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LIPSCHITZ-TYPE ESTIMATE FOR THE FROG MODEL WITH

BERNOULLI INITIAL CONFIGURATION

VAN HAO CAN, NAOKI KUBOTA, AND SHUTA NAKAJIMA

Abstract. We consider the frog model with Bernoulli initial configuration, which
is an interacting particle system on the multidimensional lattice consisting of two
states of particles: active and sleeping. Active particles perform independent
simple random walks. On the other hand, although sleeping particles do not
move at first, they become active and can move around when touched by active
particles. Initially, only the origin has one active particle, and the other sites have
sleeping particles according to a Bernoulli distribution. Then, starting from the
original active particle, active ones are gradually generated and propagate across
the lattice, with time. It is of interest to know how the propagation of active
particles behaves as the parameter of the Bernoulli distribution varies. In this
paper, we treat the so-called time constant describing the speed of propagation,
and prove that the absolute difference between the time constants for parameters
p, q ∈ (0, 1] is bounded from above and below by multiples of |p− q|.

1. Introduction

In this paper, we consider the frog model with Bernoulli initial configuration on
the d-dimensional lattice Zd (d ≥ 2). This model consists of two types of particles:
active and sleeping. Active particles perform independent simple random walks on
Zd. On the other hand, although sleeping particles do not move at first, they become
active and can move around when touched by active particles. Initially, only the
origin 0 of Zd has one active particle, and the sites of Zd \{0} have sleeping particles
according to the Bernoulli distribution with some parameter. Then, starting from
the original active particle, active ones are gradually generated and propagate across
Z
d, with time. Our main object of interest is the so-called time constant, which

describes the speed of propagation of active frogs. The time constant is a function
of the parameter of the Bernoulli distribution, and this paper aims to investigate how
the change in the parameter of the Bernoulli distribution affects the time constant.
In particular, we prove that the absolute difference between the time constants for
parameters p, q ∈ (0, 1] is bounded from above and below by multiples of |p− q|.

1.1. The model. Fix d ≥ 2, and denote by P the set of all probability measures on
N0 := N∪{0} not concentrated in zero. For a given Φ ∈ P, we consider a family ω =
(ω(x))x∈Zd of independent random variables with the common law Φ. Furthermore,
independently of ω, let S = ((Sk(x, ℓ))

∞
k=0)x∈Zd,ℓ∈N be a family of independent simple
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random walks on Zd satisfying that S0(x, ℓ) = x for x ∈ Zd and ℓ ∈ N. For every
x, y ∈ Zd, we now define the first passage time T (x, y) = T (x, y, ω, S) from x to y as

T (x, y) := inf

{
m−1∑

i=0

τ(xi, xi+1) :
m ≥ 1 and x0, x1, . . . , xm ∈ Zd

with x0 = x and xm = y

}
,

where

τ(xi, xi+1) = τ
(
xi, xi+1, ω(xi), S·(xi, ·)

)

:= inf
{
k ≥ 0 : Sk(xi, ℓ) = xi+1 for some ℓ ∈ [1, ω(xi)]

}
,

with the convention that τ(xi, xi+1) := ∞ if ω(xi) = 0. Note that the first passage
time satisfies the triangle inequality:

T (x, z) ≤ T (x, y) + T (y, z), x, y, z ∈ Z
d.(1.1)

On the event {ω(0) ≥ 1}, the first passage time T (0, y) is intuitively interpreted
as follows: First, we place “frogs” on Zd according to the initial configuration ω,
i.e., ω(x) frogs sit on each site x (there is no frog at x if ω(x) = 0). In particular,
the event {ω(0) ≥ 1} guarantees that we assign at least one frog to the origin 0.
The behavior of the ℓ-th frog sitting on a site x is controlled by the simple random
walk S·(x, ℓ), but not all frogs move around from the beginning. At first, the only
frogs sitting on 0 are active and perform simple random walks, whereas the other
frogs are sleeping and do not move. Each sleeping frog becomes active and starts to
perform a simple random walk once it is touched by an original active frog. When we
repeat this procedure for the remaining sleeping and upcoming active frogs, T (0, y)
represents the minimum time at which an active frog reaches y.
Alves et al. [2, Section 2] proved that for a given Φ ∈ P, there exists a norm

µ(·) = µΦ(·) on Rd (which is called the time constant) such that almost surely on
the event {ω(0) ≥ 1},

lim
n→∞

1

n
T (0, nx) = µ(x), x ∈ Z

d.

Furthermore, µ(·) is invariant under permutations of the coordinates and under
reflections in the coordinate hyperplanes, and satisfies

‖x‖ ≤ µ(x) ≤ µ(ξ1)‖x‖, x ∈ R
d,(1.2)

where ‖ · ‖ is the ℓ1-norm on R
d and ξ1 is the first coordinate vector of Rd. As a

consequence, Alves et al. [2, Theorem 1.1] also studied the asymptotic behavior of
the random set

B(t) := {x ∈ Z
d : T (0, x) ≤ t}, t ≥ 0,

which is the set of all sites visited by active frogs up to time t. More precisely, for
all ǫ > 0, the following holds almost surely on the event {ω(0) ≥ 1}: For all large t,

(1− ǫ)tB ∩ Z
d ⊂ B(t) ⊂ (1 + ǫ)tB ∩ Z

d,

where B = BΦ := {x ∈ R
d : µΦ(x) ≤ 1}, the asymptotic shape. This result is called

the shape theorem for the frog model, and it is clear from the properties of the time
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constant that the asymptotic shape B is a compact, convex, symmetric set with
nonempty interior.

1.2. Main result. Let 0 < r ≤ 1 and denote by Ber(r) the Bernoulli distribution
with parameter r. We now consider the initial configuration ω governed by Ber(r):

Pr(ω(x) = 1) = 1− Pr(ω(x) = 0) = r, x ∈ Z
d.

In this setting, at most one frog is assigned to each site of Zd. Hence, for abbrevia-
tion, write

S = (S·(x, 1))x∈Zd = (S·(x))x∈Zd.

For each x ∈ Zd, P x stands for the law of the simple random walk S·(x) starting
at x, and the product measure P :=

∏
x∈Zd P x is regarded as the law of frogs S.

Then, writing Pr := Pr × P and µr(·) := µBer(r)(·), we formulate the time constant
and the asymptotic shape in the Bernoulli setting as follows: Pr-a.s. on the event
{ω(0) = 1},

lim
n→∞

1

n
T (0, nx) = µr(x), x ∈ Z

d.(1.3)

From [13, Lemma 2.2], µr(x) is decreasing in the parameter r for every x ∈ Rd.
This combined with (1.2) implies that if 0 < p < q ≤ 1, then for all x ∈ Rd \ {0},

0 ≤
µp(x)− µq(x)

‖x‖
≤ µp(ξ1)− 1.

The aim of this paper is to give more precise upper and lower bounds for the above
fraction, and the following theorem is our main result.

Theorem 1.1. Let 0 < r0 < 1. Then, there exist constants A1, A2 > 0 (which
depend only on d and r0) such that if r0 ≤ p < q ≤ 1, then for all x ∈ Rd \ {0},

A1(q − p) ≤
µp(x)− µq(x)

‖x‖
≤ A2(q − p).

In particular, for a fixed x ∈ Rd \ {0}, the time constant µr(x) is strictly increasing
in r and Lipschitz continuous on every closed interval in (0, 1].

The above Lipschitz-type estimate for the time constant is inherited to the asymp-
totic shape. To explain this precisely, we introduce the Hausdorff distance between
two subset of Rd: for any Γ,Γ′ ⊂ R

d,

dH(A,B) := inf
{
δ > 0 : A ⊂ Nδ(B) and B ⊂ Nδ(A)

}
,

where for any Γ ⊂ Rd,

Nδ(Γ) :=
{
x ∈ R

d : ‖x− y‖ ≤ δ for some y ∈ Γ
}
.

Moreover, for any r ∈ (0, 1], set Br := BBer(r), which is the asymptotic shape for
the parameter r of the Bernoulli distribution. Then, as a consequence of Theo-
rem 1.1, the next corollary gives the difference between two asymptotic shapes in
the Hausdorff distance.
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Corollary 1.2. Let 0 < r0 < 1. Then, there exist constants A′
1, A

′
2 > 0 (which

depend only on d and r0) such that if r0 ≤ p < q ≤ 1, then

A′
1(q − p) ≤ dH(Bp,Bq) ≤ A′

2(q − p).

In particular, the asymptotic shape Br is strictly increasing in r.

Let us finally comment on earlier works related to the above results. In the frog
model on Z

d (d ≥ 1), [1] is the first published article investigating behaviors of the
first passage time and the set of sites visited by active frogs. That article treated
the one-frog-per-site configuration and proved that the first passage time and the
set of sites visited by active frogs grow linearly, with time. In [2], this result was
extended to the case where the initial configuration of frogs is random, and we ob-
tained the time constant and the asymptotic shape depending on the law of initial
configuration of frogs, as stated at the end of Section 1.1. Although the afore-
mentioned articles consider discrete-time simple random walks as frogs, Ramı́rez–
Sidoravicius [15] independently derived the time constant and the asymptotic shape
in the continuous-time frog model with the one-frog-per-site configuration (which
consists of continuous-time simple random walks).
The propagation of active frogs has recently been investigated more closely in

both discrete- and continuous-time settings, and we can find results on fluctuations
and large deviations as follows: In the discrete-time frog model on Z

d (d ≥ 2)
with random initial configuration, [12] provides some large deviation bounds for
the first passage time. More precisely, it proves that for any ǫ > 0, the conditional
probabilities of {T (0, x) ≥ (1+ǫ)µ(x)} and {T (0, x) ≤ (1−ǫ)µ(x)} given {ω(0) ≥ 1}
decay at least stretched exponentially as ‖x‖ → ∞. Furthermore, if we consider the
one-frog-per-site initial configuration, then [6] gives a sublinear variance bound for
the first passage time, i.e., for all x ∈ Zd \ {0}, the variance of T (0, x) is bounded
from above by a multiple of ‖x‖/ log ‖x‖. On the other hand, in the continuous-time
frog model on Z, [3] and [7,8] prove the large deviation principle and the central limit
theorem for the rightmost site visited by active frogs, respectively (We remark that
these articles adopt a slightly different initial configuration from our frog model).
Although the aforementioned articles fix the law of initial configuration, it is also

of interest to analyze the behavior of the time constant as the law of the initial
configuration varies. However, there are not a lot of results on this topic yet: In [11,
Corollary 9], Johnsona and Junge introduced a (nontrivial) stochastic order for
the initial configuration, and proved that the asymptotic shape is increasing in
that stochastic order. In [13], the second author showed continuities for the time
constant and the asymptotic shape in the law of the initial configuration. Note
that Theorem 1.1 and Corollary 1.2 strength the continuities as long as the initial
configuration is Bernoulli-distributed. We may be able to generalize these results to
other classes of distributions. However, [2, Theorem 1.2] shows that there exists a
class of distributions such that we cannot obtain similar lower bounds to those in
Theorem 1.1 and Corollary 1.2 as follows: Suppose that Φ ∈ P satisfies

