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Some remarks regarding special elements in algebras
obtained by the Cayley-Dickson process over Zp

Cristina Flaut, Andreea Baias

Abstract. In this paper we provide some properties of k-potent elements in al-

gebras obtained by the Cayley-Dickson process over Zp. Moreover, we find a structure

of nonunitary ring over Fibonacci quaternions over Z3 and we present a method to

encrypt plain texts, by using invertible elements in such algebras.

1. Preliminaries

In [MS; 11], the authors provided some properties regarding quaternions
over the field Zp. Since quaternions are special cases of algebras obtained by
the Cayley-Dickson process, in this paper we extend the study of k-potent ele-
ments over quaternions to an arbitrary algebra obtained by the Cayley-Dickson
process. These algebras, in general, are poor in properties: are not commuta-
tive, starting with dimension 4 (the quaternions), are not associative, strating
with dimension 8 (the octonions) and lost alternativity, starting with dimension
16 (the sedionions).The good news is that all algebras obtained by the Cayley-
Dickson process are power-associative and this is the property which will be used
when we study the k-potent elements in these algebras. The paper is organized
as follows: in Introduction, we present basic properties of algebras obtained by
the Cayley-Dickson process, in section 3, we characterize the k-potent elements
in these algebras, in section 4, we give a structure of non-unitary and noncom-
mutative ring over the Fibonacci quaternions over Z3 and in the last section, we
provide an encryption method by using invertible elements from these algebras.

2. Introduction

In the following, we consider A, a finite dimensional unitary algebra over a
field K with charK 6= 2.

An algebra A is called alternative if x2y = x (xy) and xy2 = (xy) y, for all
x, y ∈ A, flexible if x (yx) = (xy)x = xyx, for all x, y ∈ A and power associative
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if the subalgebra < x > of A generated by any element x ∈ A is associative.
Each alternative algebra is a flexible algebra and a power associative algebra.

We consider the algebra A 6= K such that for each element x ∈ A, the
following relation is true

x2 + txx+ nx = 0,

for all x ∈ A and tx, nx ∈ K. This algebra is called a quadratic algebra.
It is well known that a finite-dimensional algebra A is a division algebra if

and only if A does not contain zero divisors (See [Sc;66]).
A composition algebra A over the field K is an algebra, not necessarily

associative, with a nondegenerate quadratic form n which satisfies the relation

n(xy) = n(x)n(y), ∀x, y ∈ A.

A unital composition algebras are called Hurwitz algebras.

Hurwitz’s Theorem.[Ba; 01] R, C, H and O are the only real alternative
division algebras.

Theorem 1. (Theorem 2.14, [McC,80]) A is a composition algebra if and
only if A is an alternative quadratic algebra.

An element x in a ring R is called nilpotent if we can find a positive integer
n such that xn = 0. The number n, the smallest with this property, is called
the nilpotency index. A power-associative algebra A is called a nil algebra if
and only if each element of this algebra is nilpotent. An element x in a ring R

is called k-potent, for k > 1, a positive integer, if k is the smallest number such
that xk = x. The number k is called the k-potency index. For k = 2, we have
idempotent elements, for k = 3, we have tripotent elements, etc.

Let A be an algebra over the field K and a scalar involution over A,

: A → A, a → a,

that means a linear map with the following properties

ab = ba, a = a,

and
a+ a, aa ∈ K · 1, for all a, b ∈ A.

For the element a ∈ A, the element a is called the conjugate of the element a.
The linear form

t : A → K , t (a) = a+ a

and the quadratic form

n : A → K, n (a) = aa

are called the trace and the norm of the element a, respectively. From here, it
results that an algebra A with a scalar involution is a quadratic algebra. Indeed,
if in the relation n (a) = aa, we replace a = t (a)− a, we obtain

a2 − t (a) a+ n (a) = 0. (1.)
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Let δ ∈ K be a fixed non-zero element. We define the following algebra
multiplication on the vector space A⊕A

(a1, a2) (b1, b2) =
(

a1b1 + δb2a2, a2b1 + b2a1
)

. (2.)

The obtained algebra structure overA⊕A, denoted by (A, δ) ,is called the algebra
obtained from A by the Cayley-Dickson process. We have that dim (A, δ) =
2 dimA.

