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Abstract

We prove new concentration inequalities for quantum spin systems which apply
to any local observable measured on any product state or on any state with expo-
nentially decaying correlations. Our results do not require the spins to be arranged
in a regular lattice, and cover the case of observables that contain terms acting on
spins at arbitrary distance. Moreover, we introduce a local W1 distance, which quan-
tifies the distinguishability of two states with respect to local observables. We prove
a transportation-cost inequality stating that the local W1 distance between a generic
state and a state with exponentially decaying correlations is upper bounded by a func-
tion of their relative entropy. Finally, we apply such inequality to prove the equivalence
between the canonical and microcanonical ensembles of quantum statistical mechanics
and the weak eigenstate thermalization hypothesis for the Hamiltonians whose Gibbs
states have exponentially decaying correlations.

1 Introduction

Concentration inequalities provide an upper bound to the probability of the deviations of
a random variable from its mean and have become a fundamental tool in mathematics,
physics and computer science [1]. Concentration inequalities have been recently proved in
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the setting of local observables mesured on quantum spin systems with weak correlations
and have explained important physical effects. Local observables have the form

H =
∑

Λ⊆[n]

hΛ , (1.1)

where each Λ is a subset of the set of all the spins and each hΛ only acts on the spins in the
corresponding Λ. The topic has originally been investigated for product states [2–5] and later
for high-temperature Gibbs states [6, 7] and states of spin lattices whose correlations decay
exponentially with the distance [8]. Concentration inequalities for Gibbs states have been
the key tool to prove the equivalence between the canonical and the microcanonical ensem-
bles of quantum statistical mechanics and the weak version of the eigenstate thermalization
hypothesis [6, 7, 9–12].

The first part of the present paper is devoted to proving new concentration inequalities for
product states and states of a quantum spin lattice with correlations that decay exponentially
with the distance. Such concentration inequalities are based on a local norm for observables,
which is given by the maximum over the spins of twice the sum of the operator norms of the
addends in (1.1) that act on that spin (Definition 3.1).

The best available concentration inequality for product states is [8, Theorem 5.3], and
states that the concentration of local observables is exponential in the number of spins
whenever each region Λ in the sum (1.1) intersects only O(1) other regions. Our Theorem 3.2
extends this result to the setting where each region Λ contains O(1) spins and the local norm
of the observable is O(1). We stress that our result covers also the case of observables with
all-to-all interactions, e.g., where the sum in (1.1) runs over all the couples of spins, provided
that the sum of the operator norms of the addends that act on any given spin is O(1).

The best available concentration inequalities for the states of a quantum spin lattice whose
correlations decay exponentially with the distance are [8, Theorem 4.2] and [12, Eq. (S.17)],

and state that the probability of deviations from the average decays as exp
(
−Ω

(
n

1
2d+1

))
,

where n is the number of spins and d > 0 depends on the geometry of the lattice, whenever
the diameter of all the regions in the sum (1.1) is O(1). Our Corollary 3.2 extends these
results to the setting where each region Λ contains O(1) spins and the local norm of the
observable is O(1). Furthermore, while [8, Theorem 4.2] and [12, Eq. (S.17)] require a
regular lattice, our results do not require any regular structure nor the notion of neighboring
spins, but only require a distance on the set of the spins such that the size of each metric
ball is O(rd), where r is the radius (Assumption 2.1).

The second part of the paper is devoted to the equivalence between the ensembles of
quantum statistical mechanics. It has long been known that a concentration inequality for
an observable measured on a Gibbs state implies an upper bound in the difference between
the expectation value of that observable on the Gibbs and on any microcanonical states with
sufficiently close average energy [6, 7, 9–12], thus bounding the distinguishability between
the Gibbs and the microcanonical states and proving the equivalence between the canonical
and microcanonical ensembles for the observables that exhibit concentration. Such link
between concentration and equivalence of the ensembles has been connected to the quantum
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theory of optimal mass transport [5,13–15]. In this context, a quantum generalization of the
Lipschitz constant has been defined to quantify the maximum dependence of an observable
on any given spin, and concentration inequalities have been proved for observables with
O(1) Lipschitz constant measured on weakly correlated states [6]. The distinguishability
between quantum states with respect to observables with unit Lipschitz constant has been
quantified by the quantum Wasserstein distance of order 1, or quantum W1 distance [5, 16].
Such concentration has been proved to be linked to transportation-cost inequalities that
provide an upper bound to the W1 distance between a generic state and a Gibbs state in
terms of the square root of their relative entropy, and the equivalence between the canonical
and microcanonical ensembles has been proved via such transportation-cost inequalities [6,
Proposition 12]. It has further been proved that, whenever a Gibbs state satisfies such
transportation-cost inequality, it is close with respect to the W1 distance to any state that
has approximately the same entropy, i.e., such that the difference between the entropy of
the two states is o(n), where n is the number of spins.

In this paper, we consider the distinguishability with respect to k-local observables,
i.e., the local observables such that each region Λ in the sum (1.1) contains at most k =
O(1) spins, and we quantify such distinguishability with the k-local quantum W1 distance
(Definition 4.1). First, we employ our concentration inequality for the states of a quantum
spin lattice with exponentially decaying correlations to prove transportation-cost inequali-
ties for the same states (Theorem 4.1). Then, we apply this result to prove that the Gibbs
states with exponentially decaying correlations are close in the k-local quantum W1 distance
to any state with approximately the same entropy, i.e., such that the difference between the

entropy of the two states is o
(
n

1
2d+1

)
(Proposition 5.1), where d > 0 depends on the growth

of the size of the metric balls as explained above. In particular, we prove the equivalence
between the canonical and microcanonical ensembles for such Gibbs states with respect to
all the k-local observables whose local norm is O(1) (Theorem 5.1).

The paper is organized as follows. In section 2, we set the notation for the paper. In
section 3, we introduce the local norm and prove the concentration inequalities for product
states and states with exponentially decaying correlations. In section 4, we introduce the
k-local quantum W1 distance and prove that any quantum state with exponentially decay-
ing correlations satisfies a transportation-cost inequality with respect to such distance. In
section 5, we introduce the problem of the equivalence of the ensembles of quantum statis-
tical mechanics and prove such equivalence for the above states. We conclude in section 6.
Appendix A contains the proof of the auxiliary lemmas.

2 Setup

Let us start by setting the notation for the paper:

Definition 2.1. For any k ∈ N we define

[k] = {1, . . . , k} . (2.1)
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We consider a quantum system made by n spins, which we label with the integers from
1 to n. The local Hilbert space of each spin is Cq, such that the Hilbert space of the system
is (Cq)⊗n.

Definition 2.2. For any subset of the spins Λ ⊆ [n], let

HΛ =
⊗

x∈Λ

C
q (2.2)

be the Hilbert space associated with the spins in Λ, let OΛ be the set of the self-adjoint
linear operators acting on HΛ, let O

T
Λ be the set of the traceless operators in OΛ, and let SΛ

be the set of the quantum states acting on HΛ.

Definition 2.3 (k-local operator). A linear operator X acting on (Cq)⊗n is k-local if it is a
linear combination of linear operators acting on at most k spins each, i.e., if

X =
∑

Λ⊆[n]:|Λ|≤k

XΛ , (2.3)

where each XΛ acts only on the corresponding HΛ. For any Λ ⊆ [n], we denote with O
(k)
Λ

the set of the k-local self-adjoint linear operators acting on HΛ.

