradients to a central server for global model aggregation. SNNs
have been proposed and explored as a low-power neuromorphic alternative to
traditional deep neural networks (DNNs) due to the event-driven and discrete
features of signal processing [10,8]. In the era of thriving large models, for example,
training the GPT-3 model consumed about 190,000 kWh of electricity [7], FedNL
emerges with the potential for allowing low-power devices to collaboratively train
the large model.

Nowadays, FedNL has garnered widespread attention [22,23,28]. However, in
the same way as the federated learning with DNNs [18,5], federated neuromorphic
learning is vulnerable to a variety of security threats, and one of the most critical
threats is backdoor attack, which modifies the training set to inject triggers in
certain examples. After training, the model will perform correctly in the main
task. However, with the presence of triggers (backdoors) on the input samples,
the model will go wrong and misclassify samples to the target label. Existing
backdoor research has mainly considered DNNs rather than SNNs. Backdoor
threats under FedNL urgently need further study.

Considerable attention has been paid to exploring backdoor attacks on tra-
ditional DNNs. However, there has been scant attention paid to investigating
backdoor attacks targeting FedNL with SNNs. In this paper, we delve into the
feasibility of backdoor attacks in FedNL. In response to the temporally distributed
characteristic, a novel method with the concept of Time Division Multiplexing
for backdoor attacks is designed. By splitting the global trigger into multiple
spike timeslices, the local triggers are concealed within each spike timeslice of
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the neuromorphic data, significantly enhancing the stealthiness and effectiveness
of the backdoor attack. It exposes a novel security vulnerability for FedNL,
which is crucial for the security of edge intelligence applications [4]. The main
contributions of this paper are summarized as follows:
– A novel temporal spike backdoor attack scheme is proposed for FedNL over

low-power devices, named Spikewhisper, which is distributed in the time
dimension rather than the spatial dimension. To the best of our knowledge,
this is the first work on the robustness and security of federated neuromorphic
learning.

– Different from traditional neural backdoor attacks, we identify that the
backdoor effect of Spikewhisper is extremely sensitive to not only local trigger
size and location but also temporal duration.

– Extensive experiments on Attack Success Rate (ASR) and Main Task Ac-
curacy (MTA) with two different neuromorphic datasets demonstrate that
Spikewhisper achieves state-of-the-art attack effects against temporal central-
ized backdoor attacks.

The rest of this paper is organized as follows. Section 2 introduces the related
work of FedNL and backdoor attacks. Section 3 introduces the Spikewhisper
system model. The experiments are presented in Section 4. Section 5 provides a
conclusion and outlook for our work.

2 Related work

Since our work primarily follows two research directions: Federated Neuromorphic
Learning and Backdoor Attacks, a comprehensive introduction of recent advances
in these two areas is as follows.

2.1 Federated Neuromorphic Learning

Federated Neuromorphic Learning (FedNL) is pioneered by Skatchkovsky et
al. [22] to effectively train SNNs for low-power edge intelligence, providing an
effective trade-off between communication overhead and training accuracy. To
capture dynamic spike characteristics at time-domain and reduce the training
cost, Venkatesha et al.[13,23] proposed a Batch Normalization Through Time
(BNTT) algorithm, which decoupled the parameters of each layer of neurons on
the time axis. On the basics of this, they also validated that the accuracy of FedNL
is 15% higher than that of DNNs on CIFAR10 as well as the energy efficiency
is 5.3 times higher. Xie et al. [27] applied the FedSNN-NRFE approach based
on neuronal receptive field encoding in traffic sign recognition. In comparison
to CNN, FedSNN-NRFE significantly reduced energy consumption. Meanwhile,
Yang et al. [28] proposed a lead federated neuromorphic learning framework for
wireless edge intelligence, designating devices with high computational capacity,
communication, and energy resources as leaders to effectively accelerate the
training process. Wang et al. [25] introduced SNNs into asynchronous federated
learning, which adapts to the statistical heterogeneity of users and complex
communication environments.
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2.2 Backdoor Attacks

