Some remarks regarding special elements in algebras obtained by the Cayley-Dickson process over Z_{p}

Cristina Flaut, Andreea Baias

Abstract

In this paper we provide some properties of k-potent elements in algebras obtained by the Cayley-Dickson process over \mathbb{Z}_{p}. Moreover, we find a structure of nonunitary ring over Fibonacci quaternions over \mathbb{Z}_{3} and we present a method to encrypt plain texts, by using invertible elements in such algebras.

1. Preliminaries

In [MS; 11], the authors provided some properties regarding quaternions over the field \mathbb{Z}_{p}. Since quaternions are special cases of algebras obtained by the Cayley-Dickson process, in this paper we extend the study of k-potent elements over quaternions to an arbitrary algebra obtained by the Cayley-Dickson process. These algebras, in general, are poor in properties: are not commutative, starting with dimension 4 (the quaternions), are not associative, strating with dimension 8 (the octonions) and lost alternativity, starting with dimension 16 (the sedionions). The good news is that all algebras obtained by the CayleyDickson process are power-associative and this is the property which will be used when we study the k-potent elements in these algebras. The paper is organized as follows: in Introduction, we present basic properties of algebras obtained by the Cayley-Dickson process, in section 3, we characterize the k-potent elements in these algebras, in section 4 , we give a structure of non-unitary and noncommutative ring over the Fibonacci quaternions over \mathbb{Z}_{3} and in the last section, we provide an encryption method by using invertible elements from these algebras.

2. Introduction

In the following, we consider A, a finite dimensional unitary algebra over a field K with char $K \neq 2$.

An algebra A is called alternative if $x^{2} y=x(x y)$ and $x y^{2}=(x y) y$, for all $x, y \in A$, flexible if $x(y x)=(x y) x=x y x$, for all $x, y \in A$ and power associative
if the subalgebra $\langle x\rangle$ of A generated by any element $x \in A$ is associative. Each alternative algebra is a flexible algebra and a power associative algebra.

We consider the algebra $A \neq K$ such that for each element $x \in A$, the following relation is true

$$
x^{2}+t_{x} x+n_{x}=0
$$

for all $x \in A$ and $t_{x}, n_{x} \in K$. This algebra is called a quadratic algebra.
It is well known that a finite-dimensional algebra A is a division algebra if and only if A does not contain zero divisors (See $[\mathrm{Sc} ; 66]$).

A composition algebra A over the field K is an algebra, not necessarily associative, with a nondegenerate quadratic form n which satisfies the relation

$$
n(x y)=n(x) n(y), \forall x, y \in A
$$

A unital composition algebras are called Hurwitz algebras.
Hurwitz's Theorem.[Ba; 01] $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} are the only real alternative division algebras.

Theorem 1. (Theorem 2.14, $[\mathrm{McC}, 80]) A$ is a composition algebra if and only if A is an alternative quadratic algebra.

An element x in a ring R is called nilpotent if we can find a positive integer n such that $x^{n}=0$. The number n, the smallest with this property, is called the nilpotency index. A power-associative algebra A is called a nil algebra if and only if each element of this algebra is nilpotent. An element x in a ring R is called k-potent, for $k>1$, a positive integer, if k is the smallest number such that $x^{k}=x$. The number k is called the k-potency index. For $k=2$, we have idempotent elements, for $k=3$, we have tripotent elements, etc.

Let A be an algebra over the field K and a scalar involution over A,

$$
-: A \rightarrow A, a \rightarrow \bar{a}
$$

that means a linear map with the following properties

$$
\overline{a b}=\bar{b} \bar{a}, \overline{\bar{a}}=a
$$

and

$$
a+\bar{a}, a \bar{a} \in K \cdot 1, \text { for all } a, b \in A
$$

For the element $a \in A$, the element \bar{a} is called the conjugate of the element a. The linear form

$$
\mathbf{t}: A \rightarrow K, \mathbf{t}(a)=a+\bar{a}
$$

and the quadratic form

$$
\mathbf{n}: A \rightarrow K, \mathbf{n}(a)=a \bar{a}
$$

are called the trace and the norm of the element a, respectively. From here, it results that an algebra A with a scalar involution is a quadratic algebra. Indeed, if in the relation $\mathbf{n}(a)=a \bar{a}$, we replace $\bar{a}=\mathbf{t}(a)-a$, we obtain

$$
\begin{equation*}
a^{2}-\mathbf{t}(a) a+\mathbf{n}(a)=0 \tag{1.}
\end{equation*}
$$

Let $\delta \in K$ be a fixed non-zero element. We define the following algebra multiplication on the vector space $A \oplus A$

$$
\begin{equation*}
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}+\delta \bar{b}_{2} a_{2}, a_{2} \overline{b_{1}}+b_{2} a_{1}\right) . \tag{2.}
\end{equation*}
$$

The obtained algebra structure over $A \oplus A$, denoted by (A, δ), is called the algebra obtained from A by the Cayley-Dickson process. We have that $\operatorname{dim}(A, \delta)=$ $2 \operatorname{dim} A$.

