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ABSTRACT

This paper presents a novel approach to audio restoration, focus-
ing on the enhancement of low-quality music recordings, and in
particular historical ones. Building upon a previous algorithm
called BABE, or Blind Audio Bandwidth Extension, we introduce
BABE-2, which presents a series of significant improvements. This
research broadens the concept of bandwidth extension to genera-
tive equalization, a novel task that, to the best of our knowledge,
has not been explicitly addressed in previous studies. BABE-2 is
built around an optimization algorithm utilizing priors from diffu-
sion models, which are trained or fine-tuned using a curated set
of high-quality music tracks. The algorithm simultaneously per-
forms two critical tasks: estimation of the filter degradation mag-
nitude response and hallucination of the restored audio. The pro-
posed method is objectively evaluated on historical piano record-
ings, showing a marked enhancement over the prior version. The
method yields similarly impressive results in rejuvenating the works
of renowned vocalists Enrico Caruso and Nellie Melba. This re-
search represents an advancement in the practical restoration of
historical music. Historical music restoration examples are avail-
able at: research.spa.aalto.fi/publications/papers/dafx-babe2/.

1. INTRODUCTION

Historical music recordings suffer from severe impairment due to
limitations of the physical recording media, alongside the wear
and tear from playback and storage [1, 2]. These degradations
can take the form of additive disturbances, decreased bandwidth,
coloration, and nonlinear effects [3]. The ultimate goal is to en-
hance the quality of historical music recordings as to meet the au-
dio standards of today, making it more accessible for people used
to modern sound quality. Restoring these recordings is challenging
for several reasons. First, the problem is ill-posed, meaning there
are many potential solutions, which complicates the search for the
correct one. Additionally, the degradation process is unknown,
making this a blind inverse problem for which the solution must
be found without definite information on the necessary repairs.

In the 1970s, Stockham et al. began groundbreaking efforts
in digitally restoring gramophone recordings, notably those of the
celebrated singer Enrico Caruso [4]. At the time, the approach
was limited by technological constraints, relying on the estimation
of an equalization curve derived from the spectral average of a
contemporary recording. Since then, the field of audio restoration
has evolved significantly [1]. Today, data-driven techniques em-
ploying deep neural networks can remove all additive disturbances
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simultaneously [5]. Additionally, deep generative models, such as
diffusion models [6], address complex restoration tasks, such as
bandwidth extension [7], with unprecedented success. This study
investigates a critical question: “Can deep generative models el-
evate the quality of historical music recordings to modern stan-
dards?”

To aid in this investigation, we introduce and explore the con-
cept of generative equalization, a task designed to overcome the
limitations of traditional equalization. Traditional equalizers face
limitations on ill-conditioned scenarios, i.e., when some frequency
bands are not present in the original recording. In such cases, the
equalization curve must be cropped, otherwise, it will only amplify
background noise. In contrast, a generative equalizer can synthe-
size the missing spectral components as to achieve the target spec-
tral profile, as it is a generalization of bandwidth extension.

This work builds upon BABE, the authors’ prior research in
audio bandwidth extension [7], advancing it within the framework
of generative equalization. While this method showed promise for
addressing lowpass degradation, its application to real-world his-
torical recordings revealed significant limitations, primarily due
to an oversimplified degradation model. The model inadequately
described the complex coloration effects often present in histori-
cal recordings, effects that are typically attributed to the recording
technology, such as the recording horn [3, 2].

This paper introduces BABE-2, an improvement and extension
of the original BABE model, bringing a set of technical contribu-
tions designed to refine its efficacy for the restoration of historical
music recordings. This includes incorporating a novel parametriza-
tion of the degradation filter model as a zero-phase frequency re-
sponse estimate, allowing for a more flexible and richer filter struc-
ture extending beyond the previously constrained lowpass charac-
teristic. Additionally, we implement a regularization strategy to
counteract the breakpoint-collapse problem encountered in BABE,
introduce noise regularization to foster stable convergence, and
propose an initialization scheme based on the long-term average
spectra (LTAS), alongside other critical implementation details.

The remaining of this paper is structured as follows. Sec. 2
presents sufficient information to follow the description of the new
algorithm. There, the basics of diffusion models, diffusion poste-
rior sampling, and the previous BABE algorithm are described.
Following this, Sec. 3 delves into the enhancements made in the
BABE-2 method, expanding the bandwidth extension techniques
introduced in [7] to encompass the broader concept of generative
equalization. Sec. 4 reports on experiments conducted with his-
torical recordings of piano and singing voice. The discussion in
Sec. 5 describes our procedure for selecting the training data used
for restoring specific historical singers, and elucidates on some
of the capabilities and limitations of BABE-2 for singing voice
restoration. Finally, Sec. 6 concludes the paper.
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2. BACKGROUND

2.1. Diffusion Models

Diffusion models have emerged as a powerful class of genera-
tive models, demonstrating remarkable capabilities in various do-
mains, including image and audio processing [8, 9, 6]. These mod-
els operate by gradually transforming data through a process of
adding and removing noise. In the context of audio, we define time
as the variable τ , with xτ representing the state of the audio data
at time τ . At τ = T , xT is distributed as Gaussian noise, while
x0 represents the clean audio signal. Following the formulation
by Karras et al. [9], the underlying Ordinary Differential Equation
governing this transformation is written as

dx = −τ∇xτ log pτ (xτ )dτ. (1)

The score function ∇xτ log pτ (xτ )dτ , which guides the model
to reverse the noise addition process, is approximated using a de-
noiser Dθ(xτ , τ), a deep neural network with parameters θ:

∇xτ log pτ (xτ ) ≈ (Dθ(xτ , τ)− xτ )/σ(τ)
2, (2)

where σ(τ)2 is the noise variance at timestep τ 1. For training these
models, Denoising Score Matching is often employed, which aims
to minimize the difference between the denoised and the original
clean audio. This objective is encapsulated as follows:

Ex0∼pdata,ϵ∼N (0,I)

[
λ(τ)∥Dθ(x0 + τϵ, τ)− x0∥22

]
. (3)

In the subsequent sections, the term x̂0 denotes the denoised esti-
mate obtained through the application of neural network Dθ .