Φ([t,∞)) ≥ (log t)−δ for some δ ∈ (0, d) and for all large t.(1.4)
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Then, µΦ(·) and BΦ coincide with the ℓ1-norm on Rd and the closed ℓ1-unit ball,
respectively. This implies that if Φ,Ψ ∈ P satisfy (1.4), then µΦ(x) − µΨ(x) = 0
for all x ∈ Rd and dH(BΦ,BΨ) = 0, and lower bounds as in Theorem 1.1 and
Corollary 1.2 never hold. In this way, there is a possibility that the propagation
of active frogs exhibits unusual behavior if the initial configuration has a heavy-
tailed distribution. In fact, [13, Proposition 1.4] exhibits that (1.4) can collapse the
continuity of the time constant in the law of the initial configuration. Moreover,
[4] and [5] show that in the continuous-time frog model on Z with random initial
configuration, the set of sites visited by active frogs becomes infinite in a finite time
if the law of initial configuration satisfies a heavy-tail condition weaker than (1.4).

1.3. Organization of the paper. Let us describe how the present article is orga-
nized. In Section 2, we prepare some estimates for the first passage time which are
used throughout the paper. Furthermore, our proofs are often done by constructing
a finitely dependent random variables and estimating the upper tail of their sum.
To do this, the result obtained by Can and Nakajima [6, Lemma 2.6] is useful, and
we state their result as Proposition 2.3 below for the convenience of the reader.
Section 3 is devoted to the proof of Theorem 1.1 and Corollary 1.2. The main tool

is Russo’s formula (see for instance [10, Theorem 2.32]) for the first passage time.
This tells us that Theorem 1.1 follows by estimating the influence of the absence
of one frog on the propagation of active frogs. Although Propositions 3.3 and 3.4
below play a role in estimating this effect, we use these propositions without their
proofs and complete the proofs of Theorem 1.1 and Corollary 1.2 for now.
Section 4 deals with the proofs of Propositions 3.3 and 3.4, which provide upper

and lower bounds for the influence of the absence of one frog on the propagation
of active frogs, respectively. In particular, to prove Proposition 3.4, we count the
number of frogs which contribute but delay the propagation of active frogs. Propo-
sition 4.4 estimates that number of frogs from below. Its proof is postponed into
Section 5 since we need some more work.
In Section 5, we prove Proposition 4.4. The key to proving Proposition 3.4 is to

observe that the first passage time is strictly greater than the ℓ1-norm with high
probability. In [13, Lemma 5.2], this behavior of the first passage time has been
already observed under the law Pr with a sufficiently small parameter r. However,
The result obtained in [13, Lemma 5.2] is not enough to prove Proposition 4.4 since
r is not necessarily small in the present paper. Hence, we first solve this problem in
Section 5.1, and next show Proposition 4.4 in Section 5.2.
We close this section with some general notation. Let r0 be a fixed parameter in

(0, 1), and this information is dropped from all statements below. Denote by E, Er

and Er the expectation associated to the laws Pr, P and Pr stated in Section 1.2,
respectively. The ℓ1-norm on Rd is designated by ‖ · ‖, and set B(x,R) := {y ∈
Zd : ‖y − x‖ ≤ R} for x ∈ Zd and R ≥ 0. Moreover, for each i ∈ [1, d], write ξi for
the i-th coordinate vector of Rd. Finally, throughout the paper, we use c and c′ to
denote arbitrary positive constants, which may change from line to line.
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2. Preliminaries

In this section, we prepare some notation and lemmata which are often used
throughout this paper. First of all, to make our statements simple, let us introduce
a class of rapidly decreasing functions on [0,∞). Denote by K(d, r0) the set of all
functions φ on [0,∞) with the form

φ(t) = ce−c′tα, t ≥ 0,

where c, c′ and α are some positive constants depending only on d and r0. Each
element of K(d, r0) is called the stretched exponential (or the Kohlrausch–Williams–
Watts) function. Note that every φ ∈ K(d, r0) decays faster than all positive power
functions, i.e., limt→∞ tβφ(t) = 0 holds for all β > 0.
We next state some upper tail estimates for the first passage time. For any

ω ∈ {0, 1}Z
d

, z ∈ Zd and s ∈ {0, 1}, let ωs
z be the initial configuration ω with ω(z)

forced to take the value s, i.e.,

ωs
z(x) :=

{
s, if x = z,

ω(x), if x 6= z.

In particular, set 〈ω〉 := ω1
0 for any ω ∈ {0, 1}Z

d

. Moreover, define for x, y ∈ Zd,

T s
z (x, y) := T (x, y, ωs

z, S),

which is the first passage time from x to y in the initial configuration ωs
z. The

next lemma says that we can control the tail probability of the first passage time
uniformly in the parameter r ∈ [r0, 1] and the mandatory absence of frogs.

Lemma 2.1. There exist φ0 ∈ K(d, r0) and a constant C0 ≥ 1 (which depends only
on d and r0) such that for all y ∈ Zd and t ≥ C0‖y‖,

sup
r0≤r≤1
z∈Zd\{0}

Pr

(
T 0
z (0, y) ≥ t

∣∣ω(0) = 1
)
≤ φ0(t).

In particular, for any β > 0,

sup
r0≤r≤1

y,z∈Zd\{0}

1

‖y‖β
Er

[
T 0
z (0, y)

β
∣∣ω(0) = 1

]
<∞.

Proof. Let r ∈ [r0, 1] and z ∈ Zd \ {0}. Note that T (0, y, 〈ω0
z〉, S) is independent of

both ω(0) and ω(z). Hence, for all y ∈ Zd and t ≥ 0,

Pr

(
T 0
z (0, y) ≥ t

∣∣ω(0) = 1
)
= Pr

(
T (0, y, 〈ω0

z〉, S) ≥ t
)
.

In addition, due to r ≥ r0, a coupling of initial configurations (see [13, Lemma 2.2])
proves

Pr

(
T (0, y, 〈ω0

z〉, S) ≥ t
)
≤ Pr0

(
T (0, y, 〈ω0

z〉, S) ≥ t
)
.

By using the independence, the right side above is equal to

Pr0

(
T (0, y, 〈ω0

z〉, S) ≥ t, ω(0) = 1, ω(z) = 0
)
×

1

r0(1− r0)
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≤ (1− r0)
−1Pr0(T (0, y) ≥ t|ω(0) = 1).

With these observations, for all y ∈ Zd and t ≥ 0,

Pr

(
T 0
z (0, y) ≥ t

∣∣ω(0) = 1
)
≤ (1− r0)

−1Pr0(T (0, y) ≥ t|ω(0) = 1).

To estimate the last probability, we use the following result proved in [12, Proposi-
tion 2.4]: there exist φ ∈ K(d, r0) and a constant C0 ≥ 1 (which depends only on d
and r0) such that for all y ∈ Z

d and t ≥ C0‖y‖,

Pr0(T (0, y) ≥ t|ω(0) = 1) ≤ φ(t).

Therefore, for all y ∈ Zd and t ≥ C0‖y‖,

Pr

(
T 0
z (0, y) ≥ t

∣∣ω(0) = 1
)
≤ (1− r0)

−1φ(t),

which implies the first assertion of the lemma since r and z are arbitrary and φ ∈
K(d, r0). The second assertion of the lemma is a direct consequence of the first
one. �

For any y ∈ Zd \ {0}, write O(y) = O(y, ω, S) for the set of all sequences (xi)
m
i=0

of distinct points in Zd satisfying that T (0, y) =
∑m−1

i=0 τ(xi, xi+1). Each element of
O(y) represents an optimal selection and order of frogs to realize the first passage
time from 0 to y. We choose and fix a certain element of O(y) with a deterministic
rule, and denote it by γO(y) = γO(y, ω, S). In addition, for each z ∈ γO(y), let z be
the next points of z in γO(y) (if any). Then, the next lemma guarantees that most
of the frogs in γO(y) do not take so long to pass the baton to their next candidates.
The proof is analogous to those of [13, Lemmata 4.3 and 4.4], so we omit it.

Lemma 2.2. There exists φ1 ∈ K(d, r0) such that for all t ≥ 0,

sup
r0≤r≤1
y∈Zd\{0}

Pr

(
T (0, y) = τ(0, y) ≥ t

∣∣ω(0) = 1
)
≤ φ1(t).

In particular, there exists φ2 ∈ K(d, r0) such that for all y ∈ Zd \ {0},

sup
r0≤r≤1

Pr

(
τ(z, z) ≥ ‖y‖1/2 for some z ∈ γO(y) \ {y}

∣∣∣ω(0) = 1
)
≤ φ2(‖y‖).

We finally mention a result for sums of dependent random variables. For a given
L ∈ N, a family (X(v))v∈Zd of random variables is said to be L-dependent if any
two sub-families (X(u))u∈A and (X(v))v∈B are independent whenever A,B ⊂ Zd

satisfy that ‖u − v‖ > L for all u ∈ A and v ∈ B. Moreover, for each M ≥ 1,
denote by ΠM the set of all sequences (xi)

m
i=0 of distinct points in Z

d satisfying that∑m−1
i=0 ‖xi − xi+1‖ ≤ M . Then, Can and Nakajima [6, Lemma 2.6] obtained the

following upper tail estimate for sums of an L-dependent family of random variables
taking values in {0, 1}.

Proposition 2.3. Let (X(v))v∈Zd be a family of random variables taking values
in {0, 1}, defined on a measurable space equipped with a probability measure P.
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Furthermore, assume that (X(v))v∈Zd is L-dependent and satisfies

p := sup
v∈Zd

P(X(v) = 1) ≤ (3L+ 1)−d.

