
Collective schedules: axioms and algorithms

Martin Durand Fanny Pascual

Abstract

The collective schedules problem consists in computing a schedule of
tasks shared between individuals. Tasks may have different duration,
and individuals have preferences over the order of the shared tasks. This
problem has numerous applications since tasks may model public infras-
tructure projects, events taking place in a shared room, or work done by
co-workers. Our aim is, given the preferred schedules of individuals (vot-
ers), to return a consensus schedule. We propose an axiomatic study of
the collective schedule problem, by using classic axioms in computational
social choice and new axioms that take into account the duration of the
tasks. We show that some axioms are incompatible, and we study the
axioms fulfilled by three rules: one which has been studied in the semi-
nal paper on collective schedules [17], one which generalizes the Kemeny
rule, and one which generalizes Spearman’s footrule. From an algorith-
mic point of view, we show that these rules solve NP-hard problems, but
that it is possible to solve optimally these problems for small but realistic
size instances, and we give an efficient heuristic for large instances. We
conclude this paper with experiments.

1 Introduction
In this paper, we are interested in the scheduling of tasks of interest to different
people, who express their preferences regarding the order of execution of the
tasks. The aim is to compute a consensus schedule which aggregates as much as
possible the preferences of the individuals, that we will call voters in the sequel.

This problem has numerous applications. For example, public infrastructure
projects, such as extending the city subway system into several new metro lines,
or simply rebuilding the sidewalks of a city, are often phased. Since workforce,
machines and yearly budgets are limited, phases have to be done one after the
other. The situation is then as follows: given the different phases of the project
(a phase being the construction of a new metro line, or of a new sidewalk), we
have to decide in which order to do the phases. Note that phases may have
different duration – some may be very fast while some others may last much
longer. In other words, the aim is to find a schedule of the phases, each one
being considered as a task of a given duration. In order to get such a schedule,
public authorities may take into account the preferences of citizens, or of citizens’
representatives. Note that tasks may not only represent public infrastructure

1

ar
X

iv
:2

40
3.

18
64

2v
1

 [
cs

.G
T

]
 2

7
M

ar
 2

02
4

projects, but they may also model events taking place in a shared room, or work
done by co-workers (the schedule to be built being the order in which the events
– or the work to be done – must follow each other).

This problem, introduced in [17], takes as input the preferred schedule of
each voter (the order in which he or she would like the phases to be done), and
returns one collective schedule – taking into account the preferences of the voters
and the duration of the tasks. We distinguish two settings. In the first one, each
voter would like each task to be scheduled as soon as possible, even if he or she
has preferences over the tasks. In other words, if this were possible, all the voters
would agree to schedule all the tasks simultaneously as soon as possible. This
assumption – the earlier a task is scheduled the better – , will be denoted by
EB in the sequel. It was assumed in [17], and is reasonable in many situations,
in particular when tasks are public infrastructure projects. However, it is not
relevant in some other situations. Consider for example workers, or members of
an association, who share different works that have to be done sequentially, for
example because the tasks need the same workers, or the same resource (e.g.
room, tool). Each work (task) has a given duration and can imply a different
investment of each worker (investment or not of a person, professional travel,
staggered working hours, ...). Each worker indicates his or her favorite schedule
according to his or her personal constraints and preferences. In this setting,
it is natural to try to fit as much as possible to the schedules wanted by the
workers – and scheduling a task much earlier than wanted by the voters is not
a good thing. In this paper, our aim is to compute a socially desired collective
schedule, with or without the EB assumption.

This problem generalizes the consensus ranking problem, since if all the tasks
have the same unit length, the preferred schedules of the voters can be viewed as
preferred rankings of tasks. Indeed, each task can be considered as a candidate
(or an item), and a schedule can be considered as a ranking of the candidates
(items). Computing a collective schedule in this case consists thus in computing
a collective ranking, a well-known problem in computational social choice.

Related work. Our work is at the boundary between computational social
choice [6] and scheduling [7], two major domains in artificial intelligence and
operational research.

As mentioned above, the collective schedule problem generalizes the collec-
tive ranking problem, which is an active field in computational social choice (see
e.g. [12, 21, 8, 20, 5, 13, 2, 16]). In this field, authors often design rules (i.e.
algorithms) which return fair rankings, and they often focus on fairness in the
beginning of the rankings. If the items to be ranked are recommendations (or
restaurants, web pages, etc.) for users, the beginning of the ranking is indeed
probably the most important part. Note that this does not hold for our problem
since all the planned tasks will be executed – only their order matters. This
means that rules designed for the collective ranking problem are not suitable not
only because they do not consider duration for the items, but also because they
focus on the beginning of the ranking. This also means that the rules we will
study can be relevant for consensus ranking problems where the whole ranking

2

is of interest.
As mentioned earlier, the collective schedule problem has been introduced

in [17] for the EB setting. In this paper, the authors introduced a weighted vari-
ant of the Condorcet principle, called the PTA Condorcet principle, where PTA
stands for “Processing Time Aware” (cf. page 10), and they adapted previously
known Condorcet consistent rules when tasks have different processing times.
They also introduced a new rule, which computes a schedule which minimizes
the sum of the tardiness of tasks between the preferred schedules of the voters
and the schedule which is returned. They show that the optimization problem
solved by this rule is NP-hard but that it can be solved for reasonable instances
with a linear program.

Up to our knowledge, there is no other work which considers the schedule
of common shared tasks between voters, or agents. Multi agent scheduling
problems mainly focus on cases where (usually two) agents own their own tasks,
that are scheduled on shared machines: the aim is to find a Pareto-optimal
and/or a fair schedule of the tasks of the agents, each agent being interested by
her own tasks only [19, 1].

We conclude this related work section by mentioning similarities between our
problem and the participatory budgeting problem, which is widely studied [3].
In the participatory budgeting problem, voters give their preferences over a set
of projects of different costs, and the aim is to select a socially desirable set of
items of maximum cost B (a given budget). The participatory budgeting prob-
lem and the collective schedules problems have common features. They both
extend a classical optimization problem when users have preferences: the partic-
ipatory budgeting problem approach extends the knapsack problem when users
have preferences over the items, while the collective schedules problem extends
the scheduling problem when users have preferences on the order of the tasks.
Moreover, when considering unit items or tasks, both problems extend famous
computational social choice problems: the participatory budgeting problem gen-
eralizes the multi winner voting problem when items have the same cost, and
the collective schedules problem generalizes the collective ranking problem when
tasks have the same duration. For both problems, because of the costs/lengths
of the items/tasks, classical algorithms used with unit items/tasks may return
very bad solutions, and new algorithms are needed.

Our contribution and map of the paper.

• In section 2, we present three rules to compute consensus schedules. We
introduce the first one, that we will denote by PTA Kemeny, and which ex-
tends the well-known Kemeny rule used to compute consensus rankings in
computational social choice [6]. The two other rules come from scheduling
theory, and were introduced in [17]: they consist in minimizing the sum of
the tardiness of tasks in the returned schedule with respect to the voters’
schedules (rule ΣT), or in minimizing the sum of the deviation of tasks
with respect to the voters’ schedules (rule ΣD). Note that this last rule is
equal to the Spearman’s footrule [11] when the tasks are unitary.

3

• In section 3, we study the axiomatic properties of the above mentioned
rules by using classical social choice axioms as well as new axioms taking
into account the duration of the tasks. Table 1 summarizes our results.
We also show incompatibilities between axioms: we show that a rule which
is neutral, or which is based on a distance, both does not fulfill the PTA
Condorcet consistency property, and can return a schedule with a sum of
tardiness as far from the optimal as wanted.

• In Section 4, we show that the PTA Kemeny and ΣD rules solve NP-hard
problems and we propose a fast heuristic which approximates the ΣD rule.

• In Section 5, we see that the PTA Kemeny and ΣD rules can be used
for small but realistic size instances, and that the heuristic presented in
the previous section returns schedules which are very close to the ones
returned by ΣD. We also compare the performance of the three rules on
the sum of tardiness or deviations of the tasks in the returned schedules.

Let us now introduce formally our problem and present the three rules that we
will study in the sequel.

2 Preliminaries
Definition of the problem and notations. Let J ={1, . . . , n} be a set of n
tasks. Each task i∈J has a length (or processing time) pi. We do not consider
idle times between the tasks, and preemption is not allowed: a schedule of the
tasks is thus a permutation of the tasks of J . We denote by XJ the set of all
possible schedules. We denote by V ={1, . . . , v} the set of v voters. Each voter
k∈V expresses her favorite schedule Vk∈XJ of the tasks in J . The preference
profile, P , is the set of these schedules: P = {V1, . . . ,Vv}.

Given a schedule S, we denote by Ci(S) the completion time of task i in
S. We denote by di,k the completion time of task i in the preferred schedule of
voter k (i.e. di,k=Ci(Vk)) – here d stands for “due date” as this completion time
can be seen as a due date, as we will see in the sequel. We denote by a ≻S b
the fact that task a is scheduled before task b in schedule S. This relation is
transitive, therefore, if, in a schedule S, task a is scheduled first, then task b
and finally task c, we can describe S as (a ≻S b ≻S c).