2.2. Diffusion Posterior Sampling

Many restoration tasks can be understood as inverse problems,
where an observed measurement signal is obtained by applying a
certain degradation operator H(·) to an unknown signal x0, yield-
ing the observation y = H(x0). Diffusion models are highly
effective as data-driven priors for solving inverse problems, where
the goal is to estimate the original signal x0 from the degraded ob-
servations y [10]. When the degradation operator H(·) is known,
these models can be used to approximate the posterior distribution
p(x0|y). Ideally, to solve an inverse problem using diffusion mod-
els, one can modify the ODE in Eq. (1), replacing the score with
∇xτ log pτ (xτ |y), also known as the posterior score.

We adopt the “Diffusion Posterior Sampling” method intro-
duced by Chung et al. [11], which utilizes a Bayesian framework,
decomposing the posterior score into two parts:

∇xτ log pτ (xτ |y) = ∇xτ log pτ (xτ )+∇xτ log pτ (y|xτ ). (4)

The first term, the prior score, is derived from Eq. (2), while the
second, the likelihood score, is estimated through the gradients of
an application-specific cost function:

∇xτ log pτ (y|xτ ) ≈ −ξ(τ) ∇xτCaudio(y, H(x̂0)), (5)

where ξ(τ) serves as a gradient normalization factor [10].
Within this framework, x̂0 = Dθ(xτ , τ) represents the Mini-

mum Mean Squared Error (MMSE) estimate of the clean audio x0

given the noisy or transformed state xτ . It is important to note that
implementing this method necessitates differentiating through the

1Following Karras et al. [9], we employ σ(τ) = τ .

denoiser, which is a deep neural network, and adds a layer of com-
plexity to the process. Among other applications, this approach
has been successfully used for solving audio restoration tasks, such
as bandwidth extension, inpainting, and declipping [10].

2.3. Application to Blind Inverse Problems

In scenarios where the degradation operator H is unknown, the
challenges in solving the inverse problem increase significantly.
These are referred to as blind inverse problems. Some recent works
offer solutions for solving blind inverse problems with diffusion
models by jointly optimizing the degradation operator alongside
the data during the sampling process [12]. The methodology re-
lies on alternating between updates from diffusion sampling and
optimization steps for finding the unknown operator.

Our recent work BABE [7], focusing on the blind bandwidth
extension of music signals without knowledge of the lowpass fil-
ter characteristics, fits in this framework. In this approach, the
degradation operator Hϕ is modeled as a zero-phase filter in the
frequency domain, with a piecewise linear magnitude response de-
fined by a set of parameters ϕ. The parameters are iteratively op-
timized through stochastic gradient descent while sampling from
the diffusion model in a coarse-to-fine manner.

In BABE, the filter design is constrained to yield a lowpass fil-
ter by projecting the parameters to ensure they describe a strictly
decaying function [7]. This choice stabilizes the optimization pro-
cess, as the primary focus is on responses attenuating the high fre-
quencies. Such a parameterization, however, does not accommo-
date spectral coloration or resonances, which are common in his-
torical recordings and can significantly impact the audio quality.
We hypothesize that the constrained modeling capability degrades
the performance of posterior sampling in real historical record-
ings due to unaddressed spectral properties, pushing the samples
towards out-of-distribution regions compared to the training data
and thus reducing the reliability of diffusion model predictions.

3. BABE-2: UNIQUE CONTRIBUTIONS

3.1. Filter Parameterization

In addressing blind inverse problems within a posterior sampling
framework, it is essential to specify a set of pertinent degrada-
tion operators. Following our earlier approach [7], the focus is on
zero-phase frequency-domain forward filters denoted as Hϕ. The
relationship between the observations y and the reconstructed es-
timate x̂0 through these filters is given by:

y ≈ F−1(Hϕ ⊙F(x̂0)), (6)

where F(·) and F−1(·) represent the Fourier transform and its
inverse, respectively. We use the FFT length of 4096 samples.
For simplicity, we use the notation Hϕ(x̂0) interchangeably to de-
scribe this operation throughout the paper.

The lowpass filter operator, initially applied in the BABE frame-
work [7], is extended to a parametric frequency-response equal-
izer. The equalizer configuration, depicted in Fig. 1, incorporates
an adjustable anchor cutoff frequency (f0) maintained at 0 dB to
ensure stability in the filter’s gain across its operational bandwidth.
The design includes a set of adjustable slopes and breakpoints
above this anchor frequency (fi and Ai), similar to those in BABE
but with the flexibility of non-strictly decaying slopes. Beyond
a certain point, marked by the last optimizable breakpoint and a
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Figure 1: Proposed frequency-response equalizer model consists
of breakpoints creating a piecewise linear magnitude response.

fixed steep slope set to Alim+ = −80 dB, it is assumed that the
band has no significant spectral content. This structure is sym-
metrically mirrored below the anchor cutoff, featuring adjustable
slopes and breakpoints (f−i and A−i), culminating in a fixed steep
slope Alim- = 80 dB at the lowest frequency band to delineate the
effective spectral range. The filter is piecewise differentiable with
respect to the cutoff frequencies and slope parameters.

Choosing the right number of filter stages is crucial, especially
under the assumption that the magnitude response should exhibit
smoothness. Employing a filter with more stages provides greater
flexibility during optimization but risks overfitting to minor spec-
tral details. This overfitting can lead to an unrealistic magnitude
response that could negatively impact the optimization. With this
in mind, a smaller number of stages is favored to maintain smooth-
ness, and we have chosen a configuration with 5 breakpoints.

To mitigate potential training instabilities, we impose restric-
tions on the slopes, ensuring that they do not exceed predefined
minimum and maximum values of -40 dB and 40 dB, respectively.
Additionally, the cutoff frequencies are confined within the range
(fmin, fmax), which is determined by the FFT size employed in the
filter parameterization. Furthermore, we enforce that a sequential
ordering of the cutoff frequencies, requiring each frequency to be
less than the subsequent one. These constraints are implemented
through the application of projections within the specified ranges
during the optimization process. Ideally, the constraint on the or-
dering of cutoff frequencies would be unnecessary, as the regular-
ization scheme introduced in the next subsection aims to prevent
parameter configurations that could lead to such scenarios.