Let x ∈ (A, δ), x = (a1, a2). The map

: (A, δ) → (A, δ) , x → x̄ = (a1,−a2) ,

is a scalar involution of the algebra (A, δ), extending the involution of the
algebra A. We consider the maps

t (x) = t(a1)

and
n (x) = n (a1)− δn(a2)

called the trace and the norm of the element x ∈ (A, δ) , respectively.
If we consider A = K and we apply this process t times, t ≥ 1, we obtain

an algebra over K,

At =

(

δ1, ..., δt

K

)

. (3.)

Using induction in this algebra, the set {1, f1, ..., fn−1}, n = 2t, generates a
basis with the properties:

f2
i = δi1, i ∈ K, δi 6= 0, i = 1, ..., t (4.)

and

fifj = −fjfi = αijfk, αij ∈ K, αij 6= 0, i 6= j, i, j = 1, ...n− 1, (5.)

αij and fk being uniquely determined by fi and fj.

From [Sc; 54], Lemma 4, it results that in any algebra At with the basis
{1, f1, ..., fn−1} satisfying relations (4) and (5) , we have:

fi (fix) = δix = (xfi)fi, (6.)

for all i ∈ {1, 2, ..., n− 1} and for every x ∈ A.

The field K is the center of the algebra At,for t ≥ 2.(See [Sc; 54]). Algebras
At of dimension 2t obtained by the Cayley-Dickson process, described above,
are flexible and power associative for all t ≥ 1 and, in general, are not division
algebras for all t ≥ 1.

For t = 2, we obtain the generalized quaternion algebras over the field K.
If we take K = R and δ1 = δ2 = −1, we obtain the real quaternion algebra
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over R. This algebra is an associative and a noncommutative algebra and will
be denoted with H.

Let H be the real quaternion algebra with basis {1, i, j, k}, where

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj. (7.)

Therefore, each element from H has the following form

q = a+ bi+ cj + dk, a, b, c, d ∈ R.

We remark that H is a vector space of dimension 4 over R with the addition
and scalar multiplication. Moreover, H has a ring structure with multiplication
given by (7) and the usual distributivity law.

If we consider K a finite field with charK 6= 2, due to the Wedderburn’s
Theorem, a quaternion algebra over K is allways a non division algebra or a
split algebra.

3. Characterization of k-potent elements in algebras obtained by
the Cayley-Dickson process

In the paper [Mo; 15], the author gave several characterizations of k-potent
elements in associative rings from an algebraic point of view. In [RPC; 22],
the authors presented some properties of (m, k)-type elements over the ring of
integers modulo n and in [Wu; 10], the author emphasize the applications of
k-potent matrices to digital image encryption.

In the following, we will study the properties of k-potent elements in a
special case of nonassociative structures, that means we characterize the k-
potent elements in algebras obtained by the Cayley-Dickson process over the
field of integers modulo p, p a prime number greater than 2, K = Zp.

Remark 2. Since algebras obtained by the Cayley-Dickson process are
power associative, we can define the power of an element. In this paper, we
consider At such an algebra, given by the relation (3), with δi = −1, for all
i, i ∈ {1, ..., t}. We consider x ∈ At, a k-potent element, that means k is the
smallest positive integer with this property. Since At is a quadratic algebra,
from relation (1), we have that x2 − t (x) x + n (x) = 0, with t (x) ∈ K the
trace and n (x) ∈ K the norm of the element x. To make calculations easier,
we will denote t (x) = tx and n (x) = nx.

Remark 3. In general, algebras obtained by the Cayley-Dickson process
are not composition algebras, but the following relation

n (xm) = (n (x))
m

is true, for m a positive integer. Indeed, we have n (xm) = xmxm and (n (x))
m

=
(xx)m = xx · ... · xx, m-times with x = tx − x, tx ∈ K. Since x and x are in
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the algebra generated by x, they associate and comute, due to the power asso-
ciativity property. If x ∈ At is an invertible element, that means nx 6= 0, then
the same remark is also true for x−1 = x

nx

, the inverse of the element x. The

element x−1 is in the algebra generated by x, therefore associate and comute
with x.

ii) We know that x2− txx+nx = 0. If x ∈ At is a nonzero k-potent element,
then, from the above, we have nx = 0 or nx 6= 0 and nk−1

x = 1.
iii) Let x ∈ At be a nonzero k-potent element such that nx 6= 0. Then, the

element x is an invertible element in At such that xk−1 = 1. Indeed, if xk = x,
multiplying with x−1 we have xk−1 = 1.

iv) For a nilpotent element x ∈ At there is a positive integer k ≥ 2 such
that xk = 0, k the smallest with this property. From here, we have that nx = 0,
therefore x2 = txx. It results that x

k = txx
k−1, then txx

k−1 = 0 with xk−1 6= 0.
We get that tx = 0 and x2 = 0. Therefore, we can say that in an algebra At, if
exist, we have only nilpotent elements of index two.

