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Abstract— We investigate the problem of optimal control
synthesis for Markov Decision Processes (MDPs), addressing
both qualitative and quantitative objectives. Specifically, we
require the system to fulfill a qualitative surveillance task
in the sense that a specific region of interest can be visited
infinitely often with probability one. Furthermore, to quantify
the performance of the system, we consider the concept of
efficiency, which is defined as the ratio between rewards and
costs. This measure is more general than the standard long-
run average reward metric as it aims to maximize the reward
obtained per unit cost. Our objective is to synthesize a control
policy that ensures the surveillance task while maximizes the
efficiency. We provide an effective approach to synthesize a
stationary control policy achieving ϵ-optimality by integrating
state classifications of MDPs and perturbation analysis in
a novel manner. Our results generalize existing works on
efficiency-optimal control synthesis for MDP by incorporating
qualitative surveillance tasks. A robot motion planning case
study is provided to illustrate the proposed algorithm.

I. INTRODUCTION

Decision-making in dynamic environments is a fundamen-
tal challenge for autonomous systems, requiring them to react
to uncertainties in real-time to achieve desired tasks with
performance guarantees. Markov Decision Processes (MDPs)
offer a theoretical framework for sequential decision-making
by abstracting uncertainties in both environments and sys-
tem executions as transition probabilities. Leveraging MDPs
allows for the analysis of system behavior and the synthesis
of optimal control policies through systematic procedures.
In the context of autonomous systems, MDPs have found
extensive applications across various domains such as swarm
robotics [1], autonomous driving [2], and underwater vehi-
cles [3]; reader is referred to recent surveys for additional
references and applications [4], [5].

To assess the performance of infinite horizon behaviors,
two widely recognized measures are the long-run average
reward (or mean payoff) and the discounted reward [6].
The long-run average reward quantifies the average reward
received per state as the system evolves infinitely towards
a steady state. However, this measure overlooks the costs
incurred for each reward. For instance, a cleaning robot
may prioritize collecting more trash while conserving energy.
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Therefore, recently, the notion of efficiency has emerged to
capture the reward-to-cost ratio [7], [8]. Specifically, the
efficiency of a system trajectory is defined as the ratio
between accumulated reward and accumulated cost. The
efficient controller synthesis problem thus aims to maximize
the expected long-run efficiency [8].

In addition to maximizing quantitative performance mea-
sures, many applications also require achieving qualitative
tasks. Recently, within the context of MDPs, there has
been a growing interest in synthesizing control policies to
maximize the probability of satisfying high-level logic tasks
expressed in, for example, linear temporal logic or omega-
regular languages. For example, when the MDPs model
is known precisely, offline algorithms have been proposed
to synthesize optimal controller under LTL specifications;
see, e.g., [9]–[12]. Recently, reinforcement learning for LTL
tasks has also been investigated for MDPs with unknown
transition probabilities [13]–[15]. One important qualitative
task that has been extensively studied is the surveillance
task, motivated primarily by persistent surveillance needs
in autonomous systems [16]–[18]. The surveillance task is
essentially equivalent to the concept of Büchi accepting
condition requiring that certain desired target states can be
visited infinitely often.

In this work, we investigate control policy synthesis for
MDPs with both qualitative and quantitative requirements.
Specifically, for the qualitative aspect, we require that the
surveillance task is satisfied with probability one (w.p.1).
Additionally, for the quantitative aspect, we adopt the effi-
ciency measure. Our overarching objective is to maximize the
expected long-run efficiency while ensuring the satisfaction
of the surveillance task w.p.1. It is worth noting that existing
works typically focus on either efficiency optimization (ratio
objectives) without qualitative requirements [8], or they con-
sider qualitative requirements but under the standard long-
run average reward (mean payoff) measure [19]. In [9], the
authors consider qualitative requirement expressed by LTL
formulae, with a quantitative measure referred to as the per
cycle average reward. However, the per cycle average reward
is essentially a special instance of the ratio objective by
setting unit cost for specific state on the denominator. To
the best of our knowledge, the simultaneous maximization
of efficiency while achieving the surveillance task has not
been addressed in the existing literature.

To fill this gap in research, we present an effective
approach to synthesize stationary policies achieving ϵ-
optimality. Our approach integrates state classifications of
MDPs [20] and perturbation analysis techniques [21]–[23]
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in a novel manner. Specifically, the key idea of our ap-
proach is as follows. Initially, we decompose the MDPs
into accepting maximal end components (AMECs) using
state classifications, where for each AMEC, we solve the
standard efficiency optimization problem without considering
the surveillance task [8]. Subsequently, we synthesize a basic
policy that achieves optimal efficiency but may fail to fulfill
the surveillance task. Finally, we perturb the basic policy
“slightly” by a target seeking policy such that the quantitative
performance is decreased to ϵ-optimal but the surveillance
task is fulfilled. Our approach suggests that perturbation
analysis is a conceptually simple yet powerful technique
for solving MDPs with both qualitative and quantitative
tasks, which may offer new insights into addressing this
class of problems. Furthermore, our results also generalized
the existing result on perturbation analysis from the long-
run average reward optimizations to the case of long-run
efficiency optimizations.

The rest of the paper is organized as follows. In Section II,
we present some necessary backgrounds and notation. Then
we formulate the efficiency optimization problem under
surveillance tasks in Section III. In Section IV, we solve the
problem for the special case of communicating MDPs based
on a new result of perturbation analysis. Then the general
case of non-communicating MDPs is tackled in Section V.
A case study of robot task planning is provided in Section VI.
Finally, we conclude the paper in Section VII.

II. PRELIMINARY

A. Markov Decision Processes

A (finite) Markov decision process (MDP) is a 4-tuple
M = (S, s0, A, P ), where S is a finite set of states, s0 ∈
S is the initial state, A is a finite set of actions, and P :
S × A × S → [0, 1] is a transition function such that ∀s ∈
S, a ∈ A :

∑
s′∈S P (s′ | s, a) ∈ {0, 1}. We also write

P (s′ | s, a) as Ps,a,s′ . For each state s ∈ S, we define
A(s) = {a ∈ A :

∑
s′∈S P (s′ | s, a) = 1} as the set of

available actions at s. We assume that each state has at least
one available action, i.e., ∀s ∈ S : A(s) ̸= ∅. An MDP also
induces an underlying directed graph (digraph), where each
vertex is a state and an edge of form ⟨s, s′⟩ is defined if
P (s′ | s, a) > 0 for some a ∈ A(s).

A Markov chain (MC) C is an MDP such that |A(s)| = 1
for all s ∈ S. The transition matrix of MC is denoted by a
|S|× |S| matrix P, i.e., Ps,s′ = P (s′ | s, a), where a ∈ A(s)
is the unique action at state s. Therefore, we can omit actions
in MC and write it as C = (S, s0,P). The limit transition
matrix of MC is defined by P⋆ = limn→∞

1
n

∑n
k=0 Pk,

which always exists for finite MC [6]. Let π0 ∈ R|S|

be initial distribution with π0(s) = 1 if s is initial state
and π0(s) = 0 otherwise. Then the limit distribution of
MC is π = π0P⋆. A state is said to be transient if its
corresponding column in the limit transition matrix is a zero
vector; otherwise, the state is recurrent.

