
Decision-Epoch Matters: Unveiling its Impact on the Stability of

Scheduling with Randomly Varying Connectivity

N. Soprano-Lotoa, U. Ayestab,c,d, M. Jonckheerea,b, and I.M. Verloopb

aLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
bIRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

cIKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
dUPV/EHU, Univ. of the Basque Country, 20018 Donostia, Spain

March 28, 2024

Abstract

A classical queuing theory result states that in a parallel-queue single-server model, the max-

imum stability region does not depend on the scheduling decision epochs, and in particular is the

same for preemptive and non-preemptive systems. We consider here the case in which each of the

queues may be connected to the server or not, depending on an exogenous process. In our main

result, we show that the maximum stability region now does strongly depend on how the decision

epochs are defined. We compare the setting where decisions can be made at any moment in time

(the unconstrained setting), to two other settings: decisions are taken either (i) at moments of a

departure (non-preemptive scheduling), or (ii) when an exponentially clock rings with rate γ. We

characterise the maximum stability region for the two constrained configurations, allowing us to

observe a reduction compared to the unconstrained configuration. In the non-preemptive setting,

the maximum stability region is drastically reduced compared to the unconstrained setting and

we conclude that a non-preemptive scheduler cannot take opportunistically advantage (in terms of

stability) of the random varying connectivity. Instead, for the γ decision epochs, we observe that

the maximum stability region is monotone in the rate of the decision moments γ, and that one

can be arbitrarily close to the maximum stability region in the unconstrained setting if we choose

γ large enough. We further show that Serve Longest Connected (SLC) queue is maximum stable

in both constrained settings, within the set of policies that select a queue among the connected

ones. From a methodological viewpoint, we introduce a novel theoretical tool termed a “test for

fluid limits” (TFL) that might be of independent interest. TFL is a simple test that, if satisfied

by the fluid limit, allows us to conclude for stability.

Keywords: scheduling, varying connectivity, random modulations, random environments, queu-

ing systems, fluid limits.

1 Introduction

In many real-world applications, scheduling decisions are made at specific moments rather than

in a continuous fashion. In telecommunication networks, scheduling decisions for allocating resources

and managing bandwidth occur at specific moments to adapt to changing traffic patterns. Other

examples include server scheduling where certain maintenance tasks or resource allocation decisions

are made periodically, or in smart grids where allocation of resources occur at specific moments

based on factors like demand patterns and availability of renewable energy. We can also mention

real-time systems where once a task is started, it needs to run without interruption to meet its timing

requirements.

1

ar
X

iv
:2

40
3.

18
68

6v
1

 [
m

at
h.

PR
]

 2
7

M
ar

 2
02

4

It seems intuitively clear that the performance for the end-user will degrade as the interval

between the decision epochs increases since the process becomes “less controllable.” To illustrate

this, let us consider a canonical multi-class single-server queue where λi and µi, i = 1, . . . ,K, denote

the arrival and service rates, respectively, and let us compare the system where decisions can be

made at any moment in time (preemptive case) versus the system where decisions can only be made

upon a departure of a job (non-preemptive case). In both cases, it is known that the µ-priority policy

(which chooses to serve the class in the system with highest µi) is optimal. Even though the stability

condition for both preemptive and non-preemptive systems is the same (
∑K

i=1 λi/µi < 1), standard

analysis of priority policies ([16, Chapter 5]) shows that the mean queue length of the optimal µ-rule

in the preemptive case is indeed larger than in the preemptive one.

In this paper, we show that constraining the decision epochs can in fact not only have an impact

in terms of steady-state performance, but also on the maximum stability region, that is, on the set

of parameters for which there exists a policy which induces a steady-state. We do so by studying a

multi-class scheduling problem with time-varying connectivity, a fundamental problem in networking

that has been studied in many papers since the pioneering work by Tassiulas and Ephremides [23].

Indeed, time-varying connectivity is inherent in wireless systems and satellite communications [23,

20, 5, 2], where systems face challenges in deciding how to share limited transmitters or channels

among users while weather changes make the transmission rates vary significantly. It also arises as a

modeling framework in applications where the available capacities fluctuates depending on the traffic

conditions. More recently, random environments have also been studied in the context of scheduling

in data centers and cloud computing (see for instance [18] or [15]), involving a significant amount

of communication overhead such as data transfers, status updates, and other interactions between

the client and the cloud-based services, [13]. Those communication overhead being variable, the

resulting system can be modelled as queuing systems where each queue can be either connected or

disconnected to the server according to a random environment.