When dealing with non-product states, we will need to introduce a distance d on the set
of the spins [n]. For example, if the spin are located at the vertices of a graph, d can be the
graph distance given by the length of the minimum path connecting two vertices. Otherwise,
if the spins are located at points of Rd, the distance can be the Euclidean distance or any
ℓp distance. We stress that we do not require any regular structure such as a square lattice,
nor a notion of neighboring spins.

Assumption 2.1 (Dimensionality of the spin lattice). We assume that the size of the balls
of d with radius r are O(rd), i.e., that there exist d ≥ 1 and A > 0 such that for any v ∈ [n]
and any r > 0 we have

|Bd(v, r)| ≤ Ard , (2.4)

where d plays the role of the dimensionality of the lattice.

When dealing with non-product states, we will also need the notion of correlations de-
caying exponentially with the distance d:

Definition 2.4 (Correlation length). We say that the state ω ∈ S[n] has correlation length
ξ > 0 if there exist C > 0 independent of n such that for any two disjoint regions Λ1, Λ2 ⊂ [n]
and any two observables hΛ1 ∈ OΛ1 and hΛ2 ∈ OΛ2 we have

|〈hΛ1 hΛ2〉 − 〈hΛ1〉 〈hΛ2〉| ≤ C exp

(
−
d(Λ1,Λ2)

ξ

)
, (2.5)

where
d(Λ1,Λ2) = min {d(x1, x2) : x1 ∈ Λ1, x2 ∈ Λ2} (2.6)

and the angle brackets denote the expectation with respect to ω.
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3 Concentration inequalities

In this section we introduce the local norm and derive the concentration inequalities for two
relevant kinds of states of a spin lattice system: product states and states with exponentially
decaying correlations. More precisely, we bound from below the cumulative distribution
functions of local observables with a function of their local norm.

3.1 The local norm

Let us introduce the local norm on which all our results are based:

Definition 3.1 (Local norm). The local norm of an observable H ∈ O[n] is

‖H‖loc = 2min




max
x∈[n]

∑

Λ∋x

‖hΛ‖ : H =
∑

Λ⊆[n]

hΛ , hΛ ∈ OΛ




 , (3.1)

where ‖ · ‖ denotes the operator norm. In words, we consider all the decompositions of H as
a sum of local operators, and define the dependence of any such decomposition on a spin x
as twice the sum of the operator norm of each local operator that acts on x. We then define
the local norm of such decomposition as the maximum dependence on a spin, and the local
norm of H as the minimum local norm of all its possible decompositions.

Remark 3.1. The local norm (3.1) is similar to the norm considered in [7, Eq. (4)]. The
novelty of (3.1) with respect to [7, Eq. (4)] is that, while [7, Eq. (4)] considers only a fixed
decomposition of H of the form (1.1), (3.1) optimizes over all the possible decompositions.

Remark 3.2. The local norm (3.1) can be recovered as a special case of the local norm defined
in [17], where the norm of each hΛ is multiplied by a penalty c|Λ| depending on |Λ|:

‖H‖l̃oc = 2min



max

x∈[n]

∑

Λ∋x

c|Λ| ‖hΛ‖ : H =
∑

Λ⊆[n]

hΛ , hΛ ∈ OΛ



 . (3.2)

The local norm (3.1) can be recovered from (3.2) by setting to one all the penalties.

Remark 3.3. ‖ ‖loc is a seminorm such that ‖I‖loc = 0.

3.2 Product states

We start by proving a bound on the cumulative distribution function of the local observable
H measured on a product state as a function of the local norm of H .

In order to derive a concentration inequality involving the quantum local norm, we will
first prove an upper bound to the expectation value of eH . The concentration inequality will
then follow from the Markov inequality.
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Theorem 3.1. Let ω be a product state of n spins. Let H ∈ O[n] be an observable, and let

H =
∑

Λ⊆[n]

h̃Λ (3.3)

be the decomposition of H that achieves the local norm as in (3.1). For any ∅ 6= Λ ⊆ [n], let

hΛ := h̃Λ −
〈
h̃Λ

〉
, (3.4)

where the angle brackets denote the expectation with respect to ω. Then,

〈
eH
〉
≤ exp


〈H〉+

∑

Λ⊆[n]

(
e|Λ|‖H‖loc − 1−

|Λ|‖H‖loc
2

)
‖hΛ‖


 . (3.5)

Proof. By definition of hΛ, for every ∅ 6= Λ ⊆ [n] we have 〈hΛ〉 = 0 and

H =
∑

Λ⊆[n]

h̃Λ = h̃∅ +
∑

∅6=Λ⊆[n]

(〈
h̃Λ

〉
+ hΛ

)
= 〈H〉+

∑

∅6=Λ⊆[n]

hΛ . (3.6)

Let us define H0 :=
∑

∅6=Λ⊆[n] hΛ and observe that:

〈
H2

0

〉
=

∑

Λ1∩Λ2 6=∅

〈hΛ1hΛ2〉 ≤
∑

Λ1∩Λ2 6=∅

‖hΛ1‖‖hΛ2‖, (3.7)

since 〈hΛ1hΛ2〉 = 〈hΛ1〉 〈hΛ2〉 = 0 for Λ1 ∩ Λ2 = ∅. Therefore, in order to bound 〈Hr
0〉, we

take the sum over the collections of r regions Λ1, . . . ,Λr such that any region does not have
empty intersection with all the others:

〈Hr
0〉 ≤

∑

(Λ1,...,Λr)∈Rr

‖hΛ1‖ · · · ‖hΛr
‖, (3.8)

where Rr = {(Λ1, ...,Λr) : Λi ∩ (∪j 6=iΛj) 6= ∅, ∀i = 1, ..., r}. For any graph G = (V,E) with
V = {1, ...r} let

CG :=
∑

Λ1,...,Λr

∏

(i,j)∈E

|Λi ∩ Λj|‖hΛ1‖ · · · ‖hΛr
‖. (3.9)

Since |Λi ∩ Λj| ≥ 1 whenever Λi ∩ Λj 6= ∅, we have 〈Hr
0〉 ≤

∑
G∈Gr

CG where Gr = {(V,E) :
|V | = r , deg(v) ≥ 1 ∀v ∈ V }. In words, we associate any non-empty intersection among
two regions of the collections Λ1, ...,Λr to an edge of a graph G with r vertices, in this sense
we take the sum only over the graphs with no isolated vertices. Furthermore, the bound
over 〈Hr

0〉 can be improved considering the minimal graphs. A minimal graph is defined
as a graph such that the removal of any edge leaves at least one isolated vertex. For any
(Λ1, ...,Λr) ∈ Rr there is a graph G ∈ Gr of r vertices such that (i, j) ∈ E if and only if
Λi ∩ Λj 6= ∅. Let G′ be a minimal subgraph of G, then:

‖hΛ1‖ · · · ‖hΛr
‖ ≤

∏

(i,j)∈E′

|Λi ∩ Λj|‖hΛ1‖ · · · ‖hΛr
‖. (3.10)
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Now, let Gr := {minimal graphs with r vertices}, for bounding 〈Hr
0〉 we can take the

sum only on the minimal graphs:

〈Hr
0〉 ≤

∑

G∈Gr

CG. (3.11)

