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Abstract. We study in this paper the EM scheme for a family of well-posed
critical SDEs with the drift −x log(1 + |x|) and α-stable noises. Specifically, we
find that when the SDE is driven by a rotationally symmetric α-stable processes
with α = 2 (i.e. Brownian motion), the EM scheme is bounded in the L2 sense
uniformly w.r.t. the time. In contrast, if the SDE is driven by a rotationally
symmetric α-stable process with α ∈ (0, 2), all the β-th moments, with β ∈ (0, α),
of the EM scheme blow up. This demonstrates a phase transition phenomenon as
α ↑ 2. We verify our results by simulations.
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1. Introduction

The following stochastic differential equation (SDE) on Rd has been extensively
studied for several decades:

(1.1) dXt = f(Xt) dt+ g(Xt) dLt , X0 = x0,

where x0 ∈ Rd, f : Rd → Rd, g : Rd → Rd×d satisfy certain regularity conditions,
and the process (Lt, t ⩾ 0) is a d-dimensional, rotationally invariant α-stable Lévy
process with α ∈ (0, 2]. We refer to the books [1, 36, 38] for systematic accounts on
SDEs driven by Lévy processes and to [2, 3, 5, 6, 7, 8, 16, 17, 19, 20, 30, 10, 18, 40]
for more recent developments.

The Euler-Maruyama (EM) scheme of SDE (1.1) has also been studied by many
authors, see [29, 30, 22, 41, 13, 42, 14, 39, 32, 4, 33]. In particular, when f is Lipschitz
and g is bounded Lipschitz, by a standard method for proving the existence and
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uniqueness of SDE’s strong solution, it can be shown that the EM scheme in a finite
time interval [0, T ] strongly converges to (1.1), see for instance [26, 35, 1, 38, 36].

It is well known that, even though a (stochastic) dynamics system is well posed, its
numerical schemes may blow up, see [29, 30, 24, 23, 8]. In particular, for SDE (1.1)
with a Brownian motion noise, i.e., α = 2, if the drift coefficient f is a polynomial like
−x|x|θ with θ > 0, it has a unique strong solution with finite exponential moment.
In contrast, its EM scheme has a blowing-up Lp(P) norm with p ⩾ 1 as the step size
η → 0, see for instance [24, 23, 25]. When the driven noise is an α-stable process with
α ∈ (0, 2), due to the heavy tailed property of stable distribution, one may expect
that the corresponding EM scheme will blow up. One of the main motivation of the
present paper is to verify this conjecture.

In this paper, we shall mainly consider SDE (1.1) with a special non-Lipschitz drift
−x log(1+ |x|), which lies at the boundary between the cases −x|x|θ and −x. To the
best of our knowledge, the behavior of the EM scheme has not been studied. Our
main results, Theorems 1.1–1.3, show that the EM scheme is uniformly bounded for
α = 2, but blows up for α ∈ (0, 2). This demonstrates a phase transition as α ↑ 2.

1.1. The drift −x log(1 + |x|) and α ∈ (0, 2]: phase transition. In order to
demonstrate our idea, we assume for simplicity that g(x) = Id with Id being d × d
identity matrix. We expect that our results can be extended to the case in which g
is bounded Lipschitz and nondegenerate.

Let us consider the following SDE on Rd:

(1.2) dXt = −Xt log(1 + |Xt|) dt+ dLt , X0 = x0,

where Lt is a d-dimensional rotationally symmetric α-stable Lévy process with α ∈
(0, 2]. Thanks to the dissipation of the drift term, we can show by a standard method
that SDE (1.2) admits a unique strong solution, see Appendix 6 below.

The Euler-Maruyama (EM) scheme of SDE (1.2) is give by: for k ∈ Z+,

(1.3) Yk+1 = Yk − ηYk log(1 + |Yk|) + (L(k+1)η − Lkη), Y0 = x0,

where η > 0 is the step size. We shall show that for α ∈ (0, 2), the above EM scheme
(Yn, n ≥ 1) blows up in Lβ(P) for any β ∈ (0, 2) as η → 0; while for α = 2, i.e. Lt

is a standard d-dimensional Brownian motion, (Yn, n ≥ 1) is uniformly bounded in
L2(P). This demonstrates a phase transition as α ↑ 2.

We start with the following theorem for the case of α = 2.

Theorem 1.1. Consider the EM scheme (1.3) with α = 2, i.e. the driven noise
is Brownian motion. Then, for any fixed initial value x0, there exist constants
η0 ⩽ min{(1 + |x0|)−2, e−5} and C > 0 such that for all η ∈ (0, η0],

(1.4) sup
m⩾0

E |Ym|2 ⩽ C.

Next we consider the case α ∈ (0, 2), in which (Lt, t ⩾ 0) is a rotationally sym-
metric α-stable process, which will be denoted by (Zt, t ⩾ 0). We refer to [37]
for comprehensive account on Lévy processes, stable and more generally, infinitely
divisible distributions. See also [16, 31, 28] for more recent developments.
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It is known (cf. e.g., [37, Theorem 14.3] or [10, 27]) that the Lévy measure ν of
the process (Zt, t ⩾ 0) is

ν( dz) =
Cd,α

|z|d+α
dz,

where constant Cd,α is given by

(1.5) Cd,α = α2α−1π− d
2 ·

Γ
(
(d+ α)/2

)
Γ
(
1− α/2

) .

Even though, for a general α ∈ (0, 2), the transition density function pα(t, x) of
the α-stable processes (Zt, t ⩾ 0) does not have an explicit expression, many of its
analytic or asymptotic properties have been known. In particular, it follows from
[9, Theorem 2.1] that pα(t, x) satisfies

(1.6) K(d, α)−1 t

(t1/α + |x|)d+α
⩽ pα(t, x) ⩽ K(d, α)

t

(t1/α + |x|)d+α
, x ∈ R,

where K(d, α) ⩾ 1 is a constant depending on d and α.
By the Lévy-Itô decomposition (cf. [37, Chapter 4] or [1, Chapter 2]), there exists

a Poisson random measure P ( dt, dz) such that

dZt =

∫
{|z|⩾1}

zP ( dt, dz) +

∫
{|z|<1}

zP̃ ( dt, dz),

where P̃ ( dt, dz) = P ( dt, dz)− dt ν( dz) is the compensated Poisson random mea-
sure. Due to the lack of explicit representation for the probability density of the
α-stable noise Z(n+1)η − Znη, the numerical simulation becomes complicated and
computationally expensive. Hence, one often does not use the scheme (1.3) directly
in practice, see [34, 12] for further discussions. Since the α-stable distribution and
the Pareto distribution with parameter α have the same tail behavior and the stable
central limit theorem (see, e.g. [15, 21]), we can replace the stable noise Z(n+1)η−Znη

with i.i.d. random variables with the Pareto distribution. More precisely, for any
fixed time T > 0, the EM approximation for the SDE (1.2), denoted by mappings

Ỹk : Ω → Rd, is given by

(1.7) Ỹk+1 = Ỹk − ηỸk log
(
1 +

∣∣Ỹk

∣∣)+ 1

σ
η1/αZ̃k+1, Ỹ0 := x0,

for all k ∈ {0, 1, . . . , n− 1}, n ∈ N, where σα = α/(sd−1Cd,α) with Cd,α defined by

(1.5), {Z̃k, k = 1, 2, . . . } is a sequence of i.i.d. Pareto-distributed random variables,
and the density function p(z) of the Pareto distribution is given by

(1.8) p(z) =
α

sd−1|z|α+d
1(1,∞)(|z|).