A policy for an MDP M is a sequence µ = (µ0, µ1, ...),
where µk : S × A → [0, 1] is a function such that
∀s ∈ S :

∑
a∈A(s) µk(s, a) = 1. A policy is said to be

stationary if µi = µj ,∀i, j and we write a stationary policy
as µ = (µ, µ, . . . ) for simplicity. Given an MDP M, the
sets of all policies and all stationary policies are denoted
by ΠM and ΠS

M, respectively. For policy µ ∈ ΠM, at
each instant k, it induces a transition matrix Pµk , where
Pµk

i,j =
∑

a∈A(i) µk(i, a)Pi,a,j . A stationary policy µ ∈ ΠS
M

induces a time-homogeneous MC with transition matrix Pµ.
An infinite sequence ρ = s0s1 · · · of states is said to be a

path in MDP M under policy µ ∈ ΠM if s0 is initial state
ofM and ∀k ≥ 0 :

∑
a∈A(sk)

µk(sk, a)P (sk+1 | sk, a) > 0.
We denote by Pathµ(M) ⊆ Sω the set of all paths in M
under µ, where Sω denotes the set of all infinite sequences
of states. We use the standard probability measure PrµM :
2S

ω → [0, 1] for infinite paths, which satisfies: for any finite
sequence s0 · · · sn, we have

PrµM(Cly(s0 . . . sn))=π0(s0)

n−1∏
k=0

∑
a∈A(sk)

µk(sk, a)Psk,a,sk+1
,

where Cly(s0 . . . sn) ⊆ Pathµ(M) is set of all paths having
prefix s0 . . . sn and π0(s) = 1 if s is the initial state and
π0(s) = 0 otherwise. The reader is referred to [20] for details
on this standard probability measure on infinite paths.

For MDP M = (S, s0, A, P ), a sub-MDP is a tuple
(S,A), where S ⊆ S is a non-empty subset of states and A :
S → 2A\∅ is a function such that (i) ∀s ∈ S : A(s) ⊆ A(s);
and (ii) ∀s ∈ S, a ∈ A(s) :

∑
s′∈S Ps,a,s′ = 1. Essentially,

(S,A) induces a new MDP by restricting the state space to
S and available actions to A(s) for each state s ∈ S.

B. Ratio Objectives for Efficiency

In the context of MDPs, quantitative measures such as
average rewards have been widely used for systems oper-
ating in infinite horizons. In [7], [8], a general quantitative
measure called ratio objective is proposed to characterize the
efficiency of policies. Specifically, two different functions are
involved:

• a reward function R : S × A → R≥0 assigning each
state-action pair a non-negative reward; and

• a cost function C : S × A → R+ assigning each state-
action pair a positive cost.

Then the efficiency value from initial state s0 under policy
µ ∈ ΠM w.r.t. reward-cost pair (R, C) is defined by

Jµ(s0, R, C) := lim sup
N→+∞

E

{∑N
i=0 R(si, ai)∑N
i=0 C(si, ai)

}
,

where E {·} is the expectation of probability measure PrµM.
We omit the reward and cost functions if they are clear by
context. Intuitively, Jµ(s0) captures the average reward the
system received per cost, i.e., the efficiency. Let Π ⊆ ΠM
be a set of policies. Then optimal efficiency value among
policy set Π is denoted by J(s0,Π) = supµ∈Π Jµ(s0).

Note that the standard long-run average reward is a special
case of ratio objective by taking C(s, a) = 1,∀s ∈ S, a ∈
A(s). For this case, we denote by Wµ(s0, R) := Jµ(s0, R,1)
the standard long-run average reward from initial state s0



under policy µ, and denote by W (s0,Π) = supµ∈Π Wµ(s0)
the optimal long-run average reward among policy set Π .

III. PROBLEM FORMULATION

Note that efficiency does not take qualitative requirements
into account, i.e., the system may maximize its efficiency
by doing useless things. In this work, motivated by surveil-
lance tasks in autonomous robots, in addition to the ratio
objectives, we further consider the qualitative requirement
by visiting target states infinitely often.

Formally, let B ⊆ S be a set of target states that need
to be visited infinitely. Then the probability of visiting B
infinitely often under policy µ ∈ ΠM is defined by

PrµM(□♢B) = PrµM({τ ∈ Pathµ(M) | inf(τ) ∩B ̸= ∅}),

where inf(τ) denotes the set of states that occur infinite
number of times in path τ ∈ Pathµ(M). We denote by ΠB

M
the set of all policies under which B is visited infinitely often
w.p.1, i.e.,

ΠB
M := {µ ∈ ΠM | PrµM(□♢B) = 1}.

For the sake of simplicity and without loss of generality, we
assume that, starting from any state, there exists a policy
such that the surveillance task can be satisfied.

Now we formulate the problem solved in this paper.
Problem 1: Given MDP M = (S, s0, A, P ), reward

function R, cost function C and a threshold value ϵ > 0,
find a stationary policy µ⋆ ∈ ΠB

M ∩ΠS
M such that

Jµ⋆

(s0) ≥ J(s0,Π
B
M)− ϵ. (1)

Remark 1: Before proceeding further, we make several
comments on the above problem formulation.

• First, here we seek to find an ϵ-optimal policy µ⋆ among
all policies satisfying surveillance tasks. The main moti-
vation for this setting is that policies with finite memory
are not sufficient to achieve the optimal efficiency value
J(s0,Π

B
M). Furthermore, even if one employs an infinite

memory policy to achieve the optimal efficiency value,
the system will visit target states less and less frequently
as time progresses. One is referred to [19] regarding this
issue for the case of standard long-run average measure,
which is a special case of our ratio objective.

• Second, we further restrict our attention to stationary
policies in ΠS

M a priori. We will show in the following
result that such a restriction is without loss of generality
in the sense that a stationary solution always exists.

Proposition 1: Given MDP M = (S, s0, A, P ) and
threshold value ϵ > 0, there always exists a policy µ ∈
ΠB

M ∩ΠS
M such that Jµ(s0) ≥ J(s0,Π

B
M)− ϵ.

Proof: Due to space constraint, the proof is provided
in [24]. Note that, the proof here is only existential and one
still needs constructive algorithm to effectively synthesize a
solution.

IV. CASE OF COMMUNICATING MDPS

Before tackling the general case, in this section, we con-
sider a special scenario, where the MDP is communicating.
Formally, an MDP M is said to be communicating if

∀s, s′ ∈ S, ∃µ ∈ ΠM,∃n ≥ 0 : (Pµ)ns,s′ > 0. (2)

In other words, for a communicating MDP, one state is
always able to reach another state.

General Idea: We solve Problem 1 for the case of
communicating MDP by the following three steps:
• First, we apply the standard algorithm in [8] to optimize

the ratio objective without considering the surveillance
task. The resulting policy is denoted by µopt.

• Second, we select an arbitrary policy µsur such that its
induced MC is irreducible. Therefore, target states can
be visited infinitely often under µsur.

• Finally, we perturb policy µopt “slightly” by µsur such
that the efficiency value of the resulting policy is ϵ-close
to that of µopt, and the surveillance task can still be
achieved due to the presence of perturbation µsur .

Now, we proceed the above idea in more detail.