We study a continuous-time system with multiple queues that can be either connected or discon-

nected and there is one server that can be dedicated to at most one queue. However, different from

previous work, the server is allowed to change to move to another queue only at certain specific de-

cision epochs. We will set out to compare three different settings for these decision epochs. The first

setting is when decisions can be made at any moment in time, which we refer to as the unconstrained

setting (as studied in [5], referred to as Setting I). The other two are constrained settings where

decisions can be taken only at well-defined moments in time: non-preemptive scheduling (referred

to as Setting II), or when an exponentially clock rings with rate γ (Setting III). In our main result,

we characterise the maximum stability region for the two constrained configurations. The latter are

strictly included in the one for the unconstrained setting, see Figure 1. To the best of our knowledge

this uncovers a new phenomenon, that is, that the maximum stability region can crucially depends

on how decision epochs are defined. We further show that policies that select a queue among the

connected ones are not necessarily stable due to the random environments, and prove that the Serve

Longest Connected (SLC) queue policy is maximum stable for all Settings I, II, and III.

In the non-preemptive case (Setting II), we obtain that the maximum stability region drastically

reduces compared to the preemptive case (Setting I). In fact, we will show that it coincides with

that of a (classical) multi-class single-server queue where the class-i service rate is reduced to the

time-averaged departure rate µiπi(1). The latter allows us to infer that in this setting the scheduler

cannot take opportunistically advantage (in terms of stability) of the random varying connectivity.

In Setting III, having decision epochs at an exponential clock with rate γ allows us to model appli-

cations where there might be a cost associated in observing the state (and taking the corresponding

action). For instance, changing the action too often might be harmful from a performance point of

view. Therefore, taking decisions with a controllable rate γ might be a better option than taking

2

decisions continuously. In this respect, our results reveal that the stability condition of Setting III

is strictly smaller than that of Setting I, but converges to Setting I as γ → ∞. Another interesting

example is where a reconfiguration delay is incurred every time a decision is taken, which implies

that capacity is wasted. The latter means that the frequency of decision epochs that optimizes the

performance is non-trivial. Our analysis allows us to find the optimal value for the rate γ such that

the maximum stability region is optimized.

ρ2

ρ1

small γ

large γ

Figure 1: Stability regions with

K = 2 for Settings I (dashed line),

II (dotted line) and III (dash-

dotted line, for relatively small

and large γ).

Our main proofs rely on fluid techniques. The random envi-

ronment gives rise to complex averaging phenomena, and as a con-

sequence the fluid limits associated to the Markov process under

study are in general very complex and cannot be easily charac-

terized even in low dimensions. On the other hand, the classical

quadratic function used as Lyapunov functions for previous mod-

els (either for the stochastic version in the simpler case [23] or for

the fluid limit [20, 1]) are not directly applicable to our problem at

hand. In our analysis, we introduce a novel theoretical tool termed

a “test for fluid limits” (TFL), which serves as a simple test that,

when satisfied at a fluid scale, allows us to conclude for stability.

Markovian stochastic processes in which actions are taken only

at specific decision-epochs, have been analyzed with the so-called

Embedded Markov Chain approach. Essentially, this boils down to

calculating the transition probabilities and the accumulated reward

between two decision epochs, which yields a new Markovian process.

This has been the traditional approach to study the performance

non-preemptive scheduling in queueing models. The novelty of our

approach lies in studying how the stability regions of the underlying Markov processes, which can

be seen as the most fundamental performance evaluation criteria, are crucially impacted by the

definition of these decision epochs.

In summary, our main contributions and findings are:

• We characterize the maximum stability regions and uncover that they crucially depend on how

decision epochs are defined.

• We show that the SLC policy is maximum stable in all three settings.

• Policies that select a queue among the connected ones are not necessarily maximally stable.

• In the non-preemptive setting, we prove that the scheduler cannot take opportunistically ad-

vantage (in terms of stability) of the random varying connectivity.

• In Setting III, our analysis allows us to find the optimal frequency of decision epochs in order

to maximize the stability region.

• We develop a simple test, TFL, that, if satisfied by the fluid limit, ensures stability. This TFL

was used for the three different decision epochs settings.