Here, sd−1 = 2π
d
2 /Γ(d

2
) represents the surface area of the unit sphere Sd−1 ⊆ Rd.

The following theorem describes the limiting behavior of the EM schemes (1.3)
and (1.7) when α ∈ (0, 2). In Theorems 1.2 and 1.3, κα and δα are the constants,
depending on α, given in Lemmas 2.2 and 2.3 below.

Theorem 1.2. Let α ∈ (0, 2), β ∈ (0, α), T ∈ (0,∞) be constants and let η = T
n
be

the step size.
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(i) For the EM scheme (1.3), define K1 = 2(eδα/β +2)/T . We assume that T and
n are large enough such that

T

n
⩽ 1, K1 <

δα − log δα
α− β

, enK1 ⩾ |x0|
(
1 + log(1 + |x0|)

)
.

Then, there exist a constant C > 0 and a sequence of non-empty events Ωn ⊆ Ω,
n ∈ N with

P(Ωn) ⩾
Ce−αnK1

nδnα
and |Yn(ω)| ⩾ exp

{
nK1 + (n− 1)

δα
β

}
for all ω ∈ Ωn and all n ∈ N large enough. Consequently, we have

lim
n→∞

E |Yn|β = ∞.

(ii) For the EM scheme (1.7), define K2 = 2(eκα/β + 2/σ)/T . We assume that T
and n are large enough such that

T

n
⩽ 1, K2 <

κα − log κα

α− β
, enK2 ⩾ |x0|

(
1 + log(1 + |x0|)

)
.

Then, there exist a constant C > 0 and a sequence of non-empty events Ω̃n ⊆ Ω,
n ∈ N with

P(Ω̃n) ⩾
Ce−αnK2

nκn
α

and
∣∣Ỹn(ω)

∣∣ ⩾ exp

{
nK2 + (n− 1)

κα

β

}
for all ω ∈ Ω̃n and all n ∈ N large enough. Consequently, we have

lim
n→∞

E
∣∣Ỹn

∣∣β = ∞.

1.2. The polynomial growth drift and α ∈ (0, 2): blow up. By the same
method for showing Theorem 1.2, we can also prove that the EM scheme of SDE
(1.1) blows up if the drift has a p-order polynomial growth with p > 1. More
precisely, we assume that f(x) and g(x) in SDE (1.1) satisfy the following condition:
There exist constants γ > λ > 1 and H ⩾ 1 such that

(A) max{|f(x)| , |g(x)|} ⩾
1

H
|x|γ , and ,min{|f(x)| , |g(x)|} ⩽ H |x|λ

for all |x| ⩾ H.
Assumption (A) is similar to the condition in [24, Theorem 1]. The EM scheme

of the corresponding SDE is

(1.9) Yk+1 = Yk + ηf
(
Yk

)
+ g
(
Yk

)
(Z(k+1)η − Zkη), Y0 = x0,

with step size η = T
n
and k ∈ {0, 1, . . . , n − 1}. In practice, it is easier to consider

the following EM scheme:

(1.10) Ỹk+1 = Ỹk + ηf
(
Ỹk

)
+

1

σ
η1/αg

(
Ỹk

)
Z̃k+1, Ỹ0 = x0,

where {Z̃k, k = 1, 2, . . . } are i.i.d. Pareto distributed random variables.
The following theorem shows that for any T > 0, both EM schemes (1.9) and

(1.10) blow up as η → 0.
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Theorem 1.3. Consider SDE (1.1) under the assumption that Lt is a standard
d-dimensional rotationally invariant α-stable process with α ∈ (0, 2). We assume
that (A) holds and g(x0) ̸= 0. Let T > 0 be an arbitrary number and η = T

n
. Then,

there exists a constant c > 1 such that
(i) for the standard EM scheme (1.9), there exists a sequence of non-empty events

Ωn ⊆ Ω, n ∈ N such that P(Ωn) ⩾ cn−cδ−n
α . Furthermore, |Yn(ω)| ⩾ 2λ

n−1
for all

ω ∈ Ωn and all n ∈ N;
(ii) for the EM scheme (1.10), there exists a sequence of non-empty events Ω̃n ⊆ Ω,

n ∈ N such that P(Ω̃n) ⩾ cn−cκ−n
α . Furthermore,

∣∣Ỹn(ω)
∣∣ ⩾ 2λ

n−1
for all ω ∈ Ω̃n

and all n ∈ N.
Consequently, for any β ∈ (0, α), we have

lim
n→∞

E |Yn|β = ∞, and , lim
n→∞

E
∣∣Ỹn

∣∣β = ∞.

The structure of this paper is outlined as follows: We introduce some useful
auxiliary lemmas in the following section. In Section 3, we will prove Theorem 1.1.
The proofs of Theorems 1.2 and 1.3 are presented in Section 4. In Section 5, we
provide numerical simulations that illustrate the convergence and divergence of EM
schemes for d = 1. Finally, in Appendix 6, we establish the existence and uniqueness
of the strong solution of SDE (1.2).

2. Preliminary and Auxiliary Lemmas

To prove Theorem 1.1, we will make use of the following lemmas. Since the proof
of Lemma 2.1 is elementary, it is omitted.

Lemma 2.1. If N follows a standard Gaussian distribution, then for any constants
b ⩾ a ⩾ 0, there exists a constant C such that

(2.1) P(a ⩽ |N | ⩽ b) ⩽ C(b− a)e−
a2

2 .

As for the Pareto distribution with parameter α ∈ (0, 2), we have the following
lemma.

Lemma 2.2. Suppose that random vector Z̃ : Ω → Rd satisfies Pareto distribution,
then for all z ∈ (1,∞) we have

(2.2) P(|Z̃| ⩾ z) =
1

zα

and there exists a constant κα ⩾ 1 such that

(2.3) P(z ⩽ |Z̃| ⩽ 2z) =
1

καzα
,

where constant κα = 2α/(2α − 1) which only depends on α.

Proof of Lemma 2.2. For all z ∈ (1,∞), and α ∈ (0, 2), we have

P(|Z̃| ⩾ z) =

∫ ∞

z

αrd−1

rα+d
dr

∫
Sd−1

1

sd−1

dS =
1

zα
.

Similarly, we have

P(z ⩽ |Z̃| ⩽ 2z) =

(
1− 1

2α

)
1

zα
.