Let $x \in(A, \delta), x=\left(a_{1}, a_{2}\right)$. The map

$$
-:(A, \delta) \rightarrow(A, \delta), x \rightarrow \bar{x}=\left(\bar{a}_{1},-a_{2}\right)
$$

is a scalar involution of the algebra (A, δ), extending the involution ${ }^{-}$of the algebra A. We consider the maps

$$
\mathbf{t}(x)=\mathbf{t}\left(a_{1}\right)
$$

and

$$
\mathbf{n}(x)=\mathbf{n}\left(a_{1}\right)-\delta \mathbf{n}\left(a_{2}\right)
$$

called the trace and the norm of the element $x \in(A, \delta)$, respectively.
If we consider $A=K$ and we apply this process t times, $t \geq 1$, we obtain an algebra over K,

$$
\begin{equation*}
A_{t}=\left(\frac{\delta_{1}, \ldots, \delta_{t}}{K}\right) \tag{3.}
\end{equation*}
$$

Using induction in this algebra, the set $\left\{1, f_{1}, \ldots, f_{n-1}\right\}, n=2^{t}$, generates a basis with the properties:

$$
\begin{equation*}
f_{i}^{2}=\delta_{i} 1,{ }_{i} \in K, \delta_{i} \neq 0, i=1, \ldots, t \tag{4.}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i} f_{j}=-f_{j} f_{i}=\alpha_{i j} f_{k}, \alpha_{i j} \in K, \alpha_{i j} \neq 0, i \neq j, i, j=1, \ldots n-1 \tag{5.}
\end{equation*}
$$

$\alpha_{i j}$ and f_{k} being uniquely determined by f_{i} and f_{j}.
From [Sc; 54], Lemma 4, it results that in any algebra A_{t} with the basis $\left\{1, f_{1}, \ldots, f_{n-1}\right\}$ satisfying relations (4) and (5), we have:

$$
\begin{equation*}
f_{i}\left(f_{i} x\right)=\delta_{i} x=\left(x f_{i}\right) f_{i} \tag{6.}
\end{equation*}
$$

for all $i \in\{1,2, \ldots, n-1\}$ and for every $x \in A$.
The field K is the center of the algebra A_{t},for $t \geq 2$.(See [Sc; 54]). Algebras A_{t} of dimension 2^{t} obtained by the Cayley-Dickson process, described above, are flexible and power associative for all $t \geq 1$ and, in general, are not division algebras for all $t \geq 1$.

For $t=2$, we obtain the generalized quaternion algebras over the field K. If we take $K=\mathbb{R}$ and $\delta_{1}=\delta_{2}=-1$, we obtain the real quaternion algebra
over \mathbb{R}. This algebra is an associative and a noncommutative algebra and will be denoted with \mathbb{H}.

Let \mathbb{H} be the real quaternion algebra with basis $\{1, i, j, k\}$, where

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=-1, i j=-j i, i k=-k i, j k=-k j . \tag{7.}
\end{equation*}
$$

Therefore, each element from \mathbb{H} has the following form

$$
q=a+b i+c j+d k, a, b, c, d \in \mathbb{R} .
$$

We remark that \mathbb{H} is a vector space of dimension 4 over \mathbb{R} with the addition and scalar multiplication. Moreover, \mathbb{H} has a ring structure with multiplication given by (7) and the usual distributivity law.

If we consider K a finite field with char $K \neq 2$, due to the Wedderburn's Theorem, a quaternion algebra over K is allways a non division algebra or a split algebra.

3. Characterization of k-potent elements in algebras obtained by the Cayley-Dickson process

In the paper [Mo; 15], the author gave several characterizations of k-potent elements in associative rings from an algebraic point of view. In [RPC; 22], the authors presented some properties of (m, k)-type elements over the ring of integers modulo n and in [Wu; 10], the author emphasize the applications of k-potent matrices to digital image encryption.

In the following, we will study the properties of k-potent elements in a special case of nonassociative structures, that means we characterize the k potent elements in algebras obtained by the Cayley-Dickson process over the field of integers modulo p, p a prime number greater than $2, K=\mathbb{Z}_{p}$.

Remark 2. Since algebras obtained by the Cayley-Dickson process are power associative, we can define the power of an element. In this paper, we consider A_{t} such an algebra, given by the relation (3), with $\delta_{i}=-1$, for all $i, i \in\{1, \ldots, t\}$. We consider $x \in A_{t}$, a k-potent element, that means k is the smallest positive integer with this property. Since A_{t} is a quadratic algebra, from relation (1), we have that $x^{2}-\mathbf{t}(x) x+\mathbf{n}(x)=0$, with $\mathbf{t}(x) \in K$ the trace and $\mathbf{n}(x) \in K$ the norm of the element x. To make calculations easier, we will denote $\mathbf{t}(x)=t_{x}$ and $\mathbf{n}(x)=n_{x}$.

