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ABSTRACT

In this paper, we study different approaches for classifying emo-
tions from speech using acoustic and text-based features. We pro-
pose to obtain contextualized word embeddings with BERT to rep-
resent the information contained in speech transcriptions and show
that this results in better performance than using Glove embeddings.
We also propose and compare different strategies to combine the
audio and text modalities, evaluating them on IEMOCAP and MSP-
PODCAST datasets. We find that fusing acoustic and text-based sys-
tems is beneficial on both datasets, though only subtle differences
are observed across the evaluated fusion approaches. Finally, for
IEMOCAP, we show the large effect that the criteria used to define
the cross-validation folds have on results. In particular, the standard
way of creating folds for this dataset results in a highly optimistic
estimation of performance for the text-based system, suggesting that
some previous works may overestimate the advantage of incorporat-
ing transcriptions.

Index Terms— speech emotion recognition, fusion, deep learn-
ing, BERT

1. INTRODUCTION

Speech emotion recognition (SER) is an active research area with
important applications in the field of human-computer interaction.
SER is a complex task even for humans [1]. In fact, in spite of recent
advances enabled by deep learning models and the release of larger
emotion datasets, the performance of SER systems is still relatively
poor, with average recall rates usually well below 70% on the most
realistic datasets, indicating that it remains an open problem.

Most SER systems use low-level descriptors (LLD) extracted
from the audio signal such as MFCCs, pitch and voice quality fea-
tures [2], or features learned automatically from spectrograms using
deep neural networks [3, 4]. The excellent performance of current
automatic speech recognition systems (ASR) also allows us to ex-
tract reliable text transcriptions from the speech without the need for
human annotators. A few works have incorporated this information
into SER systems. In some of these studies, emotional word-based
vectors were computed from word occurrences in each emotion class
[5], or using external lexicons [6]. Similarly, emotional vectors can
be extracted from phonemes [7]. In some works [5], the word-based
vectors are used as input to SVM classifiers together with high-level
statistics of the acoustic LLDs. Another approach is to train text-
and audio-based classifiers separately and combine their outputs to
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make a final prediction [8]. Recently, deep neural networks have
been used to learn audio-linguistic embeddings [9] and to train emo-
tion classifiers in an end-to-end framework combining text and audio
modalities [10, 11, 12, 13].

In this paper, we study different ways of fusing audio and lin-
guistic information, using early and late fusion techniques and com-
paring different training approaches, including (1) initializing two
individual branches with models trained separately for audio and
text and further fine-tuning the last few layers, (2) fixing the text
and audio branches and training only the fusion parameters, and (3)
training the whole combined neural network from scratch. For the
audio branch, we use a standard approach based on MFCC, pitch,
loudness, jitter, shimmer and logHNR features. For the text branch,
we use contextualized word embeddings [14] instead of the stan-
dard word embeddings like Glove [15] used in most of the previ-
ous works [12, 10]. Standard word embeddings like those obtained
with Glove are extracted independently of the context in which the
words are found. For example, the word “sad” would be assigned the
same embedding whether the phrase was “I am very sad” or “I am
not sad at all”. On the other hand, contextualized word embeddings
like those extracted by BERT take into account the whole phrase in
which the word is found. As a consequence, the embedding corre-
sponding to the word “sad” in those two phrases would most likely
be different. We hypothesized that this characteristic should posi-
tively impact SER performance. To our knowledge, [16] is the only
work in which word embeddings extracted with BERT have been
used for SER. In that paper, authors propose a shared representation
of audio, text and video modalities through deep canonical correla-
tion analysis. A comparison with other types of embeddings is not
shown in that work.