Taking κα = 2α/(2α − 1) gives (2.3). □
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In addition, thanks to inequality (1.6), we also have the following lemma.

Lemma 2.3. Let Z : Ω → Rd be a standard d-dimensional rotationally invariant
α-stable distribution with α ∈ (0, 2). Then for all z ∈ (1,∞), we have

(2.4) P(|Z| ⩾ z) ⩾
sd−1

2d+αK(d, α)
· 1

zα
,

and there exists a constant δα ⩾ 1 depending on d and α such that for all z ∈ (1,∞),

(2.5) P(z ⩽ |Z| ⩽ 2z) ⩾
1

δαzα
.

where δα = 2d+ααK(d,α)
sd−1

(
1− 1

2α

)−1
with sd−1 = 2π

d
2 /Γ(d

2
), and K(d, α) is in (1.6).

Proof. 2.3 The proof is analogous to that of Lemma 2.2. For all z ∈ (1,∞), by
applying inequality (1.6), we obtain

P(|Z| ⩾ z) ⩾
1

K(d, α)

∫
|x|⩾z

dx

(1 + |x|)d+α

⩾
sd−1

2d+αK(d, α)

∫ ∞

z

dr

rα+1
=

sd−1

2d+ααK(d, α)
· 1

zα
,

where the second inequality is due to |x| ⩾ z > 1. Similarly,

P(z ⩽ |Z| ⩽ 2z) ⩾
sd−1

2d+ααK(d, α)

(
1− 1

2α

)
· 1

zα
=

1

δαzα
.

We complete the proof. □

3. EM scheme in the case of α = 2

In this section, we prove Theorem 1.1. It is easy to see that the EM scheme of
(1.2) can be written as

(3.1) Yk+1 = Yk − Yk log(1 + |Yk|)η +
√
ηNk+1, Y0 = x0, k = 0, 1, 2, . . . ,

where {Nk, k ⩾ 1} represents a sequence of i.i.d. standard Gaussian random vari-
ables and, for each k ≥ 0, Nk+1 is independent of (Yj, j ⩽ k).

Proof of Theorem 1.1. Let n ∈ N be arbitrary. Denote

A0 =
{
ω ∈ Ω : sup

1⩽m⩽n
|Nm(ω)| ∈

[
0, |log η|2

)}
.

We make the following claim, whose proof will be postponed.

(3.2) sup
1⩽m⩽n

|Ym(ω)| ⩽ η−1/2 |log η|2 , ω ∈ A0,

and, for all p ⩾ 2, there exists a constant Cp such that

(3.3) E
[

sup
1⩽m⩽n

|Ym|p1Ac
0

]
⩽ Cp.
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Let us prove (1.4) first. It follows from (3.2) and (3.3) that

E
[
|Ym|2 log2

(
1 + |Ym|

)]
= E

[
|Ym|2 log2

(
1 + |Ym|

)
1A0

]
+ E

[
|Ym|2 log2

(
1 + |Ym|

)
1Ac

0

]
⩽ log2

(
1 + η−1/2 |log η|2

)
E |Ym|2 + C

⩽ 4| log η|2E |Ym|2 + C,

(3.4)

where C can be taken as Cp in (3.3) with p = 3, and the last inequality is by

1 + η−1/2 |log η|2 ⩽ η−2 for η ⩽ 1
4
. On the other hand,

E
[
|Ym|2 log(1 + |Ym|)

]
⩾ E

[
|Ym|2 log(1 + |Ym|)1{|Ym|⩾2}

]
⩾ E

[
|Ym|21{|Ym|⩾2}]

⩾ E|Ym|2 − 4.

(3.5)

By (3.1), (3.4) and (3.5), we see that for all 0 ⩽ m < n and η ⩽ e−5,

E |Ym+1|2 = E |Ym|2 − 2ηE
[
|Ym|2 log(1 + |Ym|)

]
+ dη + η2E

[
|Ym|2 log2

(
1 + |Ym|

)]
⩽ E |Ym|2 − 2ηE

[
|Ym|2

]
+ (d+ 8)η + η2

[
4 |log η|2 E |Ym|2 + C

]
⩽
[
1− 2η + 4η2 |log η|2

]
E |Ym|2 + Cη

⩽ e−ηE |Ym|2 + Cη

⩽ e−(m+1)η |x0|2 + C
m+1∑
k=1

ηe(k−(m+1))η

⩽ |x0|2 + Ce−(m+1)η

∫ (m+1)η

0

ex dx ⩽ |x0|2 + C.

Since n ∈ N is arbitrary, (1.4) in Theorem 1.1 clearly holds true.
It remains to show (3.2) and (3.3). For proving (3.2), let m0 = min{1 ⩽ m ⩽ n :

|Ym| > η−1/2 |log η|2} and consider

(3.6) Ym0 = Ym0−1

(
1− η log(1 + |Ym0−1|)

)
+
√
ηNm0 .

It is easy to check that as η ⩽ e−5

η log
(
1 + η−1/2 |log η|2

)
⩽ 1.

Since |x0| ⩽ η−
1
2 , (3.2) holds for m = 0. If 2 |Ym0−1| ⩽ η−1/2 |log η|2, then it follows

from (3.6) that for every ω ∈ A0,

|Ym0| ⩽
1

2
η−1/2 |log η|2 +√

η |log η|2 ⩽ η−1/2 |log η|2 .

If 2 |Ym0−1| > η−1/2
(
|log η|2

)
, due the definition of m0, we have

|Ym0| ⩽ |Ym0−1|
(
1− η log(1 + |Ym0−1|)

)
+
√
η |Nm0 |

⩽ η−1/2 |log η|2
[
1− η log

(
1 + η−1/2 |log η|2 /2

)]
+
√
η |log η|2

⩽ η−1/2 |log η|2 .

The last inequality follows from η−1/2 |log η|2 ⩾ 2e for all η ⩽ e−2. Hence, m0 doesn’t
exist and claim (3.2) holds.
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In order to prove (3.3), we split Ac
0 into the following disjoint events:

A1 =
{
ω ∈ Ω : sup

1⩽m⩽n
|Nm(ω)| ∈

[
|log η|2 , η−1

)}
;

Ak =
{
ω ∈ Ω : sup

1⩽m⩽n
|Nm(ω)| ∈

[
(k − 1)η−1, kη−1

)}
, 2 ⩽ k ⩽ ⌈e

1
2η ⌉ =: k0;

Bk =
{
ω ∈ Ω : sup

1⩽m⩽n
|Nm(ω)| ∈

[
kη−1e

1
2η , (k + 1)η−1e

1
2η

)}
, 1 ⩽ k < ∞.

Firstly, under |Y0| = |x0| ⩽ η−
1
2 , we verify that for every 1 ⩽ k ⩽ ⌈e

1
2η ⌉,

(3.7) sup
1⩽m⩽n

|Ym(ω)| ⩽
k

η3/2
, ω ∈ Ak.