Gu et al. first introduced neural backdoor attacks, named Badnets [12]. This attack
method involves training on images with square patches, creating a backdoor that
can be triggered at will by the attacker. Bagdasaryan et al. introduced backdoor
attacks into the field of FL [5]. In this context, attackers train the backdoor model
locally and upload local model updates scaled by a constraint replacing the benign
global model. Bhagoji et al. proposed a stealthy model poisoning method [6],
with the use of an alternating minimization strategy that alternately optimizes
for stealth and the adversarial objective. Xie et al. introduced the distributed
backdoor attack (DBA) [26], wherein the global trigger is spatially decomposed
into local triggers. These local triggers are then individually embedded into the
training data of multiple malicious parties, enabling a distributed implementation
of the backdoor attack.

Abad et al. first investigated the application of backdoor attacks in SNNs using
neuromorphic datasets [1,2]. The subsequent work [3] by Abad et al. concurrently
explored backdoor attacks on FedNL alongside our research. Compared to this
work, we made more explorations in the design and duration of local triggers.

In this paper, we identify a very sophisticated attack path with the concept
of Time Division Multiplexing, that is, poisoning by different clients on different
frames of neuromorphic data with different local triggers, which further improves
the awareness level about the security risks of FedNL.

3 System Model

In this section, we will present the comprehensive system model of Spikewhisper.
Section 3.1 introduces the backdoor threat model under FedNL, while Section
3.2 discusses the variations that attackers face when transitioning from FL to
FedNL. Section 3.3 provides an overview of Spikewhisper.

3.1 Threat Model

FedNL’s goal is to train a global SNN model that can generalize well on test data
Dtest after aggregating over the distributed training results from N clients with
their N local datasets Di on a central server S. The objective of FedNL can be
cast as a finite-sum optimization as below:

min
ω∈Rd

[
F (ω) :=

1

N

N∑
i=1

fi(ω)

]
(1)

where ω stands for the parameters of the model and fi stands for the loss function∑
(x,y)∈Di

L(fω(x), y).
Specifically, at round t, S dispatches the current global SNN model Gt to a

subset of clients denoted by n ∈ {1, 2, ..., N}. The selected client, indexed as i,
locally computes the loss function fi and adopts surrogate gradient descent [20]
for E local epochs.
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Attacker ability We consider the attacker’s ability as follows:

– The attacker has full control over the local training data of any compromised
participant. All compromised participants conspire under the attacker’s
control to conduct backdoor attacks against the FedNL system, which is
consistent with FL settings. [24]

– The attacker can manipulate the local training process, such as updating
hyperparameters like the number of epochs and learning rate.

– The attacker can not tamper with any aspects of the benign participants’
training.

– The attacker does not have control over the central server’s aggregation
algorithm used to combine participants’ updates into the joint SNN model.

Attack Objective The attacker wants FedNL to produce a joint backdoor
SNN model that has good performance on both the main task and the backdoor
task. In other words, the SNN model predicts normally on any clean input while
predicting a target label ŷ on any input that has a global trigger. The adversarial
objective for attacker i in round t with local dataset Di and target label ŷ is:

ωt+1 = argmin
ω

(
∑

j∈Dcln
i

L(fω(xj), yj) +
∑

j∈Dpoi
i

L(fω(x̂j)), yt)) (2)

where the clean dataset Dcln
i and poisoned dataset Dpoi

i satisfy Dcln
i ∪Dpoi

i =

Di and Dcln
i ∩Dpoi

i = ∅. The x̂ is the backdoored, and yt is the backdoor target
label.

3.2 Changes Faced by Attackers

The transition from FL to FedNL introduces a series of changes that pose
challenges for attackers. These changes are outlined as follows.

The biggest difference between SNNs and traditional DNNs is the feature of
information processing. DNNs process continuously changing real-value, whereas
SNNs process discrete events that occur at certain time points due to using
spiking neurons. The Leaky-Integrate-and-Fire (LIF) model [11] is frequently
used to simulate neuronal functions in SNNs.