Therefore:
〈
eH0
〉
=

+∞∑

r=0

〈Hr
0〉

r!
≤

+∞∑

r=0

∑

G∈Gr

CG

r!
=

∑

G∈Gmin

CG

VG!
, (3.12)

where Gmin is the set of all the minimal graph with a finite set of vertices and VG is the
number of vertices of G. We claim that any connected minimal graph is a star graph, i.e.,
has a vertex that belongs to all the edges. Indeed, let v be a vertex with maximum degree. If
such degree is 1, then all vertices have degree 1, and the graph is made by 2 vertices connected
by an edge. Let the maximum degree be at least 2. Any vertex w that is connected with
v by an edge cannot be connected to any other vertex, otherwise the edge (v, w) could be
removed without disconnecting any vertex. Therefore, v is connected by an edge to all the
other vertices and the graph is a star graph. Then, any minimal graph is the union of star
graphs. Given a minimal graph with VG vertices, let us denote the number of connected
components with r vertices as Nr, then VG =

∑
r≥2 rNr. The contribution Cr in (3.11) of

the star graphs with r vertices is:

Cr :=
∑

Λ1,...,Λr

|Λ1 ∩ Λ2| · · · |Λ1 ∩ Λr| ‖hΛ1‖ · · · ‖hΛr
‖, (3.13)

within the choice that Λ1 corresponds to the core vertex. Let us consider a minimal graph
G formed by Nr connected components, for r ≥ 2. By definitions (3.9) and (3.13), we have:

CG =
∏

r≥2

CNr

r . (3.14)

As a consequence, the last term in (3.12) can be re-written as a sum over the connected
components:

∑

G∈Gmin

CG

VG!
=

∑

N2,N3,...

1

(2N2 + 3N3 + · · · )!
×

(2N2 + 3N3 + · · · )!

N2!2N2 N3!2!N3 N4!3!N4 · · ·
× CN2

2 CN3
3 CN4

4 · · ·

=
∑

N2

CN2
2

2N2N2!

∑

N3,N4...

CN3
3 CN4

4 · · ·

2!N3N3! 3!N4N4! · · ·
= exp

[
C2

2
+

∞∑

r=3

Cr

(r − 1)!

]
. (3.15)

In (3.15), the factor (2N2+3N3+··· )!

N2!2N2 N3!2!N3 N4!3!N4 ···
is the number of different graphs corresponding to

the fixed values of Ni for every i ≥ 2. In fact, a star graph with r > 2 vertices is invariant
w.r.t. all the (r − 1)! permutations of the external vertices (and a graph with 2 vertices
is trivially invariant under the swap of its vertices). Moreover, a graph with Nr connected
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components of r vertices is invariant w.r.t. all the Nr! permutations of these connected
components. So, we take the quotient of the number of all the permutation of the

∑
r≥2 rNr

vertices over the total number of invariant operations. Therefore, (3.15) provides this bound:

〈
eH0
〉
≤ exp

[
C2

2
+

∞∑

r=3

Cr

(r − 1)!

]
. (3.16)

By definition (3.13), Cr can be written in this form:

Cr =
∑

Λ1,...,Λr

∑

v2∈Λ1∩Λ2

· · ·
∑

vr∈Λ1∩Λr

‖hΛ1‖ · · · ‖hΛr
‖, (3.17)

because
∑

vi∈Λ1∩Λi
‖hΛ1‖ · · · ‖hΛr

‖ = |Λ1 ∩ Λi|‖hΛ1‖ · · · ‖hΛr
‖. Furthermore, since:

∑

Λi

∑

vi∈Λ1∩Λi

‖hΛi
‖ =

∑

vi∈Λ1

∑

Λi∋vi

‖hΛi
‖ ∀i = 2, . . . , r, (3.18)

by (3.17), we have:

Cr =
∑

Λ1

∑

v2,...,vr∈Λ1

∑

Λ2∋v2

· · ·
∑

Λr∋vr

‖hΛ1‖ · · · ‖hΛr
‖ =

∑

Λ1

‖hΛ1‖

(
∑

v2∈Λ1

∑

Λ2∋v2

‖hΛ2‖

)r−1

. (3.19)

In view of Lemma A.2 we have
∑

Λ2∋v2
‖hΛ2‖ ≤ ‖H‖loc and observing that

∑

v2∈Λ1

‖H‖loc = |Λ1|‖H‖loc , (3.20)

from (3.19) we obtain:

Cr ≤
∑

Λ1

‖hΛ1‖

(
∑

v2∈Λ1

∑

Λ2∋v2

‖hΛ2‖

)r−1

≤
∑

Λ⊆[n]

|Λ|r−1‖H‖r−1
loc ‖hΛ‖ ∀r ≥ 2, (3.21)

then, by substituting in (3.16):

〈
eH0
〉
≤ exp


C2

2
+

∞∑

r=3

∑

Λ⊆[n]

|Λ|r−1‖H‖r−1
loc ‖hΛ‖

(r − 1)!


 = (3.22)

= exp


C2

2
+
∑

Λ⊆[n]

(
e|Λ|‖H‖loc − 1− |Λ|‖H‖loc

)
‖hΛ‖


 ≤

≤ exp




∑

Λ⊆[n]

(
e|Λ|‖H‖loc − 1−

|Λ|‖H‖loc
2

)
‖hΛ‖



 ,

where, in the last inequality, we have used the fact C2 ≤
∑

Λ⊆[n] |Λ|‖H‖loc‖hΛ‖. The claim

follows from
〈
eH
〉
= e〈H〉

〈
eH0
〉
.
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The inequality (3.5) stated by the theorem above provides a bound that is not a function
of the local norm of H alone. However, such a bound can be obtained with the additional
requirement that the size of the regions, on which H acts locally, satisfies |Λ| ≤ k.

Corollary 3.1. Under the hypotheses of Theorem 3.1, if H is k-local then

〈
eH
〉
≤ exp

[
〈H〉+

n

k

(
ek‖H‖loc − 1−

k‖H‖loc
2

)
‖H‖loc

]
(3.23)

Proof. By Theorem 3.1, we have:

〈
eH
〉
≤ exp


〈H〉+

∑

Λ⊆[n]

∑

v∈Λ

1

|Λ|

(
e|Λ|‖H‖loc − 1−

|Λ|‖H‖loc
2

)
‖hΛ‖


 (3.24)

≤ exp



〈H〉+
1

k

(
ek‖H‖loc − 1−

k‖H‖loc
2

) ∑

Λ⊆[n]

∑

v∈Λ

‖hΛ‖





= exp



〈H〉+
1

k

(
ek‖H‖loc − 1−

k‖H‖loc
2

)∑

v∈[n]

∑

Λ∋v

‖hΛ‖





≤ exp


〈H〉+

1

k

(
ek‖H‖loc − 1−

k‖H‖loc
2

)∑

v∈[n]

‖H‖loc




= exp

[
〈H〉+

1

k

(
ek‖H‖loc − 1−

k‖H‖loc
2

)
n‖H‖loc

]
.

The first inequality in (3.24) is implied by the hypothesis |Λ| ≤ k and the second one is a
consequence of

∑
Λ∋v ‖hΛ‖ ≤ ‖H‖loc for every site v.

Corollary 3.1 can be used to derive an exponential concentration inequality via the in-
equality

P(H ≥ na) ≤ e−tna
〈
etH
〉

∀ t, a > 0 : (3.25)

Theorem 3.2. Let ω be a product state of n spins and H be a k-local Hamiltonian. Then,
for any a > 0 we have

P (H ≥ 〈H〉+ na) ≤ exp

[
−

n

k2
F

(
ak

‖H‖loc

)]
, (3.26)

where F (x) := maxs>0 s(x− es + 1 + s
2
).