Even though this is similar to the proof of (3.2), we still give the detail here for

completeness. Notice that η log
(
1 + k/(2η)

)
< η log

(
1 + (e

1
2η + 1)/(2η)

)
< 1. Let

m0 = min{1 ⩽ m ⩽ n : |Ym| > (k + 1)/η}. If 2 |Ym0−1| ⩽ kη−
3
2 , then, due to

η ⩽ e−5 ⩽ 1
2
,

|Ym0| ⩽ |Ym0−1|+
√
η |Nm0| ⩽

k

2η3/2
+

k
√
η
⩽

k

η3/2
.

On the other hand, if 2 |Ym0−1| > kη−
3
2 , then

|Ym0| ⩽ |Ym0−1|
(
1− η log(1 + k/(2η3/2))

)
+
√
η |Nm0|

⩽
k

η3/2
(1− η) +

k
√
η
⩽

k

η3/2
,

where the second inequality comes from the definition of m0 and η ⩽ 2−2/3. Hence,
m0 doesn’t exist and the claim (3.7) holds. Besides, Lemma 2.1 yields that

P(A1) ⩽ C

(
1

η
− |log η|2

)
e−|log η|2/2 ⩽ Cη

|log η|
2

−1,

P(Ak) ⩽ Cn · 1
η
e
− (k−1)2

2η2 ⩽
C

η2
e
− (k−1)2

2η2 , ∀ 2 ⩽ k ⩽ ⌈e
1
2η ⌉.

It follows that for any p ⩾ 1, there is some positive constant C ′
p not depending on

η such that

(3.8)

k0∑
k=1

E
[

sup
0⩽m⩽n

|Ym|p 1Ak

]
⩽

C

η3p/2
· η

|log η|
2

−1 +
C

η2

∞∑
k=2

kp

η3p/2
e
− (k−1)2

2η2

⩽ C + 2pC
∞∑
k=1

(
k

η

) 3p
2
+2

e−
1
2(

k
η )

2

⩽ C + 2pC

∫ ∞

⌊ 1
η
⌋−1

y
3p
2
+2e−

y2

2 dy ⩽ C ′
p,

Here the second inequality holds since one can find η ⩽ e−(3p+2) such that |logn|
2

−
3p+2
2

⩾ 0 and the fact (k + 1)p ⩽ (2k)p for any k ⩾ 1 and any fixed p ⩾ 1. Besides,∫∞
z

zqe−z2/2 dz < ∞ for any q, z > 0 yields the last inequality.
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On the event Bk, due to EM scheme (3.1) and |Y0| = |x0| < η−
1
2 , we have

|Y1| ⩽ |Y0| (1 + η log(1 + |Y0|)) +
√
η |N1| ⩽

2(k + 1)
√
η

e
1
2η ,

where the last inequality comes from η−
1
2 +

√
η log(1 + η−

1
2 ) ⩽ η−

1
2 e

1
2η as η ⩽ 1

2
.

Furthermore, for |Y2| we have

|Y2| ⩽ |Y1| (1 + η log(1 + |Y1|)) +
√
η |N2|

⩽
2(k + 1)

√
η

(1 + k)e
1
2η +

(k + 1)
√
η

e
1
2η

⩽
[
2(k + 1)2 + (k + 1)

] 1
√
η
e

1
2η

Hence, by induction, we obtain that for each k ⩾ 1,

(3.9) |Ym| ⩽
[
2(k + 1)m + (k + 1)m−1 + · · ·+ (k + 1)

] 1
√
η
e

1
2η := am

1
√
η
e

1
2η .

Hence, due to am ⩽ 2m(k + 1)m and η = O( 1
n
), we have

sup
1⩽m⩽n

|Ym| ⩽
2C

η3/2
(k + 1)

T
η e

1
2η .

Besides, applying Lemma 2.1 again,

P(Bk) ⩽
C

η
e−

1
2(

k
η
e1/(2η))

2

, ∀ k ⩾ 1.

Due to similar argument (3.8) for any p ⩾ 1, there exists a constant C ′′
p not depending

on η such that

(3.10)

∞∑
k=1

E
[

sup
0⩽m⩽n

|Ym|p 1Bk

]
⩽

2pCp+1

η(3p+2)/2

∞∑
k=1

(k + 1)
pC
η e

p
2η · e−

1
2(

k
η
e1/(2η))

2

⩽C ′′
p .

In sum, equations (3.8) and (3.10)yield that there exists a constant Cp not de-
pending on η such that

E
[

sup
1⩽m⩽n

|Ym|p1Ac
0

]
⩽

k0∑
k=1

E
[

sup
0⩽m⩽n

|Ym|p 1Ak

]
+

∞∑
k=1

E
[

sup
0⩽m⩽n

|Ym|p 1Bk

]
⩽ Cp ,

that is, (3.3) holds. And we complete the proof. □

4. EM scheme in the case of α ∈ (0, 2)

In this section, we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We only prove Part (ii) of the theorem in detail, since Part
(i) can be shown in a similar way by replacing the estimates in Lemma 2.2 with the
ones in Lemma 2.3.

Recall the formulations of (1.7):

Ỹk+1 = Ỹk − ηỸk log
(
1 +

∣∣Ỹk

∣∣)+ 1

σ
η1/αZ̃k+1, Ỹ0 := x0,
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where η = T
n
for all k =, 0, 1, . . . , n− 1, and the definition of K2 in the theorem:

K2 =
2

T

(
eκα/β +

2

σ

)
,

for any fixed time T > 0, where κα is given in Lemma 2.2. Due to η = T
n
⩽ 1, it is

easy to check that

(4.1) η · nK2 −
2(1 + η)

σ
η1/α − 1 = 2eκα/β − 1 +

4

σ
(1− η1/α) ⩾ eκα/β.

We will apply this equation repeatedly. Consider a sequence of events Ω̃n ⊆ Ω,
n ∈ N, defined by

(4.2)

Ω̃n :=

{
ω ∈ Ω

∣∣∣∣ ∣∣Z̃k(ω)
∣∣ ∈ [1 + η, 2 + 2η] , ∀k = 2, · · · , n ;

η1/α

σ

∣∣Z̃1(ω)
∣∣ ⩾ |x0|

(
1 + log(1 + |x0|)

)
+ exp{nK2}

}
.

For all ω ∈ Ω̃n, we verify by induction that the following holds:

(4.3)
∣∣Ỹm(ω)

∣∣ ⩾ exp

{
κα

β
(m− 1) + nK2

}
, ∀ m = 1, . . . , n.

If m = 1, the triangle inequality yields that∣∣Ỹ1(ω)
∣∣ = ∣∣x0 − x0 log(1 + |x0|) +

η1/α

σ
Z̃1(ω)

∣∣
⩾

η1/α

σ

∣∣Z̃1(ω)
∣∣− |x0|

(
1 + log(1 + |x0|)

)
⩾ exp{nK2}.

