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Abstract 
This study investigates the foundational characteristics of image-to-image 

translation networks, specifically examining their suitability and transferability 

within the context of routine clinical environments, despite achieving high lev-

els of performance, as indicated by a Structural Similarity Index (SSIM) ex-

ceeding 95%. The evaluation study was conducted using data from 794 patients 

diagnosed with Prostate cancer (PCa). To synthesize MRI from Ultrasound 

(US) images, we employed five widely recognized image-to-image translation 

networks in medical imaging: 2D-Pix2Pix, 2D-CycleGAN, 3D-CycleGAN, 

3D-UNET, and 3D-AutoEncoder. For quantitative assessment, we report four 

prevalent evaluation metrics: Mean Absolute Error (MAE), Mean Square Error 

(MSE), Structural Similarity Index (SSIM), and Peak Signal to Noise Ratio 

(PSNR). Moreover, a complementary analysis employing Radiomic features 

(RF) via Spearman correlation coefficient was conducted to investigate, for the 

first time, whether networks achieving high performance (SSIM>90%) could 

identify low-level RFs. The RF analysis showed 76 features out of 186 RFs 

were discovered via just 2D-Pix2Pix algorithm while half of RFs were lost in 

the translation process. Finally, a detailed qualitative assessment by five medi-

cal doctors indicated a lack of low-level feature discovery in image-to-image 

translation tasks. This study indicates current image-to-image translation net-

works, even with a high performance (SSIM>0.90), don’t guarantee the discov-

ery of low-level information which is essential for the integration of synthesized 

MRI data into regular clinical practice. 
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1 Introduction 

Ultrasound (US) imaging offers real-time, cost-effective, and bedside diagnos-

tic capabilities. Recent advancements in transducer technology have propelled 

the adoption of point-of-care ultrasound (POCUS), extending its utility across 

various clinical domains and beyond hospital settings, particularly in resource-

constrained environments [1]. However, persisting challenges including low 

signal-to-noise ratio (SNR) and the prevalence of imaging artifacts continue to 

hinder the optimal utilization of both traditional cart-based and POCUS imag-

ing systems [1]. Recently, image-to-image translation methods have been in-

vestigated to overcome these problems. 

In [2], authors proposed synthesizing pseudo-CT images from US scans.[3] 

investigated pseudo-anatomical display images generated from ultrasound data. 

[4] explored a generative attention network for synthesizing X-ray spine images 

from US scans. Additionally, [5] introduced a self-supervised method for syn-

thesizing MRI fetal brain images from US scans. Quantitative analysis of the 

synthesized images encompassed the evaluation of key metrics, including 

MAE, MSE, SSIM, and PSNR [6]. Since these metrics are not always sufficient 

to capture the complexity of the data and the underlying biological processes 

[7, 8, 9, 10], certain studies have examined the enhancements achieved in 

downstream tasks, such as image classification or segmentation [11, 12]. 

Radiomic features (RF), encompassing spatial distribution, shape, intensity, 

and texture of radiological structures within the translated images, could offer 

complementary insights to these metrics. Such analysis could ensure that criti-

cal diagnostic information such as changes and characteristics in tissues is not 

lost in the translation process [13]. However, to date, no study has explored the 

significance of RF analysis in the context of image synthesis. 

Therefore, this study aims to compare RFs extracted from the original high-

resolution data with those from translated US images (synthesized MRI im-

ages), examining the visual similarity of images at detailed information (low 

feature) levels. Specifically, we focus our attention on Prostate cancer (PCa), 

the second most common cancer in men and the fifth leading cause of cancer-

related deaths [14]. We make the following contributions: 1) We investigate the 

synthesis of MRI-like images from US data, utilizing five widely employed 

deep learning (DL) methods for medical image synthesis: 2D-CycleGAN, 2D-

Pix2pix, 3D-CycleGAN, 3D-AutoEncoder, and 3D-UNET [15]. Notably, this 

marks the first attempt to synthesize prostate MRI images from US data, with 

a specific focus on the detection of malignant lesions in PCa. 2) We extend the 

conventional quantitative analysis by investigating the capability of high-



performing networks, achieving SSIM scores exceeding 90%, in identifying 

low-level RFs. This novel exploration sheds light on the intricate relationship 

between image quality metrics and the extraction of clinically relevant features, 

providing valuable insights for future research in medical image analysis. 3) 

We contribute to the qualitative evaluation domain by engaging five experi-

enced medical professionals in assessing the synthesized MRI images. Their 

qualitative insights provide a nuanced understanding of the clinical utility and 

perceptual fidelity of the synthesized images, offering valuable feedback for 

refining and validating the proposed synthesis methodologies. 