An aggregation rule is a mapping r : (XJ)v→XJ that associates a schedule
S – the consensus schedule – to any preference profile P . We will focus on three
aggregation rules that we introduce now: ΣD, ΣT and PTA Kemeny.

Three aggregation rules.

A) The ΣD rule. The ΣD rule is an extension of the Absolute Deviation (D)
scheduling metric [7]. This metric measures the deviation between a schedule
S and a set of given due dates for the tasks of the schedule. It sums, over
all the tasks, the absolute value of the difference between the completion time
of a task i in S and its due date. By considering the completion time di,k
of task i in the preferred schedule Vk as a due date given by voter k for task

4

i, we express the deviation D(S,Vk) between schedule S and schedule Vk as
D(S,Vk) =

∑
i∈J |Ci(S) − di,k|. By summing over all the voters, we obtain a

metric D(S, P) measuring the deviation between a schedule S and a preference
profile P :

D(S, P) =
∑
Vk∈P

∑
i∈J

|Ci(S)− di,k| (1)

The ΣD rule returns a schedule S∗ minimizing the deviation with the pref-
erence profile P : D(S∗, P)=minS∈XJ D(S, P).

This rule was introduced (but not studied) in [17], where the authors ob-
served that, if tasks have unitary lengths, this rule minimizes the Spearman dis-
tance, which is defined as S(S,Vk)=

∑
i∈J |posi(S)−posi(Vk)|, where posj(S)

is the position of item j in ranking S, i.e. the completion time of task j in sched-
ule S if items are unitary tasks.

B) The ΣT rule. This rule, introduced in [17], extends the classical Tardiness
(T) scheduling criterion [7]. The tardiness of a task i in a schedule S is 0 if task
i is scheduled in S before its due date, and is equal to its delay with respect
to its due date otherwise. As done for ΣD, we consider the completion time of
a task i in schedule Vk as the due date of voter k for task i. The sum of the
tardiness of the tasks in a schedule S compared to the completion times in a
preference profile P is then:

T (S, P) =
∑
Vk∈P

∑
i∈J

max(0, Ci(S)− di,k) (2)

The ΣT rule returns a schedule minimizing the sum of tardiness with P .

C) The PTA Kemeny rule. We introduce a new rule, the Processing Time
Aware Kemeny rule, an extension of the well-known Kemeny rule [14]. The
Kendall tau distance is a famous metric to measure how close two rankings are:
it counts the number of pairwise disagreements between two rankings (for each
pair of candidates {a, b} it counts one if a is ranked before b in one ranking and
not in the other ranking). The Kemeny rule minimizes the sum of the Kendall
tau distances to the preference profile, i.e. the voter’s preferred rankings.

Despite its good axiomatic properties, this rule, which does not take into
account the length of the tasks, is not suitable for our collective schedules prob-
lem. Consider for example an instance with only two tasks, a short task a and
a long task b. If a majority of voters prefer b to be scheduled first, then in
the returned schedule it will be the case. However, in EB settings, it may be
suitable that a is scheduled before b since the small task a will delay the large
one b only by a small amount of time, while the contrary is not true.

We therefore propose a weighted extension of the Kemeny rule: the PTA
Kemeny rule, which minimizes the sum of weighted Kendall tau distances be-
tween a schedule S and the schedules of the preference profile P . The weighted
Kendall tau distance between two schedules S and Vk counts the weighted num-
ber of pairwise disagreements between two rankings; for each pair of tasks {a, b}
such that b is scheduled before a in Vk and not in S, it counts pa. This weight
measures the delay caused by task a on task b in S (whereas a caused no delay
on b in Vk). The score measuring the difference between a schedule S and P is:

5

∆PTA(S, P) =
∑
Vk∈P

∑
{a,b}∈C2

1a≻Sb,b≻Vk
a × pa (3)

Example 1. We consider an instance with three tasks {1, 2, 3} and five voters.
We have p1 = 2, p2 = 4 and p3 = 1. The preference profile is as follows
(we indicate in front of each schedule the number of voters for which it is the
preferred schedule):

2 1 3

1 2 3

3 2 1

2 voters

2 voters

1 voter

Let us compute the PTA Kendall tau score of schedule S, in which 2≻1≻3
(where a≻ b means that a is scheduled before b). There is 0 disagreement with
the first set of 2 voters. There is 1 disagreement with the second set of 2 voters
because the pair {1, 2} is inverted. Therefore we count p2×2 = 8, since 2 is
ranked higher in S than 1. There are 2 disagreements with the last voter, one
on the pair {1, 3} and one on the pair {2, 3}. Therefore, we count p1 =2 plus
p2=4. Overall, the score of S : 2≻1≻3 is 8+2+4=14.

Resoluteness. Note that each of these rules returns a schedule minimizing an
optimization function, and that it is possible that several optimal schedules exist.
In computational social choice, rules may be partitioned into two sets: resolute
and irresolute rules. A rule is resolute if it always returns one single solution, and
it is irresolute if it returns a set of solutions. Thus, rules optimizing an objective
function may either be irresolute, and return all the optimal solutions, or they
can be resolute and use a tie-breaking mechanism which allows to determine a
unique optimal solution for each instance.

Irresolute rules have the advantage that a decision maker can choose among
the optimal solutions, the one that he or she prefers. However, the set of optimal
solutions can be large, and sometimes even exponential, making it difficult to
compute in practice. Furthermore, in real situations, there is not always a
decision maker which makes choices, and an algorithm has to return a unique
solution: in this case, the rule must be resolute and needs to use a tie breaking
rule that allows to decide between the optimal solutions.

In this paper, we consider that each rule returns a unique solution. However,
since a good tie breaking mechanism is usually dependent on the context, we
will not describe it. Instead, we will study the properties of the set of opti-
mal solutions and see if using a tie breaking mechanism impacts the axiomatic
properties of the rule – as we will see, most of the time, this will not be the case.

6

3 Axiomatic properties
3.1 Neutrality and PTA neutrality.
The neutrality axiom is a classical requirement of a social choice rule. A rule
is neutral if it does not discriminate apriori between different candidates. Note
that this axiom can be fulfilled only by irresolute rules, since a resolute rule
should return only one solution, even when there are only two equal length
tasks a and b, and two voters: one voter who prefers that a is before b, while
the other voter prefers that b is before a (the same remark holds for consensus
rankings instead of consensus schedules). Therefore, in this subsection we will
consider that our three rules return all the optimal solutions of the function
they optimize.

Definition 1. (Neutrality) Let r be an aggregation rule, P a preference pro-
file, and S∗ the set of solutions returned by an irresolute rule r when applied
on P . Let P(a↔b) be the preference profile obtained from P by switching the
positions of two candidates (tasks) a and b in all the preferences and S∗

(a↔b)

the set of solutions returned by r on P(a↔b). The rule r is neutral iff, for each
solution S in S∗, there exists a solution S(a↔b) in S∗

(a↔b), such that S(a↔b) can
be obtained from S by swapping the positions of a and b.

Proposition 1. The ΣD rule is not neutral even if it does not apply any tie-
breaking mechanism.

Proof. Let us consider an instance with n = 6 tasks {a, b, c, d, e, f}, we have
pa = pb = pc = 1, pd = 2, pe = k and pf = k − 2, with k a positive integer. The
instance has a high even number of v voters having the following preferences:

b a f e d c

b e a f d c

b f c e d a

f c d a b e

0

v
2−1

1

1

v
2−1

For k = 20 and v = 400, the ΣD rule returns the schedule S (b ≻ f ≻ a ≻
e ≻ d ≻ c) since it is the only one minimizing the absolute deviation with the
profile. If we consider the same profile but in which the positions of b and e are
swapped, we have:

7

e a f b d c

e b a f d c

e f c b d a

f c d a e b

0

v
2−1

1

1

v
2−1

For profile P ′, the only optimal schedule S′ is (e ≻ a ≻ f ≻ b ≻ d ≻ c).
If the ΣD rule was neutral, S and S′ would be similar but the position of b
and e would be swapped. However, the positions of a and f are also modified,
meaning that the ΣD rule is not neutral.

As we will see later, the ΣT and the PTA Kemeny rules do not fulfill neu-
trality (this will be corollaries of Propositions 5 and 7).

Since neutrality leads to unsatisfactory solutions, and since we want an equal
treatment between comparable tasks, we introduce the PTA neutrality axiom,
which ensures that two tasks of equal length are considered in the same way.

Definition 2. (PTA neutrality) Let r be an aggregation rule, P a preference
profile, and S∗ the set of solutions returned by an irresolute rule r when applied
on P . Let P(a↔b) be the preference profile obtained from P by switching the po-
sitions of two tasks a and b in all the preferences and S∗

(a↔b) the set of solutions
returned by r on P(a↔b). The rule r is PTA neutral iff, for any two tasks a and
b such that pa = pb, for each solution S in S∗, there exists a solution S(a↔b) in
S∗
(a↔b), such that S(a↔b) can be obtained from S by swapping the positions of a

and b.

The PTA neutrality axiom extends the concept of neutrality for the cases
in which tasks (candidates) have lengths (weights). This axiom ensures that
two candidates with the same characteristics are treated equally. When all the
tasks have the same length, the PTA neutrality axiom is equal to the neutrality
axiom.