When m = 2, we have∣∣Ỹ2(ω)
∣∣ ⩾ η

∣∣Ỹ1(ω)
∣∣ log (1 + ∣∣Ỹ1(ω)

∣∣)− η1/α

σ

∣∣Z̃2(ω)
∣∣− ∣∣Ỹ1(ω)

∣∣
⩾
∣∣Ỹ1(ω)

∣∣ · [η log (∣∣Ỹ1(ω)
∣∣)− η1/α

σ

∣∣Z̃2(ω)
∣∣− 1

]
⩾ exp{nK2} ·

[
η · nK2 −

2(1 + η)

σ
η1/α − 1

]
⩾ exp

{
κα

β
+ nK2

}
.

The second inequality is a consequence to
∣∣Ỹ1(ω)

∣∣ ⩾ 1. And the third inequality

arises from
∣∣Ỹ1(ω)

∣∣ ⩾ enK2 and
∣∣Z̃2(ω)

∣∣ ⩽ 2(1+η) for all ω ∈ Ω̃n. The last inequality
follows from (4.1). Therefore, (4.3) holds for m = 2.

For the induction step k → k+1, we assume that (4.3) holds for ℓ = 1, · · · , k. In
particular,

∣∣Ỹℓ(ω)
∣∣ ⩾ exp{nK2} ⩾ 1 for all ℓ = 1, · · · , k and all ω ∈ Ω̃n. Analogous

with the case of m = 2, we have∣∣Ỹk+1(ω)
∣∣ ⩾ η

∣∣Ỹk(ω)
∣∣ log (1 + ∣∣Ỹk(ω)

∣∣)− η1/α

σ

∣∣Z̃k+1(ω)
∣∣− ∣∣Ỹk(ω)

∣∣
⩾
∣∣Ỹk(ω)

∣∣ · [η log (∣∣Ỹk(ω)
∣∣)− η1/α

σ

∣∣Z̃k+1(ω)
∣∣− 1

]
⩾ exp

{
κα

β
(k − 1) + nK2

}
·
[
η · nK2 −

2η1/α

σ
(1 + η)− 1

]
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⩾ exp

{
κα

β
k + nK2

}
.

The third inequality arises from
∣∣Ỹk(ω)

∣∣ ⩾ exp{κα

β
(k − 1) + nK2} and

∣∣Z̃k+1(ω)
∣∣ ⩽

2(1+ η) for all ω ∈ Ω̃n. The last inequality follows from inequality (4.1). Therefore,
claim (4.3) holds. In particular, for all n ∈ N,

(4.4)
∣∣Ỹn(ω)

∣∣ ⩾ exp
{
(n− 1)

κα

α
+ nK2

}
, ∀ ω ∈ Ω̃n.

Next, we establish a lower bound for the probability of Ω̃n by using Lemma 2.2.
Firstly, we have

P

(
η

1
α

σ

∣∣∣Z̃1(ω)
∣∣∣ ⩾ |x0|

(
1 + log(1 + |x0|)

)
+ exp {nK2}

)
⩾

η

σα
·
(
|x0|

(
1 + log(1 + |x0|)

)
+ exp {nK2}

)−α

⩾
T

2σα
·

(
|x0|α

(
1 + log(1 + |x0|)

)α
exp{αnK2}

+ 1

)−1

· 1
n
exp{−αnK2},

where the last inequality comes from (a + b)α ⩽ 2(aα + bα) for all a, b > 0 and
α ∈ (0, 2). Besides, Lemma 2.2 also yields that for all k = 2, . . . , n,

P
(∣∣Z̃k(ω)

∣∣ ∈ [1 + η, 2 + 2η]
)
⩾

1

κα

(1 + η)−α .

Thus, combining condition enK2 ⩾ |x0|
(
1 + log(1 + |x0|)

)
for sufficiently large n,

(4.5) P
(
Ω̃n

)
⩾

T

4σα
· 1
n
exp {−αnK2} ·

1

κn
α

(
1 +

T

n

)−αn

⩾ C · e
−αnK2

nκn
α

holds for some constant C > 0 independent of n. Hence, combining equation (4.4)
with (4.5) leads to

E
[∣∣Ỹn

∣∣β] ⩾ E
[∣∣Ỹn

∣∣β1Ω̃n

]
⩾ P

(
Ω̃n

)
· exp

{
κα(n− 1) + βnK2

}
⩾

C

n
·
(
exp{βK2 + κα − αK2}

κα

)n

.

Condition K2 < (κα − log κα)/(α− β) implies eβK2+κα−αK2 > κα. Consequently, we
can obtain that

(4.6) lim
n→∞

E
∣∣Ỹn

∣∣β = ∞, ∀ β ∈ (0, α).

The proof is completed. □

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. Again, we only provide a proof for Part (ii) and omit details
for proving Part (i). Recall (1.10) and that that functions f and g satisfy Assumption
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(A). For all n ∈ N, define rn as

(4.7)

rn := max

{
2, H,

(
4H

η
+

4H2

ησ

(
1 + η

)
η1/α

) 1
γ−λ

,

(
σH
(
2 +Hη

)(
1 + η

)−1
η−

1
α

) 1
γ−λ

}
∈ [2,∞).

where η = T
n
. The third term of the right hand side ensures that

(4.8)
η

2H
rγ−λ
n ⩾ 2 +

2H

σ
(1 + η) η

1
α ,

and the last term ensures

(4.9)
1

σH
(1 + η)η

1
α rγ−λ

n ⩾ 2 +Hη.

Both equations will be used below.
Since g(x0) ̸= 0, there exists a constant M ⩾ 1 such that |g(x0)| ⩾ M−1 and

|x0|+ T |f(x0)| ⩽ M . And we consider the events Ω̃n ⊆ Ω for all n ∈ N defined as

(4.10)

Ω̃n :=

{
ω ∈ Ω

∣∣∣ ∣∣Z̃k(ω)
∣∣ ∈ [1 + η, 2 + 2η

]
,∀k = 2, . . . , n;

η1/α

σ

∣∣Z̃1(ω)
∣∣ ⩾ M(rn +M)

}
.

We claim that for every ω ∈ Ω̃n and m ∈ {1, 2, · · · , n},

(4.11) |Ỹm(ω)| ⩾ rλ
(m−1)

n .