Remark 3. In general, algebras obtained by the Cayley-Dickson process are not composition algebras, but the following relation

$$
\mathbf{n}\left(x^{m}\right)=(\mathbf{n}(x))^{m}
$$

is true, for m a positive integer. Indeed, we have $\mathbf{n}\left(x^{m}\right)=x^{m} \overline{x^{m}}$ and $(\mathbf{n}(x))^{m}=$ $(x \bar{x})^{m}=x \bar{x} \cdot \ldots \cdot x \bar{x}, m$-times with $\bar{x}=t_{x}-x, t_{x} \in K$. Since x and \bar{x} are in
the algebra generated by x, they associate and comute, due to the power associativity property. If $x \in A_{t}$ is an invertible element, that means $n_{x} \neq 0$, then the same remark is also true for $x^{-1}=\frac{\bar{x}}{n_{x}}$, the inverse of the element x. The element x^{-1} is in the algebra generated by x, therefore associate and comute with x.
ii) We know that $x^{2}-t_{x} x+n_{x}=0$. If $x \in A_{t}$ is a nonzero k-potent element, then, from the above, we have $n_{x}=0$ or $n_{x} \neq 0$ and $n_{x}^{k-1}=1$.
iii) Let $x \in A_{t}$ be a nonzero k-potent element such that $n_{x} \neq 0$. Then, the element x is an invertible element in A_{t} such that $x^{k-1}=1$. Indeed, if $x^{k}=x$, multiplying with x^{-1} we have $x^{k-1}=1$.
iv) For a nilpotent element $x \in A_{t}$ there is a positive integer $k \geq 2$ such that $x^{k}=0, k$ the smallest with this property. From here, we have that $n_{x}=0$, therefore $x^{2}=t_{x} x$. It results that $x^{k}=t_{x} x^{k-1}$, then $t_{x} x^{k-1}=0$ with $x^{k-1} \neq 0$. We get that $t_{x}=0$ and $x^{2}=0$. Therefore, we can say that in an algebra A_{t}, if exist, we have only nilpotent elements of index two.

In the following, we will characterize the k-potent elements in the case when $n_{x}=0$.

Proposition 4. The element $x \in A_{t}, x \neq 0$, with $n_{x}=0$ and $t_{x} \neq 0$ is a k-potent element in A_{t} if and only if t_{x} is a k-potent element in $\mathbb{Z}_{p}^{*}, 2 \leq k \leq p$ (t_{x} has $k-1$ as multiplicative order in \mathbb{Z}_{p}^{*}).

Proof. We must prove that if k is the smallest positive integer such that $x^{k}=x$, then $t_{x}^{k}=t_{x}$, therefore $t_{x}^{k-1}=1$, with k the smallest positive integer with this property.

We have $x^{k}=x^{k-2} x^{2}=x^{k-2} t_{x} x=t_{x} x^{k-1}=t_{x} x^{k-3} x^{2}=t_{x}^{2} x^{k-2}=\ldots=$ $t_{x}^{k-1} x$. If $t_{x}^{k-1}=1$, we have $x^{k}=x$ and if $x^{k}=x$, we have $x=t_{x}^{k-1} x$, therefore $t_{x}^{k-1}=1$.

Now, we must prove that $k \leq p$. We know that in \mathbb{Z}_{p} the multiplicative order of a nonzero element is a divisor of $p-1$. If the order is $p-1$, the element is called a primitive element. If $t_{x} \neq 0$ in \mathbb{Z}_{p} and $t_{x}^{k-1}=1$, it results that $(k-1) \mid(p-1)$, then $k-1 \leq p-1$ and $k \leq p$.

Remark 5. For elements x with $n_{x}=0$ and $t_{x} \neq 0$, from the above theorem, we remark that in an algebra A_{t} over \mathbb{Z}_{p} we have $k \leq p$, where k is the potency index. That means the k-potency index in these conditions does not exceed the prime number p. Since $a^{p-1} \equiv 1 \bmod p$, for all nonzero $a \in \mathbb{Z}_{p}$, allways it results that $x^{p}=x$. It is not necessary for p to be the smallest with this property.

Example 6. If we take $p=5$ and we have $x \in A_{t}$ such that $x^{38}=x$, since we known that $x^{5}=x$, we obtain $x^{38}=x^{35} x^{3}=\left(x^{5}\right)^{7} x^{3}=x^{7} x^{3}=x^{10}=$ $x^{5} x^{5}=x^{2}$. Therefore, $x^{2}=x$ and the k-potency index is 2 .

In the following, we will characterize the k-potent elements when $n_{x} \neq 0$ and $n_{x}^{k-1}=1$. We suppose that $k \geq 3$. Indeed, if $k=2$, we have $x^{2}=x$, then $x=1$.

The following result it is well known from literature. We reproduce here the proof.

Proposition 7. Each element of a finite field K can be expressed as a sum of two squares from K.

Proof. If char $K=2$, we have that the map $f: K \rightarrow K, f(x)=x^{2}$ is an injective map, therefore is bijective and each element from K is a square. Indeed, if $f(x)=f(y)$, we have that $x^{2}=y^{2}$ and $x=y$ or $x=-y=y$,since $-1=1$ in $\operatorname{char} K=2$.