Fig. 2: The Leaky-Integrate-and-Fire Behavior of Spiking Neuron i.
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As shown in Fig. 2, for given Spiking Neuron i, a set of spikes from N
input neurons is accumulated through the weight wij for all j ∈ N , forming the
membrane potential of the neuron. Once the membrane potential reaches the
threshold v, an output spike is triggered. After the occurrence of a spike, the
membrane potential is reset to the resting potential urest, or in the case of a soft
reset, the membrane potential is decreased by the threshold v. The entire process
persists for T timesteps.

occurrence of a spike, the membrane potential is reset to the resting potential
urest, or in the case of a soft reset, the membrane potential is decreased by the
threshold v. The entire process persists for T timesteps. Formally, the Leaky
Integrate-and-Fire (LIF) mechanism can be expressed as follows:

ut
i = λut−1

i +
∑
j∈N

wijo
t−1
j (3)

where ut
i represents the membrane potential of neuron i at timestep t, λ is a

constant leakage factor, indicating how much the membrane potential decreases
per timestep. The discrete nature of information processing makes SNNs employ
Surrogate Gradient Descent [20] for training.

Neuromorphic data are widely considered to be the most suitable data for
SNNs today. Neuromorphic data consists of many spiking events that are captured
by the Dynamic Vision Sensor (DVS) sensing the intensity change (increase or
decrease) of each pixel in the environment, e.g. ON channel indicates an increase
and OFF channel indicates a decrease. The entire spiking sequence can be
represented as an event of size T × P ×H ×W , where H and W are the height
and width, T denotes the length of the recording time, and P denotes two channels
of polarity. For ordinary data in the image domain, the triggers commonly are
encoded in 256 possibilities per pixel per channel (usually 3 channels), which
allows for many color combinations. In neuromorphic data, however, each pixel
could only take the value 0 or 1 in two channels (On and OFF polarity channel).
In other words, the trigger space is reduced to 4 possibilities encoded by the
two different polarities in SNNs, which limits the backdoor trigger design greatly.
Additionally, neuromorphic data is time-encoded, which is temporal and contains
T frames while ordinary images are static and non-temporal.

After being aware of the discrete nature of information processing, the limita-
tions of color combinations, and the flexibility in the time dimension, we propose
Spikewhisper to inject backdoors in FedNL.

3.3 Spikewhisper Framework

Our proposed Spikewhisper utilizes the concept of Time Division Multiplexing
(TDM) to enhance the backdoor efficacy and stealthiness in FedNL as shown in
Fig. 1. In TDM, different signals are interleaved within different time slots to
share a channel. Similarly, in Spikewhisper, the neuromorphic data is segmented
into multiple timeslices. Let T represent the total duration of the neuromorphic
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data. The allocation of timeslices can be represented as follows:

T = {t1, t2, ..., tK} while T =

K∑
i=1

∆ti (4)

Where ∆ti represents the duration of timeslice ti and K represents the total num-
ber of timeslices, consistent with the number of malicious participants controlled
by the attacker. The length of timeslice allocated to each malicious participant can
be freely distributed according to demand, constrained only by the total length
T . In the field of communications, there is the concept of channel utilization rate.
In Spikewhisper, the redundant space for backdoor triggers of neuromorphic data
can be analogized as a ’temporal channel’, and the temporal utilization rate U ,
can be represented as:

U =

K∑
i=1

∆Li

∆ti
(5)

Where ∆Li stands for the local trigger’s duration of ti. Subsequent experiments
in Section 4.5 illustrate that high utilization produces a stronger backdoor effect.

In the poisoned data design stage, the attacker has the flexibility to configure
the polarity and motion of the local triggers in a wide range of cases. As stated
in Section 3.2, We denote these four polarity possibilities as p0, p1, p2, and p3.
Consequently, for different polarity combinations, triggers show different colors,
i.e. black, green, dark blue, or light blue. Due to the multiple time frames in
neuromorphic data, we can change the position of local triggers frame by frame,
creating a sense of motion. This aligns more with the motion (illumination
changes) nature of neuromorphic data and facilitates more stealthy and more
natural triggers. Formally, the process of generating a poisoned data is as follows:

(x̂, yt) = Ri((x, y), p,m, s) (6)

Where x̂ represents the modified input, yt is the target label, p denotes the trigger
polarity, m represents the trigger’s motion trajectory, and s represents the size
of the trigger.