The rest of the paper is organized as follows. In Section 2, we recall seminal results from the

state of the art for the multi-class scheduling problem with randomly varying connectivity of the

queues. The precise model is described in Section 3. The maximum stability regions for the three

different settings of decision epochs are stated in Section 4, as well as the different corollaries and

insights that follow from them. In Section 5 we develop a methodological contribution that proves

3

that a simple TFL criterion allows to conclude for stability. Section 6 verifies that this TFL criterion

holds for our models allowing to prove our characterization of the main stability regions. Finally,

numerical experiments and illustrations are reported in Section 7.

2 Related work

As mentioned in the introduction, models with randomly varying connectivity have been studied

in the context of wireless and satellite communications, see [23, 20, 6] just to cite a few from a very

large body of literature. Other application domains of these models are in data center and cloud

computing, see for instance [18] or [15].

In queueing theory, there is a large body of literature on queues in a random environment.

Here, the parameters of the (modulated) queueing model (including arrival rates and service rates)

change over time as a function of an exogenous stochastic process. The main focus has been on

analyzing the steady-state properties, including stability and queue-length distributions, see for ex-

ample [3] and [11]. Our model can be seen as a particular instance of a modulated queue, where the

service rate of queue i fluctuates between 0 and µi.

For the parallel-queue single-server model, a seminal paper is [23] who considered a slotted system

with Markovian assumptions and establishes necessary and sufficient conditions for stability. It

further showed that SLC is maximum stable and, in the case of symmetric queues, minimizes delay.

The proof technique uses a quadratic Lyapunov function. In [5], a Loyne’s construction was employed

for an equivalent continuous-time system, wherein the scheduler possesses knowledge of either the

workloads or queue-lengths. We also refer to [22] where it is shown that, under the same stability

conditions of [23], there exists a so-called Static Service Split rule that is stable. Similar stability

conditions were derived in [20] and [1] for more general models (the environment can depend both

on classes and the server), and these results were extended to various scheduling types, including

variants of the SLC policy and versions of the Max Weight policy (see the book [21] for a pedagogical

review on these models). See also [9] for the stability analysis of a model with switching delays.

It is important to highlight that the fluid limit characterizations derived in [20] and [1], may not

be easily generalized to our context due to the significantly more complex dynamics stemming from

the presence of decision epochs during which multiple events can unfold. We further note that in

all works cited above, the stability results are for models where the decisions can be made at any

moment in time and the state of the environment is fully known to the controller. However, to the

best of our knowledge, no stability results have been obtained when decision epochs are constrained

(as in our Setting II and Setting III).

One of our main results states that SLC is maximum stable in Settings II and III. Interestingly,

SLC is not always maximum stable, as shown for example in [12] where there are constraints in the

set of queues the scheduler can serve. We also refer to [17], where it is shown that SLC can yield

arbitrarily low throughput in a wireless setting with signal interference.

Finally, let us mention that there are also several works that deal with an unobservable random

environment, that is, when the decision maker cannot observe the state of the environment and

it can take its decision only based on the state of the queues. In [14] it is shown that as the

number of queues grow large and the environment changes state relatively fast, an index policy is

asymptotically optimal. Another interesting work is [8], where the authors study a single-server

multi-class queueing network in heavy traffic with randomly varying rates. In the main result, it is

shown that an “averaged” version of the classical cµ-rule is asymptotically optimal.

4

3 Model description

3.1 Multi-class scheduling in a random environment

The system consists of K parallel queues and a single server. We call [K] = {1, . . . ,K} the set

of queues. Each queue i ∈ [K] has associated an arrival rate λi > 0, and a service rate µi > 0. For

i ∈ [K], we define the variable ρi = λi/µi, usually referred to as the load of the i-th queue. In addition,

each queue i ∈ [K] can be either connected or disconnected. Whether or not a queue is connected

does not affect the arrivals, but when it is disconnected it cannot receive service. Formally, the

environmental state-space associated to each queue i ∈ [K] is {0, 1}, the 0 (resp. the 1) representing

that the i-th queue is disconnected (resp. connected). The environment of each queue has its own

law of evolution: for i ∈ [K], the environment of queue i passes from 0 to 1 (resp. from 1 to 0) at

rate λ′
i (resp. at rate µ′

i). We denote by πi the invariant distribution of the environment of queue i,

which equals

πi(0) =
µ′
i

λ′
i + µ′

i

and πi(1) =
λ′
i

λ′
i + µ′

i

.