Then, there exists a constant C1 ≥ 1 (which depends only on d) such that for any
M ≥ 1 and t ≥ C1L

d+1max{1,Mp1/d},

P

(
max
π∈ΠM

∑

v∈π

X(v) ≥ t

)
≤ 2d exp

{
−

t

(16L)d

}
.

3. Proof of the main result

In this section, we prove Theorem 1.1 and Corollary 1.2. The main tool here is
Russo’s formula, which computes the derivative of Er[X ] (as a function of r) for a
random variable X which depends only on the initial configuration in a finite region
(see for instance [10, Theorem 2.32]). The basic idea of the proof of Theorem 1.1
is to apply Russo’s formula to E[T (0, y)]. However, this approach does not work
directly because E[T (0, y)] may depend on the initial configuration in the whole of
Zd. To overcome this problem, let us define for s ∈ {0, 1}, y, z ∈ Zd and N ∈ N,

Us
z (y,N) := T (0, y, 〈ωs

z〉, S)1{T (0,y,〈ωs
z〉,S)≤N}.

It is clear that Us
z (y,N) is independent of the initial configuration outside B(0, N).

First, observe the behavior of Er[U
1
0 (y,N)] as N and ‖y‖ tend to infinity.

Lemma 3.1. We have for any r ∈ [r0, 1] and x ∈ Rd \ {0},

lim
k→∞

lim
N→∞

1

k
Er[U

1
0 (kx,N)] = µr(x).

Proof. Fix r ∈ [r0, 1] and x ∈ Rd \ {0}. The monotone convergence theorem,
combined with Lemma 2.1, implies that for any k ≥ 1,

lim
N→∞

1

k
Er[U

1
0 (kx,N)] = lim

N→∞

1

k
Er

[
T 1
0 (0, kx)1{T 1

0
(0,kx)≤N}

]

=
1

k
Er[T

1
0 (0, kx)] =

1

k
Er[T (0, kx)|ω(0) = 1].

Once we prove that (T (0, kx)/k)∞k=1 is uniformly integrable under Pr(·|ω(0) = 1),
the rightmost side above converges to µr(x) as k → ∞ by (1.3) and the Vitali
convergence theorem, and the lemma follows.
It remains to check the uniform integrability of (T (0, kx)/k)∞k=1. The Cauchy–

Schwarz inequality and Lemma 2.1 imply that there exists a constant c (which
depends only on d and r0) such that for any λ ≥ C0‖x‖,

sup
k≥1

Er

[
1

k
T (0, kx)1{T (0,kx)/k≥λ}

∣∣∣∣ω(0) = 1

]

≤ sup
k≥1

1

k
Er[T (0, kx)

2|ω(0) = 1]1/2Pr(T (0, kx) ≥ λk|ω(0) = 1)1/2

≤ c‖x‖ sup
k≥1

φ0(λk)
1/2 ≤ c‖x‖φ0(λ)

1/2.
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The rightmost side converges to zero as λ → ∞, and hence (T (0, kx)/k)∞k=1 is
uniformly integrable under Pr(·|ω(0) = 1). �

Although Lemma 3.1 treats the behavior of Er[U
1
0 (y,N)], let us next estimate the

difference between T s
z (0, y) and U

s
z (y,N) for s ∈ {0, 1} and z ∈ Zd \ {0}.

Lemma 3.2. There exists φ3 ∈ K(d, r0) such that for all s ∈ {0, 1}, y, z ∈ Zd \ {0},
N ≥ C0‖y‖ and r ∈ [r0, 1],

0 ≤ Er

[
T s
z (0, y)− Us

z (y,N)
∣∣ω(0) = 1

]
≤ φ3(N)‖y‖.(3.1)

Proof. Fix s ∈ {0, 1}, y, z ∈ Zd \ {0}, N ≥ C0‖y‖ and r ∈ [r0, 1]. Note that on the
event {ω(0) = 1},

T s
z (0, y)− Us

z (y,N) = T s
z (0, y)1{T s

z (0,y)>N}.

Hence, the first inequality of (3.1) is trivial. For the second inequality of (3.1), we
use the above equality and the Cauchy–Schwarz inequality:

Er

[
T s
z (0, y)− Us

z (y,N)
∣∣ω(0) = 1

]

= Er

[
T s
z (0, y)1{T s

z (0,y)>N}

∣∣ω(0) = 1
]

≤ Er

[
T s
z (0, y)

2
∣∣ω(0) = 1

]1/2
Pr(T

s
z (0, y) > N |ω(0) = 1)1/2.

The fact that T 0
z (0, y) ≥ T s

z (0, y) and Lemma 2.1 imply that there exists a constant
c (which depends only on d and r0) such that the rightmost side above is smaller
than or equal to

Er

[
T 0
z (0, y)

2
∣∣ω(0) = 1

]1/2
Pr

(
T 0
z (0, y) > N

∣∣ω(0) = 1
)1/2

≤ cφ0(N)1/2‖y‖.

Therefore, due to φ0 ∈ K(d, r0), the second inequality of (3.1) follows by taking
φ3(·) := cφ0(·)

1/2. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. It suffices to show that there exist constants A1, A2 > 0
(which depend only on d and r0) such that if ‖y‖ and N ≥ C0‖y‖ are large enough,
then

A1‖y‖ ≤ −
d

dr
Er[U

1
0 (y,N)] ≤ A2‖y‖, r0 ≤ r ≤ 1.(3.2)

Indeed, (3.2) yields that the functions

Er[U
1
0 (y,N)] + Air‖y‖, i = 1, 2,

are decreasing and increasing in r ∈ [r0, 1], respectively. Hence, for any p, q ∈ [r0, 1]
with p < q and x ∈ Zd \ {0}, if k ≥ 1 and N ≥ C0‖kx‖ are large enough, then

A1(q − p)‖x‖ ≤
1

k
Ep[U

1
0 (kx,N)]−

1

k
Eq[U

1
0 (kx,N)] ≤ A2(q − p)‖x‖.
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From Lemma 3.1, letting N → ∞ and k → ∞ proves that for all p, q ∈ [r0, 1] with
p < q and x ∈ Zd \ {0},

A1(q − p)‖x‖ ≤ µp(x)− µq(x) ≤ A2(q − p)‖x‖.

This compound inequality can easily be extended to all x ∈ Rd \ {0} since µp(·)
and µq(·) are norms on Rd, and the theorem follows (the strict monotonicity and
the Lipschitz continuity of the time constant are direct consequences of the first
assertion since we can take r0 ∈ (0, 1) arbitrarily).
To prove (3.2), let us prepare the following propositions, which provide upper and

lower bounds for sums of influences on the first passage time.

Proposition 3.3. There exists a constant C2 > 0 (which depends only on d and r0)
such that if ‖y‖ is large enough and N ≥ C0‖y‖, then for all r ∈ [r0, 1],

∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]
≤ C2‖y‖.

Proposition 3.4. There exists a constant C3 > 0 (which depends only on d and r0)
such that if ‖y‖ is large enough and N ≥ C0‖y‖, then for all r ∈ [r0, 1],

∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]
≥ C3‖y‖.

The proofs of these propositions are postponed until Sections 4.1 and 4.2, and we
continue with the proof of (3.2). Fix y ∈ Zd\{0} and N ≥ C0‖y‖. Since E[U

1
0 (y,N)]

depends only on the initial configuration in B(0, N), we can use Russo’s formula to
obtain for all r ∈ [r0, 1],

−
d

dr
Er[U

1
0 (y,N)] =

∑

z∈Zd

Er

[
E[U0

z (y,N)]−E[U1
z (y,N)]

]

=
∑

z∈B(0,N)\{0,y}

Er

[
U0
z (y,N)− U1

z (y,N)
]
.

Here we used the fact that U0
z (y,N) = U1

z (y,N) holds for all z ∈ B(0, N)c ∪ {0, y}
in the last equality. On the other hand, Lemma 3.2 tells us that for each r ∈ [r0, 1],

∑

z∈B(0,N)\{0,y}

∣∣∣Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]
− Er

[
U0
z (y,N)− U1

z (y,N)
]∣∣∣

≤ 2(2N + 1)dφ3(N)‖y‖.

We now assume that ‖y‖ and N ≥ C0‖y‖ are large enough to establish Proposi-
tions 3.3 and 3.4 and to have 2(2N+1)dφ3(N) ≤ C3/2, respectively. Then, the above
observations, combined with Propositions 3.3 and 3.4, imply that for all r ∈ [r0, 1],

C3

2
‖y‖ ≤ −

d

dr
Er[U

1
0 (y,N)] ≤ (C2 + C3)‖y‖,

and (3.2) follows by taking A1 := C3/2 and A2 := C2 + C3. �
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Corollary 1.2 is a direct consequence of Theorem 1.1 and its proof is completely
the same as those of [9, Corollary 1.2] and [14, Corollary 3]. However, we give the
proof of the corollary for completeness since it is not so long.

Proof of Corollary 1.2. Assume that r0 ≤ p < q ≤ 1. Note that

dH(Bp,Bq) = inf{δ > 0 : Bq ⊂ Nδ(Bp)},

since Bp ⊂ Bq holds by the monotonicity of the time constant in the parameter of
the Bernoulli distribution (see below (1.3)). Set δ− := A1(q− p)/(2µr0(ξ1)

2). Then,
(1.2), Theorem 1.1 and the monotonicity imply that for all y ∈ Rd with µp(y) = 1
and x ∈ B(y, δ−),

µq(x) ≤ µq(x− y) + µq(y) ≤ µr0(ξ1)δ− + µp(y)− A1(q − p)‖y‖

≤ 1 +
A1

2
(q − p)

1

µr0(ξ1)
− A1(q − p)

1

µp(ξ1)

≤ 1−
A1

2µr0(ξ1)
(q − p) < 1.

This implies that the boundary of Bq is not included in Nδ(Bp) for all δ ∈ (0, δ0],
and hence

dH(Bp,Bq) ≥ δ− =
A1

2µr0(ξ1)
2
(q − p).