A. Efficiency Optimization for Communicating MDP

In this subsection, we review the existing solution for
efficiency optimization. It has been shown in [8] that, for
communicating MDP M, there exists a stationary policy
µ ∈ ΠS

M such that Jµ(s0) = J(s0,ΠM) and the induced
MC Mµ is an unichain (MC with a single recurrent class
and some transient states). Furthermore, we have

Jµ(s0) =

∑
s∈S

∑
a∈A(s) π(s)µ(s, a)R(s, a)∑

s∈S

∑
a∈A(s) π(s)µ(s, a)C(s, a)

, (3)

where π⊤ ∈ R|S| is the unique stationary distribution such
that πPµ = π. With this structural property for communi-
cating MDP, [8] transforms the policy synthesis problem for
efficiency optimization to a steady-state parameter synthesis
problem described by the nonlinear program (4)-(9) shown
as follows:

max
γ(s,a)

∑
s∈S

∑
a∈A(s) γ(s, a)R(s, a)∑

s∈S

∑
a∈A(s) γ(s, a)C(s, a)

(4)

s.t. q(s, t) =
∑

a∈A(s)

γ(s, a)P (t | s, a),∀s, t ∈ S (5)

λ(s) =
∑

a∈A(s)

γ(s, a),∀s ∈ S (6)

λ(t) =
∑
s∈S

q(s, t),∀t ∈ S (7)∑
s∈S

λ(s) = 1 (8)

γ(s, a) ≥ 0,∀s ∈ S, ∀a ∈ A(s) (9)

Since we will only leverage this existing result, the reader
is referred to [8] for more details on the intuition of the
above nonlinear program. The only point we would like to
emphasize is that this nonlinear program is a linear-fractional



programming, which can be solved efficiently by converting
to a linear program by Charnes-Cooper transformation [25].
Now, let γ⋆(s, a) be the solution to Equations (4)-(9). The
optimal policy, denoted by µopt, can be decoded as follows.
Let Q = {s ∈ S |

∑
a∈A(s) γ

⋆(s, a) > 0}. Then for states
in Q, we define

µopt(s, a) =
γ⋆(s, a)∑

a∈A(s) γ
⋆(s, a)

, s ∈ Q. (10)

For the remaining part, policy µopt only needs to ensure that
states in S \Q are transient states in MC Mµopt ; see, e.g.,
procedure in [6, Page 480]. Then such a policy µopt achieves
Jµopt(s0) = J(s0,ΠM). Furthermore, it has been shown in
[8] that µopt can be deterministic, i.e., ∀s ∈ S, ∃a ∈ A(s) :
µopt(s, a) = 1. Hereafter, we assume that the constructed
policy µopt is deterministic.

B. Efficiency Optimization with Surveillance Tasks

Note that, under policy µopt, only states in Q are recurrent.
Therefore, if Q∩B = ∅, then the surveillance task fails. As
we mentioned at the beginning of this section, our approach
is to perturb µopt so that (i) its ratio value will not decrease
more than ϵ; and (ii) the surveillance task can be achieved.

To this end, let us consider an arbitrary stationary policy
µsur ∈ ΠS

M, which is referred to as the surveillance policy,
such that Mµsur is irreducible. For policy µsur, we have
• It is well-defined since we already assume that the MDP
M is communicating. For example, one can simply use
the uniform policy as µsur, i.e., each available action is
enabled with the same probability at each state;

• The surveillance task can be achieved by µsur since all
states can be visited infinitely often w.p.1.

Now, we perturb the optimal policy µopt by the surveil-
lance policy µsur to obtain a new policy as follows

µpert := (1− δ)µopt + δµsur, (11)

where 0 < δ < 1 is the perturbation degree and the
above notation means that µpert(s, a) = (1− δ)µopt(s, a) +
δµsur(s, a),∀s ∈ S, a ∈ A(s). Clearly, this perturbed policy
µpert has the following two properties:
• First, we have Jµpert(s0) ≤ Jµopt(s0) as µopt is already

the optimal one to achieve the ratio objective. Further-
more, Jµpert(s0)→ Jµopt(s0) as δ → 0;

• Second, the surveillance task can still be achieved. This
is because, under policy µpert, the system always has
non-zero probability to execute surveillance policy µsur.

Now, it remains to quantify the relationship between pertur-
bation degree δ and the performance decrease Jµopt(s0) −
Jµpert(s0). That is, how small δ should be in order to ensure
ϵ-optimality.

To this end, we adopt the idea of perturbation analysis
of MDP, which is originally developed to quantify the
difference of long-run average rewards between two policies
[21]. First, we introduce some related definitions.

Definition 1 (Utility Vectors & Potential Vectors): Let
µ ∈ ΠS

M be a stationary policy and V : S × A → R be

a generic utility function, which can be either the reward
function R or the cost function C. Then
• the utility vector of policy µ (w.r.t. utility function V),

denoted by vµV ∈ R|S|, is defined by

vµV (s) =
∑

a∈A(s)

µ(s, a)V(s, a). (12)

• the potential vector of policy µ (w.r.t. utility function V),
denoted by gµV ∈ R|S|, is defined by

gµV = (I − Pµ + (Pµ)⋆)−1vµV . (13)

In the above definition, the potential vector is well-defined
as matrix I−Pµ+(Pµ)⋆ is always invertible [6], where (Pµ)⋆

is the limit transition matrix of Pµ. Intuitively, the potential
vector gµV contains the information regarding the long run
average utility in MC Mµ. Specifically, let πµ be the limit
distribution of MC Mµ. Then we have

π⊤
µ g

µ
V = π⊤

µ v
µ
V = Wµ(s0, V),

which computes the long run average utility under µ.
Next, we define notion of deviation vectors of two different

policies.
Definition 2 (Deviation Vectors): Let µ, µ′ ∈ ΠS

M be
two stationary policies and V : S × A → R be a utility
function. Then the deviation vector from µ to µ′ (w.r.t. utility
function V) is defined by

DV(µ, µ
′) = (vµ

′

V − vµV ) + (Pµ′
− Pµ)gµV . (14)

The deviation vector can be used to compute the difference
between the long-run average utility of the original policy
and the perturbed policy. Formally, let µ, µ′ ∈ ΠS

M be two
stationary policies, V : S ×A→ R be a utility function and
δ ∈ (0, 1) be the perturbation degree. We define

µδ = (1− δ)µ+ δµ′

as the δ-perturbed policy of µ by µ′. It was shown in [21]
that, when Mµ is a unichain, the differences between the
long run average utilities of the perturbed policy and the
original policy can be calculated as follow:

Wµδ(s0, V)−Wµ(s0, V) = π⊤
µδ
vµδ
V −π⊤

µ v
µ
V = δπ⊤

µδ
DV(µ, µ

′).
(15)

However, the above classical result can only be applied to
the case of long-run average reward. The following proposi-
tion provides the key result of this subsection, which shows
how to generalize Equation (15) from long-run average
reward to the case of long-run efficiency under the ratio
objective.

Proposition 2: Let µ, µ′ ∈ ΠS
M be two stationary poli-

cies, R : S×A→ R≥0 be the reward function, C : S×A→
R+ be the cost function, and δ ∈ (0, 1) be the perturbation
degree. Let µδ = (1− δ)µ+ δµ′ be the perturbed policy. If
Mµ is unichain, then we have

Jµδ(s0, R, C)− Jµ(s0, R, C) (16)

=
δ

π⊤
µδ
vµδ
C

π⊤
µδ

(DR(µ, µ
′)− Jµ(s0, R, C)DC(µ, µ

′))



Proof: First, we note that the perturbed policy µδ

induces unichain MC; detailed proofs for this is provided
in [24]. Then we have the following equalities

Jµδ(s0)− Jµ(s0)

=
π⊤
µδ
vµδ
R

π⊤
µδ
vµδ
C

−
Jµ(s0)π

⊤
µδ
vµδ
C

π⊤
µδ
vµδ
C

=
π⊤
µδ
vµδ
R − π⊤

µ v
µ
R − Jµ(s0)(π

⊤
µδ
vµδ
C − π⊤

µ v
µ
C )

π⊤
µδ
vµδ
C

=
δ

π⊤
µδ
vµδ
C

π⊤
µδ
(DR(µ, µ

′)− Jµ(s0)DC(µ, µ
′)).