Assuming that char $K=p \neq 2$. We suppose that K has $q=p^{n}$ elements, then K^{*} has $q-1$ elements. Since $\left(K^{*}, \cdot\right)$ is a cyclic group with $q-1$ elements, $K^{*}=\left\{1, v, v^{2}, \ldots, v^{q-2}\right\}$, half of them, namely the even powers are squares. The zero element is also a square, then we have $\frac{q-1}{2}+1=\frac{q+1}{2}$ square elements from K which are squares. We known that from a finite group $(G, *)$ if S and T are two subsents of G and $|S|+|T|>|G|$, we have that each $x \in G$ can be expresses as $x=s * t, s \in S, t \in T$. For $g \in G$, we consider the set $g S^{-1}=\left\{g * s^{-1}\right.$, $s \in S\}$ wich has the same cardinal as the set T. Since $|S|+|T|>|G|$, it results that $|T|+\left|g S^{-1}\right|>|G|$, therefore $T \cap g S^{-1} \neq \emptyset$. Then, there are the elements $s \in S$ and $t \in T$ such that $t=g * s^{-1}$ and $g=s * t$. Now, if we consider S and T two sets equal with the multiplicative. In the group $(K,+)$, we have that $|S|+|T|=q+1>|K|$, therefore each $x \in K$ can be writen as $x=s^{2}+t^{2}$, with $s \in S, t \in T$.

Remark 8. i) We can find an element $w \in A_{t}$, different from elements of the base, such that $w^{2}=-1$. Indeed, such an element has $n_{w}=1$ and $t_{x}=0$. With the above notations and from the above proposition, since $1=a^{2}+b^{2}$, we can take $w_{i j}=a f_{i}+b f_{j}, a, b \in \mathbb{Z}_{p}$ and f_{i}, f_{j} elements from the basis in A_{t}, given by (4). Therefore, $w_{i j}^{2}=-1$.
ii) The group $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$ is cyclic and has $p-1$ elements. Elements of order $p-1$ are primitive elements. The rest of the elements have orders divisors of $p-1$.

Now, we consider the equation in A_{t}

$$
\begin{equation*}
x^{n}=1, n \text { a positive integer. } \tag{8.}
\end{equation*}
$$

In the following, we will find some conditions such that this equation has solutions different from 1.

Remark 9. i) With the above notations, we consider $w \in A_{t}$ a nilpotent element (it has the norm and the trace zero). Therefore, the element $z=1+w$ has the property that $z^{n}=1+n w$, therefore if $n=p r, r$ a positive integer, the equation (8) has solutions of the form $z=1+w$, for all nilpotent elements $w \in A_{t}$. It is clear that z has the norm equal with 1 and $z^{p}=1$, therefore $z^{p+1}=z$, is a p-potent element.
ii) If we consider $\eta \in \mathbb{Z}_{p}^{*}$ with the multiplicative order θ and $z=\eta+w, w$ nilpotent, we have that $(\eta+w)^{p}=\eta^{p}+p w=\eta^{p}$ and $(\eta+w)^{p \theta}=1$. Therefore, if $n=p r, r$ a positive integer, the equation (8) has solutions of the form $z=1+w$, for all nilpotent elements $w \in A_{t}$. If r is a multiplicative order of an element from \mathbb{Z}_{p}^{*} and $n=p r, r$ a positive integer, then the equation (8) has solutions of the form $z=\eta+w$, for all $\eta \in A_{t}, \eta$ of order r, w a nilpotent element in A_{t}.
iii) With the above notations, we consider the element $w \in A_{t}$ sucht that $w^{2}=-1$ and $z=1+w$. We have that $z^{2}=(1+w)^{2}=2 w, z^{3}=(1+w)^{3}=$ $2 w-2$ and $z^{4}=\left(z^{2}\right)^{2}=-4$ modulo p. Let $\eta=-4 \in \mathbb{Z}_{p}^{*}$ with the multiplicative order θ, θ is allways an even number. We have that $z^{4 \theta}=1$.
iv) Let $z=a+w \in A_{t}$, where $a \in \mathbb{Z}_{p}$ and $w \in A_{t}$, with $t_{w}=0$ and $n_{w} \neq 0$. We have that $w^{2}=\alpha \in \mathbb{Z}_{p}^{2}$, therefore, $z^{r}=C_{r}+D_{r} w$. If $z^{s}=1$, then there is a positive integer $m \leq s$ such that $C_{m}=0$ or $D_{m}=0$. Indeed, if $m=s$, we have $D_{s}=0$ and $C_{s}=1$.

Proposition 10. By using the above notations, we consider the element $z=a+w$, where $a \in \mathbb{Z}_{p}$ and $w \in A_{t}$ with the trace zero. Assuming that there is a nonegative integer m such that C_{m} or D_{m} is zero, then there is a positive integer k such that $z^{k}=1$ and z is $(k+1)$-potent element.

Proof. Since w has the trace zero, let $w^{2}=\beta$, with τ the multiplicative order of β. We have that $z^{m}=C_{m}+D_{m} w, C_{m}, D_{m} \in \mathbb{Z}_{p}$. Supposing that C_{m} is zero, then we have $z^{m}=D_{m} w$, with θ the multiplicative order of D_{m}. Therefore $z^{m M}=1$, where $M=l c m\{2 \tau, \theta\}$. If D_{m} is zero, then we have $z^{m}=C_{m}$ with v the multiplicative order of C_{m}. It results that $z^{v m}=1$.