By induction, in the base case m = 1, the triangle inequality leads to∣∣Ỹ1(ω)
∣∣ =∣∣x0 + ηf(x0) +

η1/α

σ
g(x)Z̃1(ω)

∣∣
⩾
η1/α

σ
|g(x0)|

∣∣Z̃1(ω)
∣∣− |x0| − η |f(x0)|

⩾
η1/α

Mσ

∣∣Z̃1(ω)
∣∣−M ⩾

M(rn +M)

M
−M ⩾ rn,

which follows from the definition (1.10) of Ỹ1 and (4.10) of Ω̃n. For the induction
step m → m + 1, We assume that equation (4.11) holds for k ∈ {1, 2, · · · ,m}. In

particular, we can obtain |Ỹk(ω)| ⩾ rn ⩾ H ⩾ 1. Additionally, the EM scheme
(1.10) yields that

(4.12)

∣∣Ỹm+1(ω)
∣∣ =∣∣∣Ỹm(ω) + ηf

(
Ỹm(ω)

)
+

η1/α

σ
g
(
Ỹm(ω)

)
Z̃m+1(ω)

∣∣∣
⩾
∣∣∣ηf(Ỹm(ω)

)
+

η
1
α

σ
g
(
Ỹm(ω)

)
Z̃m+1(ω)

∣∣∣− ∣∣Ỹm(ω)
∣∣

⩾max

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , ∣∣∣g(Ỹm(ω)
)∣∣∣ ∣∣∣∣η1/ασ Z̃m+1(ω)

∣∣∣∣}
−min

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , ∣∣∣g(Ỹm(ω)
)∣∣∣ ∣∣∣∣η1/ασ Z̃m+1(ω)

∣∣∣∣}−
∣∣Ỹm(ω)

∣∣,
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where we have repeatedly used the triangle inequality. Since
∣∣Z̃m+1(ω)

∣∣ ∈ [1+η, 2+

2η] for all ω ∈ Ω̃n, we notice that

(4.13)

max

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , ∣∣∣g(Ỹm(ω)
)∣∣∣ ∣∣∣∣η1/ασ Z̃m+1(ω)

∣∣∣∣}
⩾ max

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , (1 + η)η1/α

σ

∣∣∣g(Ỹm(ω)
)∣∣∣} ,

and

(4.14)

min

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , ∣∣∣g(Ỹm(ω)
)∣∣∣ ∣∣∣∣η1/ασ Z̃m+1(ω)

∣∣∣∣}
⩽ min

{
η
∣∣∣f(Ỹm(ω)

)∣∣∣ , 2(1 + η)η1/α

σ

∣∣∣g(Ỹm(ω)
)∣∣∣} ,

If α ∈ (1, 2), we have η
2
⩽ 1

σ
(1 + η)η1/α for sufficiently large n. By the definition of

σ, we know that σ ⩽ 2 as α = 1. Thus η
2
⩽ 1

σ
(1 + η)η if α = 1. Consequently, it

follows from (4.12), (4.13) and (4.14) that for α ∈ [1, 2),∣∣Ỹm+1(ω)
∣∣ ⩾η

2
max

{∣∣∣f(Ỹm(ω)
)∣∣∣ , ∣∣∣g(Ỹm(ω)

)∣∣∣}
− 2(1 + η)η1/α

σ
min

{∣∣∣f(Ỹm(ω)
)∣∣∣ , ∣∣∣g(Ỹm(ω)

)∣∣∣}−
∣∣Ỹm(ω)

∣∣
⩾

η

2H

∣∣Ỹm(ω)
∣∣γ − 2H

σ
(1 + η)η

1
α

∣∣Ỹm(ω)
∣∣λ − ∣∣Ỹm(ω)

∣∣λ
=
∣∣Ỹm(ω)

∣∣λ [ η

2H

∣∣Ỹm(ω)
∣∣γ−λ − 2H

σ
(1 + η)η

1
α − 1

]
⩾
∣∣Ỹm(ω)

∣∣λ [ η

2H
rγ−λ
n − 2H

σ
(1 + η)η

1
α − 1

]
⩾
∣∣Ỹm(ω)

∣∣λ,
where the first inequality comes from Assumption (A) and the last inequality follows
from inequality (4.8). On that other hand, in the case of α ∈ (0, 1), we have
2
σ
(1 + η)η1/α ⩽ η for n large enough. Then, a similar argument leads to

∣∣Ỹm+1(ω)
∣∣ ⩾ ∣∣Ỹm(ω)

∣∣λ [(1 + η)η1/α

σH
rγ−λ
n −Hη − 1

]
⩾
∣∣Ỹm(ω)

∣∣λ,
where the last inequality follows from (4.9). Hence, the induction hypothesis yields
that for all α ∈ (0, 2)

∣∣Ỹm+1(ω)
∣∣ ⩾ ∣∣Ỹm(ω)

∣∣λ ⩾
(
rλ

m−1

n

)λ
= rλ

m

n .

This proves the claim (4.11). In particular, since rn ⩾ 2, we obtain

(4.15)
∣∣Ỹn(ω)

∣∣ ⩾ rλ
n−1

n ⩾ 2λ
n−1

, ∀ ω ∈ Ω̃n, and n ∈ N
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Furthermore, by applying Lemma 2.2, we derive the following lower bound for the

probability of Ω̃n,

P(Ω̃n) =P
(∣∣∣∣η1/ασ Z̃1

∣∣∣∣ ⩾ M(rn +M)

) n∏
k=2

P
(∣∣∣Z̃k

∣∣∣ ∈ [1 + η, 2 + 2η
])

⩾P
(∣∣Z̃1

∣∣ ⩾ σM(rn +M)

η1/α

)[
P
(∣∣Z̃1

∣∣ ∈ [1 + η, 2 + 2η
])]n

⩾
T

nκn
α

[
1

σM(rn +M)

]α(
1 +

T

n

)−αn

.

Thus, there exists a constant c ∈ (1,∞) such that

(4.16) P(Ω̃n) ⩾ cn−cκ−n
α

for all sufficiently large n.
Combining equations (4.15) with (4.16) gives that for any β ∈ (0, α)

(4.17)
lim
n→∞

E
[∣∣Ỹn

∣∣β] ⩾ lim
n→∞

E
[∣∣Ỹn

∣∣β1Ω̃n

]
⩾ lim

n→∞

[
P[Ω̃n] r

βλ(n−1)

n

]
⩾ lim

n→∞

(
cn−cκ−n

α

)
· 2βλn−1

= ∞.

For proving Part (i) of Theorem 1.3, we can employ a similar approach to the EM
scheme . Define the parameter rn as in (4.7) but without including the term σ. We
consider a sequence of events Ωn defined by

Ωn :=

{
ω ∈ Ω

∣∣∣ ∣∣Zk(ω)
∣∣ ∈ [1 + η, 2 + 2η

]
, ∀k = 2, . . . , n;

η1/α
∣∣Z1(ω)

∣∣ ⩾ M(rn +M)

}
.

Then, an argument similar to that for Part (ii) and Lemma 2.3 yield the desired
conclusion. The proof is completed. □

5. Simulations

In this section, we present some numerical simulations that illustrate the conver-
gence and divergence of EM scheme for d = 1.
Firstly, we consider SDE (1.2) with α = 2 and the corresponding EM scheme

(3.1). We set the time interval t ∈ [0, T ] with T = 10 and 100. For both time
intervals, we take initial values Y0 of 1, 5 and 10 respectively. And set step size η
to 0.001 as T = 10, and to 0.01 as T = 100. Besides, we set n = T

η
= 10 000 for

each case. More precisely, Figures 1 and 2 below illustrate the simulations of the
EM scheme for the second absolute moment E |Yk|2 over the range 0 ⩽ k ⩽ n with
iteration steps n = 10000 and initial values of Y0 = 1, 5, and 10. In each figure, the
blue line corresponds to Y0 = 1, the green to Y0 = 5, and the red to Y0 = 10.