2 Material and Methods 

2.1 Patient Data and Preprocessing Steps  

We employed 794 patients with PCa who had US, T2-weighted MRI, and 

masks delineated on both images from The Cancer Imaging Archive [16]. US 

scans were performed with Hitachi Hi-Vision 5500 7.5 MHz or the Noblus 

C41V 2-10 MHz end-fire probe while MR imaging was performed on a 3 Tesla 

Trio, Verio or Skyra scanner (Siemens, Erlangen, Germany). All MRI and US 

images were aligned by our clinical collaborators, linked with cropping 

(128×128×64 cubic millimeters) and min-max normalization of both images. 

2.2 DL-based Image Translation 

Five image-to-image translation algorithms were investigated to synthesize 

MRI from US images: 2D-CycleGAN, 2D-Pix2Pix, 3D-CycleGAN, 3D-Auto-

Encoder, and 3D-UNET [15]. All 2D-networks were trained using each 2D-

image from the volumetric data. The dataset with 794 patients was split into 3 

sections including 75% for training, 10% for training validation, and 15% for 

external testing. The performance of the networks is assessed through 4 evalu-

ation metrics: MAE, MSE, SSIM, and PSNR. We performed 2-fold cross-vali-

dation and reported average in all the experiments. Network parameters are 

listed in the supplemental file. 

2.3 RF Analysis 

Radiomics feature generator within ViSERA (visera.ca), extensively standard-

ized in reference to the Image Biomarker Standardization Initiative [17] was 

utilized to extract a total of 186 standardized RFs, including 2 local intensity 

(LI), 18 intensity-based statistics (IS), 23 intensity histogram (IH), 7 Intensity-

Volume Histogram (IVH), and 136 texture features containing gray level co-

occurrence matrix (GLCM; 50  features), gray level run-length matrix 



(GLRLM; 32 features), gray level size zones (GLSZM; 16 features), gray level 

distance zone matrix (GLDZM; 16 features), neighborhood gray-tone differ-

ence matrix (NGTDM, 5 features), and neighboring gray level dependence ma-

trix (NGLDM; 17 features). RF analysis was conducted using the Spearman 

correlation function and paired t-test. This analysis encompassed 186 RFs ex-

tracted from the segmented prostate gland of both the original and synthetic 

MRI images. Moreover, we did not utilize any morphological features in this 

study due to the utilization of identical masks for extracting such characteristics 

from various images, encompassing original and synthetic MRIs. 

2.4 Qualitative Analysis 

In the qualitative validation process, we initially present 15 synthetic MRI im-

ages randomly selected from the external testing dataset to five medical doctors 

with over five years of experience (row 2 in Table 1). Their task is to differen-

tiate between original and synthetic prostate MRI images (row 3 in Table 1). 

Following this, we provide the medical doctors with specified original and syn-

thetic MRI images and pose eight additional questions to them, prompting them 

to visually compare and evaluate the synthetic MRI images in relation to the 

original MRI and US images (rows 4-11 in Table 1). 

3 Results and Discussions 

3.1 DL-based Image Translation Quantitative Assessment 

As shown in Fig. 1, 2D-Pix2Pix algorithm significantly outperformed the other 

four generative algorithms, with an average MAE of 0.01±0.02, MSE of ~ 

0±0.01, SSIM of 0.95±0.14, and PSNR of 50.11±11.31 (P-values < 0.01, paired 

t-test, compared to the performance provided from other algorithms). 2D-Cy-

cleGAN had an average MAE of 0.1±0.01, MSE of 0.02±0, SSIM of 0.41±0.13, 

and PSNR of 18.7±0, while 3D-CycleGAN had an average MAE of 0.19±0.02, 

MSE of 0.06±0.01, SSIM of 0.33±0.03, and PSNR of 12.12±0.73. In addition, 

3D-UNET and 3D-AutoEncoder provided average MAEs of 0.12±0.02 and 

0.1±0.02; MSEs of 0.03±0.01 and 0.02±0.01; SSIMs of 0.5±0.06 and 

0.59±0.07, and PSNRs of 16.26±1.58 and 17.5±1.76, respectively.  

 

Fig. 2 shows qualitative results from four external testing examples of synthetic 

MRI images provided by 2D-Pix2Pix networks. The figure includes US, origi-

nal MRI, synthetic MRI, and the difference between original and synthetic MRI 

for four patients. 