Now, we can say that we proved the following theorem.
Theorem 11. With the above notations, an element $z \in A_{t}$ is a k-potent element, if z is of one of the forms:

Case 1. $n_{z} \neq 0$.
i) $z=1+w$, with $w \in A_{t}, w$ is a nilpotent element. In this case, z is ($p+1$)-potent;
ii) $z=1+w$, with $w \in A_{t}$ sucht that $w^{2}=-1$. Since $z^{4}=-4$ modulo p and θ is the multiplicative order of -4 in \mathbb{Z}_{p}^{*}, we have that z is $(4 \theta+1)$-potent.
iii) $z=a+w$, where $a \in \mathbb{Z}_{p}, w \in A_{t}$ with $t_{w}=0, w^{2}=\beta \in \mathbb{Z}_{p}^{*}$, with τ the multiplicative order of β, and $z^{r}=C_{r}+D_{r} w$. Assuming that there is a nonegative integer m such that C_{m} or D_{m} is zero, then there is a positive integer k such that $z^{k}=1$ and z is $(k+1)$-potent element. If $C_{m}=0$, then $k=m M$, where $M=l c m\{2 \tau, \theta\}$ and θ is the multiplicative order of D_{m}. If $D_{m}=0$, then we have $k=v m$, with v the multiplicative order of C_{m}.

Case 2. $n_{z}=0$. The element $z \in A_{t}$ is k-potent if and only if t_{z} is k-potent element in \mathbb{Z}_{p}^{*}, that means $k-1$ is a divisor of $p-1$.

Example 14. In the following, we will give some examples of values of the potency index k.
i) Case $p=5$ and $t=2$, therefore we work on quaternions. We consider $z=2+i+j+k$ with the norm $n_{x}=2 \neq 0$. We have $w=i+j+k$ and $z=2+w$. We have $z^{2}=1+4 w, z^{3}=4 w$, therefore $m=3$ and $D_{m}=4$, with $\theta=4$. Since $w^{2}=2$, it results that $\tau=4$ and $M=4$. We have that $z^{24}=1$, then $z^{25}=z$ and z is 25 -potent element, $k=25$.
ii) Case $p=7, t=2$ and $z=2+i+j+k$. The norm is zero and the trace is 4 . Since 4 has multiplicative order equal with 3 , from Proposition 4, we have $z^{4}=z$. Indeed, $z^{2}=1+4 w, z^{3}=4+2 w, z^{4}=2+w=z$ and $k=4$.
iii) Case $p=5$ and $t=2$. The element $z=1+3 i+4 j$ has $n_{z}=1, w=3 i+4 j$, with $n_{w}=t_{w}=0$, therefore w is a nilpotent element. We have $z^{5}=1, z^{6}=z$ and $k=6$.
iv) Case $p=3$ and $t=2$. The element $z=1+i+j+k$ has $n_{z}=1$ and $w=i+j+k$. We have $z^{2}=(1+w)^{2}=1+2 w, z^{3}=(1+w)(1+2 w)=$ $1+2 w+w=1$, therefore $z^{4}=z$ and $k=4$.
v) Case $p=5, t=2$. We consider the element $z=2+3 i+j+3 k=$ $2+3 w, w=i+2 j+k, n_{z}=3, n_{w}=1, t_{w}=0$, then $w^{2}=-1$. We have that $\tau=2$ and $z^{2}=2 w$. Therefore $m=2, C_{2}=0, D_{2}=2$, then $\theta=4$ and, therefore we work on quaternions. It results $z^{m M}=z^{8}=1$, therefore $z^{9}=z$ and $k=9$.
vi) Case $p=5, t=2$. We consider the element $z=2+i+j+k=2+w$ with $n_{z}=2, n_{w}=3, t_{w}=0, w^{2}=2$ and $\tau=4$, the order of $\beta=2$. We have $z^{2}=3+4 w, z^{3}=4+w, z^{4}=1+4 w, z^{5}=4 w$, therefore $m=5, C_{5}=0, D_{5}=$ $4, \theta=2, M=\operatorname{lcm}\{2 \tau, \theta\}=8$. It results that $z^{m M}=z^{40}=1$, then $z^{41}=z$ and $k=42$.
vii) Case $p=11, t=2$. We consider the element $z=2 i+7 j+3 k$ with $n_{z}=7, z^{2}=4$, therefore $m=2, D_{2}=0, C_{2}=4, v=5$, the multiplicative order of $C_{2}=4$. We have $z^{m v}=z^{10}=1$ and $k=11$.
viii) Case $p=13, t=3$, therefore we work on octonions. We consider the element $z=3+2 f_{1}+f_{2}+f_{3}+f_{4}+f_{5}+f_{6}+f_{7}=3+w, w=2 f_{1}+f_{2}+$ $f_{3}+f_{4}+f_{5}+f_{6}+f_{7}$, with $n_{z}=6, n_{w}=10, t_{w}=0$. We have $w^{2}=3$ and $\tau=3$, the order of $\beta=3$. It results, $z^{2}=12+2 w, z^{3}=3+5 w, z^{4}=9 w$, then $m=4, C_{4}=0 . D_{4}=9, \theta=3, M=\operatorname{lcm}\{2 \tau, \theta\}=6$. We get $z^{m M}=z^{24}=1$, then $z^{25}=z$ and $k=25$.
ix) Case $p=17, t=4$, therefore we work on sedenions. The Sedenion algebra is a noncommutative, nonassociative and nonalternative algebra of dimension 16. We consider the element $z=1+w, w=\sum_{i=1}^{15} f_{i}$, with $w^{2}=2$ and $\tau=8$. It results $z^{2}=3+2 w, z^{3}=4 w$. Then $m=3, C_{3}=0, D_{3}=4, \theta=4$. We have $M=\operatorname{lcm}\{2 \tau, \theta\}=\operatorname{lcm}\{16,4\}=16$ and $z^{m M}=z^{48}=1$. It results $z^{49}=z$ and $k=49$.