At each moment in time, the server can be dedicated to at most one queue, the service speed being

µi if queue i is connected and is being served. Decision of which queue to serve can be made only on

well-defined decision epochs. This decision can not be changed until a next decision epoch. There

is also an independent of everything else sequence of times, with inter-arrival frequency given by

a parameter γ > 0, that can determine the decision epochs. Decision epochs will be explained in

detail in Section 3.2. For simplicity of exposition, we will assume that all times between events

—i.e. arrivals, services, changes in environments and the γ-intensity events just mentioned— are

exponential and mutually independent.

The state space of our process is

X = NK
0 × {0, 1}K × {1, . . . ,K, ∅}. (3.1)

We are adopting the conventions N = {1, 2, . . .} and N0 = {0, 1, 2, . . .} respectively for the sets of

natural numbers and non-negative integers. The three entries in (3.1) respectively represent the

number of waiting tasks per queue, the states of the environments, and the queue that is receiving

service. We will sometimes refer to the third entry as the state of the server. If the state of the server

is ∅, this means that none of the queues receives any service. A state will be denoted as x = (q, e, c),

and for a given policy and given decision epochs, the process with initial condition x will be denoted

as

(Xx(t))t≥0 = ((Qx(t), Ex(t), Cx(t))t≥0.

We highlight that the distribution of the process depends on the policy applied and the decision

epochs considered. However, we chose not to include this information in the notation in order to

avoid making it too overloaded, trusting that the context is sufficient to avoid any possible confusion.

At decision epochs t, the policy is assumed to make decisions based only on the pair (Qx(t), Ex(t)),

namely from the present time observation of the queue sizes and the states of the environment, in

particular implying that the process is Markov.

Remark 1 (Markovian assumptions). We opted for Markovian assumptions on the dynamics because

of an escalation in technical difficulty without a significant gain in insights. In particular, dealing

with more general distributions would give rise to non-explicit and intricate expressions of the key

parameters, while their Markovian counterparts are simple.

5

3.2 Decision epochs

We describe now the three different settings for decision epochs:

Setting I. Decision epochs are at any moment in time. Stability under this setting has been studied

originally in discrete time in [23], while continuous-time versions and generalisations have been

considered in [4, 20] (see Section 2 on related).

Setting II. This is the non-preemptive situation in which a decision cannot be taken in the middle

of a task. In other words, decision epochs are any moment after a departure and until a new

task enters into service.

Setting III. Decision epochs are when an exogenous exponential clock of intensity γ > 0 rings.

In the context of queues with random connectivity, to the best of our knowledge, Setting I has been

the only case studied so far. We can mention [23, 20, 5, 2] and other references in Sections 1 and 2.

Setting II is motivated by applications in which a decision cannot be taken in the middle of a task.

This occurs for instance in real-time systems where once a task is started, it needs to run without

interruption to meet its timing requirements. Finally, Setting III aims at modeling situations in which

there might be a cost associated to observing the state or to taking a decision. Here, the administrator

might need to define the scheduling epochs at some intervals (defined by clock intensity γ) in order

to strike a good balance between performance and cost (both being increasing as a function of γ).

3.3 Scheduling policies and maximum stability regions

We say that a policy stabilizes the system if its associated Markov process is positive recurrent or,

equivalently, if it has a unique invariant distribution. For J ∈ {I, II, III}, let MSRJ be the maximum

stability region associated to Setting J, which is defined as follows:

MSRJ = {(λ, µ, λ′, µ′) : there exists a policy that stabilizes the system under Setting J}.

We are using the compact notation λ = (λ1, . . . , λK), µ = (µ1, . . . , µK), and so on. A policy is called

maximum stable if it can stabilize the system for any set of parameters (λ, µ, λ′, µ′) ∈ MSRJ.

Characterizing the maximum stability region for Setting III, MSRIII, seems out of reach. We

refer to Section 4.6 for a full discussion on this. In order to obtain a closed-form expression for the

maximum stability region, we will restrict the search to the following class of policies, denoted by P.

For insights as to why we restrict to this set, we refer to the text right above Section 4.1.

Definition 3.1 (class P of policies). We say that a policy is inside the class P if at decision epochs

it can only choose to serve a queue that is connected. In addition, it will choose a connected queue

with waiting tasks, whenever possible. The policies in this family will be called P-policies.

Note that when no queue is connected at a decision epoch, no queue is served and hence the state

of the server is ∅, until the next decision epoch. An important policy inside the class P is the Serve

the Longest Connected (SLC) policy, as first defined in [23]. SLC is defined as the policy that at

each decision epoch chooses to dedicate the server to the queue with the highest number of waiting

tasks among the ones that are connected, with an arbitrary tie-breaking rule.