For the backdoor training phase, the malicious client adopts the batch poison
approach. Based on the poisoning rate r, the malicious client i poisons r ×
BatchSize clean data, only poisoning the data at the i-th timeslice. Additionally,
the malicious client uses a smaller learning rate and more local epochs to achieve
a better backdoor effect. Formally, the training process is represented as follows:

∆wij =

T∑
t=1

∂L

∂wt
ij

=

T∑
t=1

∂L

∂oti

∂oti
∂ut

i

∂ut
i

∂wt
ij

(7)

Where ∆wij , the gradient of the weight connecting neuron i and j is accumulated
over T timesteps. The loss function L is to evaluate the mean square error
between output fire rates and sample label yi, which is given by

L =
1

N

N∑
i=1

(
1

T

T∑
t=1

Si(t)− yi

)2

(8)
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In the inference phase of FedNL, the attacker uses a global trigger to implement
a backdoor attack. The global trigger is formed by aggregating all local triggers,
which can be represented as Tglobal =

∑K
i=1 Tlocal,i

In the Spikewhisper framework, the allocation of timeslices and the design
of triggers exhibit a high degree of flexibility. For ease of experimental demon-
stration, we adopt equally sized time slice allocations. Specifically, we segmented
neuromorphic data into 3 timeslices and designed two types of global triggers,
namely static trigger and moving trigger, as illustrated in Fig. 3. Taking the static

...

T=0

...

T=1 T=N/3 T=N/3+1 T=2N/3 T=2N/3+1

...

Static

Moving

Local trigger 1 Local trigger 2 Local trigger 3

Global trigger

Timeslice 1 Timeslice 2 Timeslice 3

Fig. 3: Static trigger and moving trigger used in Spikewhisper.

trigger as an example, this trigger is inspired by BadNets [12] in DNNs, where a
fixed-position square trigger is on all frames of neuromorphic data. However, the
polarity of the trigger varies over timeslices. As the polarity changes from p1 to
p3 (except the polarity p0 representing the color black), the color of the static
trigger changes on different timeslices too. The moving trigger is inspired by the
previous backdoor work on SNNs [1,2]. The trigger horizontally and smoothly
changes the location from frame to frame, creating an effect of moving among the
actions of the image, making the procedure more stealthy and more natural. As
for the variation in the polarity for each timeslice of moving triggers, it remains
consistent with that of static triggers, which is different from the previous SNN
backdoors.

If we transplant the traditional FL backdoor attack to FedNL, we would
obtain a form of temporally centralized attack. In this scenario, each malicious
user employs the same global trigger to poison the data, and this trigger spans
every frame of the neuromorphic data. In contrast to Spikewhisper, which conceals
local triggers within specific data timeslices, this attack method significantly
increases the risk of poisoning exposure, exhibits poor stealthiness, and overlooks
the temporal distribution characteristics of FedNL.
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4 Experiment

4.1 Datasets & Network Architectures

We evaluate Spikewhisper on two neuromorphic datasets: N-MNIST [21] and
CIFAR10-DVS [16], which are converted from the most popular benchmarking
datasets for AI security in computer vision.

(a) N-MNIST (b) CIFAR10-DVS

Fig. 4: Neuromorphic Data Samples (one frame of each sample).

The N-MNIST dataset is a spiking version of the MNIST [15] dataset. It com-
prises 60000 training samples and 10000 test samples for 10 classes, maintaining
the same scale as the original MNIST dataset, but with a sample size of 34× 34
instead of 28×28. Likewise, the CIFAR10-DVS dataset is a spiking version of the
CIFAR10 [14] dataset. It contains 10000 128× 128 samples, and 1000 samples
per class, corresponding to 10 classes. The sample size for both the N-MNIST
and CIFAR10-DVS datasets is represented as T × P ×H ×W , where T is the
time steps (we set T = 18 in the experiments), P is the polarity, H is the height,
and W is the width.