Specifically, the first and the second equalities hold because
µζ and µ induce unichain MCs and the efficiency values can
be computed by Equation (3). The last equality comes from
Equation (15). This completes the proof.

Remark 2: Clearly, our new result in Equation (16) for
ratio objective subsumes the classical result in Equation (15)
for the case of long-run average reward. Specifically, when
C(s, a) = 1,∀s ∈ S, a ∈ A(s), Jµ(s0, R, C) reduces to
Wµ(s0, R). For this case, we know that π⊤

µδ
vµδ
C = 1 as

vµC (s) = 1,∀s ∈ S. Furthermore, we have DC(µ, µ
′) = 0 as

both policies achieve the same cost. Therefore, Equation (16)
becomes to Equation (15) and our result provides a more
general form of perturbation analysis in terms of deviation
vectors.

Now let us discuss how to use Proposition 2 to determine
the perturbation degree δ such that ϵ-optimality holds. Note
that, in Equation (16), term DR(µ, µ

′)−Jµ(s0, R, C)DC(µ, µ
′)

can be computed explicitly based on µ and µ′. However, term
π⊤
µδ

π⊤
µδ

v
µδ
C

cannot be directly computed. Our approach here is
to estimate its bound as follows:

• Let cmin = mins∈S,a∈A(s) C(s, a) be minimum cost for
all state-action pairs. Then we have π⊤

µδ
vµδ
C ≥ cmin.

• Let the infinity norm of the computable part be

Dµ,µ′

∞ = ∥DR(µ, µ
′)− Jµ(s0)DC(µ, µ

′)∥∞. (17)

We have |π⊤
µζ
(DR(µ, µ

′)− Jµ(s0)DC(µ, µ
′))| ≤ Dµ,µ′

∞ .

These inequalities lead to the following result.

Proposition 3: Let M = (S, s0, A, P ) be a communi-
cating MDP, µopt ∈ ΠS

M be the optimal policy for ratio
objective, µsur ∈ ΠS

M ∩ ΠB
M be a surveillance policy, and

µpert be defined in (11). If

δ ≤ ϵ
cmin

Dµopt,µsur
∞

, (18)

then we have Jµpert(s0) ≥ Jµopt(s0)− ϵ.

Proof: To show this, we have

|Jµpert(s0)− Jµopt(s0)|

=
δ
∣∣∣π⊤

µpert
(DR(µopt, µsur)− Jµ(s0)DC(µopt, µsur))

∣∣∣
π⊤
µpert

v
µpert

C

≤ δ

cmin

∣∣∣π⊤
µpert

(DR(µopt, µsur)− Jµ(s0)DC(µopt, µsur))
∣∣∣

≤ δ

cmin
π⊤
µpert

1∥DR(µopt, µsur)− Jµ(s0)DC(µopt, µsur)∥∞

=
δ

cmin
Dµopt,µsur

∞ ≤ ϵ

where 1 ∈ R|S| is the vector where all elements are one.
Note that, the first equality comes from Proposition 2. Then
the first inequality holds since π⊤

µpert
v
µpert

C ≥ cminπ
⊤
µpert

1 =
cmin > 0. This completes the proof.

Finally, based on Proposition 3, we can establish the main
theorem showing the correctness of our approach.

Theorem 1: Let M = (S, s0, A, P ) be a communicating
MDP. If δ satisfies Equation (18), then policy µpert defined
in (11) is a solution to Problem 1.

Proof: The proof is provided in [24].
Remark 3: In our approach, we do not specify how to

choose the surveillance policy µsur ∈ ΠS
M∩ΠB

M. In practice,
however, if the efficiency of surveillance policy µsur itself
is very small, then Dµopt,µsur

∞ will be very large. According
to Equation (18), it means that we need to select a small
perturbation degree δ to ensure ϵ-optimality. This result is
intuitive as we need to employ µopt more frequently such that
the overall efficiency will not decrease too much. However,
this also means that we will visit target states less frequently
although they are still guaranteed to be visited infinitely often
w.p.1. How to maximize the frequency of visiting target
states under the ϵ-optimality constraint is beyond the scope
of this paper. A direct heuristic approach is to obtain µsur

by modifying µopt so that their difference in efficiency is
“minimized”.

V. SOLUTION TO THE GENERAL CASE

A. Overview of Our Approach

The approach in the previous section assumes that MDP
M is communicating. In general, however, the MDP may
not be communicating and the optimal ratio objective policy
may induce a multi-chain MC, i.e., an MC containing more
than one recurrent classes. Our approach for handling the
general case consists of the following steps:

1) First, we decompose the MDP into several communicat-
ing sub-MDPs containing target states, which are referred
to as accepting maximal end components (AMEC). Even-
tually, the system needs to stay within these AMECs in
order to achieve the surveillance task;

2) Next, for each AMEC, since it is communicating, we can
compute the optimal efficiency value one can achieve
within the AMEC by the nonlinear program (4)-(9) as
discussed in Section IV-A;



3) Note that, since we consider long-run objectives, the
efficiency value counts only when one decides to stay in
some AMEC forever. Therefore, we construct a standard
long-run average reward (per-stage) optimization prob-
lem, in which the reward for each state is determined by
the optimal efficiency value of its associated AMEC (if
any). This gives us a basic policy such that it attains the
optimal efficiency value within all policies in ΠB

M (but
may has not yet achieve the surveillance task);

4) Finally, for the basic policy, we perturb within each
AMEC using the approach in Section IV-B such that the
efficiency value decreases to ϵ-optimal but the surveil-
lance task is achieved.

Before presenting our formal algorithm, we further intro-
duce some necessary concepts.

Definition 3 (Accepting Maximal End Components):
A sub-MDP (S,A) of M = (S, s0, A, P ) is said to be
an end component if its underlying digraph is strongly
connected. We say (S,A) is an maximal end component if
it is an end component and there is no other end component
(S ′,A′) such that (i) S ⊆ S ′; and (ii) A ⊆ A′. We denote
by MEC(M) the set of all MECs in M. An MEC is said to
be an accepting MEC (AMEC) if S ∩B ̸= ∅; we denote by
AMEC(M) ⊆ MEC(M) the set of AMECs.

Now suppose that M has n AMECs denoted by
AMEC(M) = {(S1,A1), . . . , (Sn,An)}, which can be com-
puted in polynomial time by Algorithm 47 in [20]. For
each AMEC (Si,Ai), we denote by µi

opt and Jµi
opt the

optimal policy for ratio objective (R, C) and its corresponding
efficiency value computed by program (4)-(9), respectively1.

Note that we already assume, without loss of generality
that, µi

opt is deterministic. Let K ∈ R be a real number.
Then based on K and µi

opt, i = 1, . . . , n, we define a new
reward function RK : S ×A→ R for the entire M by:

RK(s, a)=

{
Jµi

opt if s ∈ Si ∧ µi
opt(s, a) = 1

K otherwise
. (19)

Intuitively, for each optimal state-action pair in an AMEC,
the above construction assigns exactly the same reward
identical to the optimal efficiency value one can achieve
within this AMEC. For the remaining state-action pairs that
are either non-optimal or not in AMECs, we assign them
value K. Clearly, for the purposes of being optimal or to
fulfill the surveillance task, one needs to avoid executing
such state-action pair with value K. Hence, one needs to
select K to be sufficiently small and we will show later in
Section V-C how small K can ensure so.