The maximum stability region under Setting J ∈ {I, II, III} when restricted to policies in the

family P is defined as:

MSRP
J = {(λ, µ, λ′, µ′) : there exists a P-policy that stabilizes the system under Setting J}.

We will write MSRIII(γ) to show the dependence on γ in the case of Setting III.

6

4 Main stability results

In this section, we state our main result, which gives an explicit characterization of the maximum

stability regions in all three settings.

Theorem 4.1. For L ⊆ [K], let

π0
L =

∏
i∈L

πi(0)

represent the probability that all the environments of queues in L are disconnected. We then have

that

1. MSRI and MSRP
I are characterized by∑

i∈L
ρi < 1− π0

L ∀L ⊆ [K], L ̸= ∅. (4.1)

2. MSRII and MSRP
II are characterized by

K∑
i=1

ρi
πi(1)

< 1. (4.2)

3. Finally, MSRP
III(γ) is characterized by∑

i∈L

ρi
θi(γ)

< 1− π0
L ∀L ⊆ [K], L ̸= ∅, (4.3)

where

θi(γ) =
γ + λ′

i

γ + λ′
i + µ′

i

.

In all the three settings, the corresponding maximal stability regions are attained by the SLC policy.

For Setting I, both the maximum stability condition and the stability of SLC were first obtained

in [23] (see also [5]), while the results for Settings II and III are new. The proof of Theorem 4.1 can be

found in Section 6. We note that the proof (for all three settings) is based on a novel methodological

tool termed TFL, which serves as a simple test to conclude for stability, see Section 5.

Intuitively, the maximum stability regions under the three settings can be explained as follows.

Consider a subset of classes L. The right hand side (RHS) represents the maximum fraction of

time the server can be usefully dedicated to this set L in a saturated regime and when queues in L

are given priority over the other queues. The left hand side (LHS) of the conditions represents the

effective load of this subset L, which is defined as
∑

i∈L λi/(ξ
J
i µi), J ∈ {I, II, III}. Here, ξ J

i represents

the proportion of time the i-th queue is connected within the time the server is usefully dedicated to

it. In this way, ξ J
i µi represents the effective departure rate. The proportion ξ J

i appears because, due

to the restrictions on decision making, there is a proportion of time in which the server is stuck in a

disconnected queue, even though other queues in L are connected. This phenomena does not occur

in Setting I, reason why ξ I
i = 1. The three conditions now follow:

• Setting I: The RHS is 1− π0
L, since it is only useful to dedicate the server to the set L when at

least one queue in L is connected. As already mentioned, since decision epochs are any moment

in time, the server only dedicates service to a queue when it is connected, so that the effective

departure rate of a class is µi, which explains the LHS.

7

ρ2

ρ1

π2(1)

π1(0)π2(1)

π1(1)π2(0) π1(1)

π1(1)π2(1)

π1(1)π2(1)

ρ2

ρ1

θ2(γ)π2(1)

θ2(γ)π1(0)π2(1)

θ1(γ)π1(1)π2(0) θ1(γ)π1(1)

ρ2

ρ1

π2(1)

π1(1)

Figure 2: For K = 2, we depict MSRI (left), MSRII (center) and MSRIII (right).

• Setting II: Since the service is non-preemptive, we are sure that at a decision epoch the queue

under service is connected. We can therefore stay serving a queue in the set L, since for sure

there was one queue in L connected at the decision epoch. The fraction of time the server

can be dedicated to a subset L is therefore simply 1, that is, the RHS. We briefly explain

how the quantity ξ II
i = πi(1) can be obtained. For a fixed queue i, the process encoding the

state of its environment (connected or disconnected) only when the server is dedicated to this

queue, turns out to be a Markov process whose invariant distribution is precisely πi. Then the

ergodic theorem implies that the desired proportion ξ II
i is πi(1). A more detailed explanation

is provided in Section 6.1.

The reason why the maximum stability condition does not depend on subsets of queues is that,

if the stability condition is satisfied for the total queue subset [K], then it is automatically

fulfilled for any other subset L, since the RHS does not depend on the subset of queues L

considered.

• Setting III: At a decision moment, the server can be dedicated to a queue in L only if one

of the queues is connected (recall that we are restricting to P-policies). The fraction of time

in which this occurs is 1− π0
L because the law governing the decision epochs (the exponential

clocks of rate γ) is independent of the law governing the environments. This explains the RHS.