This is the desired lower bound for the Hausdorff distance since A1 and µr0(ξ1)
depend only on d and r0. On the other hand, for any z ∈ R

d with µq(z) = 1, let
ξz := z/‖z‖ and yz := ξz/µp(ξz). Note that ‖ξz‖ = 1 and µp(yz) = 1 (and yz ∈ Bp

as well). Hence, Theorem 1.1 proves that

‖yz − z‖ =

∥∥∥∥
ξz

µp(ξz)
µp(yz)−

ξz
µq(ξz)

µq(z)

∥∥∥∥

≤ sup
‖ξ‖=1

µp(ξ)− µq(ξ)

µp(ξ)µq(ξ)
≤ A2(q − p) =: δ+.

This means that for any z ∈ Rd with µq(z) = 1, there exists y ∈ Bp such that
‖y − z‖ ≤ δ+, and it is easy to see that Bq ⊂ Nδ+(Bp) holds. Therefore, we obtain

dH(Bp,Bq) ≤ δ+ = A2(q − p),

and the desired upper bound for the Hausdorff distance follows since A2 also depends
only on d and r0. The strict monotonicity of the asymptotic shape is a direct
consequence of the first assertion since r0 ∈ (0, 1) is arbitrary, and the proof is
complete. �
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4. Upper and lower bounds for sums of influences

In this section, we prove Propositions 3.3 and 3.4. The task is here to check that
if ‖y‖ and N are sufficiently large, then for any r ∈ [r0, 1], the sum of influences

∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]

is bounded from above and below by multiples of ‖y‖. To do this, we interpret
the quantity T 0

z (0, y)− T 1
z (0, y) as the delay time caused by the absence of the frog

on site z. Intuitively, it is expected that one frog does not have a great impact
on the propagation of active frogs, and this suggests that the sum of influences is
controllable from above. In Section 4.1, we actually carry out this strategy and
derive the desired upper bound for the sum of influences (Propositions 3.3). On the
other hand, it is easily seen that T 0

z (0, y) − T 1
z (0, y) ≥ 1 holds if the frog sitting

on site z decisively contributes to the first passage time from 0 to y. Hence, in
Section 4.2, we count the number of such frogs and estimate the sum of influences
from below (Proposition 3.4).

4.1. Proof of Proposition 3.3. We begin by preparing some notation and lem-
mata. Recall from above Lemma 2.2 that for each y ∈ Zd \ {0}, γO(y) is a specific
element of O(y) chosen with a deterministic rule, and for each z ∈ γO(y), z is the
next point of z in γO(y) (if any). In addition, let z denote the previous point of z
in γO(y) (if any). When z ∈ γ̃O(y) := γO(y) \ {0, y}, both z and z actually exist
and we can consider the quantity T 0

z (z, z) (which is the first passage time from z
to z in the case where the use of the frog sitting on z is prohibited). The following
lemmata provide some estimates for T 0

z (z, z), and those play a key role in the proof
of Proposition 3.3.

Lemma 4.1. There exists a constant C4 > 0 (which depends only on d and r0) such
that for all y, z ∈ Zd \ {0},

sup
r0≤r≤1

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]
≤ C4.

Lemma 4.2. There exists φ4 ∈ K(d, r0) such that for all y ∈ Zd \ {0},

sup
r0≤r≤1

Er

[
1E(y)c

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
≤ φ4(‖y‖),

where

E(y) :=
{
T (0, y) < C0‖y‖ and T 0

w(w,w) < 2C0‖y‖
1/(2d+6) for all w ∈ γ̃O(y)

}
.

Lemma 4.3. There exist a constant A > 0 (which depends only on d and r0) and
φ5 ∈ K(d, r0) such that if ‖y‖ is large enough, then

sup
r0≤r≤1

Pr

(
E(y) ∩ E ′(A, y)c

∣∣ω(0) = 1
)
≤ φ5(‖y‖),
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where

E ′(A, y) :=

{ ∑

z∈γ̃O(y)

T 0
z (z, z)1{T 0

z (z,z)>A(‖z−z‖+‖z−z‖)} ≤ ‖y‖

}
.

Before proving the lemmata above, let us complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Assume that ‖y‖ is sufficiently large (as required by
Lemma 4.3) and let N ≥ C0‖y‖. The following facts are immediate consequences of
the definition of ωs

z and the triangle inequality (1.1):

• Both T 0
z (0, y) and T

1
z (0, y) are independent of ω(z).

• T 0
z (0, y) = T 1

z (0, y) holds if there exists γ ∈ O(y, ω1
z , S) such that z 6∈ γ.

• We have T 0
z (0, y)− T 1

z (0, y) ≤ T 0
z (z, z) if z ∈ γ̃O(y).

These facts show that for all r ∈ [r0, 1],
∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]

≤ r−1 ×
∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (z, z)1{z∈γ̃O(y)}

∣∣ω(0) = 1
]

≤ r−1
0 × Er

[ ∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
.

From Lemma 4.2, the last expectation is not greater than

φ4(‖y‖) + Er

[
1E(y)

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
.

Let us divide the second term in the above expression into two parts:

Er

[
1E(y)

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
= I1 + I2,

where

I1 := Er

[
1E(y)

∑

z∈γ̃O(y)

T 0
z (z, z)1{T 0

z (z,z)≤A(‖z−z‖+‖z−z‖)}

∣∣∣∣ω(0) = 1

]
,

I2 := Er

[
1E(y)

∑

z∈γ̃O(y)

T 0
z (z, z)1{T 0

z (z,z)>A(‖z−z‖+‖z−z‖)}

∣∣∣∣ω(0) = 1

]

(see Lemma 4.3 for the choice of the constant A). It is clear from the definitions of
γ̃O(y) that both

∑
z∈γ̃O(y) ‖z − z‖ and

∑
z∈γ̃O(y) ‖z − z‖ do not exceed T (0, y). This

implies that

I1 ≤ Er

[
1E(y)

∑

z∈γ̃O(y)

A(‖z − z‖+ ‖z − z‖)

∣∣∣∣ω(0) = 1

]

≤ 2A× Er

[
T (0, y)1E(y)

∣∣ω(0) = 1
]
≤ 2AC0‖y‖.



14 V. H. CAN, N. KUBOTA, AND S. NAKAJIMA

On the other hand, the Cauchy–Schwarz inequality and Lemmata 4.1 and 4.3 imply
that

I2 ≤ ‖y‖+
∑

z∈B(0,C0‖y‖)

Er

[
1E(y)∩E ′(A,y)c × T 0

z (z, z)1{z∈γ̃O(y)}

∣∣ω(0) = 1
]

≤ ‖y‖+ C
1/2
4 (2C0‖y‖+ 1)dφ5(‖y‖)

1/2.

With these observations, for any r ∈ [r0, 1],
∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]

≤ r−1
0

{
(2AC0 + 1)‖y‖+ φ4(‖y‖) + C

1/2
4 (2C0‖y‖+ 1)dφ5(‖y‖)

1/2
}
.

Therefore, the proposition immediately follows because φ4, φ5 ∈ K(d, r0) and the
constants C0, C4 and A depend only on d and r0. �

The remainder of this subsection is devoted to the proofs of Lemmata 4.1, 4.2 and
4.3.

Proof of Lemma 4.1. Let y, z ∈ Zd \ {0} and r ∈ [r0, 1]. The Cauchy–Schwarz
inequality gives

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]

≤
∑

w1,w2∈Zd\{z}
w1 6=w2

Er

[
T 0
z (w1, w2)

41{ω(w1)=1}

∣∣ω(0) = 1
]1/2

×Pr(z ∈ γ̃O(y), z = w1, z = w2|ω(0) = 1)1/2.

(4.1)

Let us first estimate the expectations in the right side of (4.1). From Lemma 2.1,
there exists a constant c (which depends only on d and r0) such that for all w1, w2 ∈
Zd \ {z} with w1 6= w2,

Er

[
T 0
z (w1, w2)

41{ω(w1)=1}

∣∣ω(0) = 1
]

≤ Er

[
T 0
z−w1

(0, w2 − w1)
4
∣∣ω(0) = 1

]
≤ c‖w1 − w2‖

4.
(4.2)

We next estimate the probabilities in the right side of (4.1). Note that T (u, v) =
τ(u, v) ≥ ‖u − v‖ holds if u and v are consecutive points in γO(y). This together
with Lemma 2.2 yields that for any w1 ∈ Zd \ {z},

Pr(z ∈ γ̃O(y), z = w1|ω(0) = 1)

≤ Pr

(
T (w1, z) = τ(w1, z) ≥ ‖w1 − z‖

∣∣ω(0) = 1
)

≤ Pr

(
T (0, z − w1) = τ(0, z − w1) ≥ ‖w1 − z‖

∣∣ω(0) = 1
)
≤ φ1(‖w1 − z‖).

Similarly, for any w2 ∈ Zd \ {z},

Pr(z ∈ γ̃O(y), z = w2|ω(0) = 1) ≤ φ1(‖w2 − z‖).
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Hence, the Cauchy–Schwarz inequality tells us that for any w1, w2 ∈ Zd \ {z} with
w1 6= w2,

Pr(z ∈ γ̃O(y), z = w1, z = w2|ω(0) = 1)

≤ Pr(z ∈ γ̃O(y), z = w1|ω(0) = 1)1/2Pr(z ∈ γ̃O(y), z = w2|ω(0) = 1)1/2

≤ φ1(‖w1 − z‖)1/2 φ1(‖w2 − z‖)1/2.

(4.3)

Consequently, by (4.1), (4.2) and (4.3),

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]

≤ c1/2
∑

w1,w2∈Zd\{z}
w1 6=w2

‖w1 − w2‖
2 φ1(‖w1 − z‖)1/4 φ1(‖w2 − z‖)1/4.

A simple calculation shows that the right side is bounded from above by

2c1/2
∑

w1,w2∈Zd\{z}
w1 6=w2

(
‖w1 − z‖2 + ‖w2 − z‖2

)
φ1(‖w1 − z‖)1/4 φ1(‖w2 − z‖)1/4

≤ 4c1/2
∑

w1∈Zd

‖w1 − z‖2 φ1(‖w1 − z‖)1/4 ×
∑

w2∈Zd

φ1(‖w2 − z‖)1/4.