Proof. Without loss of generality, we can assume 〈H〉 = 0. First, we apply Corollary 3.1
inserting (3.23) into (3.25):

P(H ≥ na) ≤ exp

[
−tna +

nt

k

(
etk‖H‖loc − 1−

tk‖H‖loc
2

)
‖H‖loc

]
. (3.27)
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Let us apply the substitution s = tk‖H‖loc:

P(H ≥ na) ≤ exp

[
−

n

k2
s

(
ak

‖H‖loc
− es + 1 +

s

2

)]
(3.28)

and, in turn, perform the minimization over s in the right-hand side of (3.28) obtaining
(3.26).

Remark 3.4. The function F is strictly increasing with F (0) = 0, then it is strictly positive
for any x > 0.

3.3 Quantum states with finite correlation length

We now consider the quantum states with exponentially decaying correlations characterized
by a finite correlation length ξ in the sense of Definition 2.4. Also in this case, we consider
the decomposition of a local Hamiltonian H that achieves the local norm H =

∑
Λ⊆[n] h̃Λ

and define hΛ := h̃Λ −
〈
h̃Λ

〉
for any ∅ 6= Λ ⊆ [n]. Moreover, under Assumption 2.1, for any

region Λ, let us define its enlargement by l > 0 as Λ̃ := {x : d(x,Λ) ≤ l}. We can now apply
to the enlarged regions the argument that we used for product states. In the new case, for
Λ̃1 ∩ Λ̃2 = ∅ we have

| 〈hΛ1hΛ2〉 | ≤ ‖hΛ1‖ ‖hΛ2‖C e−
d(Λ1,Λ2)

ξ ≤ ‖hΛ1‖ ‖hΛ2‖C e−
l
ξ , (3.29)

where C > 0 and ξ is the correlation length. Therefore, for a collections of regions Λ1, ...,Λr

such that Λ̃i ∩ (∪j 6=iΛ̃j) = ∅ for some i ∈ [r], we have

| 〈hΛ1 · · ·hΛr
〉 | ≤ ‖hΛ1‖ · · · ‖hΛr

‖Ce−
l
ξ . (3.30)

Theorem 3.3. Let ω ∈ S[n] be a state of a quantum system of n spins with correlation length
ξ as in Definition 2.4 with respect to a distance satisfying Assumption 2.1. Then, for any
k-local Hamiltonian H we have

〈
eH
〉
≤ exp

[
〈H〉+

n

k

(
ek (Ald)2‖H‖loc − 1−

k (Ald)2‖H‖loc
2

)
‖H‖loc

]
+ Ce〈H〉+n‖H‖loc−

l
ξ ,

(3.31)
where the angle brackets denote the expectation with respect to ω.

Proof. Let H =
∑

Λ⊆[n] h̃Λ be the decomposition of H that achieves the local norm as in

(3.1) and define hΛ := h̃Λ−
〈
h̃Λ

〉
for any ∅ 6= Λ ⊆ [n] and H0 :=

∑
∅6=Λ⊆[n] hΛ. Then, (3.6) is

still valid and
〈
eH
〉
= e〈H〉

〈
eH0
〉
. Adapting the inequality (3.8) to enlarged regions {Λ̃}Λ⊆[n]

and considering (3.30), the expectation of Hr
0 can be bounded as follows:

〈Hr
0〉 ≤

∑

(Λ1,...,Λr)∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖+

∑

(Λ1,...,Λr)6∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖Ce−

l
ξ , (3.32)
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where R̃r = {(Λ1, ...,Λr) : Λ̃i ∩ (∪j 6=iΛ̃j) 6= ∅ ∀ i = 1, ..., r}. Therefore:

〈
eH0
〉
≤

+∞∑

r=0

1

r!

∑

(Λ1,...,Λr)∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖+

+∞∑

r=0

1

r!

∑

(Λ1,...,Λr)6∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖Ce−

l
ξ . (3.33)

Now, let us focus on the sum over (Λ1, . . . ,Λr) ∈ R̃r in (3.33) and define:

Cr :=
∑

Λ1,...,Λr

|Λ̃1 ∩ Λ̃2| · · · |Λ̃1 ∩ Λ̃r| ‖hΛ1‖ · · · ‖hΛr
‖. (3.34)

so that we can adapt the inequality (3.21):

Cr ≤
∑

Λ1

‖hΛ1‖



∑

v2∈Λ̃1

∑

Λ2:v2∈Λ̃2

‖hΛ2‖




r−1

. (3.35)

In general, we have that v ∈ Λ̃ if and only if Λ ∩ Bd(v, l) 6= ∅ where Bd(v, l) is the ball
centered in v with radius l referred to the distance d used to define the enlargement of the
regions. Therefore:

∑

Λ:v∈Λ̃

‖hΛ‖ =
∑

Λ:Λ∩Bd(v,l)6=∅

‖hΛ‖ ≤
∑

Λ⊆[n]

|Λ ∩Bd(v, l)| ‖hΛ‖, (3.36)

the last term in (3.36) can be rewritten as:

∑

Λ⊆[n]

∑

w∈Λ∩Bd(v,l)

‖hΛ‖ =
∑

w∈Bd(v,l)

∑

Λ∋w

‖hΛ‖ ≤ |Bd(v, l)| ‖H‖loc ≤ A ld ‖H‖loc, (3.37)

where, in the last inequality, we have taken into account Assumption 2.1. This results in the
following variant of (3.21):

Cr ≤
∑

Λ⊆[n]

‖hΛ‖ [(Al
d)2|Λ|‖H‖loc]

r−1 ∀r = 2, . . . , r, (3.38)

where we have also used the fact that |Λ̃| ≤ |Λ|A ld for any Λ ⊆ [n]. The latter is a

consequence of (2.4) since Λ̃ ⊂ ∪v∈ΛBd(v, l), so |Λ̃| ≤
∑

v∈Λ |Bd(v, l)| ≤
∑

v∈Λ Al
d = |Λ|Ald.

Therefore we can state:

∞∑

r=0

1

r!

∑

(Λ1,...,Λr)∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖ ≤ (3.39)

≤ exp




∑

Λ⊆[n]

(
e(Ald)2|Λ|‖H‖loc − 1−

(Ald)2|Λ|‖H‖loc
2

)
‖hΛ‖



 ,
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requiring that |Λ| ≤ k for any Λ ∈ [n], the proof of Corollary 3.1 can be repeated yielding:

∞∑

r=0

1

r!

∑

(Λ1,...,Λr)∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖ ≤ (3.40)

≤ exp

[
n

k

(
ek(Ald)2‖H‖loc − 1−

k(Ald)2‖H‖loc
2

)
‖H‖loc

]
.

Now, let us bound the sum over (Λ1, . . . ,Λr) 6∈ R̃r in (3.32):

∑

(Λ1,...,Λr)6∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖Ce−

l
ξ ≤




∑

Λ⊆[n]

‖hΛ‖




r

Ce−
l
ξ ≤ (n‖H‖loc)

r Ce−
l
ξ , (3.41)

then:

∞∑

r=0

1

r!

∑

(Λ1,...,Λr)6∈R̃r

‖hΛ1‖ · · · ‖hΛr
‖Ce−

l
ξ ≤

+∞∑

r=0

(n‖H‖loc)
r

r!
Ce−

l
ξ ≤ en‖H‖locCe−

l
ξ . (3.42)

Taking into account (3.33), (3.39), and (3.42) we have:

〈
eH0
〉
≤ exp

[
n

k

(
ek (Ald)2‖H‖loc − 1−

k (Ald)2‖H‖loc
2

)
‖H‖loc

]
+ Cen‖H‖loc−

l
ξ , (3.43)

that directly implies the claim.