Proposition 2. The PTA Kemeny, ΣD and ΣT rules are PTA neutral if they
do not apply any tie-breaking mechanism.

Proof. The PTA Kemeny, ΣD and ΣT rules all return schedules that minimize
an objective function. For ΣD and ΣT, this objective function depends on the
completion times of all tasks in both the returned schedule and in the preferences
in the profile. Let us swap two tasks i and j with the same length in the
preferences of the profile P = {V1, . . . ,Vv}, giving us a profile P ′ = {V ′

1, ...,V ′
v}.

We have Ci(V ′
k) = Cj(Vk) and Cj(V ′

k) = Ci(Vk) since no other task has been
moved and since i and j have the same length. For each possible consensus
schedule S for P , we can note that the schedule similar to S but in which i and
j are swapped has the same deviation (resp. tardiness) for P ′ than S for P .
This implies that if a schedule S is optimal for a profile P , then the schedule S′

8

obtained by swapping i and j is optimal for the profile P ′: the PTA neutrality
holds for ΣD and ΣT.

The PTA Kemeny rule returns a ranking minimizing the weighted sum of
pairwise disagreements with the profile. By swapping the positions of i and j
in both the profile P and a schedule S, we do not change the disagreements on
pairs of tasks that do not contain i or j. The pair {i, j} is permuted in both
S and P leading to the same number of disagreements. Whenever there was a
disagreement between S and a preference in P on a pair {i, x} then there will
be a disagreement on {j, x} between S′ and P ′. Similarly if S and a preference
of P agree on the pair {i, x}, then S′ and the corresponding preference in P ′

will agree on {j, x}. Since the lengths of i and j are the same, the weights on a
disagreement between S and P will be the same than a disagreement between
S′ and P ′, meaning that the overall sum of weighted disagreements between S
and P is the same than between S′ and P ′. Since this applies to every schedule
S, if S is optimal for the profile P , S′ is optimal for P ′, hence the PTA Kemeny
rule is PTA neutral.

Note that the neutrality axiom is incompatible with the resoluteness axiom
[6]. That means that any rule returning always only one solution cannot be
neutral. For our rules, once we use a tie-breaking mechanism, we have to give
up neutrality. However, if we focus on the set of optimal solutions, it could
respect neutrality.

3.2 Distance.
Some aggregation rules are based on the minimization of a metric. By metric,
we mean a mapping between a pair of elements, most of the time a preference
and a solution, and a value. Most of these rules then sum these values over
the whole preference profile to evaluate the difference between a solution and a
preference profile. For example, the ΣT rule returns a schedule minimizing the
sum of tardiness with the preferences of the profile. If the metric is a distance
(i.e. it satisfies non-negativity, identity of indiscernible, triangle inequality and
symmetry), we say that the aggregation rule is “based on a distance”.

Proposition 3. The absolute deviation metric is a distance.

Proof. To be a distance, a metric m must fulfill four properties:

(1) Non negativity: m(S, S′) ≥ 0,∀S, S′ ∈ XJ

(2) Identity of indiscernibles: m(S, S′) = 0 iff S = S′

(3) Symmetry: m(S, S′) = m(S′, S),∀S, S′ ∈ XJ

(4) Triangle inequality: m(S, S′) ≤ m(S, z) +m(z, S′),∀S, S′, z ∈ XJ

The non negativity (1) property is direct since we sum absolute values, which
are always positive.
We prove the identity of indiscernibles (2) by noting that two schedules S, S′

9

are identical iff all the tasks complete at the exact same time in both schedules.
Therefore, if S and S′ are identical, then there is no difference between the
completion times of a task in the two schedules, and the deviation is thus null.
Otherwise, at least one task completes at a different time in the two schedules,
leading to a non-null difference, and a positive overall absolute deviation be-
tween the two schedules.
The symmetry (3) property is a direct consequence of the evenness of the ab-
solute value function. By definition, D(S, S′) =

∑
i∈J |Ci(S) − Ci(S

′)| and
D(S′, S) =

∑
i∈J |Ci(S

′)−Ci(S)|. By noting that: Ci(S)−Ci(S
′) = −(Ci(S

′)−
Ci(S)) and since |a| = | − a|,∀a ∈ R, we have D(S, S′) = D(S′, S).
Finally, we prove the triangle inequality (4) thanks to the subadditivity prop-
erty of the absolute value function. We consider the absolute deviation between
two schedules S and S′: D(S, S′). Let z be a third schedule. By definition:
D(S, S′) =

∑
i∈J |Ci(S)−Ci(S

′)| =
∑

i∈J |Ci(S)−Ci(z)+Ci(z)−Ci(S
′)|. By

subadditivity of the absolute value, we have:

D(S, S′) ≤
∑
i∈J

(|Ci(S)− Ci(z)|+ |Ci(z)− Ci(S
′)|)

D(S, S′) ≤ D(S, z) +D(z, S′)

As we will see in the sequel (Propositions 6 and 8), the fact that the D
metric is a distance implies that the ΣD rule is not PTA Condorcet consistent,
and that it can return solutions with a sum of tardiness arbitrarily larger than
the optimal sum of tardiness. Before seeing this, let us start by recalling what
is the PTA Condorcet consistency property, introduced in [17].

3.3 PTA Condorcet consistency.
Definition 3 (PTA Condorcet consistency [17]). A schedule S is PTA Con-
dorcet consistent with a preference profile P if, for any two tasks a and b, it
holds that a is scheduled before b in S whenever at least pa

pa+pb
· v voters put a

before b in their preferred schedule. A scheduling rule satisfies the PTA Con-
dorcet principle if for each preference profile it returns only the PTA Condorcet
consistent schedule, whenever such a schedule exist.

Note that if all the tasks have the same length, the PTA Condorcet consis-
tency is equal to the well-known Condorcet consistency [9].

Proposition 4. The PTA Kemeny rule is PTA Condorcet consistent.

Proof. Let S be a schedule returned by the PTA Kemeny rule. For the sake of
contradiction, let us suppose that, in S, there is a pair of tasks a and b such that
a is scheduled before b whereas more than pb

pa+pb
· v voters scheduled b before a

and that a PTA Condorcet schedule exists.
We study two cases. Firstly, consider the tasks a and b are scheduled consecu-
tively in S. In that case, we call S(a↔b) the schedule obtained from S in which

10

we swap the position of a and b. Since both schedules are identical except for
the inversion of the pair {a, b} their weighted Kendall tau scores vary only by
the number of disagreements on this pair.

• We have assumed that the number vb of voters scheduling b before a is
larger than pb

pa+pb
· v. Since in S, a is scheduled before b, the weighted

disagreement of the voters on pair {a, b} in S is larger than pb

pa+pb
· v · pa.

• In S(a↔b), b is scheduled before a. Since vb > pb

pa+pb
· v, we know that

the number va of voters scheduling a before b is smaller than pa

pa+pb
· v.

Therefore, the weighted disagreement on pair {a, b} is smaller than pa

pa+pb
·

v · pb.

Thus the score of S(a↔b) is smaller than the one of S: S is not optimal for the
PTA Kemeny rule, a contradiction.

Secondly, let us consider that a and b are not consecutive in S, and let c be the
task which follows a in S. In S, it is not possible to swap two consecutive tasks
to reduce the weighted Kendall tau score, otherwise the schedule could not be
returned by the PTA Kemeny rule. Thus, by denoting by S(a↔c) the schedule S
in which we exchange the order of tasks a and c, we get that ∆PTA(S(a↔c), P)−
∆PTA(S, P) ≥ 0. This implies that va · pc − vc · pa ≥ 0 and va · pc

pa+pc
− vc ·

pa

pa+pc
≥ 0, where vc = v − va is the number of voters who schedule c before

a in their preferred schedule. Therefore, va ≥ v · pa

pa+pc
. Therefore, task a is

scheduled before c in any PTA Condorcet consistent schedule. By using the
same argument, we find that task c is scheduled before task d, which follows c
in S, and that c has to be scheduled before d in any PTA Condorcet consistent
schedule, and so forth until we meet task b. This set of tasks forms a cycle since
a has to be scheduled before c in a PTA Condorcet consistent schedule, c has
to be scheduled before d in a PTA Condorcet consistent schedule, . . . , until we
met b. Moreover b has to be scheduled before a in a PTA Condorcet consistent
schedule since more than pb

pa+pb
· v voters scheduled b before a. The existence

of this cycle means that no PTA Condorcet consistent schedule exists for the
profile, a contradiction.

3.4 Incompatibilities between axioms and properties.
One can wonder if the PTA Kemeny rule (without breaking-tie rule) is the only
rule which is PTA Condorcet consistent, neutral and which fulfills reinforcement,
just like the Kemeny rule is the only Condorcet consistent neutral rule fulfilling
reinforcement [24]. We will show that it is not true, since PTA Kemeny does
not fulfill neutrality. We even show a more general statement : no neutral rule
can be PTA Condorcet consistent. This answers an open question of [17] where
the author conjectured “that rules satisfying neutrality and reinforcement fail
the PTA Condorcet principle” and said that “it is an interesting open question
whether such an impossibility theorem holds”.

Proposition 5. No neutral rule can be PTA Condorcet consistent.