Remark 15. The (m, k)-type elements in A_{t}, with m, n positive integers, are the elements $x \in A_{t}$ such that $x^{m}=x^{k}, m \geq k$, smallests with this property. If $n_{x} \neq 0$, then $x^{m-k}=1$ and x is an $(m-k+1)$-potent element. If $n_{x}=0$ and $t_{x} \neq 0$, we have that $t_{x}^{m-k}=1$, then x is an $(m-k+1)$-potent element. Therefore, an (m, k)-type element in A_{t} is an $(m-k+1)$-potent element in A_{t}.

4. A nonunitary ring structure of quaternion Fibonacci elements

 over \mathbb{Z}_{p}The Fibonacci numbers was introduced by Leonardo of Pisa (1170-1240) in his book Liber abbaci, book published in 1202 AD (see [Kos; 01], p. 1-3).

The nth term of these numbers is given by the formula:

$$
f_{n}=f_{n-1}+f_{n-2,} n \geq 2
$$

where $f_{0}=0, f_{1}=1$.
In [Ho; 63], were defined and studied Fibonacci quaternions over \mathbb{H}, defined as follows

$$
F_{n}=f_{n} 1+f_{n+1} i+f_{n+2} j+f_{n+3} k
$$

called the nth Fibonacci quaternions.
In the same paper, the norm formula for the nth Fibonacci quaternions was found:

$$
\boldsymbol{n}\left(F_{n}\right)=F_{n} \bar{F}_{n}=3 f_{2 n+3}
$$

where $\bar{F}_{n}=f_{n} \cdot 1-f_{n+1} i-f_{n+2} j-f_{n+3} k$ is the conjugate of the F_{n} in the algebra \mathbb{H}.

Fibonacci sequence is also studied when it is reduced modulo m. This sequence is periodic and this period is called Pisano's period, $\pi(m)$. In the following, we consider $m=p$, a prime number and $\left(f_{n}\right)_{n \geq 0}$, the Fibonacci numbers over \mathbb{Z}_{p}. It is clear that, in general, the sum of two arbitrary Fibonacci numbers is not a Fibonacci numbers, but if these numbers are consecutive Fibonacci numbers, the sentence is true. In the following, we will find conditions when the product of two Fibonacci numbers is also a Fibonacci number. In the following, we work on $A_{t}, t=2$, over the field \mathbb{Z}_{p}. We denote this algebra with \mathbb{H}_{p}.

Let $F_{1}=a+b i+(a+b) j+(a+2 b) k$ and $F_{2}=c+d i+(c+d) j+(c+2 d) k$, two Fibonacci quaternions in \mathbb{H}_{p}. We will find conditions such that $F_{1} F_{2}$ and $F_{2} F_{1}$ are also Fibonacci quaternion elements, that means elements of the same form:

$$
\begin{equation*}
A+B i+(A+B) j+(A+2 B) k \tag{10.}
\end{equation*}
$$

We compute $F_{1} F_{2}$ and $F_{2} F_{1}$ and we obtain that

$$
\begin{equation*}
F_{1} F_{2}=(-a c-3 a d-3 b c-6 b d)+2 a d i+2 a(c+d) j+(2 a c+a d+3 b c) k \tag{11.}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2} F_{1}=(-a c-3 a d-3 b c-6 b d)+2 b c i+2 c(a+b) j+(2 a c+3 a d+b c) k \tag{12.}
\end{equation*}
$$

By using relation (10), we get the following systems, with c, d as unknowns. From relation (11), we obtain:

$$
\left\{\begin{array}{c}
(-3 a-3 b) c+(-3 a-6 b) d=0 \tag{13.}\\
(-6 b-3 a) c+(-6 b) d=0
\end{array}\right.
$$

From relation (12), we obtain the system:

$$
\left\{\begin{array}{l}
(-3 a+3 b) c+(-3 a) d=0 \tag{14.}\\
(-3 a) c+(-6 a-6 b) d=0
\end{array}\right.
$$

We remark that for $p=3$, the systems (13) and (14) have solutions, therefore, for $p=3$, there is a chance to obtain an algebraic structure on the set $\mathcal{F}_{\pi(p)}$, the set of Fibonacci quaternions over \mathbb{Z}_{p}.