As in the case of product states, Theorem 3.3 implies the following concentration in-
equality for the quantum states with finite correlation length:

Corollary 3.2. Let ω be a state of n quantum spins with correlation length ξ as in Definition 2.4
with respect to a distance satisfying Assumption 2.1. Then, for any k-local Hamiltonian H
we have

P(H ≥ 〈H〉+ na) ≤ (C + 1) exp


−n

1
2d+1

F
(

ak
‖H‖loc

)

k2A2
[

ξ

kA2

(
k s∗

(
ak

‖H‖loc

)
+ F

(
ak

‖H‖loc

))] 2d
2d+1


 ,

(3.44)
where F (x) := maxs s(x− es + 1 + s

2
) and s∗(x) := argmaxss(x− es + 1 + s

2
).

Proof. Without loss of generality, we can assume 〈H〉 = 0. Inserting the bound (3.31) into
the Markov inequality (3.25), we have

P(H ≥ na) ≤ exp

[
−tna +

nt

k

(
etkA

2l2d‖H‖loc − 1−
tkA2l2d‖H‖loc

2

)
‖H‖loc

]

+ C exp

[
nt‖H‖loc −

l

ξ

]
. (3.45)
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Following the approach adopted in the proof of Theorem 3.2, once introduced the variable
s = tkA2l2d‖H‖loc, the concentration inequality becomes

P(H ≥ na) ≤ exp

[
−

n

k2A2l2d
s

(
ak

‖H‖loc
− es + 1 +

s

2

)]
+ C exp

[
ns

kA2 l2d
−

l

ξ

]
. (3.46)

In addition to the minimization over s the right-hand side of the above inequality can be
optimized also w.r.t. l. Instead of performing such a double optimization, let us improve
the bound on P(H ≥ na) minimizing over s only the first exponential term in (3.46) with
the same strategy of the proof of Theorem 3.2. We have

P(H ≥ na) ≤ exp

[
−

n

k2A2l2d
F

(
ak

‖H‖loc

)]
+ C exp




n s∗

(
ak

‖H‖loc

)

kA2 l2d
−

l

ξ



 . (3.47)

Now, let us fix the value of l requiring the balance of the two exponential terms:

−nF

(
ak

‖H‖loc

)
= kn s∗

(
ak

‖H‖loc

)
−

l2d+1kA2

ξ
, (3.48)

then:

l =

[
ξ

kA2

(
kn s∗

(
ak

‖H‖loc

)
+ nF

(
ak

‖H‖loc

))] 1
2d+1

. (3.49)

By the substitution into (3.47) we obtain:

P(H ≥ na) ≤ (C + 1) exp


−

n
1

2d+1F
(

ak
‖H‖loc

)

k2A2
[

ξ

kA2

(
k s∗

(
ak

‖H‖loc

)
+ F

(
ak

‖H‖loc

))] 2d
2d+1


 , (3.50)

which is the claim.

Remark 3.5. In the proof of Corollary 3.2, we have improved the bound of inequality (3.46)
optimizing over s and fixing the value of l by the condition that the two exponential terms
are balanced. However, even if these two steps are swapped, the obtained bound is the same
as one can check by direct inspection.

4 A transportation-cost inequality

4.1 The k-local quantum W1 distance

We define the k-local quantum W1 distance as the distance that quantifies the distinguisha-
bility of quantum states with respect to the k-local observables with unit local norm:
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Definition 4.1 (k-local quantum W1 norm). We define the k-local quantum W1 norm as

the norm on OT
[n] that is dual to the local norm on O

(k)
[n] : For any ∆ ∈ OT

[n],

‖∆‖k-W1loc = max
{
Tr [∆H ] : H ∈ O

(k)
[n] , ‖H‖loc ≤ 1

}
. (4.1)

The k-local quantum W1 distance is the distance on S[n] induced by the k-local quantum W1

norm: For any and for any ρ, σ ∈ S[n]

‖ρ− σ‖k-W1loc = max
{
Tr [(ρ− σ)H ] : H ∈ O

(k)
[n] , ‖H‖loc ≤ 1

}
. (4.2)

Remark 4.1. Ref. [17] defines a local quantum W1 norm as the dual of the local norm (3.2):

‖∆‖W1loc = max
{
Tr [∆H ] : H ∈ O(k)

[n] , ‖H‖l̃oc ≤ 1
}

. (4.3)

The k-local quantum W1 norm can be recovered from (4.3) by setting to one the penalties
associated with the regions containing at most k spins and to infinity the penalties associated
with the regions containing more than k spins. Indeed, with such choice the observables
H ∈ O[n] with ‖H‖l̃oc ≤ 1 are exactly the k-local observables with ‖H‖loc ≤ 1, and the
optimizations in (4.3) and (4.1) coincide.

The k-local quantum W1 norm can be computed with a linear program. (4.1) constitutes
the dual program, while the primal program is provided by the following:

Proposition 4.1. For any ρ, σ ∈ S[n] we have

‖ρ− σ‖k-W1loc = min





∑

x∈[n]

ax : ‖ρΛ − σΛ‖1 ≤ 2
∑

x∈Λ

ax ∀Λ ⊆ [n] : |Λ| ≤ k




 . (4.4)

Proof. Analogous to [17, Proposition 2.4].

Remark 4.2. From Proposition 4.1, the k-local quantum W1 distance between ρ and σ de-
pends only on the marginals ρΛ and σΛ on regions Λ containing at most k spins. Therefore,
if ρΛ = σΛ for all such Λ, such distance vanishes even if ρ and σ do not coincide.

4.2 Properties of the k-local quantum W1 distance

The k-local quantumW1 distance inherits all the properties of the local quantumW1 distance
of [17]:

• For n = 1, it coincides with the trace distance:

Proposition 4.2. For n = 1, ‖ · ‖k-W1loc =
1
2
‖ · ‖1.

Proof. Follows from Proposition 4.1.
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• It is lower than the quantum W1 distance of [5]:

Proposition 4.3. We have ‖ · ‖k-W1loc ≤ ‖ · ‖W1.

Proof. Analogous to [17, Proposition 2.5].

• It can be upper bounded by the trace distances between the marginal of the states:

Proposition 4.4. For any ρ, σ ∈ S[n] we have

‖ρ− σ‖k-W1loc ≤
∑

x∈[n]

max
Λ∋x:|Λ|≤k

‖ρΛ − σΛ‖1
2 |Λ|

≤ n max
Λ⊆[n]:|Λ|≤k

‖ρΛ − σΛ‖1
2 |Λ|

. (4.5)

Proof. Analogous to [17, Proposition 2.6].

• It is superadditive with respect to the composition of quantum systems and additive
with respect to the tensor product:

Proposition 4.5. For any ρ, σ ∈ S[n] and any Λ ⊂ [n] we have

‖ρ− σ‖k-W1loc ≥ ‖ρΛ − σΛ‖k-W1loc + ‖ρΛc − σΛc‖k-W1loc . (4.6)

Moreover, equality is achieved when ρ = ρΛ ⊗ ρΛc and σ = σΛ ⊗ σΛc.

Proof. Analogous to [17, Proposition 2.7].