In the following, we will characterize the k-potent elements in the case when
nx = 0.

Proposition 4. The element x ∈ At, x 6= 0, with nx = 0 and tx 6= 0 is a
k-potent element in At if and only if tx is a k-potent element in Z∗

p, 2 ≤ k ≤ p

(tx has k − 1 as multiplicative order in Z∗
p).

Proof. We must prove that if k is the smallest positive integer such that
xk = x, then tkx = tx, therefore tk−1

x = 1, with k the smallest positive integer
with this property.

We have xk = xk−2x2 = xk−2txx = txx
k−1 = txx

k−3x2 = t2xx
k−2 = ... =

tk−1
x x. If tk−1

x = 1, we have xk = x and if xk = x, we have x = tk−1
x x, therefore

tk−1
x = 1.

Now, we must prove that k ≤ p. We know that in Zp the multiplicative
order of a nonzero element is a divisor of p− 1. If the order is p− 1, the element
is called a primitive element. If tx 6= 0 in Zp and tk−1

x = 1, it results that
(k − 1) | (p− 1), then k − 1 ≤ p− 1 and k ≤ p.

Remark 5. For elements x with nx = 0 and tx 6= 0, from the above theorem,
we remark that in an algebra At over Zp we have k ≤ p, where k is the potency
index. That means the k-potency index in these conditions does not exceed the
prime number p. Since ap−1 ≡ 1 mod p, for all nonzero a ∈ Zp, allways it results
that xp = x. It is not necessary for p to be the smallest with this property.

Example 6. If we take p = 5 and we have x ∈ At such that x38 = x, since

we known that x5 = x, we obtain x38 = x35x3 =
(

x5
)7

x3 = x7x3 = x10 =
x5x5 = x2. Therefore, x2 = x and the k-potency index is 2.

In the following, we will characterize the k-potent elements when nx 6= 0
and nk−1

x = 1. We suppose that k ≥ 3. Indeed, if k = 2, we have x2 = x, then
x = 1.

The following result it is well known from literature. We reproduce here the
proof.
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Proposition 7. Each element of a finite field K can be expressed as a sum
of two squares from K.

Proof. If charK = 2, we have that the map f : K → K, f (x) = x2 is
an injective map, therefore is bijective and each element from K is a square.
Indeed, if f (x) = f (y), we have that x2 = y2 and x = y or x = −y = y,since
−1 = 1 in charK = 2.

Assuming that charK = p 6= 2. We suppose that K has q = pn elements,
then K∗ has q− 1 elements. Since (K∗, ·) is a cyclic group with q− 1 elements,
K∗ = {1, v, v2, ..., vq−2}, half of them, namely the even powers are squares. The
zero element is also a square, then we have q−1

2 +1 = q+1
2 square elements from

K which are squares. We known that from a finite group (G, ∗) if S and T are
two subsents of G and |S|+ |T | > |G|, we have that each x ∈ G can be expresses
as x = s ∗ t, s ∈ S, t ∈ T . For g ∈ G, we consider the set gS−1 = {g ∗ s−1,

s ∈ S} wich has the same cardinal as the set T . Since |S|+ |T | > |G|, it results
that |T |+

∣

∣gS−1
∣

∣ > |G|, therefore T ∩ gS−1 6= ∅. Then, there are the elements
s ∈ S and t ∈ T such that t = g ∗ s−1 and g = s ∗ t. Now, if we consider S

and T two sets equal with the multiplicative. In the group (K,+), we have that
|S|+ |T | = q+1 > |K|, therefore each x ∈ K can be writen as x = s2 + t2, with
s ∈ S, t ∈ T .