Figures 1 and 2 indicate that {E |Yk|2 , k ⩽ n} are bounded and has a clear
decreasing trend with respect to 0 ⩽ k ⩽ n for each initial value and step size.

For SDE (1.2) with α ∈ (0, 2) and the corresponding EM scheme (1.7), due to
the condition of K2 in the proof of Theorem 1.2, we choose T = 100 here. And we
consider three cases, that is, α = 0.5, 1.0, and 1.5. For each case, we let β be α

8
, α

4
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Figure 1. As T = 10, simulations values of the second absolute
moment E |Yk|2 for the EM scheme (3.1) with initial Y0 = 1, 5, 10,
η = 0.001 and iteration steps n = 10 000, 0 ⩽ k ⩽ n.
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Figure 2. As T = 100, simulations values of the second absolute
moment E |Yk|2 for the EM scheme (3.1) with initial Y0 = 1, 5, 10,
η = 0.01 and iteration steps n = 10 000, 0 ⩽ k ⩽ n.

and α
2
. The simulated values of the β-th moment of Ỹn in these cases are listed in

Tables 1, 2, and 3.
From Tables 1, 2, and 3, we observe that the simulated values of the absolute

moments of Ỹn increase with respect to number of iteration n. In addition, they
suggest that, for smaller values of α ∈ (0, 1), lager values of time T should be chosen
due to constant κα = (2α/(2α − 1)) in Lemma 2.2. Consequently, these tables
indicate that the behavior of the absolute α

2
-th moment varies with respected to α

if we choose a fixed time T .

6. Appendix: The existence and uniqueness of strong solution

Since the diffusion coefficient function f(x) = −x log(1+ |x|) in SDE (1.2) is only
locally Lipschitz and satisfies the local growth condition in [1], Theorem 6.2.11 in
[1] implies that (1.2) has a unique local solution. The following theorem strengthens
this result by proving the existence and uniqueness of strong global solution of SDE
(1.2).
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Table 1. Simulated values of the absolute moment for the EM
scheme (1.7) with T = 100, α = 0.50 and n = {100, 105, 110, . . . , 145}.

n E|Ỹn|α/8 E|Ỹn|α/4 E|Ỹn|α/2

100 1.8× 1013 6.2× 1026 3.8× 1055

105 6.5× 1013 1.3× 1028 4.7× 1057

110 2.8× 1014 3.0× 1029 3.6× 1060

115 1.2× 1015 5.4× 1030 1.6× 1063

120 5.5× 1015 1.3× 1032 4.3× 1065

125 2.4× 1016 2.1× 1033 1.7× 1068

130 1.1× 1017 4.5× 1034 1.3× 1071

135 1.5× 1018 ∞ ∞
140 ∞ ∞ ∞
145 ∞ ∞ ∞

Table 2. Simulated values of the absolute moment for the EM
scheme (1.7) with T = 100, α = 1.0 and n = {100, 105, 110, . . . , 145}.

n E|Ỹn|α/8 E|Ỹn|α/4 E|Ỹn|α/2

100 3.8× 1025 7.1× 1052 2.2× 10109

105 7.7× 1026 1.5× 1055 2.3× 10112

110 1.3× 1028 1.1× 1058 5, 4× 10117

115 2.7× 1029 2.2× 1060 2.7× 10124

120 4.6× 1030 1.3× 1063 6.3× 10128

125 9.2× 1031 3.9× 1065 1.2× 10135

130 1.7× 1033 2.9× 1068 2.1× 10141

135 2.9× 1034 3.7× 1071 1.9× 10145

140 5.9× 1035 1.8× 1073 ∞
145 ∞ ∞ ∞

Theorem 6.1. SDE (1.2) has an unique strong global solution. Moreover, if α = 2,
we have

E|Xt|2 < ∞, ∀ t > 0;

if α ∈ (0, 2), then for every β ∈ (0, α),

E|Xt|β < ∞, ∀ t > 0.

By adopting the argument in [11, Section 1.6], we can show the theorem for the
case of α = 2. This argument can be extended to prove the theorem for the case
of α ∈ (0, 2). However, we have not been able to find a proof in the literature. For
completeness, we provide a proof of Theorem 6.1.
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Table 3. Simulated values of the absolute moment for the EM
scheme (1.7) with T = 100, α = 1.5 and n = {100, 105, 110, . . . , 145}.

n E|Ỹn|α/8 E|Ỹn|α/4 E|Ỹn|α/2

100 8.7× 1037 8.4× 1077 7.0× 10158

105 5.8× 1039 5.6× 1083 7.8× 10168

110 3.9× 1041 3.7× 1086 6.9× 10174

115 2.7× 1043 1.4× 1090 2.1× 10182

120 2.9× 1045 6.0× 1093 4.6× 10192

125 1.9× 1047 2.4× 1097 1.8× 10200

130 3.3× 1049 4.8× 10101 8.7× 10207

135 4.7× 1051 7.2× 10104 7.1× 10215

140 2.9× 1053 2.5× 10111 9.2× 10219

145 ∞ ∞ ∞

Since the coefficient function f(x) = −x log(1 + |x|) is a local Lipschitz function,
For every n ∈ N+, we define the following truncated function fn(x) on Rd by

fn(x) =

{
−x log(1 + |x|), |x| ⩽ n;

−x log(1 + n), |x| > n.

Proof. By the definition of fn(x), it can been verified that fn(x) is a global Lipschitz
function with linear growth. Hence, [1, Theorem 6.2.3] implies that the SDE

(6.1) dXn,t = fn(Xn,t) dt+ dLt

has a unique strong solution Fn, and

Xn(t, x, ω) := Fn(x, ω)(t).

Define a stopping time τn as

τn = inf {t ⩾ 0 : |Xn,t| ⩾ n} , n ⩾ 2.

By the definition of fn(x), we have

⟨x, fn(x)⟩ = − |x|2 log(1 + |x|)1[0,n](|x|)− log(1 + n) |x|2 1(n,∞)(|x|)
= − |x|2 log(1 + |x|)

(
1[0,e−1](|x|) + 1(e−1],n(|x|)

)
− |x|2 1(n,∞)(|x|)

⩽ − |x|2 + 1.

In the case of α ∈ (0, 2), we define function V (x) : Rd → R as

Vβ(x) =
(
1 + |x|2

)β/2
, β ∈ (0, α).