The proposed models are tested on the well-studied IEMOCAP
dataset [17], as well as on the more challenging MSP-PODCAST
dataset [18]. Our first contribution is to show that linguistic infor-
mation gives significant improvements in performance when com-
bined with acoustic information on the MSP-PODCAST dataset. As
far as we know, this is the first time that linguistic information has
been used on this dataset. Second, we show that the use of contex-
tualized word embeddings obtained with BERT results in significant
improvements with respect to using standard word embeddings ob-
tained with Glove. Third, we propose a novel way to fuse audio and
text information by pretraining the neural network in audio and text
modalities and then fine-tuning the fused model. Finally, we show
that creating folds by speaker is not sufficient to obtain fair perfor-
mance predictions on IEMOCAP, since the data contains scripted di-
alogues which greatly affect the performance of text-based systems
when the same script is observed in training and testing. This being
such a widely used dataset, we believe this observation is of great
importance to the research community.
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2. MODELS

This section describes the models used in the experiments. First,
the individual models for each modality are introduced. Then, mod-
els that combine the text and audio information are described. All
models are trained to optimize cross-entropy loss for four emotion
classes: happy, sad, angry and neutral.

2.1. Text-based model

Recently, a language model called BERT [14], trained with large
amounts of data has been released to the community. This model
can be fine-tuned or used as a feature extractor for downstream tasks,
achieving state-of-the-art results on many of them. BERT is based on
the Transformer [19] – a network capable of modeling long contex-
tual information, generating word embeddings that are conditioned
on the phrase in which the word is found. In this study, a sequence of
word embeddings is extracted from speech transcriptions using the
pretrained BERT base uncased model, which consists of 12 layers,
12 attention heads and 110M parameters. The word embeddings are
formed by adding the activations of the last 4 layers of the pretrained
BERT model without fine-tuning. The resulting features are used as
input to the text model shown on the left of Figure 1.

The first layer (LT1) in our text-based model operates on each
embedding in the sequence reducing its dimensionality from 768 to
128. Then, 2 convolutional layers (LT2 and LT3) model relation-
ships across neighboring elements of the sequence. Finally, an av-
erage over time is taken, resulting in an embedding that summarizes
all the information in the sample. A final dense layer with softmax
activation predicts emotion probabilities P (Ck). We applied batch
normalization in all layers.

To make a comparison with non-contextualized word embed-
dings, we trained the same model using 300-dimensional Glove em-
beddings [15].1

2.2. Audio-based model

Each speaker utterance was divided into 32ms segments, using a
hop length of 10ms. The following acoustic features were extracted
from each window using openSMILE [20]: pitch, jitter, shimmer,
logHNR, loudness, and the first 13 MFCCs. These features were
normalized to have a mean of 0 and standard deviation of 1, using
the global statistics. Finally, first-order differences were added for
all features to form a sequence of 36-dimensional feature vectors that
are the input to the neural network shown on the right of Figure 1.

The audio model consists of two convolutional layers LA1 and
LA2 that model the temporal evolution of the input sequence fol-
lowed by mean-pooling over time. A final dense layer with softmax
activation returns the emotion probabilities P (Ck).

2.3. Fusion models

In this section, we describe the strategies we implemented to com-
bine audio and text information. In all cases, the fusion model con-
sists of two parallel branches processing audio and text separately up
to a layer where the information from the two branches is merged.
The models differ on the location of the merging layer, on the net-
work appended after merging, and on the training approach.

2.3.1. Early Fusion

In the early fusion (EF) approach, the fixed-size embeddings ob-
tained after mean pooling in the audio and text models (Figure 1,

1The pretrained Glove model we used can be downloaded from
http://nlp.stanford.edu/data/glove.42B.300d.zip.

Fig. 1: Text-based and audio-based architectures. Ttext and Taudio

are the sequence lengths of the model inputs and Dtext and Daudio

are the number of features for each input. NF is the number of
convolutional filters, S is the kernel size and NU is the number of
neurons in dense layers. 1D-Convolutional layers operate on the
time axis.

layers LT4 and LA3) are concatenated resulting in a multi-modal
embedding of 232 dimensions. This embedding is input to a feed-
forward neural network with a hidden dense layer of 128 units with
ReLU activation and an output layer with 4 units and softmax acti-
vation.