The reason why ξ III
i = θi(γ) is similar to that in Setting II, in this case the Markov process at

issue having an invariant distribution that depends on γ. A detailed explanation can be found

in Section 6.2.

Our result shows that the maximum stability region strongly depends on the chosen setting of

the decision epochs. In particular, the MSRII and MSRP
III(γ) are strict subsets of MSRI as expected,

since the decision epochs are more restricted. We refer to Figure 1 for a plot of the different maximum

stability regions for the case K = 2.

There is a small caveat concerning Setting III. In fact, the maximum stability region is obtained

when restricting to policies in P only. In Section 4.6, we will prove that policies outside this class

can outperform the P-policies in terms of stability. That is, from the stability point of view, it

might be better to serve a queue that is currently disconnected, even though there is a connected

queue with work waiting. This counter-intuitive property results from the fact that after a decision

is made, disconnected queues can become connected (before the next decision epoch), and hence

the occasional strategic choice of serving a currently disconnected queue can therefore optimize for

higher departure rates in the future. Hence, the actions taken under a maximum stable policy should

be a function of whether or not queues are connected which complicates significantly the analysis.

8

Due to this complexity, we leave the search for such a maximum stable policy, as well as finding the

maximum stability region MSRIII(γ), for future research and focus here on MSRP
III(γ) instead.

We note that restricting to the set of policies P is relevant. Firstly, this allows us to obtain

interesting results such as the characterization in closed-form of the maximum stability region and in

showing that SLC is maximum stable. Secondly, our results show that P is somehow a “complete”

class of policies, since by taking γ large enough its stability region can be arbitrarily close to the

maximum stability region in the unconstrained setting (Setting I).

4.1 Are P-policies always maximum stable?

In the classical multi-class scheduling problem, that is, when all the queues are always connected,

and decisions can be taken at any moment in time, it is well known that any work-conserving policy is

stable in the maximum stability region. In fact, this is valid for both preemptive and non-preemptive

systems. A natural question is whether this remains valid when adding either (a) varying connectivity

or (b) decision restrictions defined by γ. We note that in the presence of (a) and/or (a), the set of

policies P is the equivalent of work-conserving policies in the classical queue. Thus, in this section we

aim at answering the following question, Q1: Is it true that any P-policy is maximum stable

in the presence of (a) or (b)? We note that Setting I and Setting II would correspond to adding

(a) to a preemptive and non-preemptive system, respectively, while Setting III would correspond to

having both (a) and (b). When instead we add only (b), we retrieve a classical multi-class scheduling

problem where decisions can be taken only at γ-epochs, which we refer to as Setting 0 (with slight

abuse of notation). In the proposition below, we show that the answer to Q1 is negative for all

cases. The underlying reason being that, unlike in the classical case, by adding (a) and/or (b) to the

system, for stability it is important to keep queues balanced. That is, it is risky to have queues with

a small number of tasks, because in the case of (a) this leads to states where all connected queues

are empty and we have to idle unnecessarily, or in the case of (b) deciding at a γ-moment to serve

a connected queue that has very little tasks brings the risk that the queue empties before the next

decision moment and as such the server is again unnecessarily idle.

Proposition 4.2. Given a decision epoch Setting J, with J = 0, I, II or III, and given a priority

ordering of the queues. We consider the priority policy that at each decision moment serves the queue

with highest priority among all connected queues with waiting tasks. Then, there exist parameters

inside the maximum stability region MSRP
J for which this priority policy is not stable.

This provides the negative answer to Q1 because the priority policy defined in Proposition 4.2

is inside the class P, but it is not maximum stable. Below we give the proof for J = I, the other

settings follow in a similar fashion.

Proof. Assume we are in Setting I and w.l.o.g. assume we have the priority ordering 1 ≻ 2 ≻ . . . ≻ K.

We consider πi, i = 1, . . . ,K, fixed and take ρ1 ≈ 0. Since ρ1 < 1 − π1(0), the dynamic of the sole

queue 1 is stable, so that we can define the asymptotic proportion of time ε1 > 0 that this queue

is non-empty and connected. Since queue 1 has priority, queue 2 can only be served when queue 1

is not served, which happens with a fraction of time 1 − ε1. Queue 2 can use this time only if it is

connected, hence, it is stable if and only if

ρ2 < (1− π2(0))(1− ε1). (4.4)

Observe that ε1 has been constructed independently of ρ2, so at this point we can chose ρ2 in such a

way that condition (4.1) is fulfilled for L = {2} and L = {1, 2}, while (4.4) is not. Now setting also

ρ3 = . . . = ρK ≈ 0, we can guarantee that all conditions in (4.1) are fulfilled. Hence, even though

the parameters are inside the maximum stability region MSRI, the priority policy is not stable.