Then we have

∇Vβ(x) =
βx

(1 + |x|2)1−β/2
,

∇2Vβ(x) =
β Id

(1 + |x|2)1−β/2
+

β(β − 2)xx′

(1 + |x|2)2−β/2
,
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where Id is the identity matrix in Rd×d. Hence, for all x ∈ Rd, we have |x|β ⩽
Vβ(x) ⩽ 1 + |x|β and

|∇Vβ(x)| ⩽ β |x|β−1 ,
∥∥∇2Vβ(x)

∥∥
HS

⩽ β(3− β)
√
d.

Besides, the following also holds for all x ∈ Rd

⟨∇Vβ(x), fn(x)⟩ =
β ⟨x, fn(x)⟩

(1 + |x|2)1−β/2
⩽ −βVβ(x) + 2β.

Itô’s formula yields that

(6.2)

Vβ(Xn,t) = Vβ(x) +

∫ t

0

⟨∇Vβ(Xn,s), fn(Xn,s)⟩ ds

+

∫ t

0

∫
|z|<1

[Vβ(Xn,s + z)− Vβ(Xn,s)] P̃ ( ds, dz)

+

∫ t

0

∫
|z|⩾1

[Vβ(Xn,s + z)− Vβ(Xn,s)]P ( ds, dz)

+

∫ t

0

∫
|z|<1

[Vβ(Xn,s + z)− Vβ(Xn,s)− ⟨∇Vβ(Xn,s), z⟩]
Cd,α dz ds

|z|d+α
.

Before estimating EVβ(Xn,t), we compute the following. If α ∈ (1, 2), we let
β ∈ (1, α), then we have that for any x ∈ Rd∫

Rd\{0}

[
Vβ(x+ z)− Vβ(x)− ⟨∇Vβ(x), z⟩1(0,1)(|z|)

] dz

|z|d+α

=

∫
|z|⩾1

∫ 1

0

⟨∇Vβ(x+ sz), z⟩ ds dz

|z|d+α
+

∫
|z|<1

∫ 1

0

∫ s

0

〈
∇2Vβ(x+ uz), zz′

〉
HS

du ds dz

|z|d+α

⩽ β

∫
|z|⩾1

(|x|β−1 |z|+ |z|β) dz

|z|d+α
+ β(3− β)

√
d

∫
|z|<1

|z|2 dz

|z|d+α

= βsd−1

(
|x|β−1

α− 1
+

1

α− β

)
+

β(3− β)sd−1

√
d

2(2− α)
.

On the other hand, for α ∈ (0, 1], we use the inequality (a + b)β ⩽ aβ + bβ, where
β ∈ (0, 1) and a, b > 0, to derive∫

|z|⩾1

[Vβ(x+ z)− Vβ(x)]
dz

|z|d+α
⩽
∫
|z|⩾1

[
1 + |x+ z|β − |x|β

] dz

|z|d+α

⩽
∫
|z|⩾1

1 + |z|β

|z|d+α
dz =

(2α− β)sd−1

α(α− β)
.

Thus, an argument similar to that for the case α ∈ (1, 2) implies that for α ∈ (0, 1]
and β ∈ (0, α),∫

Rd\{0}

[
Vβ(x+ z)− Vβ(x)− ⟨∇Vβ(x), z⟩1(0,1)(|z|)

] dz

|z|d+α

⩽
(2α− β)sd−1

α(α− β)
+

β(3− β)sd−1

√
d

2(2− α)
.
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By combining the above inequalities with equation (6.2), we obtain that

dEVβ(Xn,t)

dt
= E[⟨∇Vβ(Xn,t), fn(Xn,t)⟩]

+Cd,αE

[∫
Rd\{0}

[Vβ(Xn,t + z)− Vβ(z)− ⟨∇Vβ(Xn,t), z⟩1(0,1)(|z|)]
dz

|z|d+α

]
(6.3)

⩽ −βEVβ(Xn,t) + c1
[
EVβ(Xn,t)

β−1
β 1(1,2)(α) + 1(0,1](α)

]
+ c2

⩽ −C1EVβ(Xn,t) + C2,

where the first inequality follows from |x|β−1 ⩽ Vβ(x)
(β−1)/β as β > 1, the second

inequality from Hölder’s inequality, and c1, c2, C1, C2 are constants independent of t
and n. Hence, for any α ∈ (0, 2), the differential inequality (6.3) leads to

(6.4) EVβ(Xn,t) ⩽ Vβ(x0)e
−C1t + C2/C1 ⩽ C, ∀ t ⩾ 0.

Due to the definition of Vβ(x), we know that

Vβ(Xn,τn) ⩾ (n2 + 1)
β
2 ,

then for any T > 0, (6.4) and Markov’s inequality lead to

(n2 + 1)
β
2P(τn ⩽ T ) ⩽ E [Vβ(Xn,τn)1τn⩽T ] ⩽ C.

Let n → ∞, we obtain
P( lim

n→∞
τn ⩽ T ) = 0,

This and the arbitrariness of T imply

(6.5) lim
n→∞

τn = ∞.

As a result, (6.5) yields that ∀x ∈ Rd, t ⩾ 0,

X(t, x, ω) = lim
n→∞

Xn(t, x, ω)

exists and is continuous with respect to (t, x), which is a solution of SDE (1.2). On
the other hand, let X(t) and Y (t) be solutions with the same initial value x. Define

γn = inf{t : |X(t)| ⩾ n}, θn = inf{t : |Y (t)| ⩾ n}.
Then, we have

X(γn ∧ θn ∧ t)− Y (γn ∧ θn ∧ t) =

∫ t

0

fn(X(γn ∧ θn ∧ s))− fn(Y (γn ∧ θn ∧ s)) ds,

which implies that

E |X(γn ∧ θn ∧ t)− Y (γn ∧ θn ∧ t)|

⩽ ∥fn∥Lip
∫ t

0

E |X(γn ∧ θn ∧ s)− Y (γn ∧ θn ∧ s)| ds.

Then by Grönwall’s inequality, we have that

E |X(γn ∧ θn ∧ t)− Y (γn ∧ θn ∧ t)| = 0, ∀ t ⩾ 0,

which implies that X(t) = Y (t) on t ⩽ γn ∧ θn. Then, let n → ∞, we have
γn ∧ θn → ∞, a.s.. Hence, X(t) = Y (t), a.s. for all t ⩾ 0.

Finally, for the moment estimation, by the same argument for bounding EVβ(Xn,t),
we can establish that EVβ(Xt) ⩽ C for all t > 0, where C > 0 is a constant not
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depending on t. This implies that E |Xt|β ⩽ EVβ(Xt) ⩽ C for all β ∈ (0, α) and
t > 0. This completes the proof. □
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[30] Franziska Kühn and René L. Schilling. Strong convergence of the Euler-Maruyama approxi-
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differential equations driven by α-stable Lévy motion. Journal of Mathematical Extension,
12(3):33–54, 2018.

http://arxiv.org/abs/2302.03372


22 Y. WANG, Y. XIAO, AND L. XU

[40] Jian Wang. On the exponential ergodicity of Lévy-driven Ornstein-Uhlenbeck processes. J.
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