2.3.2. Late Fusion

In the late fusion model (LF), the logits (pre-softmax) of the audio
and text models are concatenated (Figure 1, layers LT5 and LA4)
resulting in an 8-dimensional vector that is used as input to a dense
layer of 4 units with softmax activation. This dense layer learns to
combine the logits of audio and text modalities to generate the final
output probabilities P (Ck). We have also explored learning a scalar
weight for each system instead of a full dense layer but the resulting
performance was slightly worse.

2.3.3. Training strategies

We trained our fusion models in 3 different ways:

• Cold-start (CS): Use Xavier uniform initialization [21] for all lay-
ers of the fusion model and train the model jointly from scratch.

• Pre-trained (PT): Train the audio and text models separately and
use the trained weights to initialize the corresponding layers of
the audio and text branches in the fusion model. The layers after
merging are initialized with Xavier uniform initialization. Only
these layers are trained, keeping the layers up to the merging point
frozen.

• Warm-start (WS): Initialize all layers as in the PT approach but
instead of training only the layers after merging, train also the lay-
ers right before pooling for each branch (LT3 and LA2), keeping
the first layers (LT1, LT2 and LA1) frozen, as in the PT approach.
This procedure, in contrast to PT, allows the layers immediately
before the pooling to change their weights.

http://nlp.stanford.edu/data/glove.42B.300d.zip


3. EXPERIMENTAL SETUP AND DATASETS

Our experiments were performed on the IEMOCAP and MSP-
PODCAST datasets. The Interactive Emotional Dyadic Motion
Capture (IEMOCAP) dataset [17] has a length of approximately
12 hours and consists of scripted and improvised dialogues by 10
speakers. It is composed of 5 sessions, each including speech from
an actor and an actress. Annotators were asked to label each sample
choosing one or more labels from a pool of emotions. In this work,
we used 4 emotional classes: anger, happiness, sadness and neutral,
and following [22], we relabeled excitement samples as happiness.
Instances from other classes and with no annotator agreement were
discarded.2 For this dataset, human transcriptions are used for the
text-based system.

To test our models we used 5-fold cross-validation, organizing
the folds so that training and test sets do not share actors or scripts.
This last point is very important for the text-based model, as has
been noted in [7], because dialogues from the same script are very
similar. We show the effect of the criteria used for making the folds
on both text and audio models in Section 4.1.

The MSP-PODCAST dataset v1.4 [18] contains speech seg-
ments from podcast recordings, annotated using crowdsourcing.
After discarding the instances not belonging to any of the 4 emo-
tional classes under study, the training set contains 12078 speech
segments from 601 speakers, while the test set contains 5557 utter-
ances from 50 speakers not present in the training set. The training
and test set definitions used in this paper are the ones provided with
the dataset. The test set is gender balanced. Speech transcriptions
were extracted using the Google Cloud Speech-to-Text API.3

To counteract the effect of class imbalance present in both
datasets, a cost-sensitive training strategy was applied by multiply-
ing the loss of each instance with the inverse of the frequency of the
class it belongs to. The models were optimized using Adam [24]
with a learning rate of 0.0007, except for the fine-tuning case in
which the learning rate was decreased to 0.0001, and the case of late
fusion using pre-trained branches where learning rate was increased
to 0.01. During the first 40 steps, the learning rate was linearly
increased from 0 to the final value, except for the late fusion system
with pretraining (LF-PT). We applied dropout with 0.5 probability
at the input of layer LA2 only for the audio branch. As the input
sequences have variable length, we padded them with zeros up to a
maximum sequence length and then masked the padded values.

We report two different metrics: average recall (AvRec), and the
average area under the ROC (AvAUC). Average recall is used instead
of accuracy since both datasets have significant imbalance across
classes. Both averages are computed over the four target emotions,
considering a one-vs-all problem in order to compute individual re-
call and AUC values.