We employed distinct network architectures for the two datasets. For the
N-MNIST dataset, the network comprises two convolutional layers followed by
batch normalization and max pooling layers, then two linear layers with dropout,
concluding with a voting layer aimed at enhancing classification robustness. In
the case of the CIFAR10-DVS dataset, the network consists of four convolutional
layers incorporating batch normalization and max pooling layers, along with two
linear layers incorporating dropout, and similarly concludes with a voting layer.

4.2 Experiment Setup

We used SpikingJelly [9] framework to implement the SNN model and partition
the N-MNIST and CIFAR10-DVS datasets into T=18 frames. Within FedNL,
we employed the Adam optimizer with a local learning rate lr and batch size of
B for training over E local epochs.

Following the multiple-shot attack setup of Bagdasaryan et al. [5], the attackers
need to undergo multiple rounds of selection, and the accumulation of malicious
updates is necessary for the success of the attack. Otherwise, the backdoor will
be weakened by benign updates and quickly forgotten by the global SNN model.
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(a) Static Trigger (b) Moving Trigger

Fig. 5: Spikewhisper and Temporally Centralized Attacks (TCA) on the N-MNIST
dataset

To expedite the convergence speed of backdoor learning and quickly observe
the distinctions between temporally centralized attacks and Spikewhisper, we
consistently select attackers in each training round. Then we randomly choose
benign participants to form a total of 10 participants. Furthermore, we expedite
the training speed by employing IID distribution to allocate the neuromorphic
datasets among a total of 50 participants. To ensure training stability, malicious
participants engage in backdoor training after a certain number of benign training
rounds (10 for N-MNIST, and 25 for CIFAR10-DVS).

In our experiments, we employ the same static and moving global triggers
to assess the attack success rates of Spikewhisper and temporally centralized
attacks. To ensure a fair comparison, we make certain that the total number of
backdoor trigger pixels for Spikewhisper attackers is identical to that of temporally
centralized attackers.

4.3 Evaluation Metrics

We evaluate Spikewhisper and Temporally Centralized Attacks with the commonly
used metrics:

– Attack Success Rate (ASR) represents the percentage of attacked samples
that the compromised model successfully predicts as the desired target label.

– Main Task Accuracy signifies the precision with which the infected model
predicts benign test samples.

4.4 Experiment Result

The experiment conducted involved attacks using both static and moving triggers
on the N-MNIST and CIFAR10-DVS datasets, evaluating the impact on federated
neuromorphic learning through multiple rounds of SNN model aggregation. The
results demonstrate the efficacy of Spikewhisper and the comparative performance
of Spikewhisper versus the centralized approach.
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(a) Static Trigger (b) Moving Trigger

Fig. 6: Spikewhisper and Temporally Centralized Attacks (TCA) on the CIFAR10-
DVS dataset

As shown in Fig. 5, for the N-MNIST dataset, Spikewhisper with static
trigger exhibited a rapid escalation in the attack success rate (ASR) for the global
trigger, surpassing 99% by the 42nd round. In contrast, the local static triggers
showed significantly lower ASRs at 0.49%, 1.99%, and 1.27%, respectively. The
centralized static attack yielded a relatively low ASR of 2.09% at this point,
highlighting the inferiority compared to Spikewhisper. Spikewhisper with moving
trigger on N-MNIST also achieved high ASRs for the global trigger, exceeding
99% by the 46th round. The centralized attack achieved an ASR of only 12.46%
in the final round, indicating a failure to establish a backdoor in the global SNN
model, while Spikewhisper reached 100% ASR.

Switching to the CIFAR10-DVS dataset as shown in Fig. 6, Spikewhisper
with static trigger also demonstrated a rapid rise in the ASR of the global trigger,
exceeding 99% by the 120th round, with local static triggers exhibiting varying
low ASRs. The temporally centralized attack lagging behind at 50% ASR at this
point. The moving trigger attacks on CIFAR10-DVS were more challenging, with
a slower growth rate in ASR compared to static triggers. In Spikewhisper, the
global moving trigger reached 95% ASR by the 190th round, with the ASR for
the temporally centralized attack less than 40%. Even in the final round, the
temporally centralized attack achieved an ASR of only 47.89%, emphasizing the
effectiveness of Spikewhisper with its higher ASR.