3.2. Breakpoint-Collapse Regularization

We identify a previously unrecognized problem in the BABE algo-
rithm [7], which we term breakpoint collapse. The problem occurs
when, during inference, two or more cutoff frequency breakpoints
converge to very close values, receiving nearly identical gradients.
Consequently, the breakpoints cannot separate from each other for
the rest of the process, reducing the flexibility of the degradation
model by losing these breakpoint and slope parameters.

Interestingly, this problem was not prevalent in simulated low-
pass filtered recordings as tested in BABE. However, it became
significantly more frequent and problematic when the model was
applied to real historical recordings, particularly those that differed
much from the training data distribution. To address this problem,
we introduce a novel regularization term, the Breakpoint-Collapse
Regularization (BCR). The BCR term is expressed as

CBCR(ϕ)=e−β(fmin−f-S′ ) +

S−1∑
i=-S′

e−β(fi−f(i+1)) + e−β(fS−fmax).

(7)

This function imposes a minimal cost when breakpoints are ade-
quately spaced but enforces an exponentially increasing cost, when
they approach each other. The parameter β, set to 0.1 in our im-
plementation, modulates this behavior.

To integrate this into our framework, the total cost function is
modified to include the BCR term, weighted appropriately. The
revised total cost equation is

Ctotal = Cfilter(y, Hϕ(x̂0)) + γBCRCBCR(ϕ), (8)

where γBCR, the BCR term weight, is set to 10 in our experiments.

3.3. Noise Regularization

Our parametric model, designed to fit linear magnitude responses,
faces challenges in addressing nonlinear artifacts within historical
audio recordings. These artifacts, often made worse by preprocess-
ing steps like denoising, can bias the optimization of magnitude
response parameters, leading to convergence at local minima and
suboptimal restoration outcomes. This problem was overlooked in
the previous iteration of the method [7]. As we show in Sec. 4.1,
the performance of BABE on historical recordings is suboptimal.

To solve these problems, we suggest adding a certain amount
of stochasticity, or “noise,” into the optimization objective. We
do this by adding random noise to our observations, which we de-
scribe as ȳ = y+ γϵ, where γ is the noise scale and ϵ ∼ N (0, I)
is a vector of Gaussian noise. Technically, this approach smooths
the likelihood distribution by convolving it with a Gaussian ker-
nel. This trick enables the optimization process to navigate the
cost function landscape more effectively than without it. Each it-
eration’s unique noise ensures the optimizer does not prematurely
converge to local minima, thereby encouraging a thorough search
for optimal solutions. Furthermore, the additive noise potentially
masks some of the artifacts that may be present in the observed
data, preventing these artifacts from negatively affecting the opti-
mization. This approach aligns with techniques used by Sadat et
al. [13], which aimed to enhance diversity in image generation. In
Sec. 4.1, we conduct an ablation study where this technique is not
applied, which is there denoted as “BABE-2 w/o noise reg.”

3.4. Long-term Average Spectrum-based Initialization

A known blind equalization technique designs a filter to align the
input LTAS with that off a reference set [4]. To achieve this, we
calculate the reference LTAS, denoted as R̃LTAS, by applying the
Short-Time Fourier Transform (STFT) to the reference set and av-
erage the power spectra across frames. In the STFT, we use 4096-
sample windows at the sampling rate of fs = 44.1 kHz, or 2048-
sample windows at fs = 22.05 kHz. We employ a hop size of
1/4 in both cases. One-third-octave band Gaussian smoothing is
applied to the averaged spectra. The LTAS of the input ỸLTAS is
determined in the same way, based on the original recording.

By computing the ratio between the LTAS spectra, the equal-
ization filter is obtained as

|HLTAS| = ˜|YLTAS|/|R̃LTAS|, (9)

where HLTAS is an estimate of the forward degradation. The inverse
filter H−1

LTAS can be used as a frequency-domain equalizer:

ỹ = F−1(H−1
LTAS ⊙F(y)), (10)

where ⊙ is the Hadamard product.
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From now on, this equalization method is referred to as “LTAS-
EQ.” While this approach proved useful for correcting significant
colorations [4], it has strong limitations. Firstly, if the observa-
tions are bandlimited, the ratio in Eq. (9) is ill-conditioned, as it
approaches zero for some frequency bands, causing the inverse fil-
ter to amplify to extremely high values. To mitigate this, we limit
HLTAS at −20 dB. Secondly, an estimate involving time averages
assumes the measured signal is ergodic, which may often not be
true. The LTAS method overlooks the dynamics of the audio, such
as the unique sound of a piano when played at different intensities.
Consequently, during LTAS computation, louder sections may dis-
proportionately influence the average spectrum, leading to an im-
balance. Due to these limitations, relying solely on this approach
for audio restoration is not recommended.

Considering these limitations, we adopt this method as a pre-
liminary step that BABE-2 will refine. Our goal is to facilitate the
equalization process, aiming for a more stable optimization of the
filter at the initial stages and achieving convergence with fewer it-
erations. We explore two approaches to accomplish this. Firstly,
we utilize HLTAS for an improved initial setup of the audio sig-
nal at starting time T , xT . Unlike in BABE [7], where xT began
as a noisy version of the observations xT ∼ N (y, σstart2I), we
now introduce a modified approach. We suggest beginning with a
noisy version of the equalized observations xT ∼ N (ỹ, σstart2I),
where ỹ is derived using Eq. (10). This version of our method is
hereon referred to as “BABE-2 w/ LTAS-EQ init.”