9

4.2 Non-preemptive versus preemptive scheduling

In the non-preemptive case (Setting II), Theorem 4.1 shows that the maximum stability region

drastically reduces compared to the preemptive case (Setting I). As explained previously, in Setting II,

the stability region coincides with that of a (classical) multi-class single-server queue in which the

class i service rate is µiπi(1).

The reduction in stability due to the non-preemption assumption can be calculated as follows:

From Theorem 4.1 it follows that the maximum stability region is a convex-hull whose volume

can be computed. In order to assess the degradation of the stability region we compare VOLI

and VOLII, where VOLI (VOLII) denotes the volume of the space enclosed by points (ρ1, · · · , ρK)

that satisfy MSRI (MSRII). In the case K = 2, see Figure 2, we can calculate these volumes:

VOLI = π1(1)π2(1)− (π1(1)π2(1))2

2 and VOLII =
π1(1)π2(1)

2 , which gives as reduction in stability

RedII :=
VOLI −VOLII

VOLI
=

1− π1(1)π2(1)

2− π1(1)π2(1)
,

for π1(1), π2(1) > 0, due to the non-preemptive assumption. This shows that the reduction does not

depend on the arrival rates or departure rates. It does however depend on the stationary distribution

of the connectivity of the queues. We see that the reduction is close to zero when the queues are

almost always connected, while it is close to 1/2 when the queues are almost always disconnected. To

illustrate the latter, consider Figure 2 and observe that MSRI converges to a square (whose volume

converges to zero), and the border of MSRII is the diagonal of this square. Hence, in the limit we

obtain as reduction 1/2.

For arbitrary K, MSRI and MSRII are polytopes defined by the convex hull of the vertices

obtained from linear inequalities. We note that there is no analytical expression to calculate the

volume of a convex polytope in general. However, MSRII has a special structure, a simplex, for

which the general formula for the volume is VOLII = 1
K!

∏K
i=1 µiπi(1). Unfortunately, since we do

not have any expression for VOLI, RedII can only be estimated by numerical means.

4.3 Different time scale regimes

In this section, we study the impact that the speed of the environment has over the stability

regions. For that purpose, we use a speed factor α > 0 which acts over the system by multiplying

the rates λ′
i and µ′

i for each i. The first observation is that MSRI and MSRII remains unaffected

under the scaling given by α. In Setting III, where this is not the case anymore, we will study the

impact that this scaling has in combination with the parameter γ.

• If α
γ → 0, then from Theorem 4.1 it follows that

lim
α
γ
→0

MSRP
III(γ) → MSRI.

This can be explained because, in this limiting regime, decision epochs are so often compared

to changes in the environment that we approach Setting I in which decisions can be made at

every moment.

• If α
γ → ∞, then from Theorem 4.1 it follows that

lim
α
γ
→∞

MSRP
III(γ) →

∑
i∈L

ρi
πi(1)

< 1− π0
L ∀L ⊆ [K], L ̸= ∅.

It can be easily checked that the latter is strictly included in MSRII. To explain this inclusion,

observe that, in the limiting regime, the states of connectivity of the queues changes infinitely

10

many times between two decision epochs, and as such one observes as effective departure rate

the steady state µiπi(1). However, contrary to Setting II, the fraction of time that can be

dedicated to a set of queues L is given by 1 − π0
L, since only queues that are connected at a

γ moment are allowed to receive service, which explains the strict reduction in stability in the

RHS.

4.4 Sufficiently large frequency to guarantee stability

It follows from Theorem 4.1 that MSRP
III(γ) is monotone increasing on γ, and in particular,

MSRP
III(γ) → MSRI as γ → ∞, see Section 4.3. In some applications, there might be a cost (for

instance energy consumption) associated to observing the state. In such a situation, the system

administrator might want to keep the frequency γ, as low as possible, while keeping the system

stable. Theorem 4.1 ensures the existence of a minimal value for γ, denoted by γ0, such that the

system can be made stable for any γ > γ0.