• It is lower bounded by the sum of the trace distances between the single-spin marginals:

Proposition 4.6. For any ρ, σ ∈ S[n] we have

‖ρ− σ‖k-W1loc ≥
1

2

∑

x∈[n]

‖ρx − σx‖1 . (4.7)

Proof. Applying repeatedly Proposition 4.5 we get

‖ρ− σ‖k-W1loc ≥
∑

x∈[n]

‖ρx − σx‖k-W1loc =
1

2

∑

x∈[n]

‖ρx − σx‖1 , (4.8)

where the last equality follows from Proposition 4.2. The claim follows.

• It recovers the Hamming distance for the states of the computational basis:

Corollary 4.1. For any x, y ∈ [q]n,

‖|x〉 〈x| − |y〉 〈y|‖k-W1loc
= h(x, y) = |{i ∈ [n] : xi 6= yi}| . (4.9)
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Proof. Analogous to [17, Corollary 2.1].

• It is contracting with respect to the action of single-spin quantum channels:

Proposition 4.7. For any ∆ ∈ OT
n and any quantum channel Φ acting on a single

spin, we have
‖Φ(∆)‖k-W1loc ≤ ‖∆‖k-W1loc. (4.10)

Proof. Analogous to [17, Proposition 2.8].

4.3 A transportation-cost inequality

The concentration inequality Theorem 3.3 can be applied to prove that any quantum state σ
with exponentially decreasing correlations, as in Definition 2.4, satisfies a transportation-cost
inequality of the following form:

f(‖ρ− σ‖k-W1loc) ≤ SM(ρ‖σ) ∀ρ ∈ S[n] (4.11)

where f is an increasing function and SM is the measured relative entropy.

Definition 4.2. Let ρ and σ be density matrices on a finite-dimensional Hilbert space H.
The measured relative entropy between ρ and σ is defined as:

SM(ρ‖σ) := sup
{Aa}a∈X

∑

a∈X

Tr(Aaρ) log
Tr(Aaρ)

Tr(Aaσ)
, (4.12)

where the supremum is taken over all the POVMs {Aa}a∈X on H.

Let us recall that a POVM {Aa}a∈X on H, where X is a finite set, is a collection of
positive semidefinite operators such that

∑
a∈X Aa = I and provides the general mathe-

matical description of a quantum measurement process. Intuitively, the notion of measured
relative entropy is given by the maximization, over all the measurement processes, of the
Kullback-Leibler divergence between the classical probability distributions of the measure-
ment outcomes associated to the considered states. The measured relative entropy admits
the following characterization [18]:

Lemma 4.1. The following idenity holds:

SM(ρ‖σ) = sup
A>0

(Tr(ρ logA)− log Tr(σA)) . (4.13)

The variational expression (4.13) can be used to bound from below the measured relative
entropy by means of a function of the k-local quantumW1 distance obtaining a transportation
cost inequality.
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Theorem 4.1. Let ρ and σ be states of n quantum spins. Let σ have correlation length ξ as
in Definition 2.4 with respect to a distance satisfying Assumption 2.1. Then, the measured
relative entropy between ρ and σ is bounded as follows:

SM(ρ‖σ) ≥ n
1

2d+1 f(w)− log(C + 1), (4.14)

where c is a positive constant, w = 1
n
‖ρ− σ‖k-W1loc, and

f(w) =
F (k w)

k2A2‖H‖loc
[

ξ

kA2‖H‖loc
(ks∗(k w) + F (k w))

] 2d
2d+1

, (4.15)

where F (x) := maxs s(x− es + 1 + s
2
) and s∗(x) = argmaxss(x− es + 1 + s

2
).

Proof. We apply the claim of Lemma 4.1 for E = eH where H =
∑

Λ⊆[n] hΛ is a self-adjoint

operator given by the sum of local terms hΛ acting non trivially on Λ ⊆ [n] such that
〈hΛ〉 = 0 and |Λ| ≤ k ∀Λ, where the angle brackets denote the expectation with respect to
σ. Therefore:

SM(ρ‖σ) ≥ Tr(ρH)− log
〈
eH
〉
. (4.16)

We can choose the Hamiltonian H such that Tr[(ρ − σ)H ] = ‖H‖loc‖ρ − σ‖k-W1loc using
the fact that ‖ ‖k-W1loc is the dual of ‖ ‖loc as provided by (4.2). Such a Hamiltonian can
be always chosen in such a way that 〈σ〉 = 0, since ‖H‖loc = ‖H − 〈σ〉 I‖loc as ‖ ‖loc is a
semi-norm with ‖I‖loc = 0. Moreover, by the arbitrary choice of the Hamiltonian, we can
control the value of ‖H‖loc. From (4.16), we have:

SM(ρ‖σ) ≥ Tr[(ρ− σ)H ]− log
〈
eH
〉
≥ ‖H‖loc‖ρ− σ‖k-W1loc − log

〈
eH
〉
, (4.17)

Let us set ‖H‖loc = t and ‖ρ− σ‖k-W1loc = W , then:

SM(ρ‖σ) ≥ tW − log
〈
eH
〉
. (4.18)

Taking the exponential of (4.18) we obtain:

e−SM (ρ‖σ) ≤ e−tW
〈
eH
〉
= e−tnw

〈
eH
〉
. (4.19)

This bound can be improved optimizing w.r.t. t following the argument used in the proof of
Corollary 3.2. More precisely, we can apply Theorem 3.3 to bound

〈
eH
〉
taking into account

that 〈H〉 = 0, thus:

e−SM (ρ‖σ) ≤ exp

[
−

n

k2A2l2d‖H‖loc
s
(
k w − es + 1 +

s

2

)]
+ C exp

[
ns

kA2 l2d
−

l

ξ

]
, (4.20)

where s = tkA2l2d‖H‖loc. As in the proof of Corollary 3.2, we can improve the bound
minimizing over s and requiring the balance of the two exponential terms to fix l, this yields:

e−SM (ρ‖σ) ≤ (C + 1) exp


−

n
1

2d+1F (k w)

k2A2‖H‖loc
[

ξ

kA2‖H‖loc
(k s∗(k w) + F (k w))

] 2d
2d+1


 . (4.21)
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We then obtain the inequality

exp [−SM (ρ‖σ)] ≤ exp
[
log(C + 1)− n

1
2d+1 f(w)

]
, (4.22)

which implies the claim.