The second strategy extends the use of LTAS-EQ beyond ini-
tial setup by incorporating it into the optimization objective. This
involves replacing the original recording y with ỹ in the recon-
struction cost functions from Eqs. (12) and (??). It is crucial to
recognize that in this context, the estimated frequency response
Hϕ no longer corresponds directly to the original recording re-
sponse y. Instead, the connection between the original recording
and the estimated restored version x̂0 becomes a composite of Hϕ
and HLTAS as formalized below:

y ≈ F−1 ((Hϕ ⊙HLTAS)⊙F(x̂0)) . (11)

We denote this variant as “BABE-2 w/ LTAS-EQ obj.”

3.5. Inference Algorithm

The inference algorithm of BABE-2 shares strong similarities with
the one employed in BABE [7]. The pseudocode in Algorithm 1
summarizes the inference process, highlighting the the new contri-
butions in blue. Despite, for brevity reasons, Algorithm 1 shows
an adaptation of a 1st order Euler sampler, we use the 2nd order
stochastic sampler introduced in [9]. One relevant addition is the
use of the Adam optimizer [14] to optimize the filter parameters,
instead of a simpler stochastic gradient descent as used in [7].
Adam applies adaptive per-parameter learning rates and second-
order moments of the gradients, which stabilizes the performance
for non-convex optimization problems with sparse gradients.

As the reconstruction cost function for the audio signal, we
employ the same standard L2 norm as used in BABE:

Caudio(y, Hϕ(x̂0)) = ∥y −Hϕ(x̂0)∥22. (12)

We also use the same reconstruction cost function as BABE
for optimizing the filter parameters, which consists of a frequency-
weighted L2 norm between spectral magnitudes, denoted as:

Cfilter(y, Hϕ(x̂0)) = ∥W(|F(y)| − |F(Hϕ(x̂0))|)∥22 , (13)

Algorithm 1 Inference phase of the BABE-2 method

Require: observations y
ỹ = F−1(H−1

LTAS ⊙F(y)) ▷ LTAS-based init. (Sec. 3.4)
if use LTAS-EQ in objective then

y← ỹ
end if
Sample xT ∼ N (ỹ, σ2

startI) ▷ apply warm initialization
Initialize ϕT ▷ initialize the filter parameters
for i← T, . . . , 1 do ▷ discrete step backwards

x̂0 ← Dθ(xi, σi) ▷ evaluate denoiser
ϕ0
i ← ϕi+1 ▷ use the filter from last step

for j ← 0, . . . ,Mmax its. do ▷ filter optimization
ŷ
ϕ
j
i
← F−1(H

ϕ
j
i
⊙F(x̂0)) ▷ apply filter

Cfilter(ϕ
j
i )← Crec(Hϕ

j
i
(x̂0),y)+γBCRCBCR(ϕ

j
i )

ϕj+1
i ← ϕj

i −AdamGrad(Cfilter(ϕ
j
i )) ▷ optim. step

ϕj+1
i ← project(ϕj+1

i ) ▷ project the filter params.
end for
ϕi ← ϕM

i

ŷϕi ← F
−1(Hϕi ⊙F(x̂0)) ▷ apply filter

ȳ = y + γϵ ▷ noise regularization (Sec. 3.3)
gi ← −ξ(σi) ∇xiCaudio(ȳ, ŷϕi) ▷ rec. guidance
si ← x̂0−xi

σ2
i

▷ prior score

xi−1 ← xi − σi(σi−1 − σi)(si + gi) ▷ update step
end for
return x0 ▷ reconstructed audio signal

where the matrix W denotes a frequency-dependent weighting
function. Further implementation details are omitted from the main
paper, but they are given in the Appendix A 2 and in the source
code 3.

4. EXPERIMENTS AND EVALUATION

We experiment with the restoration of solo piano and singing record-
ing. The conducted objective evaluation compares the performance
of BABE-2 against comprehensive baselines for enhancing the qual-
ity of historical 78-RPM gramophone recordings.

4.1. Piano Recordings Evaluation

Here we assess the effectiveness of our proposed method for restor-
ing historical piano recordings. For ease of comparison, we used
the same diffusion model as the one used in BABE [7]. This model
is based on the CQT-Diff+ architecture [16], and was trained on the
MAESTRO dataset [17], resampled at 22 kHz.

The test set comprises 54 gramophone recordings of solo pi-
ano performances from 1910 to 1930, all of them collected from
“the Internet Archive”4. Each recording was trimmed to a duration
of 1 min. These recordings were preprocessed using our denoiser
[5] to eliminate additive noise disturbances, such as clicks, hisses,
and pops. The processed evaluation set is made available as part
of the supplementary materials5.

2The appendix is available in the pre-print: (link to arxiv here)
3github.com/eloimoliner/BABE2
4archive.org/details/78rpm
5research.spa.aalto.fi/publications/papers/dafx-babe2/
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Figure 2: Comparative LTAS analysis of original and restored piano recordings using different methods.

The objective evaluation is based on the Fréchet Audio Dis-
tance (FAD), a reference-free metric comparing the statistics be-
tween two sets of embeddings, as detailed by Kilgour et al. [18].
The efficacy of FAD is influenced by the specific embeddings em-
ployed and the chosen reference set [19]. To provide a thorough
analysis, we computed FAD across various embeddings utilizing
the ‘fadtk‘ library [19]. We began with the VGGish classifier’ em-
beddings, widely used in this context [18], and additionally as-
sessed the model using CLAP, a joint audio–text representation,
[20], and Encodec, designed for low-rate audio codecs [21]. As a
reference test set, we used the MAESTRO dataset test and valida-
tion splits from the year 2018.

Furthermore, we examined the distance between the LTAS of
the restored recordings and the LTAS of the reference test set. We
acknowledge that a distance based on LTAS is not a definitive met-
ric for the same reasons as outlined in Sec. 3.4. However, we in-
clude it here as it can shed light on significant differences in col-
oration with respect to the reference set. The LTAS distance is
measured as follows:

LTAS dist. = 10 log10

 1

K

∑
f

|X̃LTAS − R̃LTAS|
R̃LTAS

 , (14)

where K denotes the number of frequency bins, and X̃LTAS and
R̃LTAS represent the LTAS of the restored recordings and the refer-
ence test set, respectively.