Since φ1 ∈ K(d, r0) and the constant c depends only on d and r0, the right side is
finite and depends only on d and r0. Hence, the lemma follows. �

Proof of Lemma 4.2. To shorten notation, set δ := 1/(2d+ 6). For the proof, it
suffices to show that there exist ψ1, ψ2 ∈ K(d, r0) such that for all y ∈ Zd \ {0} and
r ∈ [r0, 1],

Er

[
1{T (0,y)≥C0‖y‖}

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
≤ ψ1(‖y‖),(4.4)

Pr

(
T (0, y) < C0‖y‖ and ∃w ∈ γ̃O(y)
such that T 0

w(w,w) ≥ 2C0‖y‖
δ

∣∣∣∣ω(0) = 1

)
≤ ψ2(‖y‖).(4.5)

Indeed, combining the above inequalities with Lemma 4.1, we have for all y ∈ Zd\{0}
and r ∈ [r0, 1],

Er

[
1E(y)c

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]

≤ ψ1(‖y‖) +
∑

z∈B(0,C0‖y‖)

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]1/2

ψ2(‖y‖)
1/2

≤ ψ1(‖y‖) + C
1/2
4 (2C0‖y‖+ 1)dψ2(‖y‖)

1/2,

and the lemma follows since ψ1, ψ2 ∈ K(d, r0) and the constants C0 and C4 depend
only on d and r0.
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Let us first prove (4.4). The left side of (4.4) is rewritten as follows:

Er

[
1{T (0,y)≥C0‖y‖}

∑

z∈γ̃O(y)

T 0
z (z, z)

∣∣∣∣ω(0) = 1

]
= J1 + J2,

where

J1 :=
∑

z∈B(0,C0‖y‖)c

Er

[
T 0
z (z, z)1{z∈γ̃O(y), T (0,y)≥‖z‖}

∣∣∣∣ω(0) = 1

]
,

J2 :=
∑

z∈B(0,C0‖y‖)

Er

[
T 0
z (z, z)1{z∈γ̃O(y), T (0,y)≥C0‖y‖}

∣∣∣∣ω(0) = 1

]
.

The Cauchy–Schwarz inequality and Lemmata 2.1 and 4.1 imply that

J1 ≤
∑

z∈B(0,C0‖y‖)c

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]1/2

×Pr(T (0, y) ≥ ‖z‖|ω(0) = 1)1/2

≤ C
1/2
4

(∑

z∈Zd

φ0(‖z‖)
1/4

)
φ0(C0‖y‖)

1/4

and

J2 ≤
∑

z∈B(0,C0‖y‖)

Er

[
T 0
z (z, z)

21{z∈γ̃O(y)}

∣∣ω(0) = 1
]1/2

×Pr(T (0, y) ≥ C0‖y‖|ω(0) = 1)1/2

≤ C
1/2
4 (2C0‖y‖+ 1)dφ0(C0‖y‖)

1/2.

Note that φ0 ∈ K(d, r0) and the constants C0 and C4 depend only on d and r0.
Hence, we can find ψ1 ∈ K(d, r0) such that J1 + J2 ≤ ψ1(‖y‖), and (4.4) follows.
Before moving on to the proof of (4.5), we observe that there exists ψ ∈ K(d, r0)

such that for any y, w ∈ Zd \ {0} and r ∈ [r0, 1],

Pr

(
w ∈ γ̃O(y) and ‖w − w‖ ∨ ‖w − w‖ > ‖y‖δ

∣∣ω(0) = 1
)

≤ ψ(‖y‖).
(4.6)

This is a direct consequence of the union bound and the same argument as in the
proof of Lemma 4.1 (see below (4.2)). Indeed, for any y, w ∈ Zd \{0} and r ∈ [r0, 1],
the left side of (4.6) is bounded from above by

∑

x∈B(w,‖y‖δ)c

Pr(w ∈ γ̃O(y), w = x|ω(0) = 1)

+
∑

x∈B(w,‖y‖δ)c

Pr(w ∈ γ̃O(y), w = x|ω(0) = 1)

≤ 2

(∑

x∈Zd

φ1(‖x‖)
1/2

)
φ1(‖y‖

δ)1/2.
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Hence, due to φ1 ∈ K(d, r0), we can find ψ ∈ K(d, r0) satisfying (4.6).
Let us finally prove (4.5). By the union bound and (4.6), the left side of (4.5) is

smaller than or equal to
∑

w∈B(0,C0‖y‖)\{0}

Pr

(
w ∈ γ̃O(y), T

0
w(w,w) ≥ 2C0‖y‖

δ
∣∣ω(0) = 1

)

≤ (2C0‖y‖+ 1)dψ(‖y‖)

+
∑

w∈B(0,C0‖y‖)

∑

x1,x2∈B(w,‖y‖δ)\{w}

Pr

(
T 0
w−x1

(0, x2 − x1) ≥ 2C0‖y‖
δ
∣∣ω(0) = 1

)
.

Note that for any w ∈ Zd and x1, x2 ∈ B(w, ‖y‖δ),

C0‖x2 − x1‖ ≤ C0(‖x2 − w‖+ ‖w − x1‖) ≤ 2C0‖y‖
δ.

Hence, Lemma 2.1 implies that for all w ∈ Zd and x1, x2 ∈ B(w, ‖y‖δ) \ {w} with
x1 6= x2,

Pr

(
T 0
w−x1

(0, x2 − x1) ≥ 2C0‖y‖
δ
∣∣ω(0) = 1

)
≤ φ0(2C0‖y‖

δ).

With these observations, the left side of (4.5) does not exceed

(2C0‖y‖+ 1)dψ(‖y‖) + (2C0‖y‖+ 1)3dφ0(2C0‖y‖
δ).

Since φ0, ψ ∈ K(d, r0) and C0 depends only on d and r0, it is easy to see that (4.5)
holds for some ψ2 ∈ K(d, r0). �

Proof of Lemma 4.3. Continuing from the proof of Lemma 4.2, we use the nota-
tion δ = 1/(2d+ 6). Take A ≥ 16C3

0C1 large enough to satisfy that for all t > A,

φ0(t) ≤ C−d
0 C−d

1 (4t)−d(d+6).

Moreover, fix y ∈ Zd with 2C0‖y‖
δ > A + 1 and r ∈ [r0, 1]. Now, assume that the

event E(y) ∩ E ′(A, y)c occurs. Then, γO(y) ∈ ΠC0‖y‖ (see above Proposition 2.3 for
the notation ΠC0‖y‖) and

‖y‖ <
∑

A<ℓ<2C0‖y‖δ

ℓ
∑

z∈γ̃O(y)

1{T 0
z (z,z)=ℓ, ‖z−z‖+‖z−z‖<ℓ/A}.(4.7)

To estimate the right side of (4.7), for each ℓ ∈ N, let us consider the following
family (Xℓ(z))z∈Zd of 4ℓ-dependent random variables and parameter pℓ:

Xℓ(z) := 1{∃w1,w2∈B(z,ℓ/A) such that T 0
z (w1,w2)=ℓ}, z ∈ Z

d,

and

pℓ := sup
z∈Zd

Pr(Xℓ(z) = 1) = Pr(Xℓ(0) = 1).

Since γO(y) ∈ ΠC0‖y‖ and

1{T 0
z (z,z)=ℓ, ‖z−z‖+‖z−z‖<ℓ/A} ≤ Xℓ(z), z ∈ γ̃O(y),
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the right side of (4.7) is smaller than or equal to
∑

A<ℓ<2C0‖y‖δ

ℓ
∑

z∈γ̃O(y)

Xℓ(z) ≤
∑

A<ℓ<2C0‖y‖δ

ℓ max
π∈ΠC0‖y‖

∑

z∈π

Xℓ(z).

With these observations, on E(y) ∩ E ′(A, y)c,

‖y‖ <
∑

A<ℓ<2C0‖y‖δ

ℓ max
π∈ΠC0‖y‖

∑

z∈π

Xℓ(z).

Hence, the fact that
∑

A<ℓ<2C0‖y‖δ
ℓ−2 ≤ 1 and the union bound imply that

Pr

(
E(y) ∩ E ′(A, y)c

∣∣ω(0) = 1
)

≤ r−1
0

∑

A<ℓ<2C0‖y‖δ

Pr

(
max

π∈ΠC0‖y‖

∑

z∈π

Xℓ(z) > ℓ−3‖y‖

)
.

(4.8)

Note that the choice of A and Lemma 2.1 guarantee that for all ℓ ∈ (A, 2C0‖y‖
δ),

pℓ ≤
∑

w1,w2∈B(0,ℓ/A)

Pr

(
T 0
−w1

(0, w2 − w1) = ℓ
∣∣ω(0) = 1

)

≤ (2ℓ+ 1)2dφ0(ℓ) ≤ (12ℓ+ 1)−d

and

ℓ−3‖y‖ ≥ C1(4ℓ)
d+1max

{
1, C0‖y‖p

1/d
ℓ

}
.

It follows from Proposition 2.3 that there exists a constant c (which depends only
on d and r0) such that for all ℓ ∈ (A, 2C0‖y‖

δ),

Pr

(
max

π∈ΠC0‖y‖

∑

z∈π

Xℓ(z) > ℓ−3‖y‖

)
≤ 2d exp

{
−
ℓ−3‖y‖

(64ℓ)d

}

≤ 2d exp
{
−c‖y‖1/2

}
.

This together with (4.8) proves that

Pr

(
E(y) ∩ E ′(A, y)c

∣∣ω(0) = 1
)
≤ 2d+1r−1

0 C0‖y‖ exp
{
−c‖y‖1/2

}
.

It is clear that there exists φ5 ∈ K(d, r0) such that for all t ≥ 0,

2d+1r−1
0 C0t exp

{
−ct1/2

}
≤ φ5(t),

and the proof is complete. �

4.2. Proof of Proposition 3.4. Let us first introduce events describing delays in
the propagation of active frogs. For any x ∈ Zd and subset Γ of Rd, write T (x,Γ)
for the first passage time from x to Γ, i.e.,

T (x,Γ) := inf
y∈Γ

T (x, y).(4.9)
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Moreover, for any L ∈ N and z ∈ Zd, let DL(z) := {w ∈ Zd : ‖w − z‖ = L} be the
ℓ1-sphere of center z and radius L. Then, for each L ∈ N and y, z ∈ Zd \ {0}, we
consider the following event E(L, y, z):

E(L, y, z) :=
{
z ∈ γO(y), T (z,DL(z)) > L, ‖z(L) − z‖ ≤ 2L

}
,

where z(L) stands for the first point w after z along γO(y) satisfying that ‖w−z‖ > L
if such a point w exists; otherwise set z(L) := z + 3Lξ1. The event E(L, y, z) can
be regarded as a “delaying” event. Actually, on E(L, y, z), the frog sitting on z
contributes the first passage time from 0 to y, but it takes at least time L + 1
for active frogs propagated from z to reach DL(z). Since the minimum time from
z to DL(z) is L, the occurrence of E(L, y, z) delays the arrival of active frogs at
y. Although the condition ‖z(L) − z‖ ≤ 2L appearing in E(L, y, z) is not directly
related to the delay, it enables us to connect z to z(L) with uniform probability by
using the frog sitting on z.
The key to proving Proposition 3.4 is the following proposition, which gives a

lower bound for sums of probabilities of delaying events.