11

Proof. Let us consider an instance I with an odd number of voters v ≥ 3, two
tasks a and b, such that pa = 1 and pb = v, and a preference profile as follows:
va = v−1

2 voters prefer schedule a ≻ b (this schedule will be denoted by A), and
vb =

v+1
2 voters prefer schedule b ≻ a (schedule denoted by B).

By contradiction, let us suppose that r is a rule which is both neutral and
PTA Condorcet consistent. Since r is PTA Condorcet consistent, it will nec-
essarily return the only PTA Condorcet consistent schedule when applied on
instance I: A (indeed at least pa

pa+pb
· v = v

v+1 ≤ 1 voter prefer to schedule a

before b).
Let P(a↔b) be the preference profile obtained from P in which the positions

of a and b are swapped in all the voters’ preferences. Since r is neutral, it
necessarily returns schedule A in which we have inverted a and b, i.e. schedule
B. However, this schedule is not PTA Condorcet consistent, whereas there exists
a PTA Condorcet schedule. Indeed, schedule A is a PTA Condorcet consistent
schedule for P(a↔b) since at least pa

pa+pb
· v = v

v+1 ≤ 1 ≤ va voters prefer to

schedule a before b, while pb

pa+pb
· v = v2

(v+1) is larger than vb for all values of
v ≥ 3.

This proposition implies that the PTA Kemeny rule is not neutral, even if
no tie-breaking mechanism is used, since it is PTA Condorcet consistent.

Aggregation rules based on distance metrics have several good axiomatic
properties [6]. However, we show that they cannot be PTA Condorcet consistent.
Propositions 6, 7, and 8 can be proven in an analogous way to Proposition 5.

Proposition 6. Any resolute aggregation rule returning a schedule minimizing
a distance with the preference profile violates the PTA Condorcet consistency
property. This result holds for any tie-breaking mechanism.

Proof. A distance relation d respects symmetry, therefore, for each pair of sched-
ules S and S′, d(S, S′) = d(S′, S).

Let us consider an instance I with two tasks a and b, such that pa = 1 and
pb = v, an odd number of voters v ≥ 3, and a preference profile as follows:
va = ⌊ v−1

2 ⌋ voters prefer schedule a ≻ b (this schedule will be denoted by A),
and vb = ⌈ v+1

2 ⌉ voters prefer schedule b ≻ a (schedule denoted by B). By
symmetry d(A,B) = d(B,A). Since vb > va, any aggregation rule r based
on minimizing a distance with the profile will return B only. However, the
only Condorcet consistent schedule is A. Since rule r returns B, r is not PTA
Condorcet consistent.

Let us now show that neutrality and distance minimization can lead to very
inefficient solutions for tardiness minimization.

Proposition 7. For any α ≥ 1, there is no neutral aggregation rule returning
a set of solutions S such that all the solutions in S are α-approximate for ΣT.

Proof. Let us consider an instance Ik with two tasks a and b, such that pa = 1
and pb = k, an odd number of voters v ≥ 3, and a preference profile as follows:

12

va = ⌊ v−1
2 ⌋ voters prefer schedule a ≻ b (this schedule will be denoted by A),

and vb = ⌈ v+1
2 ⌉ voters prefer schedule b ≻ a (schedule denoted by B). We

define profile P(a↔b) as the profile P in which tasks a and b are swapped in the
preferences. Any neutral rule which returns A (resp. B) in P will return B
(resp. A) in P(a↔b). A neutral rule could also return {A,B}

For profile P , schedule A has a sum of tardiness of ⌊ v−1
2 ⌋, since task b is

delayed by 1 in comparison to schedule B. Schedule B has a sum of tardiness
of ⌈ v+1

2 ⌉ × k since task a is delayed by k in comparison to schedule A.
Likewise, in profile P(a↔b), schedule A has a sum of tardiness of ⌈ v+1

2 ⌉ , and
schedule B has a sum of tardiness of ⌊ v−1

2 ⌋.k.
For both profiles P and P(a↔b), schedule B has a total sum of tardiness k

times higher than the optimal (schedule A), which can be arbitrarily far from
the optimal. Since a neutral rule r returns B either for profile P or for profile
P(a↔b), or both, and since k can be as big as we want, the sum of tardiness of
at least one schedule returned by r can be arbitrarily far from the optimal.

Since the ΣT rule, without tie-breaking mechanism, returns only optimal
solutions for the tardiness minimization, this implies that the ΣT rule is not
neutral.

Proposition 8. For any α ≥ 1, there is no aggregation rule based on a distance
minimization and always returning at least one α-approximate solution for ΣT.

Proof. Let us consider an instance Ik with two tasks a and b, such that pa = 1
and pb = k, an odd number of voters v ≥ 3, and a preference profile as follows:
va = ⌊ v−1

2 ⌋ voters prefer schedule a ≻ b (this schedule will be denoted by A),
and vb = ⌈ v+1

2 ⌉ voters prefer schedule b ≻ a (schedule denoted by B). Any
distance d is symmetric, therefore d(A,B) = d(B,A). Any rule returning the
schedule minimizing the distance with the profile will return A (resp. B) if A
(resp. B) is more present than B (resp. A) in the profile. Since a majority of
voter prefer B, any rule based on a distance minimization returns B. For profile
P , A has a total sum of tardiness of ⌈ v+1

2 ⌉ × 1 since task b is delayed by 1 in
comparison to schedule B. On the other hand, B has a total sum of tardiness
of ⌊ v−1

2 ⌋ × k, since task a is delayed by k in comparison to schedule A. Since k
can be as high as we want, the sum of tardiness in schedule B can be arbitrarily
far from the optimal sum of tardiness.

3.5 Length reduction monotonicity.
Let us now introduce a new axiomatic property, which is close to the discount
monotonicity axiom [22] for the participatory budgeting problem. A rule r sat-
isfies the discount monotonicity axiom if a project cannot be penalised because
it is cheaper (i.e. if a project is selected by rule r then it should also be selected
by this rule if its price decreases, all else being equal). We propose a new axiom,
that we call length reduction monotonicity, and which states that the starting
time of a task in a schedule cannot be delayed if its length decreases (all else

13

being equal). This axiom is particularly meaningful in EB settings, where all
the voters would like all the tasks to be scheduled as soon as possible.

Definition 4. (Length Reduction Monotonicity) Let S be the schedule
returned by a resolute rule r on instance I. Assume that we decrease the length
of a task t in I, all else being equal. Let S′ be the schedule returned by r on this
new instance. Rule r fulfills length reduction monotonicity if task t does not
start later in S′ than in S.

Proposition 9. The ΣD rule does not fulfill length reduction monotonicity for
any tie-breaking mechanism.

Proof. Let us consider an instance with 5 tasks {1, 2, 3, x, p} with p1 = p2 =
p3 = px = 1 and pp = 10. The preferences of the 400 voters are as follows:

x 2 1 p 3

3 2 1 p x

3 p x 1 2

3 p x 2 1

101

101

99

99

x 2 1 p 3

3 2 1 p x

3 p x 1 2

3 p x 2 1

For the profile on the left, the only schedule S minimizing the absolute
deviation is : 3 ≻S p ≻S x ≻S 2 ≻S 1. For the profile on the right, the only
schedule S′ minimizing the absolute deviation is such that: 3 ≻S′ 2 ≻S′ x ≻S′

p ≻S′ 1. Task p has a reduced length but it starts later in S′ than in S: ΣD
does not fulfill length reduction monotonicity.

3.6 Reinforcement.
An aggregation rule r fulfills reinforcement (also known as consistency) [6] if,
when a ranking R is returned by r on two distinct subsets of voters A and B,
the same ranking R is returned by r on A∪B. Since the PTA Kemeny rule sums
the weighted Kendall tau score among the voters, it fulfills reinforcement.

Proposition 10. The PTA Kemeny rule fulfills reinforcement.

Proof. We consider two subsets of voters V1 and V2. Since the score is obtained
by summing the weighted disagreements over all the voters, the score over V1∪V2

is the sum of the score on V1 and the score on V2. Therefore, if a schedule
minimizes the PTA Kendall tau score on both V1 and V2, then it will minimize
it on the union of the two subsets.

Note that the PTA Kemeny rule fulfills reinforcement and PTA Condorcet
consistency, whereas the already known aggregation rules [17] for the collective
schedule problem either fulfill one or the other but not both.

14

3.7 Unanimity.
Let us now focus on the unanimity axiom, a well-known axiom in social choice.
This axiom states that if all the voters rank candidate a higher than candidate
b then, in the consensus ranking, a should be ranked higher than b. We take
the same definition, replacing “rank” by “schedule”:

Definition 5. (Unanimity) Let P be a preference profile and r be an aggre-
gation rule. The rule r fulfills unanimity iff when task a is scheduled before
another task b in all the preferences in P , then a is scheduled before b in any
solution returned by r.

Note that this axiom is interesting through its link with precedence con-
straints in scheduling. Indeed, if all the voters schedule a task before another
one, it may indicate that there is a dependency between the two tasks (i.e. a
task must be scheduled before the other one). A rule which fulfills the unanimity
axiom can then infer the precedence constraints from a preference profile.