The results are presented at the top of Table 1. The compared
versions of BABE-2 consistently outperform the original record-
ings, the LTAS-EQ and BEHM-GAN baselines [22], and the pre-
decessor BABE [7]. An ablation study highlights the critical role
of noise regularization for better performance. Additionally, the
results show that employing LTAS-based initialization strategies
improves the FAD scores.

To delve deeper into the impact of the restoration methods on
different recordings, Fig. 2 illustrates the frequency-response es-
timates derived from LTAS analysis. This figure includes three
plots corresponding to distinct solo piano recordings, each labeled
with its respective year and identifier, depicting the magnitude
in dB across a logarithmically spaced frequency axis. The blue
lines represent the frequency-response estimates for the original
recordings, calculated based on the ratio between the LTAS of each
recording and that of the reference test set, following Eq. (9). The
remaining lines in each plot denote the LTAS ratio for each restora-
tion method, as detailed in the legend.

Ideally, in Fig. 2, an equalized recording should exhibit a rel-
atively flat frequency response, centered around 0 dB. It can be
observed that the original recordings’ responses possess an irreg-

Table 1: Objective evaluation on historical recordings. The best
results of each column for each experiment are bolded.

FAD ↓ LTAS
Experiment, method VGGish CLAP Encodec dist. ↓

Piano: Original 2.37 0.33 8.11 -1.15 dB
LTAS-EQ 3.33 0.19 8.12 -1.77 dB
BEHM-GAN 1.82 0.21 6.65 -1.37 dB
BABE 1.50 0.15 7.72 -2.68 dB
BABE-2 1.45 0.12 4.65 -3.02 dB
BABE-2 w/o noise reg. 1.46 0.15 7.25 -2.37 dB
BABE-2 w/ LTAS-EQ init. 1.50 0.12 4.56 -3.42 dB
BABE-2 w/ LTAS-EQ obj. 1.20 0.12 5.21 -2.57 dB

Vocals (Caruso): Original 19.34 0.47 31.01 -0.29 dB
LTAS-EQ 19.59 0.52 23.41 -1.96 dB
BABE 14.48 0.31 26.10 -1.06 dB
BABE-2 11.36 0.28 21.08 -1.65 dB
BABE-2 w/ LTAS-EQ init. 11.32 0.29 20.53 -1.84 dB
BABE-2 w/ LTAS-EQ obj. 11.11 0.27 15.04 -1.95 dB

Vocals (Melba): Original 11.56 0.63 41.34 -0.94 dB
LTAS-EQ 11.99 0.66 37.04 -2.39 dB
BABE 5.33 0.36 32.68 -0.88 dB
BABE-2 3.71 0.31 27.78 -0.84 dB
BABE-2 w/ LTAS-EQ init. 3.44 0.30 22.12 -1.56 dB
BABE-2 w/ LTAS-EQ obj. 3.58 0.32 23.64 -2.23 dB

ular shape, characterized by deficiencies in both high and low-
frequency energy and marked coloration, i.e. fluctuations, in the
mid-frequency range. The “LTAS-EQ” method manages to mit-
igate the coloration to some extent but, in doing so, it amplifies
background noise and distortion artifacts. This harms the FAD
scores, as evidenced in Table 1. The “BABE” method, indicated by
the cyan dashed line, increases the high-frequency energy, yet not
enough to align with the target equalization curve. In contrast, the
“BABE-2” method achieves a more balanced equalization, partic-
ularly effective when combined with the LTAS-EQ objective. This
analysis showcases the superiority of the BABE-2 method.

4.2. Evaluation of Singing Voice Recordings

We evaluate our restoration method to recordings from two iconic
singers: Enrico Caruso (tenor) and Nellie Melba (soprano). For
this purpose, we pretrained a diffusion model with a collection
of studio quality modern singing voice recordings from different
sources6, all of them sampled at 44.1 kHz. This model was later
fine-tuned for each target singer in particular, using smaller refer-

6See Appendix A for more information regarding the training data.
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Figure 3: Singing voice restoration pipeline.

ence sets extracted from selected singers from Vocalset [23], as we
elaborate in Sec. 5. We opted for standard fine-tuning, resuming
the training from the pretrained weights.

The process for restoring singing voice recordings is shown
in Fig. 3. Similar to the approach detailed in Sec. 4.1, all record-
ings were trimmed to 1 min and denoised [5] as an initial step.
Our evaluation is exclusively aimed at enhancing vocal tracks, and
hence, the instrumental parts were separated using HT-Demucs
[24]. While this is effective, the source separation method is not
fully optimized for historical recordings and tends to introduce no-
ticeable artifacts. These artifacts, however, are outside the scope
of this study, as we are not focusing on source separation.

We collected two evaluation sets consisting of 32 recordings
from Enrico Caruso and 25 from Nellie Melba. The objective
evaluation mirrors the one conducted for piano music, employing
the same metrics for assessment. The outcomes for both Caruso
and Melba are detailed in Table 1. For the Caruso recordings,
the BABE-2 version utilizing the LTAS-EQ objective achieved the
most favorable FAD scores. On the other hand, for Melba’s record-
ings, the BABE-2 version with LTAS-EQ initialization showed
slightly superior performance. It is noteworthy that, despite record-
ing significantly lower FAD scores, the LTAS-EQ baseline regis-
tered the smallest LTAS distance.

5. DISCUSSION: RESTORING HISTORICAL VOICES

One of the key contributions from our research lies in our efforts
to restore early-20th-century recordings of classical opera singers.
These recordings are often so much degraded that some of the
unique vocal characteristics of the singer are no longer preserved.
The role of BABE-2 is to reconstruct, or hallucinate, the missing
pieces, based on statistical patterns derived from the training data.
This underscores the critical importance of selecting appropriate
training data, as it significantly impacts the accuracy and authen-
ticity of the audio restoration, ensuring the reconstructed voices
closely mirror the original timbres and nuances.