Table 1: Main Task Accuracy (%)
Attack Types N-MNIST CIFAR10-DVS

Baseline (No Attack) 98.96 64.30 (150 Round)
65.60 (250 Round)

Spikewhisper w/ Static Trigger 98.87 62.20 (150 Round)
Temporally Centralized Attack w/ Static Trigger 98.99 62.80 (150 Round)

Spikewhisper w/ Moving Trigger 98.76 64.30 (250 Round)
Temporally Centralized Attack w/ Moving Trigger 98.92 65.50 (250 Round)
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As for the impact of Spikewhisper and temporally centralized attacks on main
task accuracy, please refer to Table 1. From the table, we can observe that both
Spikewhisper and temporally centralized attacks have almost negligible effects
on the accuracy of the main task. The decrease in main task accuracy caused
by Spikewhisper does not exceed 2.1%, while the accuracy under temporally
centralized attacks at times, even surpasses the baseline due to fluctuation.

In summary, Spikewhisper successfully injected a backdoor into the global SNN
model, demonstrating its potential threat to federated neuromorphic learning
systems. By implementing Spikewhisper on the N-MNIST and CIFAR10-DVS
datasets, we achieved attack success rates (ASRs) of over 99%, with little impact
on the accuracy of the main task. Compared to temporally centralized attacks,
the ASR of Spikewhisper was significantly higher in all experimental instances.
In the N-MNIST dataset, even with local trigger attack success rates consistently
below 10%, the global trigger achieved a 99% ASR. This indicates that temporally
centralized attacks are inefficient in federated neuromorphic learning.

4.5 Ablation Study

In this subsection, we investigated the impact of the temporal length of Spikewhis-
per triggers on the backdoor effects based on ASRs. Additionally, we experimented
with the attack performance of Spikewhisper in the Non-IID setting, further
exploring the generality of Spikewhisper.

Temporal Utilization of Trigger In the preceding experiment setup, each
data sample consists of T = 18 frames. The global trigger also spans 18 frames,
distributing to three local triggers, each lasting for 6 frames, achieving a 100%
temporal utilization rate.

(a) Static Trigger on
N-MNIST

(b) Moving Trigger
on N-MNIST

(c) Static Trigger on
CIFAR10-DVS

(d) Moving Trigger
on CIFAR10-DVS

Fig. 7: Effects of the temporal utilization rate U on Attack Success Rate of
Spikewhisper. U = 0% means no data poisoning, and U = 100% means each local
trigger persists throughout the entire 6 frames, collectively forming an 18 frames
global trigger.

We maintain the presence of three malicious participants, inserting triggers in
the first, middle, and last thirds of the data frames (each comprising 6 frames).
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U = 0% indicates no insertion of local triggers, meaning no data poisoning.
U=33% and U=67% respectively represent inserting 2 frames and 4 frames of
local triggers per timeslice, and U = 100% signifies that each local trigger persists
throughout the entire 6 frames, collectively forming an 18 frames global trigger.

The experimental results of two triggers on two neuromorphic datasets are
shown in Fig. 7. It can be observed that all four plots exhibit similar phenomena,
where the backdoor effect of Spikewhisper gradually strengthens with the increase
of U . When U = 33%, both trigger types on the two datasets fail to inject
backdoors into the global SNN model, resulting in minimal backdoor effects.
When U = 67%, successful backdoor effects can be achieved, but more rounds are
required to fully inject the backdoor into the global SNN model. When U = 100%,
the injection speed of the backdoor reaches its maximum, and the number of
rounds required for backdoor learning convergence is also minimized.

Based on the experimental analysis of the impact of U on the backdoor effect,
it can be concluded that the longer the duration of the trigger, the more likely
the success of the attack in the federated neuromorphic learning scenario. This
success leads to the injection of a backdoor into the global SNN model.