In [17], the authors prove that the ΣT rule does not fulfill unanimity (this
property is called Pareto efficiency in the paper). Let us now show that the ΣD
does not fulfill this property either.

Proposition 11. The ΣD rule does not fulfill unanimity for any tie-breaking
mechanism.

Proof. Let us consider an instance with 5 tasks {a, b, c, d, e} such that pa=pb=
pc=10, pd=pe=1 and v=88 voters. We consider the following preferences.

d a e b c

e c d a b

d b e c a

29

30

29

In this example, a short task e is always scheduled before a long task c in
the preferences. However in the unique optimal solution S for ΣD, which is
d ≻S c ≻S e ≻S a ≻S b, e is scheduled after c. Therefore, the ΣD rule does not
fulfill unanimity.

Note that, if we reverse all the schedules in the preference profile, then the
long task c is always scheduled before the short task e but has to be scheduled
after the e in the optimal solution, which is S but reversed.

One could expect the PTA Kemeny rule to fulfill unanimity since the Kemeny
rule does, and since it minimizes the pairwise disagreements with the voters. We
can show that this is in fact not the case, by exhibiting a a counter-example.

Proposition 12. The PTA Kemeny rule does not fulfill unanimity for any
tie-breaking mechanism.

15

Proof. We consider an instance with n = 7 tasks {a, b, c, d, e, f, g}, such that
pa = 1, pb = 10 and pc = pd = pe = pf = pg = 2, and v = 100 voters. The
preferences are as follows :

c d e f g b a

b a c d e f g

50

50

In this preference profile, the task b is always scheduled before a, however in
the only optimal solution for PTA Kemeny, a is schedule before b, indeed the
optimal solution is a ≺ c ≺ d ≺ e ≺ f ≺ g ≺ b.

Note that unanimity is fulfilled if all the tasks are unit tasks. This has indeed
already been shown for ΣT [17], this can easily be shown for ΣD by using an
exchange argument, and this is true for PTA Kemeny since the Kemeny rule
fulfills the unanimity axiom.

In our context, the unanimity axiom is not fulfilled because of the lengths
of the tasks. It may indeed be better to disagree with the whole population in
order to minimize the average delay or deviation, for ΣT and ΣD, or to disagree
with the whole population if this disagreement has a small weight, in order to
reduce other disagreements which have larger weights, for PTA Kemeny. Let us
now restrict the unanimity axiom to the case where all voters agree to schedule a
small task a before a large task b: we will see that the solutions returned by the
PTA Kemeny rule always schedule a before b, that at least one optimal solution
returned by ΣT also schedules a before b, whereas all the optimal solutions for
ΣD may have to schedule b before a as we can see in the proof of proposition 11.

Proposition 13. Let a and b be two tasks such that pa ≤ pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in any optimal schedule for the PTA Kemeny rule.

Proof. Let us assume, by contradiction, that a schedule S such that b is sched-
uled before a is optimal for the PTA Kemeny rule. Let S(a↔b) be the schedule
obtained from S by swapping the position of a and b. Let c be a task different
from a and b. If c is scheduled before b or after a in S, then the swap of a and
b has no impact on the disagreements with c. If c is scheduled between a and
b, then we have b ≻S c and c ≻S a and a ≻S(a↔b)

c and c ≻S(a↔b)
b (the order

between c and the tasks other than a and b does not change between S(a↔b)

and S). Task a is always scheduled before task b in the preferences and pa ≤ pb,
therefore the overall cost of scheduling a before c is smaller than or equal to the
cost of scheduling b before c. Furthermore, since a is always scheduled before
b in the preferences, scheduling a before b does not create a new disagreement,
whereas the cost of scheduling b before a is equal to v · pb. The overall cost
of S is then strictly larger than the cost of S(a↔b) which means that S is not
optimal, a contradiction.

16

Proposition 14. Let a and b be two tasks such that pa ≤ pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in at least one optimal schedule for the ΣT rule.

Proof. Suppose that an schedule S is optimal for the ΣD rule and such that b is
scheduled before a in S. By swapping the positions of a and b in S, we obtain
a new feasible solution S in which the completion times of all tasks but a and
b are is either smaller than or equal to the ones in S. The completion time of
b in S′ is the one of a in S an the completion time of a in S′ is smaller than
or equal to the one of b in S. The completion time of b in each preference is
strictly higher than the completion time of a. Therefore, in S′ the tardiness of
b which is ending in S′ at the time a ends in S, is smaller than or equal to the
tardiness of a in S, similarly the tardiness of a in S′ is smaller than or equal
to the tardiness of b in S. Overall, the tardiness of S′ is smaller than or equal
to the tardiness of S. Their tardiness are equal if both a and b are scheduled
before their minimum completion time in the preference profile.

Thus, if we are looking for a single solution for ΣT, we can restrict the search
to solutions fulfilling the unanimity axiom for couples of tasks for which all the
voters agree that the smaller task should be scheduled first. For ΣD, we can
guarantee solutions which fulfill this axiom for couples of tasks of the same length.

Proposition 15. Let a and b be two tasks such that pa = pb. If task a is always
scheduled before task b in the preferences of the voters, then a is scheduled before
b in at least one optimal schedule for the ΣD rule.

Proof. Suppose that an schedule S is optimal for the ΣD rule and such that b is
scheduled before a in S. By swapping the positions of a and b in S, we obtain
a new feasible solution S(a↔b) in which the completion times of all tasks but a
and b are is either lower or equal to the ones in S. The completion time of b
in S(a↔b) is the one of a in S an the completion time of a in S(a↔b) is lower
or equal to the one of b in S. The completion time of b in each preference is
strictly higher than the completion time of a. Therefore, in S(a↔b) the tardiness
of b which is ending in S(a↔b) at the time a ends in S, is lower or equal to the
tardiness of a in S, similarly the tardiness of a in S(a↔b) is lower or equal to
the tardiness of b in S. Overall, the tardiness of S(a↔b) is lower or equal to the
tardiness of S. Their tardiness are equal if both a and b are scheduled before
their minimum completion time in the preference profile.

We have seen that for the ΣT and PTA Kemeny rules, if a task a is scheduled
before a task b and a is not longer than b, then there exists an optimal solution
which schedules a before b. This is not the case for ΣD. In EB settings, we
would expect well supported short tasks to be scheduled before less supported
large tasks. Therefore the ΣT and PTA Kemeny rules seem well adapted for
EB settings, while the ΣD rule seems less relevant in these settings.

17

3.8 Summary.
We summarize the results shown in this section in Table 1 (a “*” means that the
property has been showed in [17], the other results are shown in this paper).

Unanimity (a before b)
Rule N PTA N R PTA C LRM Distance pa<pb pa=pb pa>pb

PTA K ✗ ✓ ✓ ✓ ? ✗ ✓ ✓ ✗
ΣT ✗ ✓ ✓* ✗* ? ✗ ∼ ∼ ✗*
ΣD ✗ ✓ ✓* ✗ ✗ ✓ ✗ ∼ ✗

Table 1: Fulfilled (✓) and unfulfilled (✗) axioms by the PTA Kemeny, ΣT and
ΣD rules. Symbol ∼ means that the property is fulfilled by at least one optimal
solution. The acronyms in the columns correspond to: neutrality (N), PTA
neutrality (PTA N), reinforcement (R), PTA Condorcet consistency (PTA C),
length reduction monotonicity (LRM).

4 Computational complexity and algorithms
In this section we study the computational complexities of the ΣD and the PTA
Kemeny rules. We will then focus on resolution methods for these rules. The
ΣT rule has already been proven to be strongly NP-hard [17]. In the same
work, authors use linear programming to solve instances up to 20 tasks and
5000 voters, which is satisfactory since realistic instances are likely to have few
tasks and a lot of voters.

The PTA Kemeny rule is NP-hard to compute since it is an extension of
the Kemeny rule, which is NP-hard to compute [4]. Most of the algorithms
used to compute the ranking returned by the Kemeny rule can be adapted to
return the schedule returned by the PTA Kemeny rule, by adding weights on the
disagreements in the resolution method. In the following section, to compute
schedules returned by the PTA Kemeny rule, we will use a weighted adaptation
of an exact linear programming formulation for the Kemeny rule [10].

Regarding the ΣD rule, when there are exactly two voters, the problem is
easy to solve: we return one of the two schedules in the preference profile (since
deviation is a distance, any other schedule would have a larger deviation to
the profile because of triangle inequalities). In the general case, the problem is
NP-hard, as shown below.

Theorem 1. The problem of returning a schedule minimizing the total absolute
deviation is strongly NP-hard.

In order to prove that computing the schedules returned by ΣD is NP-hard,
we introduce and prove one preliminary lemma. In the sequel, for reasons of
readability, we will denote by ΣDP the problem which consists in returning a
schedule which minimizes the sum of the absolute deviations with the preference
profile (i.e. ΣDP is the problem solved by the ΣD rule).