Proposition 4.4. There exists L ∈ N (which depends only on d and r0) such that
if ‖y‖ is large enough and N ≥ C0‖y‖, then for all r ∈ [r0, 1],

∑

z∈B(0,N)\{0,y}

Pr(E(L, y, z)|ω(0) = 1) ≥
‖y‖

4L
.

The proof of the above proposition is postponed until the next section since we
need some more work. For now, let us move on to the proof of Proposition 3.4.

Proof of Proposition 3.4. Let ‖y‖ be sufficiently large and N ≥ C0‖y‖. It is
clear that if every γ ∈ O(y) contains a site z, then T 0

z (0, y) − T 1
z (0, y) ≥ 1 holds.

This implies that for any r ∈ [r0, 1],
∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]

≥
∑

z∈B(0,N)\{0,y}

Pr(z ∈ γ for all γ ∈ O(y)|ω(0) = 1).

Hence, Proposition 3.4 immediately follows once we prove that for any r ∈ [r0, 1]
and z ∈ Zd \ {0},

Pr(z ∈ γ for all γ ∈ O(y)|ω(0) = 1) ≥ (2d)−2L Pr(E(L, y, z)|ω(0) = 1).(4.10)

Indeed, this combined with Proposition 4.4 shows that for all r ∈ [r0, 1],
∑

z∈B(0,N)\{0,y}

Er

[
T 0
z (0, y)− T 1

z (0, y)
∣∣ω(0) = 1

]

≥ (2d)−2L
∑

z∈B(0,N)\{0,y}

Pr(E(L, y, z)|ω(0) = 1) ≥
(2d)−2L

4L
‖y‖,

which is the desired conclusion since L depends only on d and r0.
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It remains to prove (4.10). Fix r ∈ [r0, 1] and z ∈ Zd \ {0}. Let S∗
· (z) be an

independent copy of S·(z), and we put the superscript ∗ on the notations τ(·, ·),
T (·, ·) and O(y) when S·(z) is replaced by S∗

· (z) in their definitions. Now, consider
the event

E(L, y, z) := E(L, y, z) ∩
{
τ ∗(z, z(L)) = ‖z − z(L)‖

}
.

Suppose that on E(L, y, z), there exists a sequence inO∗(y) not containing z. Clearly,
T (0, y) ≤ T ∗(0, y) holds. Furthermore, letting w0 be the first point of DL(z) which
is visited by the frogs in the segment between z and z(L) of γO(y), one has

T (z, z(L)) ≥ T (z, w0) + ‖w0 − z(L)‖

≥ L+ 1 + ‖w0 − z(L)‖ = ‖z − w0‖+ ‖w0 − z(L)‖+ 1

≥ ‖z − z(L)‖+ 1 > τ ∗(z, z(L)).

Denote by (xi)
j
i=0 (resp. (x′i)

j′

i=0) the segment of γO(y) with endpoints 0 and z
(resp. z(L) and y). Then, due to the optimality of γO(y),

T (0, y) ≤ T ∗(0, y) ≤

j−1∑

i=0

τ(xi, xi+1) + τ ∗(z, z(L)) +

j′−1∑

i=0

τ(x′i, x
′
i+1)

< T (0, z) + T (z, z(L)) + T (z(L), y) = T (0, y),

which is a contradiction. This means that every γ ∈ O∗(y) contains z on E(L, y, z),
and we have

P
z

r(z ∈ γ for all γ ∈ O∗(y)|ω(0) = 1) ≥ P
z

r

(
E(L, y, z)

∣∣ω(0) = 1
)
,(4.11)

where P
z

r is the product of Pr and the law of S∗
· (z). Due to z ∈ Z

d \ {0} and the
definition of P

z

r ,

P
z

r(z ∈ γ for all γ ∈ O∗(y)|ω(0) = 1) = Pr(z ∈ γ for all γ ∈ O(y)|ω(0) = 1)

and

P
z

r

(
E(L, y, z)

∣∣ω(0) = 1
)

≥ Pr(E(L, y, z)|ω(0) = 1)× inf
w∈B(0,2L)

P 0(τ(0, w) = ‖w‖)

≥ (2d)−2LPr(E(L, y, z)|ω(0) = 1).

Combining the above facts and (4.11), we obtain

Pr(z ∈ γ for all γ ∈ O(y)|ω(0) = 1) ≥ (2d)−2LPr(E(L, y, z)|ω(0) = 1),

and (4.10) follows. �
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5. Estimate for sums of probabilities of delaying events

This section is devoted to the proof of Proposition 4.4. Roughly speaking, our
main task is to observe that the first passage time is strictly greater than the ℓ1-norm
with high probability and there are enough ℓ1-balls of a sufficiently large radius that
intersect γO(y) but contain no long-wandering frog. Since the first assertion is of
interest in itself, we discuss it in Section 5.1, apart from the proof of Proposition 4.4.
The second assertion and the proof of Proposition 4.4 are dealt with in Section 5.2.

5.1. Comparison between the first passage time and the ℓ
1-norm. This

subsection treats the case r = 1. In other words, throughout this subsection, we
assume that ω(x) = 1 for all x ∈ Zd. Then, the product measure P1 = P1 × P
can be reduced to the law P of frogs because the initial configuration is no longer
random.
Our objective here is to prove the next proposition, which provides an exponential

decay for the probability that the first passage time coincides with the ℓ1-norm.

Proposition 5.1. There exists a constant C5 > 0 (which depends only on d) such
that for all large L ∈ N,

P
(
T (0,DL(0)) = L

)
≤ e−C5L,(5.1)

where T (0,DL(0)) is the first passage time from 0 to DL(0) (see (4.9) and the sen-
tence following it for more details).

Proof. Let us first prepare some notation. Define for any m ∈ N0,

∆m := {x ∈ (N0)
d : ‖x‖ = m}, Rm := {x ∈ (N0)

d : ‖x‖ ≤ m},

which are the nonnegative orthants of the ℓ1-sphere and ball of center 0 and radius
m, respectively. Furthermore, for any x ∈ Zd and subset Γ of Zd, τ(x,Γ) stands for
the hitting time of the frog sitting on x to Γ, i.e.,

τ(x,Γ) := inf
y∈Γ

τ(x, y).

Then, set for each n ∈ N,

qn := E

[
∑

y∈Rn−1

1{T (0,y)+τ(y,∆n)=n}

]
.

This is the expectation of the number of frogs which finally approach ∆n in each
optimal selection and order for T (0,∆n), conditioned on the event that T (0,∆n) = n.
The key to proving the proposition is the following lemmata, which provide some

upper bounds for qn’s.

Lemma 5.2. We have 2q3 < 1.

Lemma 5.3. Let 2 ≤ A ∈ N. Then, qAn ≤ 2−1(2qA)
n holds for all n ∈ N.
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The proofs of the above lemmata are postponed for now, and we continue proving
the proposition. The symmetry of frogs and Lemma 5.3 imply that for any L ≥ 3,

P
(
T (0,DL(0)) = L

)
≤ 2dP

(
T (0,∆3⌊L/3⌋) = 3⌊L/3⌋

)

≤ 2dq3⌊L/3⌋ ≤ 2d−1(2q3)
⌊L/3⌋.

From Lemma 5.2, the rightmost side exponentially decays in L, and the proposition
follows. �

We close this subsection with the proofs of Lemmata 5.2 and 5.3.

Proof of Lemma 5.2. By definition,

q3 = P (τ(0,∆3) = 3) +
∑

y∈∆1

P
(
T (0, y) + τ(y,∆3) = 3

)

+
∑

y∈∆2

P
(
T (0, y) + τ(y,∆3) = 3

)
.

A straightforward calculation gives P (τ(0,∆3) = 3) = 1/8. Furthermore, we use
the independence of frogs to obtain

∑

y∈∆1

P
(
T (0, y) + τ(y,∆3) = 3

)
=
∑

y∈∆1

P (τ(0, y) = 1)P (τ(y,∆3) = 2)

=
∑

y∈∆1

1

2d
×

1

4
=

1

8

and
∑

y∈∆2

P
(
T (0, y) + τ(y,∆3) = 3

)
=
∑

y∈∆2

P (T (0, y) = 2)P (τ(y,∆3) = 1)

=
1

2

∑

y∈∆2

P (T (0, y) = 2).

With these observations,

2q3 =
1

2
+
∑

y∈∆2

P (T (0, y) = 2).

Hence, it suffices for the proof to show

∑

y∈∆2

P (T (0, y) = 2) <
1

2
.(5.2)

To do this, we rewrite the left side of (5.2) as

∑

1≤i<j≤d

P (T (0, ξi + ξj) = 2) +
d∑

i=1

P (T (0, 2ξi) = 2).(5.3)
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The union bound gives a rough upper bound for the first term of (5.3):
∑

1≤i<j≤d

P (T (0, ξi + ξj) = 2)

≤
∑

1≤i<j≤d

{
P (τ(0, ξi + ξj) = 2) +

∑

x∈∆1

P
(
τ(0, x) + τ(x, ξi + ξj) = 2

)}

=

(
d
2

)
4

(2d)2
=

2d(d− 1)

(2d)2
.

On the other hand, we calculate the second term of (5.3) carefully. It is clear that
for any i ∈ [1, d], the event {T (0, 2ξi) = 2} can be written as the disjoint union of
the following events Si, Ti and Ui:

Si := {S1(0) = ξi, S2(0) = 2ξi, S1(ξi) 6= 2ξi},

Ti := {S1(0) = ξi, S2(0) 6= 2ξi, S1(ξi) = 2ξi},

Ui := {S1(0) = ξi, S2(0) = 2ξi, S1(ξi) = 2ξi}.