Our methodology involves the strategic fine-tuning of diffu-
sion models, which have been pre-trained on a broad spectrum

of singing voice recordings, with a more focused dataset of high-
quality recordings from a unique and carefully selected reference
singer. The reference singers are chosen for their vocal qualities,
which closely resemble those of the historical figures we seek to
restore. For this purpose, we employ VocalSet [23], a dataset com-
prising studio-quality a cappella recordings from 20 professional
singers. Each singer contributed with approximately 30 min of
data, encompassing a diverse array of vocal techniques.

5.1. Searching for Reference Voices

The task of identifying voices that resemble a particular opera
singer is not trivial. Opera singers can be divided into different
voice categories, “fach”, based on, for example, vocal range and
timbre, permeability, or flexibility of their voices [25]. To get the
full impression of the singer’s voice characteristics on a historical
recording, it is necessary not only to listen but also to consult the
writings of contemporaries and to study the singer’s repertoire. En-
rico Caruso (1871-1921) was known for his distinctive voice and
his interpretations of tenor roles in the Italian opera repertoire for
example Cavaradossi from Puccini’s Tosca or Canio from Pagli-
acci by Leoncavallo [26]. Both roles require stamina and per-
meability in low and high register, and Caruso’s voice has been
described as having a baritonal quality in the low and brilliance
of the tenor voice in the higher register. Caruso’s recording career
spanned 20 years and during that time his technique stabilized, and
his voice matured and gained depth [27, 28]. Therefore, we only
seek an average estimate of his voice.

We found that the voice from VocalSet’s Male-2 possesses
a similar warmth and depth in the low and middle registers as
Caruso, together with the power and clarity in the higher regis-
ter, hence we used it for fine-tuning Caruso’s recordings. The fa-
mous aria “Vesti la giubba” from Pagliacci, included among the
audio examples on our webpage, is a perfect example of Caruso’s
voice but also of his dramatic abilities. On the webpage, you also
find a version of the same aria sung by Beniamino Gigli (1890-
1957), who was considered a legitimate heir of Caruso and their
voices have similarities, but Gigli’s voice sounds more metallic
[29]. Gigli’s restored example was produced using the dramatic
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Figure 4: Spectrogram representations of two vocal restoration examples. The colored boxes highlight key points discussed in Sec. 5.2.

voice from VocalSets’s Male-11.
Nellie Melba (1861–1931) was complimented on the beauty of

her voice and her flawless technique with equalized scale from top
to bottom. Her colleague John McCormack described her voice as
a lyric soprano with a beautiful tone and her technique as perfec-
tion. She had the ability to sing coloraturas with bird-like quality,
and her voice was light and agile [30]. The beauty of voice is a
subjective matter, but we found a similar light lyric quality in the
voice from VocalSet’s Female-1, which we used for fine-tuning.
Like Caruso, Melba had a long recording career, and she made a
total of 150 recordings between 1904 and 1926, including a var-
ied repertoire, but focusing mainly on opera [31]. One of Melba’s
most celebrated roles was Marguerite from Gounod’s Faust. As a
representative example, we selected Marguerite’s aria “Ah! Je ris
je me voir si belle”, a.k.a. “Jewel aria”, from Faust.

We additionally restored a version of the same aria from the
soprano Adelina Patti (1843–1919), who sang the same repertoire
as Melba, and their voices had similarities [32]. Still, we used a
different voice, Female-5, for fine-tuning because, in this record-
ing, the impression of her voice is darker and lower compared to
Melba’s. The main reason for this difference might be that, at the
time of the recording, Patti was already over 60 years old [32].

Despite our reliance on the written literature, the main strat-
egy for finding pairs between reference and original singers was
analytic listening. With the limited bandwidth and the disturbing
coloration of the original medium, some imagination was required
when figuring out the original color of the voice. Consequently,
evaluating the fidelity of our results posed challenges, leading us
to focus on a qualitative analysis.

5.2. Qualitative Analysis

Figure 4 shows spectrograms of two restoration examples: a 1.5-
second excerpt from Enrico Caruso’s “Vesti la Giubba” (Victor
6001-A, 1910) in (a) and (b), and a same-length excerpt from Nel-
lie Melba’s “Jewel aria” (Victor 88066, 1910) in (c) and (d). Both
recordings show a bandwidth limit of approximately 4 kHz. In
both cases, the original recording effective bandwidth barely ex-
ceeds 4 kHz. It can be observed that the limited bandwidth affects
more critically the soprano voice than the tenor, as the former is at
least an octave higher. Therefore, the restored voice of Caruso is
recognisable and the hallucinated overtones create a warmer and
fuller sound. In Melba’s case, the result is more controversial.
Even if the overtones are clearly audible, the voice sounds slightly
breathy and lacks its ringing. The more overtones are generated,
the more of the singer’s personal color can be heard from the exam-
ples yielding a more natural-sounding result, although, in this case,
part of the color has been hallucinated by the generative model. In

Melba’s case, the generated timbre is slightly different from what
we can hear on the recordings.

Thanks to the extensive range of vocal techniques included by
VocalSet, BABE-2 demonstrates a notable capacity for adapting to
the distinct formant characteristics of various vowels, as illustrated
in the green-colored box in Figs. 4(c, d). However, it is observed
that subtle portamentos and singer legato lines are sometimes trun-
cated, as shown in the cyan-colored box in Fig. 4(a, b). This be-
havior is expected as soft (low-energy) singing has a much lower
weight than louder passages in the reconstruction cost. Also, fur-
ther research is needed on how to better identify the vowel mod-
ification of the soprano voice in particular, i.e., the rounding of
vowels at high pitches.

One limitation of the proposed method is that it is not de-
signed to tackle nonlinear degradations, such as harmonic distor-
tion. Thus, one would expect that the model would fail when it
encounters distortion artifacts. However, this does not seem to
always be the case. The red box in Fig. 4(a, b) highlights an ex-
ample where Caruso’s loud singing provoked a significant amount
of harmonic distortion in the recording. In this example, BABE-2
suppresses the distortion and regenerates a clean high-frequency
spectrum. We attribute this behavior to the effect of the noise reg-
ularization implemented in our method and introduced in Sec. 3.3.