Remark 8. i) We can find an element w ∈ At, different from elements of
the base, such that w2 = −1. Indeed, such an element has nw = 1 and tx = 0.
With the above notations and from the above proposition, since 1 = a2 + b2,
we can take wij = afi + bfj , a, b ∈ Zp and fi, fj elements from the basis in At,
given by (4). Therefore, w2

ij = −1.

ii) The group
(

Z∗
p, ·

)

is cyclic and has p−1 elements. Elements of order p−1
are primitive elements. The rest of the elements have orders divisors of p− 1.

Now, we consider the equation in At

xn = 1, n a positive integer. (8.)

In the following, we will find some conditions such that this equation has
solutions different from 1.

Remark 9. i) With the above notations, we consider w ∈ At a nilpotent
element (it has the norm and the trace zero). Therefore, the element z = 1+w

has the property that zn = 1 + nw, therefore if n = pr, r a positive integer,
the equation (8) has solutions of the form z = 1 + w, for all nilpotent elements
w ∈ At. It is clear that z has the norm equal with 1 and zp = 1, therefore
zp+1 = z, is a p-potent element.

ii) If we consider η ∈ Z∗
p with the multiplicative order θ and z = η + w, w

nilpotent, we have that (η + w)p = ηp+pw = ηp and (η + w)pθ = 1. Therefore,
if n = pr, r a positive integer, the equation (8) has solutions of the form z = 1+w,
for all nilpotent elements w ∈ At. If r is a multiplicative order of an element
from Z∗

p and n = pr, r a positive integer, then the equation (8) has solutions of
the form z = η + w, for all η ∈ At, η of order r, w a nilpotent element in At.
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iii)With the above notations, we consider the element w ∈ At sucht that

w2 = −1 and z = 1 + w. We have that z2 = (1 + w)2 = 2w, z3 = (1 + w)3 =

2w−2 and z4 =
(

z2
)2

= −4 modulo p. Let η = −4 ∈ Z∗
p with the multiplicative

order θ, θ is allways an even number. We have that z4θ = 1.
iv) Let z = a+w ∈ At, where a ∈ Zp and w ∈ At, with tw = 0 and nw 6= 0.

We have that w2 = α ∈ Z2
p, therefore, z

r = Cr +Drw. If zs = 1, then there is
a positive integer m ≤ s such that Cm = 0 or Dm = 0. Indeed, if m = s, we
have Ds = 0 and Cs = 1.

Proposition 10. By using the above notations, we consider the element
z = a + w, where a ∈ Zp and w ∈ At with the trace zero. Assuming that there
is a nonegative integer m such that Cm or Dm is zero, then there is a positive
integer k such that zk = 1 and z is (k + 1)-potent element.

Proof. Since w has the trace zero, let w2 = β, with τ the multiplicative
order of β. We have that zm = Cm+Dmw,Cm, Dm ∈ Zp. Supposing that Cm is
zero, then we have zm = Dmw, with θ the multiplicative order of Dm. Therefore
zmM = 1, where M =lcm {2τ, θ}. If Dm is zero, then we have zm = Cm with
υ the multiplicative order of Cm. It results that zυm = 1.

Now, we can say that we proved the following theorem.

Theorem 11. With the above notations, an element z ∈ At is a k-potent
element, if z is of one of the forms:

Case 1. nz 6= 0.
i) z = 1 + w, with w ∈ At, w is a nilpotent element. In this case, z is

(p+ 1)-potent;
ii) z = 1 + w, with w ∈ At sucht that w2 = −1. Since z4 = −4 modulo p

and θ is the multiplicative order of −4 in Z∗
p, we have that z is (4θ + 1)-potent.

iii) z = a + w, where a ∈ Zp, w ∈ At with tw = 0, w2 = β ∈ Z∗
p, with

τ the multiplicative order of β, and zr = Cr + Drw. Assuming that there is
a nonegative integer m such that Cm or Dm is zero, then there is a positive
integer k such that zk = 1 and z is (k + 1)-potent element. If Cm = 0, then

k = mM , where M =lcm {2τ, θ} and θ is the multiplicative order of Dm. If
Dm = 0, then we have k = υm, with υ the multiplicative order of Cm.

Case 2. nz = 0. The element z ∈ At is k-potent if and only if tz is k-potent
element in Z∗

p, that means k − 1 is a divisor of p− 1.