We observed that using early stopping in IEMOCAP led to in-
consistent results as the data are scarce to generate a validation fold
large enough. For this reason, the number of epochs for training
each model was selected by optimizing the median AvAUC value
on IEMOCAP over 5 seeds. The architectures and hyperparameters
were also selected based on IEMOCAP results (sometimes using a
single seed). The final results on IEMOCAP were obtained over 10
seeds, including the 5 used for the optimization of the epoch and
the hyperparameters tuning. This leads to possibly optimistic results
on this dataset. On the other hand, the results on MSP-PODCAST

2Note that discarding no-agreement samples and samples from non-target
emotions is not an ideal practice [23]. Here, we decided to do this since it is
standard practice in SER literature, facilitating comparisons across papers.

3https://cloud.google.com/speech-to-text/
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Fig. 2: Effect of different criteria for defining the folds in IEMOCAP
on audio- and text-based systems for two different model sizes (small
and large). RAND: random folds, SP: by-speaker folds, SP&SC: by-
speaker and by-script folds.

were obtained using the same number of epochs and hyperparame-
ters chosen for IEMOCAP, also averaging over 10 seeds. All of our
models were trained using Keras [25].

4. RESULTS AND DISCUSSION

In this section we report results for individual and fused systems. We
start by showing the effect that the criteria used to define the folds for
cross-validation on IEMOCAP has on the two individual systems.

4.1. Effect of partition criteria for IEMOCAP folds

Figure 2 shows the AvAUC for three different criteria used to define
the folds on IEMOCAP. Results are computed on the merged test
scores for all folds. In all cases, 5 folds are used. We compare:
(1) random folds (RAND), where no information about speakers or
scripts is used to define the folds; (2) folds by speaker (SP) where
each fold contains the two speakers from one of the sessions; and
(3) fold by speaker and script (SP&SC) where the folds are defined
as in the previous case, but only script 3 is used for testing while all
other scripts are used in training. Note that this last option includes
less data for each fold. Finally, we compare two different sizes of
models: one using half of the nodes in the models from Figure 1
(small), and one using twice the number of nodes (large). We note
that most papers use by-speaker folds [11, 12, 26], while some use
random folds [10]. We are not aware of any work that splits by
script, though some works discard the scripts altogether using only
improvisation instances for testing [7, 13].

Figure 2 clearly shows that both random and by-speaker folds
result in optimistic performance for the text-based systems. For the
audio-based system, both by-speaker and by-speaker-and-script op-
tions lead to similar performance (indicating that the effect of by-
speaker-and-script folds having less data is limited), while the ran-
dom splits result in an optimistic estimation of performance. Fur-
thermore, the conclusion of which model size is optimal for BERT
features changes depending on the fold criteria, as a large model is
more likely to overfit, but this effect can only be observed when us-
ing folds that do not repeat speakers or scripts between training and
test sets. Given these results, we believe it is essential to define the
folds for IEMOCAP carefully, not allowing speakers and scripts seen
in training to be repeated in testing. In the remaining experiments,
we use folds by speaker and script.

4.2. Audio- and text-based models

Figure 3 shows the performance obtained with the different systems
on both datasets. Average AUC is reported using box and whiskers
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Fig. 3: Results for IEMOCAP and MSP-PODCAST dataset. Average AUC distributions for 10 different initialization seeds for different
systems: audio model, Glove and BERT based text models, early fusion with cold-start (EF-CS), pretraining (EF-PT) and warm-start (EF-
WS) and late fusion with pretraining (LF-PT) models.

Table 1: Median of evaluation metrics ± interquartile range ob-
tained using 10 seeds for all the tested models in both datasets.