18

In the sequel, we consider a polynomial time reduction from the problem
(1|no − idle|ΣD) which has been proven as strongly NP-hard when coded in
unary [23]. In this problem we consider an instance I composed of a set J of
n tasks, each task i having a processing time pi ∈ N∗ and a deadline di. By
L =

∑
i∈J pi, we denote the overall load of the tasks. A feasible solution for

this problem is a schedule S of all tasks in J on a single machine, with no idle
time. We denote by D(S) the sum of the absolute deviations

∑
i∈J |Ci(S)− di|

where Ci(S) is the completion time of task i in the schedule S. Given an integer
B, the objective is to determine if a schedule S with a total sum of absolute
deviations D(S) smaller than B exists. Since no task can complete before its
processing time or after L (because there is no idle time), we can assume with-
out loss of generality that L ≥ di ≥ pi. If a task i had a deadline smaller than
its processing time, then all feasible solutions would at least have a deviation of
pi − di for task i, therefore, we can reduce B by that amount and have di = pi;
an analogous remark can be done for di > L.

From an instance I of the (1|no− idle|ΣD) problem, we define an instance
I ′ of the ΣDP problem. We have a set J of n + 4L tasks. For each task i of
J , there is a task i′ in J , with pi′ = pi. The set J also contains 4L tasks of
length 1. These 4L tasks are partitioned into 4 sets L1, L2, L3 and L4, all these
tasks are of length 1. Instance I ′ has 4n voters: for each task i ∈ J , we create
4 voters V i

1 , V
i
2 , V

i
3 , V

i
4 (see Figure 1).

• Voter V i
1 , of type 1, schedules first the tasks of L1 , then the tasks of L2,

then the tasks of L3, then the tasks of J and finally the tasks of L4.

• Voter V i
2 , of type 2, schedules firstly the tasks of L1, followed by the tasks

of J , then the tasks of L2, then the tasks of L3 and finally the tasks of
L4.

• Voter V i
3 , of type 3, schedules task i′ in order that this task completes at

time di + 2L. The rest of the schedule is as follows: first, the tasks of L2,
then the tasks of J except i′, then the tasks of L1 are scheduled around
task i′. The schedule ends with the tasks of L3 followed by the tasks of
L4.

• Voter V i
4 , of type 4, schedules task i′ in order that this task completes at

time di + 2L. The rest of the schedule is as follows: first, the tasks of L1,
then the tasks of L2, then the tasks of L4 are scheduled around task i′,
then the tasks of J without i′. The tasks of L3 end the schedule.

19

L1 L2 L3 J L4

L1 J L2 L3 L4

L2 J \{i′} L1 i′ L1 L3 L4

L1 L2 L4 i′ L4 J \{i′} L3

0 L 2L 2L+di 3L 4L 5L

V i
1

V i
2

V i
3

V i
4

Figure 1: Voters associated with a task i′

The order on the tasks in each of the subsets L1, L2, L3, L4 is the same for
all voters. For the set J , the order is the same for all voters, but, for each voter
of type 3 and 4 one task is scheduled at a given time, regardless of its usual
rank in the order.

Let us note that we can create such an instance in polynomial time since the
instance for the (1|no− idle|

∑
D) problem is coded in unary.

Lemma 1. Given an instance I of the (1|no− idle|
∑

D) problem, there exists
an optimal solution for the instance I ′ of ΣDP , created as described above, in
which the tasks are scheduled as follows: L1 first, L2 second, J third, then L3

and finally L4.

Proof. Fact 1: There exists an optimal schedule S∗ with tasks of L1 scheduled
before tasks of L2 and J .
To prove fact 1, we consider an optimal schedule S∗ in which at least one task
of L1 is scheduled after a task of J or L2. Thanks to proposition 15, we can
consider that in S∗, the tasks of L1 and L2 are scheduled before the tasks of
L3 and L4 and in the same order than in the preferences. Let us call x1 ∈ L1

the first task of L1 scheduled just after a task x2 ∈ L2 ∪ J . We note Cx1(S
∗)

and Cx2
(S∗) the completion times of tasks x1 and x2 in S∗. Since x1 is the first

task of L1 to be scheduled just after a task of L2 or J and since the tasks of L1

are scheduled in the same order as in the preferences, task x2 starts after the
tasks of L1 preceding x1 in the preferences. We study the schedule S in which
the tasks x1 and x2 are swapped. We distinguish two cases:

1. Task x2 is in L2: the swap changes the order on the tasks x1 and x2, the
order on the tasks of L1 (resp. L2) is unchanged. Therefore x1 (resp. x2)
is still scheduled after (resp. before) the tasks scheduled after it (resp.
before it) in the preferences, which means that, in S, the task l (resp. j)
completes at or after (resp. at or before) its completion time for voters of
type 1,2 and 4 (resp. for voters of type 2). Thus, for each voter of type 1
and 4, the absolute deviation is reduced by one, and reduced by two for
each voter of type 2. Overall, the absolute deviation is reduced by 4n. On
the other hand, voters of type 1,3 and 4 could increase their deviations

20

of 1 relatively to task x2 and voters of type 3 could also increase their
deviation for the task x1 of 1. In the worst case, this increase is of 4n,
which equals the reduction, therefore S would also be optimal.

2. Task x2 is in J : following the same reasoning, we can see that voters of
type 1,2 and 4 will decrease their deviations for task x1 by px2

with the
swap. Voters of type 1 will also decrease their deviation for task x2 by one
since x1 completes before 3L in S∗ which implies that x2 completes before
3L in S. Overall the reduction is of 3npj + n. Voters of type 2,3 and 4
could increase their deviation for j by 1 and voters of type 3 could increase
their deviation with l by pi, overall the increase is at most of 3n + npi,
since pi ≥ 1 the increase is smaller than or equal to the decrease, S is also
optimal.

In both cases, S is at least as good as S∗, therefore, from any optimal solution
respecting proposition 15, we can iteratively obtain a new optimal solution in
which the tasks of L1 are scheduled before the tasks of L2 and J .

Fact 2: In S∗, tasks of L4 are scheduled after tasks of L3 and J .
We can prove fact 2 in an analogous way than fact 1, but symmetrically.

Fact 3: In S∗, tasks of L2 are scheduled before tasks of J .
We show that there is an optimal solution in which the tasks of L2 are sched-
uled before the tasks of J . We consider an optimal solution S∗, respecting the
previous facts and proposition 15, in which at least one task of L2 is scheduled
after a task of J . Let us denote by l the first task of L2 scheduled after a task
of J . Let us call j the task of J scheduled just before l in S∗. Note that such a
task always exists since the task of L1 are scheduled before the tasks of J and
L2 and the tasks of L3 and L4 are scheduled after the ones of L2. We study the
schedule S, similar to S∗ except that l and j are swapped. Since the tasks of
L2 are in the same order than in the preferences, and since we swap l only with
tasks of J , l cannot complete in S before tasks of L2 scheduled before it in S∗.
Therefore, l completes in S at least at the same time than in the preferences of
voters of type 1 and 4. By swapping l and j, we reduce the absolute deviation
on l for voters of type 1,3 and 4 by pj , we also reduce absolute deviation on j
for voters of type 1, by 1. Overall, we reduce the sum of absolute deviation by
3npi + n. We may increase the absolute deviation on j for voters of type 2,3
and 4 by one and deviation on l for voters of type 2 by pi, increasing the total
sum of deviation by at most 3n+npi. Since pi ≥ 1, the increase is smaller than
the decrease, therefore S is also optimal.

Fact 4: In S∗, tasks of L3 are scheduled after tasks of J .
We can prove fact 4 in the same way than fact 3.

From facts 1 to 4, we get Lemma 1.

21

L1 L2 J ′ L3 L4

0 L 2L 3L 4L 5L

Figure 2: Structure of an existing optimal solution

We can now prove that the ΣD rule solves an NP-hard problem.

Theorem 1. The problem of returning a schedule minimizing the total absolute
deviation (ΣDP) is strongly NP-hard.

Proof. In a schedule which follows the structure explained in Lemma 1, it is
possible to calculate the absolute deviations associated with the tasks of subsets
L1, L2, L3 and L4:

• L1: the tasks of L1 are scheduled exactly like in the preference of voters
of type 1, 2 and 4. The voter of type 3 associated with the task i has a
delay of L+ (L− pi) on the di first tasks of L1 and a delay of 2L on the
others. Overall, the deviation is: n×

∑
i di × (2L− pi) + (L− di)× 2L.

• L2: Voters of type 1 and 4 have no deviation on the tasks of L2. The 2n
voters of type 2 and 3 have a deviation of L on each of the L tasks of L2,
which amounts to 2nL× L.

• L3: Symmetrically to L2, the sum of deviation of tasks of L3 is also:
2nL× L.

• L4: Voters of type 1,2 and 3 have no deviation on the tasks of L4. For the
voters of type 4: the first di − pi tasks of L4 are delayed of 2L, the rest of
the tasks of L4 are delayed by 2L − pi, which amounts to: n ×

∑
i(di −

pi)× 2L+ (L− (di − pi))× (2L− pi) = n×
∑

i(di − pi)(pi) + 2L2 − Lpi.