Example 14. In the following, we will give some examples of values of the
potency index k.

i) Case p = 5 and t = 2, therefore we work on quaternions. We consider
z = 2 + i + j + k with the norm nx = 2 6= 0. We have w = i + j + k and
z = 2 + w. We have z2 = 1 + 4w, z3 = 4w, therefore m = 3 and Dm = 4, with
θ = 4. Since w2 = 2, it results that τ = 4 and M = 4. We have that z24 = 1,
then z25 = z and z is 25-potent element, k = 25.

ii) Case p = 7, t = 2 and z = 2 + i + j + k. The norm is zero and the trace
is 4. Since 4 has multiplicative order equal with 3, from Proposition 4, we have
z4 = z. Indeed, z2 = 1 + 4w, z3 = 4+ 2w, z4 = 2 + w = z and k = 4.
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iii) Case p = 5 and t = 2. The element z = 1+3i+4j has nz = 1, w = 3i+4j,
with nw = tw = 0, therefore w is a nilpotent element . We have z5 = 1, z6 = z

and k = 6.
iv) Case p = 3 and t = 2. The element z = 1 + i + j + k has nz = 1 and

w = i + j + k. We have z2 = (1 + w)
2
= 1 + 2w, z3 = (1 + w) (1 + 2w) =

1 + 2w + w = 1, therefore z4 = z and k = 4.
v) Case p = 5, t = 2. We consider the element z = 2 + 3i + j + 3k =

2 + 3w,w = i + 2j + k, nz = 3, nw = 1, tw = 0, then w2 = −1. We have that
τ = 2 and z2 = 2w. Therefore m = 2, C2 = 0, D2 = 2, then θ = 4 and ,
therefore we work on quaternions. It results zmM = z8 = 1, therefore z9 = z

and k = 9.
vi) Case p = 5, t = 2. We consider the element z = 2 + i + j + k = 2 + w

with nz = 2, nw = 3, tw = 0, w2 = 2 and τ = 4, the order of β = 2. We have
z2 = 3 + 4w, z3 = 4 + w, z4 = 1 + 4w, z5 = 4w, therefore m = 5, C5 = 0, D5 =
4, θ = 2,M =lcm{2τ, θ} = 8. It results that zmM = z40 = 1, then z41 = z and
k = 42.

vii) Case p = 11, t = 2. We consider the element z = 2i + 7j + 3k with
nz = 7, z2 = 4, therefore m = 2, D2 = 0, C2 = 4, υ = 5, the multiplicative order
of C2 = 4. We have zmυ = z10 = 1 and k = 11.

viii) Case p = 13, t = 3, therefore we work on octonions. We consider the
element z = 3 + 2f1 + f2 + f3 + f4 + f5 + f6 + f7 = 3 + w, w = 2f1 + f2 +
f3 + f4 + f5 + f6 + f7, with nz = 6, nw = 10, tw = 0. We have w2 = 3 and
τ = 3, the order of β = 3. It results, z2 = 12 + 2w, z3 = 3 + 5w, z4 = 9w, then
m = 4, C4 = 0.D4 = 9, θ = 3 ,M =lcm{2τ, θ} = 6. We get zmM = z24 = 1,
then z25 = z and k = 25.

ix) Case p = 17, t = 4, therefore we work on sedenions. The Sedenion algebra
is a noncommutative, nonassociative and nonalternative algebra of dimension

16. We consider the element z = 1 + w,w =
15
∑

i=1

fi, with w2 = 2 and τ = 8. It

results z2 = 3 + 2w, z3 = 4w. Then m = 3, C3 = 0, D3 = 4, θ = 4. We have
M =lcm{2τ, θ} =lcm{16, 4} = 16 and zmM = z48 = 1. It results z49 = z and
k = 49.

Remark 15. The (m, k)-type elements in At, with m, n positive integers,
are the elements x ∈ At such that xm = xk, m ≥ k, smallests with this property.
If nx 6= 0, then xm−k = 1 and x is an (m− k + 1)-potent element. If nx = 0
and tx 6= 0, we have that tm−k

x = 1, then x is an (m− k + 1)-potent element.
Therefore, an (m, k)-type element in At is an (m− k + 1)-potent element in At.

4. A nonunitary ring structure of quaternion Fibonacci elements
over Zp

The Fibonacci numbers was introduced by Leonardo of Pisa (1170-1240)
in his book Liber abbaci, book published in 1202 AD (see [Kos; 01], p. 1-3).
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The nth term of these numbers is given by the formula:

fn = fn−1 + fn−2, n ≥ 2,

where f0 = 0, f1 = 1.