IEMOCAP MSP-PODCAST
AvRec (%) AvAUC AvRec (%) AvAUC

Audio 56,0±1,9 .782±.006 45,7±1,4 .726±.010
Glove 47,8±0.1 .736±.007 49,8±0.4 .736±.003
BERT 55,2±1.0 .792±.003 51,0±0.9 .749±.007
EF-CS 65,1±0.5 .857±.002 58.2±2.4 .817±.009
EF-WS 64.7±1.6 .863±.002 59.1±1.8 .823±.003
EF-PT 64.9±1.0 .859±.004 56.5±0.3 .817±.002
LF-PT 63.9±0.5 .857±.006 58.0±0.7 .819±.004

plots to show the variation in performance for 10 different seeds
used to initialize the DNN weights. Table 1 shows both AvAUC
and AvRec values. We can see that our proposed text model based
on BERT embeddings shows slightly better performance than the au-
dio model on IEMOCAP, while Glove embeddings give significantly
worse performance. This contradicts previous results on IEMOCAP,
where the text-based models significantly outperform audio mod-
els [10, 11]. As we showed in Section 4.1 this is explained by the
way we have defined the folds, preventing the text model from being
trained in dialogues very similar or identical to the ones present in
the test set and avoiding unrealistically good performance estimates
for these systems.

The effect of using BERT versus Glove to represent word in-
formation can be seen in Figure 3 and Table 1. BERT embeddings
outperform Glove ones in both datasets with relative UAR im-
provements of 15.5% and 2.4% in IEMOCAP and MSP-PODCAST
datasets, respectively. We attribute this performance gain to the con-
textual information imbued in the pretrained BERT model. While
our text model could potentially learn contextual information from
standard word embeddings like Glove, learning to represent nega-
tions or modification values would require a significant amount of
data. We hypothesize that this is the reason why Glove performance
is closer to BERT in MSP-PODCAST than in IEMOCAP, since
the size and variability of dialogues in MSP-PODCAST may be
allowing the text model to learn contextual information even from
standard word embeddings.

Finally, we note the large effect that the seed has on our systems.
In many cases, the ranking of systems changes significantly depend-
ing on the seed (results not shown due to lack of space), which thus
highlights the critical importance of using several seeds in order to
reach more solid conclusions.

4.3. Fusion models

As it has been noted in previous works, adding text information to
audio-based SER systems gives significant performance improve-
ments [10, 12]. This is also observed in our fusion experiments
where for both MSP-PODCAST and IEMOCAP datasets, the AvRec
improves 16% relative to the best performing single model. All fu-
sion approaches perform similarly, in agreement with previous re-
sults in the literature [27, 11]. Only the late fusion approach with
pre-training is shown here, due to space considerations. The other
two training approaches gave similar results.

A small advantage of the warm-start approach can be observed
for both datasets with the early fusion architecture, indicating that
this direction may be worth further exploration. In the future, we
plan to explore approaches where the fusion is made before or at the
pooling layer. We believe this has the potential to give additional
benefits since the interaction between both modalities is most likely
happening at short time intervals rather than at phrase level.

5. CONCLUSIONS

We presented different approaches for emotion recognition from
speech using audio features and transcriptions. We showed results on
two publicly available datasets: IEMOCAP and MSP-PODCAST.
We demonstrated the positive effect of representing linguistic infor-
mation using contextualized word embeddings extracted with BERT
compared to using standard word embeddings like those extracted
with Glove. We also showed, in agreement with previous works, that
the fusion of audio- and text-based information leads to significant
improvements of approximately 16% on both datasets relative to
using the best single modality. To our knowledge, these are the first
published results using linguistic information on MSP-PODCAST,
a very large, naturalistic and challenging emotion dataset.

Several fusion strategies were tested, including early and late
fusion using different training procedures. Results were not signif-
icantly different for the different methods, which again agrees with
previous observations in the literature.

As an additional contribution, we highlighted the importance
and impact of how folds are defined for the IEMOCAP dataset,
showing how the standard procedure of splitting by session leads
to highly optimistic results on our text-based system. We hope that
our proposed criteria, which avoids repeating scripted dialogues be-
tween training and test sets, or the alternative of discarding scripted
dialogues, will be adopted in future works on the IEMOCAP dataset,
specially for text-based systems.
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