 



 

Fig. 1. A distribution of four quantitative evaluation metrics: MAE, MSE, SSIM, and 

PSNR for 2D-Pix2Pix, 2D-CycleGAN, 3D-CycleGAN, 3D-AutoEncoder, and 3D-

UNET in synthesizing MRI images from US images, 

 
 

 

Fig. 2. Four examples of synthetic MRI images provided by 2D-Pix2Pix. Rows show 

Ultrasound, Original MRI, Synthetic MRI, difference between original and synthetic 

MRI images. Columns show different patients. All synthetic images had SSIMs>0.95. 



3.2 RF Analysis 

Koo and Li [18] provided a guideline that categorizes correlation coefficients 

as follows: i) below 0.50 is poor, ii) 0.50-0.75 is moderate, iii) 0.75- 0.90 is 

good, and iv) above 0.90 is excellent. Therefore, this research employed a 

threshold of 0.50 to distinguish between groups. Therefore, in our RF analysis, 

as shown in Fig. 3., feature similarity amounts enabled us to divide RFs into 3 

sub-sections, i) Group 1: the low-level RFs were successfully discovered by 

synthetic MRI images generated through majority of algorithms, ii) Group 2: 

the low-level RFs were successfully discovered from synthetic MRI images 

generated by 2D-Pix2Pix algorithm only, and iii) Group 3: the low-level RFs 

extracted from synthetic MRI images were not successfully discovered, even 

with high performance algorithm 2D-Pix2Pix.  

As shown in Fig. 3. (i), majority of algorithms, even with low performance 

(SSIM<0.6), enable the generation of synthetic MRI images, leading to the dis-

covery of 18 RFs including 1 IS, 2 NGLDM, 4 GLRLM, 2 GLSZM, 6 GLDZM, 

and 3 NGTDM features. As depicted in Fig. 3.  (ii), the analysis revealed that 

76 RFs extracted from synthetic MRI images produced by 2D-Pix2Pix network 

(demonstrating high performance with SSIM>0.90) exhibited a proportional re-

lationship between the quantitative performance of network and the discovery 

of low-level features. Thus, Group 2 includes 76 RFs with correlation > 0.5 

including 5 IS, 17 IH, 2 IVH, 26 GLCM, 6 NGLDM, 12 GLRLM, 3 GLSZM, 

3 GLDZM, and 1 NGTDM. Moreover, Group 3 demonstrated that none of the 

algorithms, including the one with high performance, facilitated the discovery 

of 93 low-level features, including 2 LI, 12 IS, 6 IH, 5 IVH, 24 GLCM, 9 

NGLDM, 16 GLRLM, 11 GLSZM, 7 GLDZM, 1 NGTDM features (see Fig. 

3. (iii)).  

 



 

Fig. 3. Different Radiomic feature (RF) groups provided by RF Analysis. i) Group 1 

showed 18 low-level RFs successfully discovered by synthetic MRI images generated 

through majority of algorithms, ii) Group 2 showed 76 low-level RFs were successfully 

discovered from synthetic MRI images generated by 2D-Pix2Pix, and iii) Group 3 

showed synthetic MRI images generated by the current generative networks couldn’t 

discovered 93 low-level RFs. 

 



3.3 Qualitative Analysis 

The qualitative evaluation of synthetic MRI images, guided by feedback from 

experienced medical practitioners, was centered on assessing the fidelity of an-

atomical delineation and tissue contrast compared to original MRI counterparts. 

Five doctors assessed the perceptual clarity of anatomical structures, precision 

of boundary delineation, and the presence of any discernible artifacts, crucial 

factors underpinning the integration of synthetic MRI into clinical practice. As 

mentioned previously, each doctor possessed extensive expertise exceeding 

five years in the interpretation of diverse medical imaging modalities including 

MRI and US (Table 1, row 2). All five experts could discriminate synthetic 

MRI from original MRI (row 3). Although the synthetic images had averaged 

SSIM>0.90, all doctors believed that the quality of synthetic MRI images (in 

terms of detailed information) was not comparable with the original ones (row 

4).  

Table 1. Qualitative analysis of synthetic MRI by 5 medical doctors (D). 