For $p=3$, the Pisano's period is 8 , then we have the following Fibonacci numbers: $0,1,1,2,0,2,2,1$. We obtain the following Fibonacci quaternion elements: $F_{0}=i+j+2 k, F_{1}=1+i+2 j, F_{2}=1+2 i+2 k, F_{3}=2+2 j+2 k$, $F_{4}=2 i+2 j+k, F_{5}=2+2 i+j, F_{6}=2+i+k, F_{7}=1+j+k$, therefore $\mathcal{F}_{\pi(p)}=$ $\left\{F_{i}, i \in\{0,1,2,3,4,5,6,7\}\right\}$. All these elements are zero norm elements. F_{0} and F_{4} are nilpotents, F_{3}, F_{5} and F_{6} are idempotent elements, F_{1}, F_{2}, F_{7} are 3-potent elements, By usyng $C++$ software, we computed the sum and the product of these 8 elements. Therefore, we have $F_{0} F_{i}=0$, for $i \in\{0,1, \ldots, 7\}, F_{4} F_{i}=0$, for $i \in\{0,1, \ldots, 7\}, F_{5} F_{i}=F_{i}$, for $i \in\{0,1, \ldots, 7\}, F_{6} F_{i}=F_{i}$, for $i \in\{0,1, \ldots, 7\}$ and

$$
\begin{aligned}
& F_{1} F_{0}=F_{4}, F_{1}^{2}=F_{5}, F_{1} F_{2}=F_{6}, F_{1} F_{3}=F_{7} \\
& F_{1} F_{4}=F_{0}, F_{1} F_{5}=F_{1}, F_{1} F_{6}=F_{2}, F_{1} F_{7}=F_{3} \\
& F_{2} F_{0}=F_{4}, F_{2} F_{1}=F_{5}, F_{2}^{2}=F_{6}, F_{2} F_{3}=F_{7} \\
& F_{2} F_{4}=F_{0}, F_{2} F_{5}=F_{1}, F_{2} F_{6}=F_{2}, F_{2} F_{7}=F_{3} \\
& \\
& F_{3} F_{0}=F_{0}, F_{3} F_{1}=F_{1}, F_{3} F_{2}=F_{2}, F_{3}^{2}=F_{3} \\
& F_{3} F_{4}=F_{4}, F_{3} F_{5}=F_{5}, F_{3} F_{6}=F_{6}, F_{3} F_{7}=F_{7} \\
&
\end{aligned}
$$

Regarding the sum of two Fibonacci quaternions over \mathbb{Z}_{3}, we obtain:

$$
\begin{aligned}
2 F_{0}= & F_{4}, F_{0}+F_{1}=F_{2}, F_{0}+F_{2}=F_{7}, F_{0}+F_{3}=F_{6}, F_{0}+F_{4}=0 \\
F_{0}+F_{5} & =F_{3}, F_{0}+F_{6}=F_{5}, F_{0}+F_{7}=F_{1}, 2 F_{1}=F_{5}, F_{1}+F_{2}=F_{3} \\
F_{1}+F_{3} & =F_{0}, F_{1}+F_{4}=F_{7}, F_{1}+F_{5}=0, F_{1}+F_{6}=F_{4}, F_{1}+F_{7}=F_{6} \\
2 F_{2} & =F_{6}, F_{2}+F_{3}=F_{4}, F_{2}+F_{4}=F_{1}, F_{2}+F_{5}=F_{0}, F_{2}+F_{6}=0, \\
F_{2}+F_{7} & =F_{5}, 2 F_{3}=F_{7}, F_{3}+F_{4}=F_{5}, F_{3}+F_{5}=F_{2}, F_{3}+F_{6}=F_{1}, \\
F_{3}+F_{7} & =0,2 F_{4}=F_{0}, F_{4}+F_{5}=F_{6}, F_{4}+F_{6}=F_{0}, F_{4}+F_{7}=F_{2} \\
2 F_{5} & =F_{1}, F_{5}+F_{6}=F_{7}, F_{5}+F_{7}=F_{4}, 2 F_{6}=F_{2}, F_{6}+F_{7}=F_{0} \\
2 F_{7} & =F_{3}
\end{aligned}
$$

From here, we have the following result..

Proposition 16. $\left(\mathcal{F}_{\pi(3)} \cup\{0\},+\right)$ is an abelian group of order 9 , isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ and $\left(\mathcal{F}_{\pi(3)} \cup\{0\},+, \cdot\right)$ is a nonunitary and noncommutative ring.

5. An application in Cryptography

We consider an algebra A_{t} over \mathbb{Z}_{p}. This algebra is of dimension 2^{t}. We suppose that we have a text m to be encrypted and the alphabet has p elements, p a prime number. To each letter from alphabet, will corespond a label from 0 to $p-1$, that means we work on \mathbb{Z}_{p}. The encryption algorithm is the following.