Due to scale limitations, BABE-2 does not have language-
level control of the singing voice distribution. Since the frequency
range of certain consonants, such as fricatives, is outside the range
captured in the original recording, BABE-2 hallucinates conso-
nants at statistically plausible locations, but these may not cor-
respond to the lyrics. This is the case of the incorrectly placed
fricative in the yellow box in Fig. 4(a, b).

The white boxes in Fig. 4(c, d) show some of the consequences
of the source separation preprocessing. The bleeding from the in-
strumental track is present in the restored recording, especially in
the low-frequency region. Nevertheless, we also notice that a side-
effect of BABE-2 is that it additionally suppresses some of the
bleeding between the harmonics, producing an even cleaner vocal
separation. This behavior is expected, as these artifacts are not
included in the training data.

6. CONCLUSIONS

This study introduces BABE-2, enhancing the restoration of histor-
ical music recordings through a generative equalization strategy.
Objective evaluations demonstrate its superiority over the prior
version, particularly in enhancing recordings of iconic vocalists
Enrico Caruso and Nellie Melba. In addition to music enthusiasts,
BABE-2 allows researchers to get a more accurate auditory picture
of specific features of a recording or interpretation. Although cer-
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tain limitations are identified, indicating areas for future research,
this work represents a notable advancement in the domain of his-
torical music restoration. BABE-2 demonstrates unprecedented
potential to revitalize aged audio recordings, achieving levels of
clarity and fidelity previously unattainable.
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A. SUPPLEMENTARY ALGORITHM SPECIFICATIONS

This appendix includes additional specifications and implementa-
tion insights regarding the BABE-2 algorithm. Many aspects cov-
ered here were omitted from the main paper either because they
build upon established work or due to their detailed, technical na-
ture.

A.1. Training

The training objective is based on the one expressed in Eq. 3. How-
ever, we apply the preconditioning strategy proposed by Karras et
al. [9], which aimed to improve the diffusion model training dy-
namics. The denoiser in Eq. 3 is reparameterized as:

Dθ(xτ , τ) = cskip(τ)xτ + cout(τ)Fθ(cin(τ)xτ ,
ln(σ(τ))

4
), (15)

where cin, cskip and cout are time-dependent preconditioning param-
eters defined in [9], and Fθ corresponds to the optimizable neural

Table 2: Hyperparameters chosen in our experiments

Training params. Piano S. Voice (pre) S. Voice (f-t)

Learning rate 2× 10−4 2×10−5 1× 10−4

Batch size 4 4 4
Sampling rate 22.05 kHz 44.1 kHz 44.1kHz
Segment length 8.35 s 5.94 s 5.94 s
EMA rate 0.9999 0.9999 0.9999
σdata 6.3× 10−2 1 1
Training its. 850k 325k 8k

network architecture, as detailed in Sec. A.2. The loss weight-
ing term λ(τ) in Eq. 3 is defined as: λ(τ) = 1/cout(τ)

2, also
following the guidelines from [9].

The diffusion model employed for piano restoration was trained
using the MAESTRO dataset [17]. For the singing voice exper-
iments, we pretrained a new diffusion model with a collection
of studio quality modern singing voice recordings from different
sources [33, 34, 35, 36, 37, 38]. This pre-training phase spanned
325k iterations over three days on a single NVIDIA A100-80GB
GPU. The singing voice models were later fine-tuned with a smaller
reference set extracted from selected singers from Vocalset [23], as
we elaborate on in Sec. 5. We employed standard fine-tuning, re-
suming the training from the pre-trained weights. The fine-tuning
process involved 8k training iterations, requiring about two hours
on the same GPU.

The preconditioning parameters used in Eq. 15 depend on
the average power of the training data σ2

data. For the MAESTRO
dataset, this value was estimated as σdata = 6.3 × 10−2. For
the singing voice experiments in particular, as we were working
with heterogeneous datasets, we decided to normalize the train-
ing data samples. During the pre-training stage, we apply Root-
Mean-Square (RMS) normalization, thus resulting with the param-
eter σdata = 1. For fine-tuning, in order to preserve the volume-
dependent characteristics of singing voice, we estimated the aver-
age RMS value from a representative set of the fine-tuning dataset,
in our case VocalSet, and normalize all the training samples with
it. For this purpose, we estimated the value σnorm = 0.04.

Additionally, as often employed for training diffusion mod-
els, we track an exponential moving average (EMA) of the neural
network weights during training. The EMA weights are later used
during the inference stage. Some of the most important parameters
regarding training are summarized in Table 2.

A.2. Neural Network Architecture

In this study, we employed the CQT-Diff+ architecture [16] as the
backbone for our diffusion model, denoted as Fθ . This architec-
ture incorporates optimizable layers with an invertible Constant-
Q Transform (CQT), characterized by varying time resolutions
across octave bands. The architecture adopts a U-Net-style encoder-
decoder structure with skip connections, primarily consisting of
2D-Convolutional layers that process along both time and frequency
axes.

For our experiments involving piano music and singing voice,
we utilized distinct parameter configurations, yet both setups com-
prise approximately 40 million trainable parameters. Specifically,
the piano music configuration aligns with that employed in BABE
[7], utilizing a CQT that spans 7 octaves with 64 frequency bins
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per octave. In contrast, the singing voice experiments required
adaptation to a higher sampling rate, resulting in a CQT covering
8 octaves but with 32 frequency bins per octave. This adjustment
in frequency resolution, particularly for singing voice, proved ben-
eficial for generating a more coherent spectrum in the produced
audio, a critical aspect for tasks like equalization. Furthermore, an
important consideration in both experimental configurations is the
exclusion of frequencies below 86 Hz, achieved through high-pass
filtering. While this decision prevents the model from restoring
content within this low-frequency range, it is not deemed prob-
lematic for our purposes. This is because the musical signals we
aim to process typically do not contain significant information in
such low frequencies.

A.3. Inference

The inference algorithm was designed to share the same structure
as BABE [7], but including BABE-2’s new contributions detailed
in the main paper. Some of the most relevant hyperparameters
employed for inference are summarized in Table 3.