Later on, we also need to solve the classical long-run
average reward maximization problem of M w.r.t. reward
function RK . We denote by µ⋆

K ∈ ΠS
M the optimal long-run

average reward policy, i.e.,

Wµ⋆
K (s0,RK) = W (s0,RK ,ΠM).

Such optimal policy µ⋆
K can be obtained by the standard

linear programming approach in [6].

1We omit initial state in Jµi
opt since for each communicating MDP, the

efficiency value under the optimal policy is initial-state independent.

Algorithm 1: Policy Synthesis for the General Case
Input: MDP M = (S, s0, A, P ), target set B ⊆ S

and threshold value ϵ > 0
Output: Policy µ⋆ ∈ ΠS

M which solve Problem 1
1 Compute all AMECs AMEC(M) in M;
2 For each AMEC (Si,Ai) ∈ AMEC(M), compute

µi
opt and Jµi

opt by program (4)-(9) over (Si,Ai);
3 Define reward function RK according to Eq. (19),

where K satisfies Eq. (20);
4 Compute policy µ⋆

K by solving the classical long-run
average reward maximization problem w.r.t. RK ;

5 µ⋆ ← µ⋆
K ;

6 for (Si,Ai) ∈ AMEC(M) do
7 if Si contains a recurrent state in MC Mµ⋆

K then
8 Find a surveillance policy µi

sur for sub-MDP
(Si,Ai)

9 Pick δ > 0 satisfying Equation (18)
10 Perturb the policy µ⋆ by µi

sur with degree δ
for the part of sub-MDP (Si,Ai), i.e.,

µ⋆(s, a)←

 (1− δ)µ⋆(s, a) + δµi
sur(s, a)

if s ∈ Si, a ∈ Ai

µ⋆(s, a) otherwise11

12 Return ϵ-optimal policy µ⋆

B. Main Synthesis Algorithm

Based on the above informal discussions, our overall
synthesis procedure for the entire MDP M is provided in
Algorithm 1. Specifically, in line 1, we first compute all
AMECs. Then we solve program (4)-(9) for each AMEC and
record the constructed policy and optimal efficiency value in
lines 2. These policies and values help us to define reward
function RK , for which the maximum average reward policy
µ⋆
K is synthesized. These are done by lines 3-4. Note that K

needs to be chosen sufficiently small so that MDP will not
stay in those non-AMEC states. Then in line 5, we choose
µ⋆
K as the initial policy to be perturbed.
Finally, in lines 7-11, based on the initial policy, we

determine whether each AMEC (Si,Ai) contains some re-
current state in MCMµ⋆

K . If so, it means that the MDP will
achieve higher efficiency value when choosing to stay in this
AMEC forever. Therefore, within this AMEC, we perturb
the initial policy by µsur slightly to achieve ϵ-optimality
and the surveillance task. Note that, since we perturbed each
AMEC each containing recurrent states to each ϵ-optimality,
the overall perturbed policy µ⋆ is still ϵ-optimal.

Remark 4: In fact, for each recurrent class in MC Mµ⋆
K ,

we can first check if it already contains a target state in B.
If so, then we can skip the perturbation procedure in lines 8-
11, and the resulting policy within the associated AMEC will
actually be optimal rather than ϵ-optimal.

C. Properties Analysis and Correctness

We conclude this section by formally analyzing the prop-
erties of the proposed algorithm.



Still, for i = 1, . . . , n, we denote by Jµi
opt the optimal

efficiency value one can achieve for AMEC (Si,Ai) and
define

Jmax =max{Jµ1
opt , Jµ2

opt , . . . , Jµn
opt}

Jmin =min{Jµ1
opt , Jµ2

opt , . . . , Jµn
opt}

pmin =min{Ps,a,t | s, t ∈ S, a ∈ A(s), Ps,a,t > 0}.

The following result shows that, by selecting K to be
sufficiently small, the solution to the long-run average reward
maximization problem w.r.t. reward function RK indeed
achieves the supremum efficiency value among all policies
in ΠB

M.
Proposition 4: If K is selected such that

K ≤ − 1

pmin
(Jmax − Jmin), (20)

then we have W (s0, RK ,ΠM) = J(s0, R, C,Π
B
M).

Proof: The proof is provided in [24].
Based on the above criterion, we can finally establish the

correctness result of the synthesis procedure for the general
case of non-communicating MDPs.

Theorem 2: If K is selected such that Equation (20)
holds, then Algorithm 1 correctly solves Problem 1.

Proof: The proof is provided in [24].

VI. CASE STUDY

In this section, we present a case study of robot task
planning to illustrate the proposed method. All computations
are performed on a desktop with 16 GB RAM. We use
CVXPY [26] to solve convex optimization problems.

Mobility of Robot: We consider a mobile robot moving
in a 9× 9 gird workspace shown in Figure 1(a). The initial
location of the robot is the blue grid in the upper left
corner and red girds represent obstacle regions the robot
cannot enter. We assume that the mobility of the robot
is fully deterministic. That is, at each gird, the robot has
at most four actions, left/right/up/down, and the robot can
deterministically move to the unique corresponding successor
grid by taking each action. An action is not available if it
leads to the boundary or the obstacle regions. Therefore, the
mobility of the robot can be modeled as a deterministic MDP
denoted by M̂ = (Ŝ, ŝ0, P̂ , Â) with state space Ŝ = {(i, j) :
i, j = 1, . . . , 9}.

Probabilistic Environment: The objective of the robot is
to find and pick up items in the workspace and then deliver
to the one of the destinations in B̂ ⊆ Ŝ, which are denoted
by green grids. We assume that, at each time instant, when
the robot is at grid ŝ ∈ Ŝ, it has probability p(ŝ) to find
an item; the probability distribution over the workspace is
shown in Figure 1(b). If the robot is empty, then it will pick
up the item immediately when find it and the robot can only
carry at most one item.

MDP Model: The overall behavior of both the deter-
ministic mobility and the probabilistic environment can be
captured by MDP M = (S, s0, P,A = Â) with augmented
state space S = Ŝ × {0, 1}, where 0 means that the robot

TABLE I: Cost function based on Manhattan distance
Distance 0 1 2 3 4 5 6 7 8

Cost 3.2 3.0 2.7 2.5 1.5 1.0 0.8 0.6 0.5

(a) Workspace of the robot, where
arrows indicate optimal actions.

(b) Probabilities for finding items.

Fig. 1: Case study of robot planning.

is empty and 1 means that it is carrying item. We assume
that the robot is initially empty, i.e., s0 = (ŝ0, 0). The set of
target states in the augmented state space is B = B̂ × {1},
i.e., when the robot is at the destination with item. Then the
transition probability is defined by: for any states s = (ŝ, i),
s′ = (ŝ′, i′) and action a ∈ A = Â, we have

1) if P̂ (ŝ′ | ŝ, a) = 0, then P (s′ | s, a) = 0;
2) otherwise, we have

P (s′|s, a) =


p(ŝ′) if i = 0 ∧ i′ = 1
1− p(ŝ′) if i = 0 ∧ i′ = 0
1 if i = 1 ∧ i′ = 1 ∧ s /∈ B
p(ŝ′) if i = 1 ∧ i′ = 1 ∧ s ∈ B
1− p(ŝ′) if i = 1 ∧ i′ = 0 ∧ s ∈ B

Costs and Rewards: We assume that moving from each
grid incurs a cost. Specifically, for each state s = (ŝ, i) ∈ S
and action a ∈ A, the moving cost C(s, a) is defined
by C(s, a) = cost(M(ŝ)), where M(ŝ) is the shortest
Manhattan distance from ŝ to target grids and cost(·) is
shown in Table I. Also, the robot receives a reward when
reaching the destinations. We assume that the rewards for
destinations sll ∈ B in the lower left and sur ∈ B in
the upper right corner are different with R(sll, a) = 2 and
R(sur, a) = 1 for all a ∈ A. Then the overall objective of the
robot is to visit B infinitely often w.p.1 while maximizing
the expected long-run reward-to-cost ratio.