The independence of frogs yields that for any i ∈ [1, d],

P (Si) = P (Ti) =
2d− 1

(2d)3
, P (Ui) =

1

(2d)3
,

and hence
d∑

i=1

P (T (0, 2ξi) = 2) =

d∑

i=1

{P (Si) + P (Ti) + P (Ui)} =
d(4d− 1)

(2d)3
.

With these observations, one has

∑

y∈∆2

P (T (0, y) = 2) ≤
2d(d− 1)

(2d)2
+
d(4d− 1)

(2d)3
=

1

2
−

1

8d2
<

1

2
,

and (5.2) is proved. �

Proof of Lemma 5.3. Fix A ≥ 2. We have for all n ≥ 2,

qAn = Q1(n) +Q2(n) +Q3(n),

where

Q1(n) := E

[
∑

y∈RAn−A−1

1{T (0,y)+τ(y,∆An)=An}

]
,

Q2(n) := E

[
∑

y∈∆An−A

1{T (0,y)+τ(y,∆An)=An}

]
,

Q3(n) := E

[
∑

y∈RAn−1\RAn−A

1{T (0,y)+τ(y,∆An)=An}

]
.
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Our goal is to prove that for all n ≥ 2,

Q1(n) = qAn−A × P 0(τ(0,∆A) = A) ≥ Q2(n)(5.4)

and

Q3(n) ≤ 2qAn−A × E

[
∑

x∈RA−1\{0}

1{T (0,x)+τ(x,∆A)=A}

]
.(5.5)

Indeed, (5.4) and (5.5) lead to

qAn ≤ 2qAn−A

(
P 0(τ(0,∆A) = A) + E

[
∑

x∈RA−1\{0}

1{T (0,x)+τ(x,∆A)=A}

])

= qAn−A(2qA),

and the lemma follows by induction on n.
We fix n ≥ 2 and begin by proving the equality of (5.4). Note that T (0, y) and

τ(y,∆An) are independent for all y ∈ Zd. This, together with the strong Markov
property and translation invariance of frogs, shows that for any y ∈ RAn−A−1,

P
(
T (0, y) + τ(y,∆An) = An

)

= P (T (0, y) = ‖y‖)P y
(
τ(y,∆An−A) = An− A− ‖y‖

)
P 0(τ(0,∆A) = A)

= P
(
T (0, y) + τ(y,∆An−A) = An−A

)
P 0(τ(0,∆A) = A).

Hence,

Q1(n) =
∑

y∈RAn−A−1

P
(
T (0, y) + τ(y,∆An−A) = An−A

)
P 0(τ(0,∆A) = A)

= qAn−A × P 0(τ(0,∆A) = A),

and the equality of (5.4) is valid.
Let us next check the inequality of (5.4). Similarly to the above, we obtain

Q2(n) =
∑

y∈∆An−A

P (T (0, y) = ‖y‖)P y(τ(y,∆An) = A)

=
∑

y∈∆An−A

P (T (0, y) = An− A)P 0(τ(0,∆A) = A).

Since for each y ∈ ∆An−A,

{T (0, y) = An− A} =
⋃

x∈RAn−A−1

{T (0, x) + τ(x, y) = An−A},

the union bound shows
∑

y∈∆An−A

P (T (0, y) = An− A)

≤
∑

x∈RAn−A−1

∑

y∈∆An−A

P (T (0, x) + τ(x, y) = An−A)



LIPSCHITZ-TYPE ESTIMATE FOR THE FROG MODEL 25

=
∑

x∈RAn−A−1

P
(
T (0, x) + τ(x,∆An−A) = An− A

)
= qAn−A.

Here, in the first equality, we used the fact that the events {T (0, x) + τ(x, y) =
An− A}, y ∈ ∆An−A, are disjoint. With these observations,

Q2(n) ≤ qAn−A × P 0(τ(0,∆A) = A),

which establishes the inequality of (5.4).
We finally prove (5.5). For any x ∈ RAn−A and y ∈ RAn−1 \RAn−A, consider the

event

Ex,y :=

{
τ(x,∆An−A) = An−A− ‖x‖ and
minz∈RAn−1\RAn−A

(σx(z) + ρ(z, y)) + τ(y,∆An) = A

}
,

where

σx(z) := inf
{
k ≥ 0 : Sτ(x,∆An−A)+k(x) = z

}
,

ρ(z, y) := inf

{
m−1∑

i=0

τ(xi, xi+1) :
m ≥ 1 and x0, x1, . . . , xm ∈ RAn−1 \RAn−A

with x0 = z and xm = y

}
,

which are the time it takes for the frog sitting on x to travel from ∆An−A to z and the
first passage time from z to y which uses only frogs in RAn−1 \RAn−A, respectively.
Since Ex,y consists of frogs whose initial positions are in {x} ∪ (RAn \ RAn−A), the
events {T (0, x) = ‖x‖} and Ex,y are independent. This together with the union
bound shows

Q3(n) ≤
∑

x∈RAn−A

P (T (0, x) = ‖x‖)
∑

y∈RAn−1\RAn−A

P (Ex,y).

Assume that for any x ∈ RAn−A,∑

y∈RAn−1\RAn−A

P (Ex,y) = P x
(
τ(x,∆An−A) = An−A− ‖x‖

)

×
∑

y∈RA−1\{0}

P
(
T (0, y) + τ(y,∆A) = A

)
.

(5.6)

Then, due to the independence of T (0, x) and τ(x,∆An−A),

Q3(n) ≤
∑

x∈RAn−A

P
(
T (0, x) + τ(x,∆An−A) = An−A

)

× E

[
∑

y∈RA−1\{0}

1{T (0,y)+τ(y,∆A)=A}

]
.

(5.7)

We use the union bound to estimate the above sum as follows:∑

x∈RAn−A

P
(
T (0, x) + τ(x,∆An−A) = An− A

)

= qAn−A +
∑

x∈∆An−A

P (T (0, x) = An− A)
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≤ qAn−A +
∑

y∈RAn−A−1

∑

x∈∆An−A

P
(
T (0, y) + τ(y, x) = An−A

)
.

Since the events {T (0, y)+ τ(y, x) = An−A}, x ∈ ∆An−A, are disjoint, it holds that
for all y ∈ RAn−A−1,

∑

x∈∆An−A

P
(
T (0, y) + τ(y, x) = An− A

)
= P

(
T (0, y) + τ(y,∆An−A) = An− A

)
.

Therefore,
∑

x∈RAn−A

P
(
T (0, x) + τ(x,∆An−A) = An− A

)

≤ qAn−A +
∑

y∈RAn−A−1

P
(
T (0, y) + τ(y,∆An−A) = An−A

)
= 2qAn−A.

This combined with (5.7) implies that

Q3(n) ≤ 2qAn−A × E

[
∑

y∈RA−1\{0}

1{T (0,y)+τ(y,∆A)=A}

]
,

and (5.5) follows.
It remains to check the validity of (5.6). Note that both ρ(z, y) and τ(y,∆An) do

not depend on frogs in RAn−A \RAn−A whenever y, z ∈ RAn−1 \RAn−A. We use the
strong Markov property of S·(x) to obtain for all x ∈ RAn−A and y ∈ RAn−1\RAn−A,

P x(Ex,y) =
∑

w∈∆An−A

P x
(
τ(x,∆An−A) = An− A− ‖x‖, Sτ(x,∆An−A)(x) = w

)

× Pw
(

min
z∈RAn−1\RAn−A

(τ(w, z) + ρ(z, y)) + τ(y,∆An) = A
)
.

Hence, the independence of frogs yields
∑

y∈RAn−1\RAn−A

P (Ex,y)

=
∑

w∈∆An−A

P x
(
τ(x,∆An−A) = An−A− ‖x‖, Sτ(x,∆An−A)(x) = w

)

×
∑

y∈RAn−1\RAn−A

P
(

min
z∈RAn−1\RAn−A

(τ(w, z) + ρ(z, y)) + τ(y,∆An) = A
)
.

(5.8)

Furthermore, by the translation invariance of frogs, the last sum can be written as
follows:

∑

y∈RAn−1\RAn−A

P
(

min
z∈RAn−1\RAn−A

(τ(w, z) + ρ(z, y)) + τ(y,∆An) = A
)

=
∑

v∈RA−1\{0}

P
(
T (w,w + v) + τ(w + v, w +∆A) = A

)
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=
∑

v∈RA−1\{0}

P
(
T (0, v) + τ(v,∆A) = A

)
.

Consequently, substituting this into the right side of (5.8) leads to (5.6). �

5.2. Proof of Proposition 4.4. The aim of this subsection is to show Proposi-
tion 4.4. To this end, define for any L ∈ N and y ∈ Zd \ {0},

E1(L, y) :=

{
T (0, y) ≤ C0‖y‖,

∑

w∈γO(y)

1{T (w,DL(w))=L} <
‖y‖

6L

}
,

E2(L, y) :=

{
T (0, y) ≤ C0‖y‖,

∑

w∈γO(y)\{y}

τ(w,w)1{τ(w,w)>L} <
‖y‖

Ld+3

}
.

The key to proving Proposition 4.4 is to observe that if L and ‖y‖ are sufficiently
large, then the events E1(L, y) and E2(L, y) have a negligible effect on delaying events.
We first estimate the probability of E1(L, y) from above by using Propositions 2.3

and 5.1.

Lemma 5.4. There exist φ6 ∈ K(d, r0) and L1 ∈ N (which depends only on d and
r0) such that if L ≥ L1 and ‖y‖ ≥ C1(6L)

d+2, then

sup
r0≤r≤1

Pr(E1(L, y)
c|ω(0) = 1) ≤ φ6(‖y‖).

Proof. Fix r ∈ [r0, 1]. In addition, take L1 ∈ N large enough to satisfy that for all
L ≥ L1,

e−C5L ≤ C−d
0 C−d

1 (6L+ 1)−d(d+2).

We now consider the following family (XL(w))w∈Zd of 2L-dependent random vari-
ables and parameter pL:

XL(w) := 1{T (w,DL(w))=L}, w ∈ Z
d,

and

pL := sup
w∈Zd

Pr(XL(w) = 1) = Pr(XL(0) = 1).