Questions (Q), Scoring system: 0= zero, 1= low, 2=intermediate, 3=high, 4=very high D 1 D 2 D 3 D 4 D 5 

Q1: What is your medical specialty and how many years of experience do you have in in-

terpreting MRI and ultrasound images?   (years) 
<5 <6 <5 <5 <5 

Q2: How many doctors could discriminate the synthetic MRI from the original MRI 

properly? (15 external testing images existed) 
15 15 15 15 15 

Q3: After specifying synthetic and original MRI for you, how would you rate the overall 

quality of synthetic MRI images compared to original MRI?  
1 2 1 1 1 

Q4: Are there any noticeable artifacts or inaccuracies in the synthetic MRI images?   4 2 4 4 3 
Q5: How confident are you in making a diagnosis based on synthetic MRI images versus 

original MRI?   
1 1 1 1 1 

Q6: Do synthetic MRI images offer any additional diagnostic information compared to the 

original MRI images? How much?   
0 0 0 0 0 

Q7: Do synthetic MRI images offer any additional diagnostic information compared to the 

original Ultrasound images? How much?   
2 2 3 2 3 

Q8: How do you assess the resolution and contrast of the synthetic MRI images, compared 

to original MRI images?   
1 2 1 2 2 

Q9: In your opinion, how much are the potential clinical benefits of using synthetic MRI 

images?   
4 3 3 4 3 

Q10: Would you support the integration of synthetic MRI technology into regular clinical 

practice? How much?  
4 4 4 4 4 

 

 

Furthermore, practitioners remarked upon the salient presence of artifacts 

with-in synthetic MRI images, serving as a distinguishing hallmark vis-à-vis 

their authentic counterparts (row 5). All experts believed that diagnosis using 

the synthetic MRI (even with SSIM>0.90) is difficult, compared to original 

MRI images (row 6). Although all doctors believed that synthetic MRI images 

added no value to the diagnosis procedure, compared to the original MRI (row 

7), some of the experts expressed that the synthetic MRI images added value to 

the diagnosis process, compared to US images (row 8). While navigating the 

diagnostic landscape with synthetic MRI images posed challenges, even with 

SSIM>0.90, experts acknowledged potential value additions compared to US 

imaging (row 8). Nonetheless, the majority consensus underscored the percep-

tible discrepancies in resolution and contrast levels between synthetic and 



original MRI images (row 9). Collectively, practitioners underscored the lack 

of detailed anatomical information, particularly pertaining to low-level fea-

tures, within synthetic MRI images - a pivotal focus of this inquiry. Thereby, 

they were convinced that there are potential clinical benefits of using synthetic 

MRI images and strongly support the integration of synthetic MRI technology 

into regular clinical practice if the synthetic MRI images include detailed infor-

mation (rows 10 and 11).   

4 Discussions 

We have shown that RF analysis is vital to address the limitations of standard 

metrics such as MAE, MSE, SSIM, and PSNR in image-to-image translation 

tasks. While conventional metrics primarily focus on quantifying overall error 

and similarity, RFs delve deeper, capturing nuanced aspects such as shape, in-

tensity, texture, and patterns. These features are pivotal for unraveling the un-

derlying biological and pathological information, providing a richer under-

standing of the intricacies within the synthesized medical imaging data [13]. 

Our analysis investigates that translated images retain clinically relevant infor-

mation, bridging the gap between statistical accuracy and clinical utility, which 

is often overlooked by conventional evaluation metrics. We believe that this 

deeper level of analysis is essential in a clinical context, as it can reveal subtle 

changes and characteristics in tissues that might be crucial for accurate diagno-

sis, disease monitoring, and treatment planning [13]. By integrating RFs, we 

ensure that the image translation algorithms are not only statistically accurate 

but also effective and meaningful in real-world medical applications, enhancing 

the reliability and utility of these technologies in healthcare settings [19]. 

 RF analysis in this study indicated that RFs can be divided into three sec-

tions in US to MRI translation, including i) a set of low-level features (RFs) 

that can be discovered by the majority of networks, even with low-performance 

algorithms, ii) a set of low-level features that can be discovered by high-perfor-

mances networks only, and iii) a set of low-level features currently undetectable 

by any existing networks (high or low performance networks). RF analysis, be-

yond conventional metrics quantifying overall error and similarity, obviously 

shows that current translation networks, even 2D-Pix2Pix with SSIM>90% are 

not able to discover half of RFs (93 out of 186 RFs in Group 3). Group 1 showed 

that 18 RFs out of 186 features can be discovered by the majority of algorithms, 

even with low-performance algorithms while Group 2 indicated that just 76 RFs 

can be roughly restored by high-performance translation networks (2D-

Pix2Pix).  