Solution Analysis: By applying the synthesis algorithm,
the robot will first take an arbitrary transient path and then
eventually circulate along the path shown in Figure 1(a).
Specifically, the red and blue arrows indicate the action
robot should take if it has and has not picked up the items,
respectively. The optimal efficiency value computed is 0.116.
The limit distribution under policy is shown in Figure 2. We
can see that only six girds are visited infinitely often. For
other girds, as stated in Equation (10), they are all transient
states and the optimal action is an action under which robot
can reach these six grids. Since the synthesized policy can
already finish surveillance tasks, according to Remark 4, we
do not even need to perturb the policy. Note that, there



(a) Limit distribution for Ŝ × {1}. (b) Limit distribution for Ŝ × {0}.

Fig. 2: Limit distribution under the optimal policy.

are two considerations to form this solution. First, since
the workspace is symmetric, the robot can choose to go to
destinations either sll and sur. However, the former one gives
more reward. Second, as shown in Figure 1(b), the further
away from the target state, the greater the probability of
finding the item, but also the higher the overall cost incurs.
Therefore, there is a trade-off to decide how far away the
robot should leave from the destination, and one solution is
actually the optimal one.

VII. CONCLUSION

In this paper, we addressed the challenge of maximizing
the long-run efficiency of control policies for Markov De-
cision Processes, which are characterized by the reward-to-
cost ratio, while achieving the surveillance task by visiting
target states infinitely often w.p.1. Our result showed that, by
exploring stationary policies, one can achieve ϵ-optimality
for any threshold value ϵ. Our approach was based on
the perturbation analysis technique originally developed for
the classical long-run average reward optimization problem.
Here, we extended the perturbation analysis technique to
the case of long-run efficiency optimization and derived a
general formula. Our work not only extended the theory
of perturbation analysis but also illustrated its conceptual
simplicity and effectiveness in solving MDPs with both
qualitative and quantitative tasks. In future research, we
plan to explore more complex qualitative tasks such as
linear temporal logic formulae rather than focusing solely
on surveillance tasks.
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APPENDIX I
LINEAR PROGRAMMING TO SOLVE AVERAGE REWARD

MAXIMIZATION

α ∈ R|S| satisfies that α(s) > 0 and
∑

s∈s α(s) = 1.
The intuition of the above linear program is as follows. The
decision variables are x(s, a) and y(s, a) for each state-action
pair s ∈ S and a ∈ A(s) in Equation (28). x(s, a) represent
steady probability of occupying state s and choosing action
a and y(s, a) represent the deviation value at state s and
choosing the action a. In Equations (22) and (23), variables
γ(s) and η(t, s) are function of x(s, a) representing the prob-
ability of occupying state s and the probability of reaching
from states s to t, respectively. The variables λ(s) and ζ(t, s)
in Equation (24) and (25) are function of y(s, a) similar to
γ(s) and η(t, s), respectively. Then Equations (26) and (27)
are constraints for probability flow of stationary distribution
and deviation value. Finally, objective Equation (3) compute
the average reward for corresponding MC.

Linear Program for Average Reward Maximization

max
x(s,a),y(s,a)

∑
s∈S

∑
a∈A(s)

x(s, a)RK(s, a) (21)

s.t. γ(s) =
∑

a∈A(s)

x(s, a),∀s ∈ S (22)

η(t, s) =
∑

a∈A(t)

P (s|t, a)x(t, a),∀s ∈ S (23)

λ(s) =
∑

a∈A(s)

y(s, a),∀s ∈ S (24)

ζ(t, s) =
∑

a∈A(t)

P (s|t, a)y(t, a),∀s ∈ S (25)

γ(s) =
∑
t∈S

η(t, s),∀s ∈ S (26)

γ(s) + λ(s) =
∑
t∈S

ζ(t, s) + α(s),∀s ∈ S (27)

x(s, a) ≥ 0, y(s, a) ≥ 0,∀s ∈ S, ∀a ∈ A(s) (28)

Let the optimal solution of linear program be x∗(s, a) and
y∗(s, a). We define S⋆ = {s ∈ S |

∑
a∈A(s) x

⋆(s, a) > 0}.
We can constructed a policy µ⋆

K by following equation.

µ⋆
K(s, a) =

{
x⋆(s, a)/

∑
a∈A(s) x

⋆(s, a) if s ∈ S⋆

y⋆(s, a)/
∑

a∈A(s) y
⋆(s, a) otherwise.

(29)

APPENDIX II
PROOF OF RESULTS IN SECTION III AND IV

Let Φ : (S×A)ω → R be a pay-off function. We say that
Φ is prefix-independent if for ρ = s0a0s1a1 · · · ∈ (S×A)ω ,
we have ρn = snansn+1an+1 · · · ∈ (S × A)ω satisfying
Φ(ρ) = Φ(ρn) for any n ≥ 0. Φ is said to be submixing if
for ρ = s0a0s1a1 · · · ∈ (S×A)ω , let ρ1 = s0a0s2a2s4a4 . . .
and ρ2 = s1a1s3a3s5a5 . . . , we have

Φ(ρ) ≤ max{Φ(ρ1),Φ(ρ2)}.

Proof of Proposition 1:
Proof: [8] prove the existence of stationary optimal

policy for ratio objective by showing that ratio objective is
prefix-independent and submixing and using result in [27].
The ratio objective definition in this work is slightly different
from that in [8]. For completeness, we prove that the ratio
objective considered in this work is also prefix-independent
and submixing. For ρ = s0a0s1a1 · · · ∈ (S × A)ω , let
preR =

∑n−1
i=0 R(si, ai), sufR =

∑M
i=n R(si, ai), preC =∑n−1

i=0 C(si, ai) and sufC =
∑M

i=n C(si, ai). Since C is a
positive function, we have limM→∞ sufC = +∞. Since
preR and preC are finite, preR/sufC and preC/sufC are
zero as M →∞. Thus

lim
M→∞

∑M
i=0 R(si, ai)∑M
i=0 C(si, ai)

= lim
M→∞

(
preR

sufC
+

sufR
sufC

)
/(

preC

sufC
+ 1) = lim

M→∞

sufR
sufC

.

Thus the ratio objective in this work is prefix-independent.
For c/a and d/b such that a, b > 0, assume that c/a > d/b.

Then bc > ad. Thus ac + bc > ad + ac. And we get (c +
d)/(a+ b) < c/a. Therefore, for any ρ = s1a1 . . . s2Na2N ,
we have∑2N

i=1 R(si, ai)∑2N
i=1 C(si, ai)

≤ max

{∑N
i=1 R(s2i, a2i)∑N
i=1 C(s2i, a2i)

,

∑N
i=1 R(s2i−1, a2i−1)∑N
i=1 C(s2i−1, a2i−1)

}
Let N → +∞ we know that the ratio objective is sub-
mixing. Combining result in [27], the existence of optimal
deterministic stationary policy for ratio objective in this work
is proven.