Lemma 2.1 implies that for all y ∈ Zd \ {0},

Pr(E1(L, y)
c|ω(0) = 1)

≤ φ0(C0‖y‖) + r−1
0 Pr

(
max

π∈ΠC0‖y‖

∑

w∈π

XL(w) ≥
‖y‖

6L

)
.

(5.9)

Note that the choice of L1 and Proposition 5.1 guarantee that if L ≥ L1 and ‖y‖ ≥
C1(6L)

d+2, then

pL ≤ e−C5L ≤ (6L+ 1)−d

and
‖y‖

6L
≥ C1(2L)

d+1max{1, C0‖y‖p
1/d
L }.
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Hence, from Proposition 2.3, there exists a constant c (which depends only on d)
such that

Pr

(
max

π∈ΠC0‖y‖

∑

w∈π

XL(w) ≥
‖y‖

6L

)
≤ 2d exp

{
−

‖y‖

(32L)d+1

}

≤ 2d exp
{
−c‖y‖1/(d+2)

}
.

This together with (5.9) implies that if L ≥ L1 and ‖y‖ ≥ C1(6L)
d+2, then

Pr(E1(L, y)
c|ω(0) = 1) ≤ φ0(C0‖y‖) + 2dr−1

0 exp
{
−C‖y‖1/(d+2)

}
.

It is clear that there exists φ6 ∈ K(d, r0) such that for all t ≥ 0,

φ0(C0t) + 2dr−1
0 exp

{
−ct1/(d+2)

}
≤ φ6(t),

and the lemma follows. �

Let us next estimate the probability of E2(L, y) from above by using Proposi-
tion 2.3 again.

Lemma 5.5. There exist φ7 ∈ K(d, r0) and L2 ∈ N (which depends only on d and
r0) such that if L ≥ L2 and ‖y‖ > (L+ 1)4d+10, then

sup
r0≤r≤1

Pr(E2(L, y)
c|ω(0) = 1) ≤ φ7(‖y‖).

Proof. Fix r ∈ [r0, 1] and set δ := 1/(4d+10). We define for any L ∈ N and y ∈ Z
d

with ‖y‖δ ≥ L+ 2,

V(L, y) :=

{
T (0, y) ≤ C0‖y‖,

∑

w∈γO(y)\{y}

τ(w,w)1{L<τ(w,w)<‖y‖δ} ≥
‖y‖

Ld+3

}
.

From Lemmata 2.1 and 2.2 and the fact that τ(w,w) = T (w,w) when w ∈ γO(y) \
{y},

Pr(E2(L, y)
c|ω(0) = 1)

≤ φ0(‖y‖) + (2C0‖y‖+ 1)2dφ1(‖y‖
δ) +Pr(V(L, y)|ω(0) = 1).

(5.10)

To estimate the last probability, for each ℓ ∈ N, we consider the following family
(Xℓ(z))z∈Zd of 2ℓ-dependent random variables and parameter pℓ:

Xℓ(w) := 1{∃w′∈B(w,ℓ)\{w} such that T (w,w′)=τ(w,w′)=ℓ}, w ∈ Z
d,

and

pℓ := sup
w∈Zd

Pr(Xℓ(w) = 1) = Pr(Xℓ(0) = 1).

Then, one has
∑

w∈γO(y)\{y}

τ(w,w)1{L<τ(w,w)<‖y‖δ} =
∑

L<ℓ<‖y‖δ

ℓ
∑

w∈γO(y)\{y}

1{τ(w,w)=ℓ}

≤
∑

L<ℓ<‖y‖δ

ℓ
∑

w∈γO(y)\{y}

Xℓ(w).
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Hence, the same argument as in the proof of Lemma 4.3 shows that for all L ∈ N

and y ∈ Zd with ‖y‖δ ≥ L+ 2,

Pr(V(L, y)|ω(0) = 1)

≤ r−1
0

∑

L<ℓ<‖y‖δ

Pr

(
max

π∈ΠC0‖y‖

∑

w∈π

Xℓ(w) ≥
d+ 3

ℓd+5
‖y‖

)
.(5.11)

We take L2 ∈ N large enough to satisfy that L2 ≥ 2d+1C1 and

φ1(t) ≤ C−d
0 C−d

1 (2t+ 1)−d(2d+7), t ≥ L2.

Lemma 2.2 guarantees that if L ≥ L2 and ‖y‖ ≥ (L+2)1/δ, then for all ℓ ∈ (L, ‖y‖δ),

pℓ ≤
∑

w′∈B(0,ℓ)\{0}

Pr(T (0, w
′) = τ(0, w′) = ℓ|ω(0) = 1)

≤ (2ℓ+ 1)dφ1(ℓ) ≤ (6ℓ+ 1)−d

and
d+ 3

ℓd+5
‖y‖ ≥ C1(2ℓ)

d+1max{1, C0‖y‖p
1/d
ℓ }.

This allows us to use Proposition 2.3, and we have for some constant c (which
depends only on d),

Pr

(
max

π∈ΠC0‖y‖

∑

w∈π

Xℓ(w) ≥
d+ 3

ℓd+5
‖y‖

)

≤ 2d exp

{
−

d+ 3

32dℓ2d+5
‖y‖

}
≤ 2d exp

{
−c‖y‖1/2

}
.

(5.12)

Therefore, by (5.10), (5.11) and (5.12), if L ≥ L2 and ‖y‖ ≥ (L+ 2)1/δ, then

Pr(E2(L, y)
c|ω(0) = 1)

≤ φ0(‖y‖) + (2C0‖y‖+ 1)2dφ1(‖y‖
δ) + 2dr−1

0 ‖y‖δ exp
{
−c‖y‖1/2

}
.

It is clear that there exists φ7 ∈ K(d, r0) such that for all t ≥ 0,

φ0(t) + (2C0t + 1)2dφ1(t
δ) + 2dr−1

0 tδ exp
{
−ct1/2

}
≤ φ7(t),

and the lemma follows. �

We are now in a position to prove Proposition 4.4.

Proof of Proposition 4.4. Recall that for any L ∈ N and y, z ∈ Zd \ {0},

E(L, y, z) =
{
z ∈ γO(y), T (z,DL(z)) > L, ‖z(L) − z‖ ≤ 2L

}
,

E1(L, y) =

{
T (0, y) ≤ C0‖y‖,

∑

w∈γO(y)

1{T (w,DL(w))=L} <
‖y‖

6L

}
,

E2(L, y) =

{
T (0, y) ≤ C0‖y‖,

∑

w∈γO(y)\{y}

τ(w,w)1{τ(w,w)>L} <
‖y‖

Ld+3

}
,
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where z(L) is the first point w after z along γO(y) satisfying that ‖w−z‖ > L if such
a point w exists; otherwise set z(L) := z+3Lξ1 (see at the beginning of Section 4.2).
Set L := max{L1, L2, 3

d}. Assume that for all y ∈ Zd with ‖y‖ ≥ C1(6L)
4d+10 and

N ≥ C0‖y‖, on the event E1(L, y) ∩ E2(L, y) ∩ {ω(0) = 1},

∑

z∈B(0,N)\{0,y}

1E(L,y,z) ≥
‖y‖

2L
.(5.13)

Lemmata 5.4 and 5.5 imply that if ‖y‖ is sufficiently large and N ≥ C0‖y‖, then for
any r ∈ [r0, 1],

∑

z∈B(0,N)\{0,y}

Pr(E(L, y, z)|ω(0) = 1)

≥ Er

[
1E1(L,y)∩E2(L,y)

∑

z∈B(0,N)\{0,y}

1E(L,y,z)

∣∣∣∣∣ω(0) = 1

]

≥
‖y‖

2L
{1− φ6(‖y‖)− φ7(‖y‖)} ≥

‖y‖

4L
,

and the proposition follows.
It remains to show that for all y ∈ Z

d with ‖y‖ ≥ C1(6L)
4d+10 and N ≥ C0‖y‖,

(5.13) holds on E1(L, y)∩E2(L, y)∩{ω(0) = 1}. To this end, assume that E1(L, y)∩
E2(L, y)∩ {ω(0) = 1} occurs. We first estimate the number of frogs in γO(y). Since
the sum of all τ(w,w) with w ∈ γO(y) \ {y} and τ(w,w) > L does not exceed
‖y‖/Ld+3, one has

∑

w∈γO(y)\{y}

τ(w,w)1{τ(w,w)≤L} ≥ T (0, y)−
‖y‖

Ld+3
=
(
1−

1

Ld+3

)
‖y‖.

This means that

#{w ∈ γO(y) \ {0, y} : τ(w,w) ≤ L} ≥
1

L

(
1−

1

Ld+3

)
‖y‖ − 1.

In particular, we have

#(γO(y) \ {0, y}) ≥
1

L

(
1−

1

Ld+3

)
‖y‖ − 1.(5.14)

Let us move on to the proof of (5.13). The (random) subset Γ(L, y) of Zd is
defined by

Γ(L, y) :=

{
z ∈ γO(y) \ {0, y} :

y 6∈ B(z, L) and B(z, L) does not contain
any w ∈ γO(y) \ {y} with τ(w,w) > L

}
.

Use the fact that the sum of all τ(w,w) with w ∈ γO(y) \ {y} and τ(w,w) > L does
not exceed ‖y‖/Ld+3 again, and it holds that

∑

z∈γO(y)\{y}

1{∃w∈γO(y)\{y} such that w∈B(z,L) and τ(w,w)>L}
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≤
∑

w∈γO(y)\{y}

1{τ(w,w)>L}

∑

z∈γO(y)\{y}

1{z∈B(w,L)}

≤ (2L+ 1)d ×
‖y‖

Ld+3
≤

‖y‖

L2
.

Hence, by (5.14),

#Γ(L, y) ≥
1

L

(
1−

1

Ld+3

)
‖y‖ − 2(2L+ 1)d −

‖y‖

L2

≥
1

L

(
1−

3

L

)
‖y‖ ≥

2

3L
‖y‖.

This, together with the fact that ‖z − z(L)‖ ≤ 2L whenever z ∈ Γ(L, y), shows that
∑

z∈B(0,N)\{0,y}

1E(L,y,z) ≥ #Γ(L, y)−#
{
z ∈ γO(y) : T (z,DL(z)) = L

}

≥
2

3L
‖y‖ −

‖y‖

6L
=

‖y‖

2L
,

which implies (5.13). �
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