In [Ho; 63], were defined and studied Fibonacci quaternions over H, defined
as follows

Fn = fn1 + fn+1i+ fn+2j + fn+3k,

called the nth Fibonacci quaternions.
In the same paper, the norm formula for the nth Fibonacci quaternions

was found:

n (Fn) = FnFn = 3f2n+3,

where Fn = fn · 1 − fn+1i − fn+2j − fn+3k is the conjugate of the Fn in the
algebra H.

Fibonacci sequence is also studied when it is reduced modulo m. This se-
quence is periodic and this period is called Pisano’s period, π (m). In the follow-
ing, we consider m = p, a prime number and (fn)n≥0 , the Fibonacci numbers
over Zp. It is clear that, in general, the sum of two arbitrary Fibonacci num-
bers is not a Fibonacci numbers, but if these numbers are consecutive Fibonacci
numbers, the sentence is true. In the following, we will find conditions when the
product of two Fibonacci numbers is also a Fibonacci number. In the following,

we work on At, t = 2, over the field Zp. We denote this algebra with Hp.
Let F1 = a+bi+(a+ b) j+(a+ 2b) k and F2 = c+di+(c+ d) j+(c+ 2d) k,

two Fibonacci quaternions in Hp. We will find conditions such that F1F2 and
F2F1 are also Fibonacci quaternion elements, that means elements of the same
form:

A+Bi + (A+B) j + (A+ 2B) k. (10.)

We compute F1F2 and F2F1 and we obtain that

F1F2 = (−ac− 3ad− 3bc− 6bd)+2adi+2a (c+ d) j+(2ac+ ad+ 3bc)k (11.)

and

F2F1 = (−ac− 3ad− 3bc− 6bd)+2bci+2c (a+ b) j+(2ac+ 3ad+ bc) k. (12.)

By using relation (10), we get the following systems, with c, d as unknowns.
From relation (11), we obtain:

{

(−3a− 3b) c+ (−3a− 6b)d = 0
(−6b− 3a) c+ (−6b)d = 0

(13.)

From relation (12), we obtain the system:

{

(−3a+ 3b) c+ (−3a)d = 0
(−3a) c+ (−6a− 6b) d = 0

(14.)
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We remark that for p = 3, the systems (13) and (14) have solutions, there-
fore, for p = 3, there is a chance to obtain an algebraic structure on the set
Fπ(p), the set of Fibonacci quaternions over Zp.

For p = 3, the Pisano’s period is 8, then we have the following Fibonacci
numbers: 0, 1, 1, 2, 0, 2, 2, 1. We obtain the following Fibonacci quaternion ele-
ments: F0 = i+ j + 2k, F1 = 1 + i+ 2j, F2 = 1 + 2i+ 2k, F3 = 2 + 2j + 2k,
F4 = 2i+2j+k, F5 = 2+2i+ j, F6 = 2+ i+k, F7 = 1+ j+k, therefore Fπ(p) =
{Fi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7}}. All these elements are zero norm elements. F0 and
F4 are nilpotents, F3, F5 and F6 are idempotent elements, F1, F2, F7 are 3-potent
elements, By usyng C + + software, we computed the sum and the product of
these 8 elements. Therefore, we have F0Fi = 0, for i ∈ {0, 1, ..., 7}, F4Fi = 0,
for i ∈ {0, 1, ..., 7}, F5Fi = Fi, for i ∈ {0, 1, ..., 7}, F6Fi = Fi, for i ∈ {0, 1, ..., 7}
and

F1F0 = F4, F
2
1 = F5, F1F2 = F6, F1F3 = F7,

F1F4 = F0, F1F5 = F1, F1F6 = F2, F1F7 = F3,

F2F0 = F4, F2F1 = F5, F
2
2 = F6, F2F3 = F7,

F2F4 = F0, F2F5 = F1, F2F6 = F2, F2F7 = F3,

F3F0 = F0, F3F1 = F1, F3F2 = F2, F
2
3 = F3,

F3F4 = F4, F3F5 = F5, F3F6 = F6, F3F7 = F7,

F7F0 = F4, F7F1 = F5, F7F2 = F6, F7F3 = F7,

F7F4 = F0, F7F5 = F1, F7F6 = F2, F
2
7 = F3.