1) We will split m in blocks and we will choose the lenght of the blocks of the form 2^{t}. For a fixed t, we will find an invertible element $q, q \in A_{t}$, that means $n_{q} \neq 0$. This element will be the encryption key.
2) Supposing that $m=m_{1} m_{2} \ldots m_{r}$ is the plain text, with m_{i} blocks of lenght 2^{t}, formed by the labels of the letters, to each $m_{i}=m_{i 0} m_{i 1} \ldots m_{i 2^{t}-1}$ we will associate an element $v_{i} \in A_{t}, v_{i}=\sum_{j=0}^{2^{t}-1} m_{i j} f_{j}$.
3) We compute $q v_{i}=w_{i}$, for all $i \in\{1,2, \ldots, r\}$. We obtain $w=w_{1} w_{2} \ldots w_{r}$, the encrypted text.

To decrypt the text, we use the decryption key, then we compute $d=q^{-1}$ and $v_{i}=d w_{i}$, for all $i \in\{1,2, \ldots, r\}$.

Example 17. We consider the word MATHEMATICS and the key SINE. We work on an alphabet with 29 letters, including blank space, denoted with "*", "." and ",". The labels of the letters are done in the below table

A	B	C	D	E	F	G	H	I	J
0	1	2	3	4	5	6	7	8	9
K	L	M	N	O	P	Q	R	S	T
10	11	12	13	14	15	16	17	18	19
U	V	W	X	Y	Z	$*$.	,	
20	21	22	23	24	25	26	27	28	

We consider $t=2$, therefore we work on quaternions. We will add an "A" at the end of word "MATHEMATICS", to have multiple of 4 lenght text, therefore, we will encode the text "MATHEMATICSA". We have the following blocks MATH, EMAT, ICSA, with the corresponding quaternions $v_{1}=12+19 j+7 k$, for MATH, $v_{2}=4+12 i+19 k$, for EMAT and $v_{3}=8+2 i+18 j$ for ICSA. The key is $q=18+8 i+13 j+4 k$, it is an invertible element, with the nonzero norm, $n_{q}=22$. We have $w_{1}=q v_{1}=28+24 i+7 j+7 k$, corresponding to the message ",YHH", $w_{2}=q v_{2}=16+2 i+6 j+28 k$, corresponding to the message "QCG," and $w_{3}=q v_{3}=10+28 i+j+5 k$, corresponding to the message "K,BF". Therefore, the encrypted message is ",YHHQCG,K,BF". The decryption key is $d=q^{-1}=14+26 i+6 j+13 k$. For decryption, we will compute
$d w_{1}=12+19 j+7 k=v_{1}, d w_{2}=4+12 i+19 k=v_{2}, d w_{3}=8+2 i+18 j=v_{3}$, and we find the initial text "MATHEMATICSA".

Conclusion. In this paper we studied properties of some special elements in algebras obtained by the Cayley-Dickson process and we find an algebraic structure(nonunitary and noncommutative ring) over Fibonacci quaternions over \mathbb{Z}_{3}. Moreover, an encryption method by using these elements is also provided. As a further research, we intend to study other special elements in the idea of finding another good properties.

References

[Ba; 01] Baez, J.C., The Octonions, B. Am. Math. Soc., 39(2)(2001), 145-205, http://www.ams.org/journals/bull/

2002-39-02/S0273-0979-01-00934-X/S0273-0979-01-00934-X.pdf.
[Ho; 63] Horadam, A. F., Complex Fibonacci Numbers and Fibonacci Quaternions, Amer. Math. Monthly 70(1963), 289-291.
[Kos; 01] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience publication, U.S.A, 2001.
[MS; 11] Miguel, C. J., Serodio R., On the Structure of Quaternion Rings over $\mathbb{Z} p$, International Journal of Algebra, 5(27)(2011), 1313-1325.
[McC; 80] McCrimmon, K., Pre-book on Alternative Algebras, 1980, http://mysite.science.uottawa.ca/neher/Papers/alternative/http://mysite.science.uottawa.ca/neher/Papers/\& 2.2.Composition\%20algebras.pdf.
[Mo; 15] Mosić Dijana, Characterizations of k-potent elements in rings, Annali di Matematica, 194(2015), 1157-1168, DOI 10.1007/s10231-014-0415-5
[RPC; 22] Ratanaburee, P., Petapirak, M., Chuysurichay, S., On (m, k) type elements in the ring of integers modulo n, Songklanakarin J. Sci. Technol., 44 (5)(2022), 1179-1184.
[Sc; 66] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, New-York, 1966.
[Sc; 54] Schafer, R. D., On the algebras formed by the Cayley-Dickson process, Amer. J. Math., 76(1954), 435-446.
[Wu; 10] Y. Wu, k-Potent Matrices - Construction and Applications in Digital Image Encryption, Recent Advances in Applied Mathematics, Proceedings of the 2010 American Conference on Applied Mathematics, USA, 2010, 455-460.

Cristina FLAUT
Faculty of Mathematics and Computer Science, Ovidius University, Bd. Mamaia 124, 900527, Constanţa, România,
http://www.univ-ovidius.ro/math/
e-mail: cflaut@univ-ovidius.ro; cristina_flaut@yahoo.com

Andreea BAIAS

PhD student at Doctoral School of Mathematics, Ovidius University of Constanţa, România, e-mail: andreeatugui@yahoo.com