5 Equivalence of the ensembles of quantum statistical

mechanics

The three main ensembles employed in quantum statistical mechanics to compute the equi-
librium properties of quantum systems are the canonical ensemble, the microcanonical en-
semble and the diagonal ensemble. The quantum state associated to the canonical ensemble
is the Gibbs state, which describes the physics of a system that is at thermal equilibrium
with a large bath at a given temperature. The diagonal and microcanonical ensembles both
describe the physics of an isolated quantum system, and the associated states are convex
combinations of the eigenstates of the Hamiltonian. The microcanonical ensemble assumes
a uniform probability distribution for the energy in a given energy shell. The diagonal en-
semble includes all the states that are diagonal in the eigenbasis of the Hamiltonian, and in
particular it includes the eigenstates themselves. For many quantum systems, the canonical
and microcanonical ensembles give the same expectation values for local observables if the
corresponding states have approximately the same average energy. A lot of effort has been
devoted to determining conditions under which the two ensembles are equivalent [19–22].
The most prominent among such conditions are short-ranged interactions and a finite cor-
relation length, but so far analytical proofs could be obtained only in the case of regular
lattices [22]. The situation is more complex considering also the diagonal ensemble which
includes all the states that are diagonal in the eigenbasis of the Hamiltonian. The condition
under which this ensemble is equivalent to the microcanonical and canonical ensembles is
called Eigenstate Thermalization Hypothesis (ETH) [23–27], and states that the expectation
values of local observables on the eigenstates of the Hamiltonian are a smooth function of the
energy, i.e., for any given local observable, any two eigenstates with approximately the same
energy yield approximately the same expectation value. The ETH is an extremely strong
condition on the Hamiltonian and several quantum systems, including all integrable systems,
do not satisfy it. A weak version of the ETH has been formulated [12, 28], stating that for
any given local observable, most eigenstates in an energy shell yield approximately the same
expectation value, or, more precisely, that the fraction of eigenstates yielding expectation
values far from the Gibbs state with the same average energy vanishes in the thermodynam-
ical limit. The weak ETH implies the equivalence between the canonical and microcanonical
ensembles, but is not sufficient to prove their equivalence with the diagonal ensemble. Under
the hypothesis of finite correlation length in the Gibbs state, an analytical proof of the weak
ETH is available only for regular lattices [12].
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In this paper, we consider the equivalence of the statistical mechanical ensembles and
the weak ETH from the perspective of the k-local quantum W1 distance. The closeness
in such distance implies closeness of the expectation values of all the k-local observables
with O(1) local norm. We stress that such observables do not need to be geometrically
local, since they can contain terms acting on spins at arbitrary distance. Our results are
based on the transportation-cost inequality Theorem 4.1 and are similar in spirit to the
results of [6, Sec. 8], which considers the equivalence of the ensembles with respect to the
quantum W1 distance of [5] employing transportation-cost inequalities for such distance.
The key difference between the present paper and Ref. [6] is that the k-local quantum W1

distance that we employ is weaker than the quantum W1 distance of [6]. As a consequence,
our Theorem 4.1 requires only exponentially decaying correlations. On the contrary, the
transportation-cost inequalities employed in [6] require a Hamiltonian that is the sum of
local commuting terms (the subsequent Ref. [29] has proved transportation-cost inequalities
for the quantum W1 distance under the hypothesis of exponential decay of the conditional
mutual information, which is however still stronger than exponential decay of correlations).
Therefore, we are able to prove the equivalence of the ensembles for a significantly larger
class of Hamiltonians than the class for which the results of [6, Sec. 8] apply, at the price of
a weaker notion of equivalence. We also stress that, contrarily to the results of Refs. [12,22],
we do not need to restrict to regular lattices, and our results do not require any regularity
nor the notion of neighboring spins, but only the upper bound Assumption 2.1 to the growth
of the size of the metric balls with the distance.

Let H ∈ O[n] be the Hamiltonian of a quantum system of n spins. A Gibbs state for the
Hamiltonian H is:

ω :=
e−βH

Tr(e−βH)
, (5.1)

where β is the inverse temperature. The following Proposition 5.1 implies that any state
ρ ∈ S[n] is close in the k-local W1 distance to the Gibbs state ω with the same average
energy, provided that ω has finite correlation length and approximately the same entropy as
ρ, i.e.,

S(ω)− S(ρ) = o
(
n

1
2d+1

)
. (5.2)

Moreover, under the same hypothesis, the average reduced states over one spin of ρ and ω
are close in trace distance.

Proposition 5.1. Let ω ∈ S[n] be a Gibbs state for the Hamiltonian H ∈ O[n] with correlation
length ξ as in Definition 2.4 with respect to a distance satisfying Assumption 2.1. Then, any
quantum state ρ ∈ S[n] with the same average energy as ω satisfies

1

n
‖ρ− ω‖k-W1loc

≤ f−1

(
S(ω)− S(ρ)

n
1

2d+1

+ c

)
, (5.3)

with f as in (4.15). Moreover, let Λ : S[n] → S(Cd) be the quantum channel that computes
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the average marginal state over one spin, i.e., for any ρ ∈ S[n],

Λ(ρ) =
1

n

∑

x∈[n]

ρx . (5.4)

Then,
1

2
‖Λ(ρ)− Λ(ω)‖1 ≤ f−1

(
S(ω)− S(ρ)

n
1

2d+1

+ c

)
. (5.5)

Proof. We have
SM(ρ‖ω) ≤ S(ρ‖ω) = S(ω)− S(ρ) , (5.6)

where the last equality follows since ρ and ω have the same average energy. We then have
from Theorem 4.1

1

n
‖ρ− ω‖k-W1loc

≤ f−1

(
SM(ρ‖ω)

n
1

2d+1

+ c

)
≤ f−1

(
S(ω)− S(ρ)

n
1

2d+1

+ c

)
. (5.7)

We have from Proposition 4.6 and Proposition 5.1

‖Λ(ρ)− Λ(ω)‖1 ≤
1

n

∑

x∈[n]

‖ρx − ωx‖1 ≤
2

n
‖ρ− ω‖k-W1loc

≤ 2 f−1

(
S(ω)− S(ρ)

n
1

2d+1

+ c

)
,

(5.8)

and the claim follows.

Choosing ρ to be diagonal in the eigenbasis of the Hamiltonian, Proposition 5.1 implies
that any convex combination of a sufficiently large number of eigenstates is close in k-localW1

distance to the Gibbs state with the same average energy. Such number of eigenstates can be

a fraction exp
(
−o
(
n

1
2d+1

))
of the total number of eigenstates appearing in a microcanonical

state. Therefore, Proposition 5.1 constitutes an exponential improvement over the weak
ETH.

5.1 Width of the microcanonical energy shell

We can apply the transportation-cost inequality provided by Theorem 4.1 to prove the con-
vergence of the microcanonical ensemble to the canonical ensemble in the local W1 distance
as n → +∞. Let H =

∑
E EP (E) be the spectral decomposition of H . The microcanonical

state with energy E and width ∆ is

ωE,∆ :=
P (E,∆)

Tr(P (E,∆))
, (5.9)

where P (E,∆) is the orthogonal projector onto the subspace spanned by the eigenvectors of
H with eigenvalues in (E −∆, E].
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Theorem 5.1. Let ω be a Gibbs state for the Hamiltonian H ∈ O[n] with correlation length
ξ as in Definition 2.4 with respect to a distance satisfying Assumption 2.1 and let ωE∗,∆ be
the microcanonical state with energy

E∗ = argmaxE e−βETrP (E,∆) . (5.10)

Then:
1

n
‖ωE∗,∆ − ω‖k-W1loc = on→∞(1), (5.11)

whenever ∆ = exp
(
−o
(
n

1
2d+1

))
and ∆ = o

(
n

1
2d+1

)
.