Overall the sum of deviations M associated with the subsets L1, L2, L3 and L4

is:

M =

(
n×

∑
i

di × (2L− pi) + (L− di)× 2L

)

+
(
2nL2

)
+
(
2nL2

)
+

(
n×

∑
i

(di − pi)(pi) + 2L2 − Lpi

)

M=4nL2 +

(
n
∑
i

−pidi + 2L2 + pidi − p2i + 2L2 − Lpi

)
M = 4nL2 + n×

∑
i

4L2 − pi(L+ pi)

We now study the deviation of the tasks of J . The median completion time
of task i′ in J is di′ = 2L + di. Let us see that, regardless of the order on the

22

tasks of J in the preference, voters of type 1 and 2 will always have a total devi-
ation on task i′ of 2L. Since the order is the same for all the voters, the task will
complete at a time L+K with K an integer lower than L, in the preference of any
voter of type 2 and at 3L+K in the preference of any voter of type 1. Therefore,
in any schedule S, since the task completes at a time Ci′(S) between 2L and
3L, we will have a total deviation of Ci′(S)− (L+K)+(3L+K)−Ci′(S) = 2L.
We count then 2L for every pair of voter of type 1 and 2, which amounts to
2L× n for each task, so the overall deviation of 2Ln2.

For the last two type of voters, for each task i′, we distinguish two cases:

1. Voters V i
3 and V i

4 both have scheduled i′ so it completes at 2L+ di = di′ .
The deviation of a schedule S, regarding these two voters is therefore
2|Ci′(S)− di′ |.

2. All other voters of type 3 and 4 schedule tasks of J in the same order
except of one task j′, which is scheduled to complete at dj′ . Let us denote
by K the integer such that task i′ completes at L + K in V j

3 , then i′

completes at 3L+pj′ +K in V j
4 . Since i′ completes between 2L and 3L in

the optimal solution S we are considering, we know that the deviation with
V j
3 and V j

4 regarding task i′ will be Ci′(S)−(L+K)+3L+pj′+K−Ci′(S) =
2L+ pj′ . We calculate this value for all tasks, and call it N :

N =
∑
i′∈J

 ∑
j′∈J\{i′}

2L+ pj′

N =

∑
i′∈J

2L(n− 1) + L− pi′ = 2Ln2 − Ln− L

By summing all these terms, the deviation of a solution S′ respecting lemma 1
is:

D(S′) = M + 2Ln2 +N + 2
∑
i′∈J

|Ci′(S
′)− di′ |

If a solution S with a cost lower than B exists for instance I of problem (1|no−
idle|ΣD), then there is a solution S′ with a cost lower than M +2Ln2+N +2B
for instance I ′ of ΣDP . We can find this solution by reproducing the order
on the task of J on the tasks on J . More precisely, S′ respects Lemma 1 and
schedules task from J in the order corresponding to S with the tasks of J .
We would have Ci′(S

′) = Ci(S) + 2L and d′i = di + 2L. Therefore, for all i,
we have |Ci(S) − di| = |Ci′(S

′) − di′ |. Since,
∑

i∈J |Ci(S) − di| ≤ B, we have∑
i′∈J |Ci′(S

′)− di′ | ≤ B and consequently, D(S′) ≤ M + 2Ln2 +N + 2B.
Reciprocally, if there exists a solution S′ with a total deviation D(S′) smaller
than M +2Ln2+N +2B for an instance I ′ of ΣDP , we can create a solution S
with a cost lower than B for an instance I of (1|no − idle|

∑
D) by recreating

the order on the tasks of J on the tasks of J .

23

We showed that there exists a solution of cost at most B for the (1|no −
idle|ΣD) problem for instance I iff there is a solution of cost at most M +
2Ln2 +N +2B for instance I ′ of ΣDP , that we can obtain in polynomial time.
Since (1|no− idle|ΣD) is strongly NP-hard, ΣDP is strongly NP-hard.

Since computing an optimal schedule for ΣD is strongly NP-hard, we propose
two resolution methods. First, we use linear programming, allowing us to solve
exactly instances up to 15 tasks in less than 30 minutes. Second, we propose a
heuristic and the use of local search to improve the solution of the heuristic.

A heuristic for ΣD: LMT. The heuristic we propose is called LMT, which
stands for “Lowest Median Time”. For each task of J , we compute its median
completion time in the preferred schedules of the voters. The LMT algorithm
then consists in scheduling the tasks by non decreasing median completion times.

The idea behind LMT is the following one: the closer the completion time
of a task is to its median completion time, the lower is its deviation. As we will
see in Section 5, LMT performs well in practice, even if, in the worst cases, it
can lead to really unsatisfactory schedules, which can be shown by exhibiting a
worst case instance.

Proposition 16. For any α ≥ 1, LMT is not α-approximate for the total
absolute deviation minimization.

Proof. Let us consider an instance with v voters and n tasks. Tasks t1, t2 and
t3 are of size p, with p an integer and n − 3 tasks t4, . . . , tn are of size 1. We
consider the following preference profile:

t1 t3 t4 . . . tn t2

t1 t2 t4 . . . tn t3

t2 t1 t4 . . . tn t3

t2 t3 t4 . . . tn t1

v
2 − 1

1

1

v
2 − 1

0 p 2p 2p+n−3 3p+n−3

In such an instance, tasks t1 and t2 have median completion times m1 =
m2 = p. The task t3 has a median completion time m3 = 2p. Tasks t4 to tn
have median completion times from 2p+1 to 2p+n−3. Therefore LMT returns
a schedule with t1 and t2 first, in any order, then t3 and finally t4 to tn in this
order. This solution has a sum of deviation of

∑
D = vpn+ vn− 3v − 4p.

Let us now consider another solution: t1 ≻ t3 ≻ t4 ≻ ... ≻ tn ≻ t2, we
calculate its total deviation and find:

∑
D = 2pv + vn− 3v + 2p+ 2n− 6.

We calculate the ratio between the two values:

vpn+ vn− 3v − 4p

2pv + vn− 3v + 2p+ 2n− 6

24

When p, n and v tend towards +∞ the ratio tends towards +∞ as well. There-
fore the LMT algorithm can return a schedule with a sum of deviations arbi-
trarily far from the optimal one.

Local search. In order to improve the solution returned by our heuristic, we
propose a local search algorithm. We define the neighbourhood of a schedule
S as the set of schedules obtained from S in which two consecutive tasks have
been swapped. If at least one neighbour has a total deviation smaller than S,
we choose the best one and we restart from it. Otherwise, S is a local optimum
and we stop the algorithm. At each step, we study (n − 1) neighbours: the
complexity is linear with the number of steps. In our experiments, by letting
the algorithm reach a local optimum, we saw that the result obtained is usually
very close to its local optimum at n steps and, that the local search always ends
before 2n steps: in practice, we can bound the number of steps to 2n without
reducing the quality of the solution.

5 Experiments
Instances. Since no database of instances for the collective schedules problem
exists, we use synthetic instances. We generate two types of preference profiles:
uniform (denoted below by U), in which the preferences are drawn randomly,
and correlated (C) in which the preferences are drawn according to the Plackett-
Luce model [18, 15]. In this model, each task i has an objective utility ui (the
utilities of the tasks are drawn uniformly in the [0,1] interval). We consider
that the voters pick the tasks sequentially (i.e. they choose the first task of the
schedule, then the second, and so forth). When choosing a task in a subset J ,
each task i of J has a probability of being picked of ui/

∑
j∈J uj . The lengths

of the tasks are chosen uniformly at random between 1 and 10 (the results do
not differ when the lengths are chosen in interval [1,5]). For all the experiments,
we will use linear programming (CPLEX) to compute one optimal solution for
each rule. Note that for most of the instances we generated, our rules had only
one optimal solution. This was the case for more than 99% of the instances for
ΣT and ΣD. For PTA Kemeny, this was the case for about 90% (resp. 95%)
of the instances for PTA Kemeny when the instance had 100 voters (resp. 250
voters), and for 98% of cases in correlated instances with 250 voters.

Computation times. We run the two linear programming algorithms corre-
sponding to the ΣD and PTA Kemeny rules. The experiments are run on a
6-core Intel i5 processor. The mean computation times can be found in Table 2.

25

ΣD PTA Kemeny
Nb voters P n=4 n=8 n=12 n=4 n=8 n=12

50
U 0.01 0.28 10.4 0.004 0.02 0.05
C 0.005 0.13 0.95 0.002 0.02 0.05

500
U 0.01 25.0 104.1 0.003 2.1 4.6
C 0.006 13.4 47.6 0.003 1.3 3.8

Table 2: Mean computation times (s) for ΣD and PTA Kemeny.

These algorithms allow to solve small but realistic instances. Note that
correlated instances, which are more likely to appear in realistic settings, require
less computation time than uniform ones. Note also that computing an optimal
schedule for PTA Kemeny is way faster than an optimal schedule for ΣD.

Performance of LMT. We now evaluate the performance of the LMT algo-
rithm in comparison to the optimal resolution in terms of computation time
and total deviation. We compute the ratio r = D(LMT,P)/D(S∗, P) where
S∗ is a schedule returned by ΣD and LMT is a schedule returned by the LMT
algorithm. We compute r before and after the local search.

The LMT algorithm alone returns solutions with a sum of deviations about
6% higher than the optimal sum of deviations. With local search, the solution
improves and gets very close to the optimal solution, with on average a sum of
deviation less than 1% higher than the optimal one. In terms of computation
time, for 10 tasks and 100 voters, the heuristic (LMT+local search) takes 0.037
seconds to return its solution before the local search, and 0.63 seconds in total,
while the linear program takes 4.5 seconds. This heuristic is thus a very fast
and efficient alternative at rule ΣD for large instances.