Let AMEC(M) = {(S1,A1), (S2,A2), . . . , (Sn,An)} ⊆
MEC(M) such that (Si,Ai) satisfies Si ∩ B ̸= ∅ and
SA =

⋃n
i=1 Si the accepting state set. We denote by

rm = mins∈S,a∈A R(s, a) and cM = maxs∈S,a∈A C(s, a)
the minimum reward and cost among all state-action pairs,
respectively. Then we modify the reward and cost function
as follows. The modified reward function Rm is defined by

Rm(s, a) =

{
rm if s /∈ SA ∧ a ∈ A(s)
R(s, a) if s ∈ SA ∧ a ∈ A(s).

The modified cost function Cm can be defined similarly by
substituting rm and R by cM and C, respectively.

We now prove that

J(s0, R
m, Cm,ΠM) = J(s0, R, C,Π

B
M).

We first prove J(s0, R, C,Π
B
M) ≤ J(s0, R

m, Cm,ΠM). For
any µ ∈ ΠB

M and (S,A) ∈ MEC(M), we denote by p(S,A)
the probability of infinitely visiting states in S. Formally,

p(S,A) = PrµM({τ ∈ Pathµ(M) | inf(τ) ⊆ S}). (30)

We have proven that ratio objective is a prefix-independent
criterion, i.e., the ratio objective value is only dependent
on state-action pairs that happen infinitely often. Since
the surveillance task can be finished under µ, we know
that

∑
(S,A)∈MEC(M) p(S,A) = 1 and p(S,A) = 0 if

(S,A) /∈ AMEC(M). Therefore, the ratio objective value



is only dependent on reward and cost function over state set
SA. From definition we know that Rm and R are same over
SA. It is also true for Cm and C. Therefore, we have

Jµ(s0, R
m, Cm) = Jµ(s0, R, C).

Since µ can be any policy in ΠB
M, we get J(s0, R, C,ΠB

M) ≤
J(s0, R

m, Cm,ΠM).
We now prove J(s0, R, C,ΠB

M) ≥ J(s0, R
m, Cm,ΠM). We

denote by µ⋆ ∈ ΠS
M the optimal deterministic stationary

policy such that

Jµ⋆

(s0, R
m, Cm) = J(s0, R

m, Cm,ΠM).

We first prove that for (S,A) ∈ MEC(M) \ AMEC(M), any
s ∈ S is transient in MCMµ⋆

. We prove it by contradiction.
In recurrent class in S, the ratio objective value is rm/cM
from definition of Rm and Cm. However, if the recurrent
class is in SA, we know that the ratio objective value over
this recurrent class satisfies that∑

s∈R

∑
a∈A(s) π(s)µ(s, a)R(s, a)∑

s∈R

∑
a∈A(s) π(s)µ(s, a)C(s, a)

≥
∑

s∈R

∑
a∈A(s) π(s)µ(s, a)rm∑

s∈R

∑
a∈A(s) π(s)µ(s, a)cM

=
rm
cM

,

where R ⊆ S is recurrent class state set and π is the limit
distribution over the recurrent class R.

Since we assume that initial from any state we can finish
the surveillance task, we can modify the policy µ⋆ over S
such that states in S are transient in new MC and reach
AMECs w.p.1. From proof above we know that the ratio
objective will not lower than policy µ⋆ because staying
in S forever we can only achieve ratio objective value
rm/cM . Thus the modified policy is still the optimal policy
of ratio objective. Therefore, we can assume without loss of
generality that all states in S are transient in MC Mµ⋆

and
all recurrent states in MC Mµ⋆

are in SA. It means that

Jµ⋆

(s0, R
m, Cm) = Jµ⋆

(s0, R, C).

Let AMECR(M) ⊆ AMEC(M) the set of AMECs that con-
tain some recurrent class in MC Mµ⋆

. Since ratio objective
is prefix-independent and each AMEC is a communicating
sub-MDP, if in MC Mµ⋆

there exists more than one re-
current classes in (S,A) ∈ AMECR(M), the ratio objective
values are same for these recurrent classes. We can preserve
only one recurrent class and achieve same ratio objective
value. Therefore, we can assume that over each AMEC in
AMECR(M) there exists exactly one recurrent class in MC
Mµ⋆

without loss of generality. For (S,A) ∈ AMECR,
we denote by µS a policy over sub-MDP (S,A) which
induces irreducible MC. Such policy exists because (S,A)
is communicating. We can construct a policy µp such that

µp(s)=

{
µS(s) if s ∈ S, (S,A) ∈ AMECR(M)
µ⋆(s) otherwise .

Then consider policy µδ = (1 − δ)µ⋆ + δµp. It is easy to
know that µδ ∈ ΠB

M for any 0 < δ ≤ 1. From [21] we
know that the averge reward Wµδ

(s0, R) is continuous w.r.t.
δ. Since Wµδ

(s0, C) > 0 for any 0 ≤ δ ≤ 1, we know that
the function

Jµδ

(s0, R, C) =
Wµδ

(s0, R)

Wµδ(s0, C)

is also continuous w.r.t. δ. Then for any ϵ > 0, we can find
a δ > 0 such that |Jµδ

(s0, R, C) − Jµ⋆

(s0, R, C)| ≤ ϵ. Since
µδ ∈ ΠB

M and ϵ > 0 is arbitrary, we know that

J(s0, R, C,Π
B
M)

≥Jµ⋆

(s0, R, C)

=Jµ⋆

(s0, R
m, Cm)

=J(s0, R
m, Cm,ΠM).

Therefore, we successfully prove that

J(s0, R
m, Cm,ΠM) = J(s0, R, C,Π

B
M).

Moreover, we know that policy µδ ∈ ΠS
M can achieve

ϵ-optimality by properly picking δ for any ϵ > 0. This
completes the proof.

Proposition 5: Given policy µ, µ′ ∈ ΠS
M, if Mµ is

unichain, the perturbed policy µδ = (1 − δ)µ + δµ′ also
induces a unichain for δ ∈ (0, 1).

Proof: Note that if a state s can reach s′ in eitherMµ or
Mµ′

, then s can reach s′ in MC Mµδ . Let Rµ, Rµ′ ⊆ S be
the recurrent state set in MCsMµ andMµ′

, respectively. In
an MC, any state can reach some recurrent state. Therefore,
for MC Mµ, all states in Rµ′ can reach some state in Rµ

and for MC Mµ′
, all states in Rµ can reach some state in

Rµ′ . Since Mµ is unichain, all states in Rµ can reach each
other inMµ. These reachability relations hold for MCMµδ .
It means that all states in Rµ ∪Rµ′ can reach each other in
Mµδ . Thus Mµδ is unichain containing only one recurrent
class Rµ ∪Rµ′ .

Proof of Theorem 1:
Proof: From proof of Proposition 1, we know that

Jµopt(s0, R, C) = J(s0, R, C,Π
B
M).

Moreover, from Proposition 3 we know that the selected δ
in (18) achieves the ϵ optimality. This completes the proof.

APPENDIX III
PROOF OF SECTION V

For each µ ∈ ΠB
M, the MDP will stay in AMECs

forever w.p.1. Therefore, the efficiency value will not exceed
the policy that chooses optimal ratio objective action at
corresponding AMECs. It means that the maximum average
reward w.r.t. RK defined in Equation (19) for any K ∈ R
is an upper bound of maximum ratio objective value under
surveillance task constraint. We state it formally as follow.