We use the exponentially-warped discretization from [9]:

τi<T =

(
σ

1
ρ

start + i
T−1

(
σ

1
ρ

min − σ
1
ρ

start

))ρ

, (16)

where the hyperparameters σstart, σmin, T and ρ define the time
schedule. Intuitively, the starting noise level σstart should be large
enough to mask all the imperfections from the audio signal used at
initialization, and σmin should be negligible when compared with
the audio signal magnitude. The role of the parameter ρ is to warp
the time discretization and concentrate more steps towards lower
noise levels. The parameter T defines the number of discretized
steps. With it, one can effectively trade-off audio quality per infer-
ence speed. While using a larger T can potentially lead to better
results, we decied to fix T = 51 throughout all our experiments. It
must be noted that, since we employ a second-order sampler, the
number of neural function evaluations required during inference is
twice the value of T .

Following [10, 7], we normalize the likelihood score step size
ξ(τ) as follows to enhance robustness:

ξ(τ) = ξ′
√
N/(σ(τ)∥∇xτ ∥y −m⊙ x̂0∥2∥2), (17)

a technique also recognized as a spherical Gaussian constraint in
recent literature [39]. The parameter ξ′ plays a crucial role by
balancing audio quality and fidelity to observations. Higher ξ′ val-
ues aim to minimize the cost function effectively, although exces-
sively large values may lead to artifacts in the audio. We observed
that introducing stochasticity in the inference phase allows enables
the application of larger ξ′ values while maintaining audio quality.
This stochasticity is introduced through the Schurn parameter of the
sampler, and the noise regularization from Sec. 3.3.

The filter parameters are optimized through stochastic gradient
descent using the Adam optimizer. The learning rate was searched
qualitatively by trial and error, and was defined to a value of 10.
We adopted the default momentum parameters from the PyTorch’s
implementation. Optimizing the filter parameters is computation-
ally less demanding than updating audio signals, as it avoids the
need for neural functions evaluations. Consequently, we employed
a relatively high number of filter optimization iterations for each
sampling step, specifically 100.

Table 3: Hyperparameters chosen in our experiments

Inference params. Piano Singing Voice

Start noise level σstart 0.5 10
Min. noise level σmin 4×10−5 1×10−3

Time warping ρ 13 13
Discretization steps T 51 51
Sampling stochasticity Schurn 10 10
Step size ξ′ 1.0 0.5
Noise regularization γ 0.25 1
Filter learning rate 10 10
Num. optimization its. per step 100 100
BCR decay rate β 0.1 0.1
BCR weight γBCR 10 10

A.4. Filter Parameterization

The proposed filter parameterization is detailed in Sec. 3.1. For
completeness, we report its mathematical formulation, which is as
follows:

Hϕ(f)[dB] =



Alim- log2
f

f-S′
+

∑-1
i=-S′ Ai f < f-S′

...
...

A-2 log2
f
f-1

+A-1 +A-2 f-2 ≤ f < f-1

A-1 log2
f
f0

f-1 ≤ f < f0

A1 log2
f
f0

f0 ≤ f < f1

A2 log2
f
f1

+A1 f1 ≤ f < f2
...

...
Alim+ log2

f
fS

+
∑S

i=1 Ai fS ≤ f,

(18)
where fi (Hz) represent cutoff frequencies and Ai (dB) are the
decay slopes. The set of adjustable parameters is defined as:

ϕ = {fi, Ai | i = 1, . . . , S}, (19)

where S is the number of breakpoints.
For the reasons specified in Sec. 3.1, we use a reduced number

of S = 5 stages in our experiments. This comprises a total of 9 op-
timizable parameters. We initialized the 5 breakpoints to, and the
rest to: f−2 = 50 Hz, f−1 = 500 Hz, f0 = 1 kHz, f1 = 1.5 kHz, and
f2 = 2 kHz, while all the slopes are initialized to 0 dB. Considering
the the Alim+ slope is fixed at -80 dB, this initialization produces
a flat magnitude response with a steep band-limit at 2 kHz, a rel-
atively low cut-off frequency. The initialization plays a relevant
role in the performance of the method. However we notice that, in
this case, the filter initialization influence is not as critical as in the
prior version, BABE. We attribute this observed improvement in
robustness to some of the incorporated additions, specifically the
noise regularization and the Adam optimizer.

A.5. Block-Autoregressive Inference

Due to memory constraints, the diffusion models employed in this
work are designed to process short audio segments within the range
of a few seconds. However, in the context of audio restoration, it
is necessary to be able to restore entire recordings which may last
several minutes long.
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Adapting diffusion models to function on a frame-by-frame
basis while ensuring coherence between subsequent frames is a
known trick in the field [40]. One can just enforce consistency
with the last fragment of the previous frame by incorporating an
“outpainting” objective on top of the reconstruction. Given the last
fragment of the previous restored frame repositioned at the start of
the current one xprev, the proposed algorithm can be adapted to a
block-autoregressive inference scenario by substituting the recon-
struction cost function in Eq. (12) for:

CB-AR
audio (y,xprev, Hϕ(x̂0)) = ∥1[0,tov.] ⊙ (xprev − x̂0)

+ 1[tov.,tend] ⊙ (y −Hϕ(x̂0)))∥22, (20)

where 1[tstart,tend] represents a binary mask that is equal to 1 in
the time interval between tstart and tend and 0 otherwise, tov. is the
overlap time, tend points to the end of the segment, and ⊙ denotes
element-wise multiplication. In our experiments we use an over-
lap factor tov./tend of 10%. This trick was already employed in
BABE [7], but, although mentioned, the adapted cost function for
bandwidth extension was not properly formalized, and neither is
anywhere else in the related literature, as far as we are aware.

This adaptation can be equivalently applied to the filter recon-
struction cost function in Eq. (??), allowing us to estimate the filter
parameters with the updated objective. Note however that, if the
degradation is considered to be time-invariant, there is no need to
re-estimate the filter parameters ϕ among different frames, as only
once is needed. Nevertheless, we use the block-autoregressive in-
ference in our experiments for evaluation purposes.
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