Difference between the three rules. We execute the three rules on 300
instances, and we compare the schedules obtained with respect to the total
deviation (ΣD), the total tardiness (ΣT) and the weighted Kendall Tau score
(KT). We compare each schedule obtained to the optimal schedule for the con-
sidered metric. For example, the “1.06” in column ΣT in Table 3 means that,
on average, for uniform instances with 5 tasks, the schedule returned by the
ΣT rule has a sum of deviation 1.06 times larger than the minimum sum of
deviation.

ΣD ΣT PTA K
P M n=5 n=10 n=5 n=10 n=5 n=10

U
ΣD 1 1 1.06 1.07 1.07 1.09
ΣT 1.12 1.16 1 1 1.01 1.02
KT 1.12 1.16 1.01 1.01 1 1

C
ΣD 1 1 1.05 1.09 1.05 1.07
ΣT 1.06 1.08 1 1 1.001 1.001
KT 1.07 1.07 1.002 1.01 1 1

Table 3: Performance of each rule relative to the others.

26

Table 3 shows that the schedules returned by ΣT and PTA Kemeny are very
close to each other (the values they obtain are very close), while the ΣD rule
returns more different schedules, even if the scores obtained by the three rules
do not differ from more than 16% for uniform instances and 9% for correlated
instances. Note that the number of tasks does not seem to change these results.
Overall, the PTA Kemeny and ΣT rules return similar schedules, in which short
tasks are favored, whereas the ΣD rule seems to return schedules as close as
possible to the preference profile.

Length reduction monotonicity (axiom LRM). We study to what extent
the length reduction monotonicity axiom is fulfilled in practice. We run the
three rules on 1200 instances with 50 voters and 8 tasks. Then, we reduce the
length of a random task in each of the instances, and run the three rules again.
If the reduced task starts later in the schedule returned by a rule than it did
before the reduction, we count one instance for which the rule violates LRM. On
the 1200 instances, PTA Kemeny and ΣT always respected LRM. The ΣD rule
violated LRM in 102 instances (8.5%). This percentage goes up to 12.3% on
uniform instances and up to 18% on uniform instances with tasks with similar
lengths.

6 Discussion and conclusion
In this paper, we showed that some standard axioms in social choice are not
adapted to the collective schedule problem, and we introduced new axioms for
tasks which have duration. These axioms may also be useful in some other
contexts where candidates have weights. We showed incompatibilities between
axioms, showing that neutral or distance based rules are not PTA Condorcet
consistent and do not approximate the sum of tardiness of the tasks.

We also studied three aggregation rules for collective schedules, from an
axiomatic and an experimental viewpoint. We saw that the PTA Kemeny and
the ΣT rules seem to be particularly adapted in EB settings, whereas the ΣD
rule is useful in non EB settings. We conjecture that the PTA Kemeny and ΣT
rules fulfill the length reduction monotonicity axiom – this is the case in our
experiments but showing this from an axiomatic viewpoint is an open problem.

Acknowledgements. We acknowledge a financial support from the project
THEMIS ANR-20-CE23-0018 of the French National Research Agency (ANR).

References
[1] Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A.:

Multiagent Scheduling. Models and Algorithms. Springer (2014)

[2] Asudeh, A., Jagadish, H.V., Stoyanovich, J., Das, G.: Designing fair
ranking schemes. In: Proceedings of the 2019 International Conference
on Management of Data. p. 1259–1276. SIGMOD ’19, Association for

27

Computing Machinery (2019). https://doi.org/10.1145/3299869.3300079,
https://doi.org/10.1145/3299869.3300079

[3] Aziz, H., Shah, N.: Pathways Between Social Science and Computational
Social Science. Computational Social Sciences., chap. Participatory Bud-
geting: Models and Approaches. Rudas T., Péli G. (eds). Springer (2021)

[4] Bartholdi, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can
be difficult to tell who won the election. Social Choice and welfare 6(2),
157–165 (1989)

[5] Biega, A.J., Gummadi, K.P., Weikum, G.: Equity of attention: Amor-
tizing individual fairness in rankings. In: The 41st International ACM
SIGIR Conference on Research and Development in Information Re-
trieval. p. 405–414. SIGIR ’18, Association for Computing Machin-
ery (2018). https://doi.org/10.1145/3209978.3210063, https://doi.org/10.
1145/3209978.3210063

[6] Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Handbook
of computational social choice. Cambridge University Press (2016)

[7] Brucker, P.: Scheduling Algorithms. Springer, 5th edn. (2010)

[8] Celis, L.E., Straszak, D., Vishnoi, N.K.: Ranking with fairness con-
straints. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., San-
nella, D. (eds.) 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP. LIPIcs, vol. 107, pp. 28:1–
28:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.28, https://doi.org/10.4230/
LIPIcs.ICALP.2018.28

[9] Condorcet, M.-J.-N. de Caritat, M.d.: Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des voix (1785)

[10] Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for com-
puting kemeny rankings. In: AAAI. vol. 6, pp. 620–626 (2006)

[11] Diaconis, P., Graham, R.: Spearman’s Footrule as a Measure of Disarray.
Stanford University. Department of Statistics (1976)

[12] Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation meth-
ods for the web. In: Shen, V.Y., Saito, N., Lyu, M.R., Zurko, M.E.
(eds.) Proceedings of the Tenth International World Wide Web Conference,
WWW. pp. 613–622. ACM (2001). https://doi.org/10.1145/371920.372165,
https://doi.org/10.1145/371920.372165

[13] Geyik, S.C., Ambler, S., Kenthapadi, K.: Fairness-aware ranking in search
and recommendation systems with application to linkedin talent search. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. p. 2221–2231. KDD ’19, Association for

28

https://doi.org/10.1145/3299869.3300079
https://doi.org/10.1145/3209978.3210063
https://doi.org/10.1145/3209978.3210063
https://doi.org/10.4230/LIPIcs.ICALP.2018.28
https://doi.org/10.4230/LIPIcs.ICALP.2018.28
https://doi.org/10.1145/371920.372165

Computing Machinery (2019). https://doi.org/10.1145/3292500.3330691,
https://doi.org/10.1145/3292500.3330691

[14] Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591
(1959)

[15] Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Courier
Corporation (2012)

[16] Narasimhan, H., Cotter, A., Gupta, M., Wang, S.L.: Pairwise fairness for
ranking and regression. In: 33rd AAAI Conference on Artificial Intelligence
(2020)

[17] Pascual, F., Rzadca, K., Skowron, P.: Collective Schedules: Schedul-
ing Meets Computational Social Choice. In: Seventeenth International
Conference on Autonomous Agents and Multiagent Systems (Jul 2018),
https://hal.archives-ouvertes.fr/hal-01744728

[18] Plackett, R.L.: The analysis of permutations. Journal of the Royal
Statistical Society. Series C (Applied Statistics) 24(2), 193–202 (1975).
https://doi.org/10.2307/2346567, https://www.jstor.org/stable/2346567

[19] Saule, E., Trystram, D.: Multi-users scheduling in parallel
systems. In: 23rd IEEE International Symposium on Paral-
lel and Distributed Processing, IPDPS. pp. 1–9. IEEE (2009).
https://doi.org/10.1109/IPDPS.2009.5161037, https://doi.org/10.1109/
IPDPS.2009.5161037

[20] Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. p. 2219–2228. KDD ’18, Association for
Computing Machinery (2018). https://doi.org/10.1145/3219819.3220088,
https://doi.org/10.1145/3219819.3220088

[21] Skowron, P., Lackner, M., Brill, M., Peters, D., Elkind, E.: Proportional
rankings. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI. pp. 409–415. ijcai.org
(2017). https://doi.org/10.24963/ijcai.2017/58, https://doi.org/10.24963/
ijcai.2017/58

[22] Talmon, N., Faliszewski, P.: A framework for approval-based budgeting
methods. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 33, pp. 2181–2188 (2019)

[23] Wan, L., Yuan, J.: Single-machine scheduling to minimize the total earli-
ness and tardiness is strongly np-hard. Operations Research Letters 41(4),
363–365 (2013)

[24] Young, H.P., Levenglick, A.: A consistent extension of condorcet’s election
principle. SIAM Journal on applied Mathematics 35(2), 285–300 (1978)

29

https://doi.org/10.1145/3292500.3330691
https://hal.archives-ouvertes.fr/hal-01744728
https://www.jstor.org/stable/2346567
https://doi.org/10.1109/IPDPS.2009.5161037
https://doi.org/10.1109/IPDPS.2009.5161037
https://doi.org/10.1145/3219819.3220088
https://doi.org/10.24963/ijcai.2017/58
https://doi.org/10.24963/ijcai.2017/58

	Introduction
	Preliminaries
	Axiomatic properties
	Neutrality and PTA neutrality.
	Distance.
	PTA Condorcet consistency.
	Incompatibilities between axioms and properties.
	Length reduction monotonicity.
	Reinforcement.
	Unanimity.
	Summary.

	Computational complexity and algorithms
	Experiments
	Discussion and conclusion