Proposition 6: Given MDP M = (S, s0, A, P ). For any
reward function RK defined in Equation (19) with K ∈ R,
we have

W (s0, RK ,ΠM) ≥ J(s0, R, C,Π
B
M).

Proof: The idea of proving Proposition 6 is similar
to proof in Proposition 1. Let µ = (µ1, µ2, . . . ) ∈ ΠB

M
be arbitrary policy that can finish surveillance task. For
(S,A) ∈ AMEC(M), Let p(S,A) be the probability of
infinitely visiting states in (S,A) under policy µ as Equation
(30). Let the maximum ratio objective value over (S,A) be
V (S,A). Then we know that

Jµ(s0, R, C) ≤
∑

(S,A)∈AMEC(M)

p(S,A)V (S,A).

For n ∈ N, we define policy µn = (µ′
1, µ

′
2, · · · ) ∈ ΠM

such that µ′
i = µi for 1 ≤ i ≤ n and for i > n, if s ∈ S

such that (S,A) ∈ AMEC(M), µ′
i(s, a) = 1 where a is the

optimal action for ratio objective over sub-MDP (S,A) and
otherwise µ′

i(s) = µi(s). Intuitively, the µn is same as µ at
first n step and after that the µn will stay in some AMEC
once it reach this AMEC.

We denote by pn(S,A) the probability of infinitely visit-
ing states in (S,A) under policy µn. It is easy to know that
p(S,A) = limn→∞ pn(S,A). Moreover, for µn we have

Wµn

(s0, RK) =
∑

(S,A)∈AMEC(M)

pn(S,A)V (S,A).

Therefore, we have

W (s0, RK ,ΠM)

≥ lim
n→∞

Wµn

(s0, RK)

= lim
n→∞

∑
(S,A)∈AMEC(M)

pn(S,A)V (S,A)

=
∑

(S,A)∈AMEC(M)

p(S,A)V (S,A)

≥Jµ(s0, R, C).

Since µ ∈ ΠB
M is selected arbitrary, we know that

W (s0, RK ,ΠM) ≥ J(s0, R, C,Π
B
M).

This completes the proof.
Proof of Proposition 4:

Proof: Let µ⋆
K the optimal deterministic stationary

policy for average reward w.r.t. RK , i.e., µ⋆
K satisfies that

for any s ∈ S, µ⋆
K(s, a) = 1 for some a ∈ A(s) and

Wµ⋆
K (s0, RK) = W (s0, RK ,ΠM).

Existence of deterministic policy µ⋆
K comes from classic

average maximization problem [6]. We denote by d(s) the
unique selected action for state s. We first prove that for K ≤
− 1

pmin
(Jmax − Jmin), if (S,A) ∈ MEC(M) \ AMEC(M) is

not an AMEC, all states in S are transient in MCMµ⋆
K . We

prove it by contradiction. Assume that r is recurrent in MC

Mµ⋆
K and is not in any AMEC. Let π the limit distribution

of MC Mµ⋆
K . Since πPµ⋆

K = π, we have

π(r) =
∑
t∈S

π(t)Pµ⋆
K

t,r ≥
∑
t∈S

π(t)pmin = pmin.

Then

Wµ⋆
K (s0, RK)

=
∑

s∈S\{r}

π(s)RK(s, d(s)) + π(r)RK(r, d(r))

≤
∑

s∈S\{r}

π(s)RK(s, d(s)) + pminK

≤
∑

s∈S\{r}

π(s)Jmax + pmin
Jmin − Jmax

pmin

≤Jmin − pminJmax < Jmin.

(31)

Since we assume from initial state s0 there exists a policy to
finish surveillance task, we denote by µb ∈ ΠB

M ∩ ΠS
M the

policy such that it reaches AMEC w.p.1 and adopts optimal
ratio objective action on the AMEC. Then we know that

Wµb

(s0, RK) ≥ Jmin > Wµ⋆
K (s0, RK).

It violates the condition that µ⋆
K is optimal average reward

policy. Therefore, if a state is not in some AMEC, it will
be transient in MC Mµ⋆

K . For (S,A) ∈ AMEC(M) such
that s ∈ S is recurrent in MC Mµ⋆

K , we now prove that s
will choose the action that gets positive reward rather than
K. We prove it by contradiction. Assume that s violates this
condition. Then we can consider situation when s is initial
state and prove like Equation (31) to get the contradiction.

Since all recurrent state will choose the optimal ratio
objective action, the recurrent class in AMEC (S,A) of MC
Mµ⋆

K is exactly the recurrent class when adopting policy
constructed by program (4)-(9) when (S,A) is input. In such
situation, the reward value under policy µ⋆

K w.r.t. reward
function RK are same as the ratio objective value under
policy µ⋆

K w.r.t. R and C, i.e.,

Wµ⋆
K (s0, RK) = Jµ⋆

K (s0, R, C).

Moreover, we can prove like Proposition 1 that by perturbing
the µ⋆

K , the new policy can finish the surveillance task
and the ratio objective value under perturbed policy can be
arbitrary close to the value Jµ⋆

K (s0, R, C). It means that

J(s0, R, C,Π
B
M)

≥Jµ⋆
K (s0, R, C)

=Wµ⋆
K (s0, RK)

=W (s0, RK ,ΠM).

(32)

Combing with result in Proposition 6, we completes the
proof.

Proof of Theorem 2:
Proof: In Equation (32) in Proposition 4, we know that

the constructed policy µ⋆
K satisfies that

J(s0, R, C,Π
B
M) ≥ Jµ⋆

K (s0, R, C) = W (s0, RK ,ΠM).



Moreover, from Proposition 6 we know that

J(s0, R, C,Π
B
M) ≤W (s0, RK ,ΠM).

It means that

J(s0, R, C,Π
B
M) = Jµ⋆

K (s0, R, C).

We denote by AMECR(M) the set of AMECs which
contains recurrent state in MC Mµ⋆

K . Let pK(S,A) and
p⋆(S,A) the reaching probability from initial state to states
in (S,A) ∈ AMECR(M) in MC Mµ⋆

K and Mµ⋆

, re-
spectively. We have pK(S,A) = p⋆(S,A). From result
of Theorem 1 we know that µ⋆ achieve ϵ-optimal among
every recurrent AMEC, i.e., for s ∈ S such that (S,A) ∈
AMECR(M),

Jµ⋆
K (s, R, C) ≤ Jµ⋆

(s, R, C) + ϵ.

Since Jµ⋆

(s, R, C) = Jµ⋆

(t, R, C) if s and t belong to
same AMEC, we define V (S,A) := Jµ⋆

K (s, R, C) and

V ∗(S,A) := Jµ⋆

(s, R, C) + ϵ such that s ∈ S. Then we
know that

J(s0, R, C,Π
B
M)

=Jµ⋆
K (s0, R, C)

=
∑

(S,A)∈AMECR(M)

pK(S,A)V (S,A)

=
∑

(S,A)∈AMECR(M)

p⋆(S,A)V (S,A)

≤
∑

(S,A)∈AMECR(M)

p⋆(S,A)V ∗(S,A)

=Jµ⋆

(s0, R, C) + ϵ.

In each (S,A) ∈ AMECR(M), µ⋆ can finish surveillance
task by perturbation. Thus we have µ⋆ ∈ ΠB

M. This com-
pletes the proof.
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