Trigger Size and Location In backdoor attacks on DNNs, the size and location
of the trigger can significantly impact the attack effectiveness. To identify the
difference of Spikewhisper against these backdoors in DNNs, in Section 4.5,
we observe that Spikewhisper is only sensitive to the temporal duration of the
trigger, which is a unique feature under FedNL. In this section, we will explore
whether the size and location of the trigger similarly affect the effectiveness of
Spikewhisper.

Table 2: ASR of Spikewhisper with different trigger sizes and locations on N-
MNIST.

Trigger size Position Type ASR (60 Rounds)
1× 1 bottom-right static 0.28%
1× 1 bottom-right moving 0.90%
2× 2 bottom-right static 56.44%
2× 2 bottom-right moving 87.96%
3× 3 bottom-right static 100.00%
3× 3 bottom-right moving 100.00%
3× 3 middle static 0.26%
3× 3 middle moving 0.26%
3× 3 top-left static 100.00%
3× 3 top-left moving 99.91%

Under different trigger sizes and position configurations, the ASR of Spike-
whisper on the N-MNIST is presented in Table 2. Under 60 rounds, it can be
observed that the size and position of triggers significantly influence the backdoor
performance of Spikewhisper. In terms of size, the ASR increases sequentially as



14 H. Fu et al.

the trigger size grows. Interestingly, in previous experiments, we observed that
the backdoor convergence speed with moving triggers was slower than that of
static triggers. However, in the case of smaller triggers, we found that moving
triggers could induce a stronger backdoor effect. Regarding position, we moved
the trigger from its original position in the bottom right corner of the data along
the diagonal. We tested three positions: bottom-right, middle, and top-left. It can
be seen that triggers at corners exhibit excellent ASR, while those in the middle
perform poorly. We attribute this to the fact that the main body of N-MNIST
samples is located in the middle of the images, affecting the effectiveness of
triggers in the middle.

Non-IID Scenario In real-world application scenarios of federated learning,
the data distribution among each participant is often non-independent and iden-
tically distributed (Non-IID) [17]. Therefore, we also evaluate the Spikewhisper’s
performance under Non-IID settings to validate its practicality.

(a) Static Trigger (b) Moving Trigger

Fig. 8: Spikewhisper on N-MNIST in Non-IID Scenario.

To evaluate the performance of Spikewhisper in the Non-IID scenario, we
utilized a Dirichlet distribution [19] with α = 0.5 hyperparameter to partition
the 60,000 training samples of the N-MNIST dataset.

It can be observed that in the Non-IID setting, Spikewhisper successfully
injected a backdoor into the global SNN model, whether using the static trigger
or the moving trigger. In comparison to the IID setting, the communication
rounds required for the ASR to reach 99% increased from around 40 rounds to
approximately 60 rounds. However, the consistent phenomenon remains: when
Spikewhisper successfully injects the backdoor, the ASR for each local trigger
remains at an extremely low level.

5 Conclusions & Future Work

This paper aims to investigate a novel temporal spike backdoor attack named
Spikewhisper in FedNL over low-power devices, particularly utilizing the dis-
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tributed nature of federated learning and the temporal characteristics of spiking
neural networks with the concept of time division multiplexing. We evaluate
Spikewhisper using static and moving triggers on two different neuromorphic
datasets: 1) N-MNIST and 2) CIFAR10-DVS. The results indicate that Spike-
whisper outperforms temporally centralized attacks significantly, achieving an
attack success rate of over 99%. We study the temporal duration of triggers in
Spikewhisper, revealing that the more frames the triggers occupy, the stronger the
resulting backdoor effect, facilitating faster injection of backdoors into the global
SNN model. Furthermore, we explore the impact of trigger size and location on
Spikewhisper. Lastly, we also evaluate the performance of Spikewhisper in the
Non-IID setting. Our research indicates that federated neuromorphic Learning
is susceptible to temporal spike backdoor attacks (Spikewhisper), yet there is
currently a lack of dedicated backdoor defense measures in this domain. The
development of corresponding defense strategies specifically targeting spiking
neural networks and neuromorphic data in FedNL is poised to become a crucial
direction for future research.
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