Regarding the sum of two Fibonacci quaternions over Z3, we obtain:

2F0 = F4, F0 + F1 = F2, F0 + F2 = F7, F0 + F3 = F6, F0 + F4 = 0,

F0 + F5 = F3, F0 + F6 = F5, F0 + F7 = F1, 2F1 = F5, F1 + F2 = F3,

F1 + F3 = F0, F1 + F4 = F7, F1 + F5 = 0, F1 + F6 = F4, F1 + F7 = F6,

2F2 = F6, F2 + F3 = F4, F2 + F4 = F1, F2 + F5 = F0, F2 + F6 = 0,

F2 + F7 = F5, 2F3 = F7, F3 + F4 = F5, F3 + F5 = F2, F3 + F6 = F1,

F3 + F7 = 0, 2F4 = F0, F4 + F5 = F6, F4 + F6 = F0, F4 + F7 = F2,

2F5 = F1, F5 + F6 = F7, F5 + F7 = F4, 2F6 = F2, F6 + F7 = F0,

2F7 = F3.

From here, we have the following result..
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Proposition 16.
(

Fπ(3) ∪ {0},+
)

is an abelian group of order 9, isomor-

phic to Z3 × Z3 and
(

Fπ(3) ∪ {0},+, ·
)

is a nonunitary and noncommutative
ring.

5. An application in Cryptography

We consider an algebra At over Zp. This algebra is of dimension 2t. We
suppose that we have a text m to be encrypted and the alphabet has p elements,
p a prime number. To each letter from alphabet, will corespond a label from 0
to p− 1, that means we work on Zp. The encryption algorithm is the following.

1) We will split m in blocks and we will choose the lenght of the blocks of the
form 2t. For a fixed t, we will find an invertible element q, q ∈At, that means
nq 6= 0. This element will be the encryption key.

2) Supposing that m = m1m2...mr is the plain text, with mi blocks of lenght
2t, formed by the labels of the letters, to each mi = mi0mi1...mi2t−1 we will

associate an element vi ∈ At, vi =
2t−1
∑

j=0

mijfj .

3) We compute qvi = wi, for all i ∈ {1, 2, ..., r}. We obtain w = w1w2...wr,
the encrypted text.

To decrypt the text, we use the decryption key, then we compute d = q−1

and vi = dwi, for all i ∈ {1, 2, ..., r}.

Example 17. We consider the word MATHEMATICS and the key SINE.
We work on an alphabet with 29 letters, including blank space, denoted with
”*”, ”.” and ”,”. The labels of the letters are done in the below table

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9
K L M N O P Q R S T
10 11 12 13 14 15 16 17 18 19
U V W X Y Z * . ,
20 21 22 23 24 25 26 27 28

We consider t = 2, therefore we work on quaternions. We will add an ”A” at
the end of word ”MATHEMATICS”, to have multiple of 4 lenght text, therefore,
we will encode the text ”MATHEMATICSA”. We have the following blocks
MATH, EMAT, ICSA, with the corresponding quaternions v1 = 12+ 19j + 7k,
for MATH, v2 = 4 + 12i + 19k, for EMAT and v3 = 8 + 2i + 18j for ICSA.
The key is q = 18 + 8i+ 13j + 4k, it is an invertible element, with the nonzero
norm, nq = 22. We have w1 = qv1 = 28 + 24i + 7j + 7k, corresponding
to the message ”,YHH”, w2 = qv2 = 16 + 2i + 6j + 28k, corresponding to
the message ”QCG,” and w3 = qv3 = 10 + 28i + j + 5k, corresponding to the
message ”K,BF”. Therefore, the encrypted message is ”,YHHQCG,K,BF”. The
decryption key is d = q−1 = 14+26i+6j+13k. For decryption, we will compute
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dw1 = 12 + 19j + 7k = v1, dw2 = 4 + 12i+ 19k = v2, dw3 = 8 + 2i+ 18j = v3,
and we find the initial text ”MATHEMATICSA”.

Conclusion. In this paper we studied properties of some special elements in
algebras obtained by the Cayley-Dickson process and we find an algebraic struc-
ture(nonunitary and noncommutative ring) over Fibonacci quaternions over Z3.
Moreover, an encryption method by using these elements is also provided. As a
further research, we intend to study other special elements in the idea of finding
another good properties.
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