Thus, the identification of RFs is contingent upon the efficacy of algorithms 

such as MAE, MSE, SSIM, and PSNR. Notably, algorithms demonstrating su-

perior performance, exemplified by 2D-Pix2Pix, facilitate the synthesis of MRI 



images, thereby enabling the discernment of certain low-level RFs. Despite the 

marked significant enhancement observed in the similarity index of RFs de-

rived from synthetic MRI images generated by 2D-Pix2Pix in comparison to 

other image-to-image algorithms across various groups (P-Value<0.05, paired 

t-test), there persists a pressing imperative to refine image-to-image translation 

networks to optimize the performance of low-level features. 

Qualitative analysis indicated that differences in quality, existing artifacts, 

resolution, and contrast between synthetic and original MRI images enabled all 

doctors to successfully discriminate between the synthetic and original MRI 

images. Furthermore, all doctors expressed that diagnosis using the synthetic 

MRI (even with SSIM>0.90), compared to original MRI images, is difficult and 

the synthetic MRI images didn’t cover all low-level features which are essential 

for successful diagnosis decision-making. Thus, it can be concluded that trans-

lation networks with high performances didn’t guarantee appropriate discovery 

of low-level features. Although some doctors expressed that the synthetic MRI 

images added value to the diagnosis process compared to US images, they be-

lieved detailed information enhancement of synthetic MRI images can lead to 

the integration of synthetic MRI technology into regular clinical practice, espe-

cially in low-resource limited settings where access to MRI is challenging, as 

pursued in this study. 

Our RF analysis indicated that 74% of IH features belonged to Group 2, 

which highly depends on network performance. These features offer a compre-

hensive quantitative analysis of tumor traits in medical images, improving can-

cer diagnosis and assessment. By quantifying pixel intensities, they reveal de-

tails about tumor heterogeneity, the microenvironment, and responses to treat-

ment, indicating cellular and environmental complexities. Statistics like Mean, 

Variance, Skewness, and Kurtosis analyze the distribution's tendency and 

shape, while Median, Mode, and Percentiles examine the data's central aspects 

and variability. Additionally, metrics such as Entropy, Uniformity, and Gradi-

ent evaluate image texture and edges, crucial for assessing tissue characteristics 

and aiding clinical decision-making. 

GLCM features, complementing visual assessment, are a statistical method 

to analyze image texture. In this study, 53% of GLCM features belonged to 

Group 2 while the remaining 47% of features went to Group 3, indicating dis-

abilities of the current networks to discover these kinds of features. These fea-

tures quantify the co-occurrence of gray levels at specific offsets, providing 

information about homogeneity, contrast, and other textural properties of im-

ages. Radiologists use GLCM features to differentiate between healthy and ab-

normal tissues, aiding in disease detection and prognosis. 

Most NGTDM features fell into Group 1, showing a general consistency with 

network performance. These features examine the local differences in gray-tone 

intensities in medical images, offering crucial texture information that improves 

the accuracy of visual assessments. This assists in differentiating between 



malignant and benign lesions, thereby enhancing diagnostic decisions. All fea-

tures of LI and most features of IS fall under Group 3. These characteristics 

help measure minor changes in the intensity of individual pixels in tumor areas, 

enhancing visual evaluations. Furthermore, IVH features, indicating the rela-

tionship between a gray level area and the fraction of the volume of the histo-

gram, offer a comprehensive perspective on the distribution of intensity, assist-

ing medical professionals in grasping the diversity within tumors. Further, the 

majority of GLRLM, GLSZM, NGLDM, and GLDZM belonged to Group 3. 

These features provide insights into tumor heterogeneity, spatial patterns, and 

microstructure, guiding clinical decisions and patient management.  

A recent study [20] has developed a novel technique for enhancing MRI-to-

CT image conversion, utilizing a loss function derived from GLCM to repro-

duce texture features more accurately in generated CT images. This method 

surpasses traditional pixel-based approaches by focusing on improving texture 

quality, potentially offering significant benefits to medical image synthesis and 

its clinical applications. Considering that RFs derived from multiple imaging 

techniques provide extra information for various purposes, the selection of the 

most pertinent features for inclusion in the loss function grows more compli-

cated and will be left for a future study. 

5 Conclusions 

In summary, this study, employing RF and qualitative analysis conducted by 

five experienced physicians, determined that synthetic MRI images produced 

by existing image-to-image translation algorithms, despite achieving a high 

SSIM performance of 0.95, fail to facilitate the detection of crucial low-level 

features essential for accurate diagnosis and decision-making processes. Con-

sequently, there is a pressing need for further refinement of image-to-image 

translation networks to enhance the performance of low-level features. Future 

work will involve exploring loss functions that integrate RF into their design, 

aiming to augment the rate of feature discovery. 
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