Proof. Theorem 4.1 provides a bound on the measured relative entropy as a function of the
k-local W1 distance. Since S(ωE,∆‖ω) ≥ SM(ωE,∆‖ω) let us control the relative entropy
between the Gibbs and the microcanonical states:

S(ωE∗,∆‖ω) = ln
Tr[e−βH ]

Tr[P (E∗,∆)]
+ β ln

[
H

P (E∗,∆)

Tr[P (E∗,∆)]

]
≤ ln

Tr[e−βH ]

Tr[P (E∗,∆)]
+ βE∗. (5.12)

Let us observe that:

Tr

[
∑

E

e−βE

Tr[e−βH ]
P (E)

]
= 1, (5.13)

where the sum over E is taken over all the spectrum of H . Let us consider the partition
function:

Z := Tr

[
∑

E

e−βEP (E)

]
= Tr[e−βH ], (5.14)

and define the interval I = (−‖H‖ −∆, ‖H‖], then:

Z ≤
∑

ν∈Z : ν∆∈I

Tr [P (ν∆,∆)] e−β∆(ν−1). (5.15)

By definition of E∗, we have:

Tr[P (ν∆,∆)]e−β∆(ν−1) ≤ eβ(∆−E∗)Tr[P (E∗,∆)], (5.16)

therefore:

Z ≤
2‖H‖+∆

∆
eβ(∆−E∗)Tr[P (E∗,∆)]. (5.17)

From equations (5.14) and (5.17), we obtain:

Tr[e−βH ]

Tr[P (E∗,∆)]
≤

(
2‖H‖

∆
+ 1

)
eβ(∆−E∗), (5.18)

that is:

ln

[
Tr[e−βH ]

Tr[P (E∗,∆)]

]
≤ ln

[
2‖H‖

∆
+ 1

]
+ β(∆− E∗). (5.19)
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Without loss of generality, we can add a constant to H such that its minimum and maximum
eigenvalues become opposite. Then, ‖H‖ ≤ n

2
‖H‖loc by Lemma A.1. Inserting (5.19) into

(5.12), we have:

S(ωE∗,∆‖ω) ≤ ln

[
n‖H‖loc

∆
+ 1

]
+ β∆. (5.20)

Applying Theorem 4.1 to bound S(ωE∗,∆‖ω) from below, we obtain:

ln

[
n‖H‖loc

∆
+ 1

]
+ β∆+ c ≥ n

1
2d+1 f(w), (5.21)

where c > 0 and f is the positive increasing function introduced in (4.14). Therefore:

w ≤ f−1

(
n− 1

2d+1 ln

[
n‖H‖loc

∆
+ 1

]
+ n− 1

2d+1β∆+ n− 1
2d+1 c

)
. (5.22)

The right-hand side of the inequality above is o(1) whenever ln(n/∆) = o
(
n

1
2d+1

)
, that is

∆ = n exp
(
−o
(
n

1
2d+1

))
= exp

(
−o
(
n

1
2d+1

))
, and ∆ = o

(
n

1
2d+1

)
. The claim follows.

A similar result on the equivalence between the quantum canonical and microcanonical
ensembles under the hypothesis of exponentially decaying correlations is proved in [12]. Such
results states that for any local observable O = 1

n

∑
v∈[n]Ov, where each Ov is supported on

the ball centered in v with fixed radius and ‖Ov‖ ≤ 1, the expectations over the Gibbs
and the microcanonical states converges to the same value as n → +∞ whenever ∆ =

exp
(
−O

(
n

1
d+1

))
. While our result poses a stronger requirement on the width of the energy

shell, we do not have any requirement on the radius of the regions where the local terms of
O are supported, since we require such regions only to have bounded cardinality.

6 Conclusions

In this paper we have proved new concentration inequalities for quantum spin systems and
we have applied such inequalities to prove the equivalence between the canonical and micro-
canonical ensembles of quantum statistical mechanics.

First, we have introduced the local norm (3.1) for observables of quantum spin systems.
Then, we have proved a concentration inequality for local observables whose local norm is
O(1) measured on product states (Theorem 3.2), stating that the probability of deviations
from the average decays exponentially with the number of spins. We have extended the
result to the states with finite correlation length as in Definition 2.4, proving that the prob-
ability of deviations from the average decays quasi exponentially with the number of spins
(Corollary 3.2). Remarkably, our results do not require any regular structure nor any notion
of neighboring spins.

Moreover, we have defined the k-local quantum W1 distance as the distance on the states
of a quantum spin system that quantifies the distinguishability with respect to k-local ob-
servables. We have proved a transportation-cost inequality stating that the k-local quantum
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W1 distance between a generic state and a state with exponentially decaying correlations is
upper bounded by a function of the relative entropy between the states (Theorem 4.1). Such
inequality implies that any Gibbs state ω with exponentially decaying correlations is close
w.r.t. the k-local W1 distance, to any state ρ with the same average energy and such that

S(ω) − S(ρ) = o
(
n

1
2d+1

)
(Proposition 5.1), where d is the power of the radius governing

the growth of the volume of the metric balls of the set of the spins. This result implies the
equivalence between the canonical and the microcanonical ensembles of quantum statistical
mechanics for all the Hamiltonians whose Gibbs states have exponentially decaying corre-
lations and all the microcanonical states whose energy shell is wide enough. Furthermore,
Proposition 5.1 implies that any convex combination of eigenstates which constitute a frac-

tion exp
(
−o
(
n

1
2d+1

))
of the total number of eigenstates in a microcanonical shell is close

in the k-local W1 distance to the Gibbs state. This is an exponential improvement over the
weak ETH. Our results do not require any regular structure nor any notion of neighbor-
ing spins, and hold at any temperature provided the correlations in the Gibbs state decay
exponentially with the distance.

The main open problem we point out concerns the strong ETH, stating that the energy
eigenstate themselves are close to the Gibbs states with the same average energy with respect
to a suitable class of observables. From [6, Sec. 8], the strong ETH cannot be captured by
the quantum W1 distance of [5]. Indeed, the von Neumann entropy per spin is continuous
with respect to the W1 distance per spin [30], therefore no pure state can be close to any
state with large entropy such a Gibbs state. On the contrary, we do not expect such entropy
continuity to hold for the k-local quantum W1 distance, and therefore there is hope that this
distance can capture the strong ETH.
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A Auxiliary lemmas

Lemma A.1. Let H ∈ O[n] such that its minimum and maximum eigenvalues are opposite.
Then, 2 ‖H‖ ≤ n ‖H‖loc.

Proof. Let

H =
∑

Λ⊆[n]

hΛ , hΛ ∈ OΛ (A.1)

such that
‖H‖loc = 2max

x∈[n]

∑

Λ∋x

‖hΛ‖ . (A.2)

We have

‖H‖ ≤ ‖H − h∅‖ ≤
∑

Λ⊆[n]:Λ 6=∅

‖hΛ‖ ≤
∑

Λ⊆[n]

|Λ| ‖hΛ‖ =
∑

Λ⊆[n]

∑

x∈Λ

‖hΛ‖

=

n∑

x=1

∑

Λ∋x

‖hΛ‖ ≤
n

2
‖H‖loc . (A.3)

The claim follows.

Lemma A.2. Let H ∈ O[n] and let H =
∑

Λ⊆[n] h̃Λ be the decomposition of H that achieves

the local norm as in (3.1). For any ∅ 6= Λ ⊆ [n], let hΛ := h̃Λ −
〈
h̃Λ

〉
, where the angle

brackets denote the expectation with respect to a generic state. Then,
∑

Λ∋v

‖hΛ‖ ≤ ‖H‖loc ∀ v ∈ [n]. (A.4)

Proof. By definition of hΛ, we have ‖hΛ‖ ≤ ‖h̃Λ‖+
∣∣∣
〈
h̃Λ

〉∣∣∣ for every ∅ 6= Λ ⊆ [n] then

∑

Λ∋v

‖hΛ‖ ≤
∑

Λ∋v

‖h̃Λ‖+
∑

Λ∋v

∣∣∣
〈
h̃Λ

〉∣∣∣ ≤ 2
∑

Λ∋v

‖h̃Λ‖ ≤ ‖H‖loc ∀v ∈ [n], (A.5)

where we have respectively used: the triangle inequality, the operator norm inequality ‖h̃Λ‖ ≥〈
h̃Λ

〉
, and ‖H‖loc = 2maxv∈[n]

∑
Λ∋v ‖h̃Λ‖.
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