Corollary 4.3. For a set of parameters (λ, µ, λ′, µ′) ∈ MSRI , there exists a finite γ0 such that for

γ > γ0, the SLC policy is stable in Setting III.

Equivalently to Subsection 4.2, we define VOLIII(γ) as the volume of the space enclosed by points

(ρ1, · · · , ρK) that satisfy MSRP
III(γ), and RedIII(γ) :=

VOLI−VOLIII(γ)
VOLI

as the reduction of stability for

Setting III compared to Setting I. Even though we cannot calculate the volumes MSRI and MSRP
III(γ)

for K > 2, it turns out we can instead directly calculate RedIII(γ). To see this, we note that if

(x1, x2, . . . , xK) is a vertex of MSRI, then (θ1(γ)x1, θ2(γ)x2, . . . , θK(γ)xK) is a vertex of MSRP
III(γ)

as well. We refer to Figure 2 for an illustration when K = 2. This then allows us to relate their

volumes, see the following corollary. For the proof, we refer to the Appendix C.

Corollary 4.4. For arbitrary K, we have

RedIII(γ) :=
VOLI −VOLIII(γ)

VOLI
= 1− θ1(γ)θ2(γ) · · · θK(γ). (4.5)

Since θi(γ) is increasing in γ, it follows that RedIII(γ) decreases as γ increases. We can then

consider a similar example to the one that led to Corollary 4.3. Let us assume that there is cost

associated to observing the state. A system administrator might then want to determine the rate γ1
sufficiently large so that the stability reduction is smaller than a certain threshold.

Corollary 4.5. For a set of parameters (λ, µ, λ′, µ′) ∈ MSRI and a target stability reduction R, there

exists a finite γ1 such that RedIII(γ) ≤ R, for all γ ≥ γ1.

4.5 Optimizing the maximum stability region in the presence of communication

overhead

Assume that each decision-making incurs a communication overhead, leading to the server being

momentarily diverted from task execution and engaged in a communication process. To make things

simpler, let us further assume that each decision-making then incurs an inactivity of fixed duration

c before the server resumes. For this model, the maximum stability region can be derived from

MSRP
III(γ) and is given in the following Corollary (see the Appendix C for the proof).

Corollary 4.6. Consider Setting III. Assume that at each decision epoch the server incurs an

inactivity period of fixed duration c. The precise scheduling decision of which queue to serve is

decided after this inactivity period. The maximum stability region is then given by∑
i∈L

ρi
θi(γ)

<
1− π0

L

1 + γc
∀L ⊆ [K], L ̸= ∅.

11

It then follows that for a given set of parameters, there exists a finite γ∗c such that the maximum

stability region is maximized in γ∗c .

The value of γ∗c corresponds to the optimal rate of decision epochs that strikes the right balance

between a high frequency of taking actions and the overheads induced by them.

4.6 Could SLC be improved upon?

The SLC policy was shown to be maximum stable when decisions can be made at any moment in

time (Setting I), as well as when decisions have to be non-preemptive (Setting II), see Theorem 4.1.

When decisions happen at γ-moments (Setting III), we proved that SLC is maximum stable when

restricting to the set of P-policies. The question remains whether SLC is also maximum stable in

general, that is, stable in the set MSRIII(γ). In this section, we show that the answer to this question

is negative and discuss other policies that could potentially be maximum stable.

To show that SCL is not maximum stable in Setting III, we prove that the maximum stability

region MSRIII(γ) is strictly larger than MSRP
III(γ). This is stated in Proposition 4.7 and for its proof

we refer to Appendix C. Intuitively, the first inclusion in (4.6) can be seen as follows: we will define

a policy outside the family P which improves SLC in terms of stability. That is, there exist sets of

parameters outside MSRP
III(γ) for which this new policy is stable. The policy is defined as follows:

at a decision epoch, its action is identical to SLC if there is at least one queue that is connected;

otherwise, when all the queues are disconnected, it dedicates the service to the queue with the highest

number of tasks instead of going to the ∅ state as SLC does. The improvement in terms of stability

comes from the fact that the intervals delimited by consecutive γ-marks at which SLC is in state ∅
represent a positive proportion of time which is seized by the new policy.

Proposition 4.7. It holds that

MSRP
III(γ) ⊂ MSRIII(γ) ⊂ MSRI. (4.6)

Here ⊂ denotes a subset in the strict sense.

The second inclusion in the above proposition states that MSRIII(γ) ⊂ MSRI. That is, the timing

restriction in Setting III creates a strict difference in terms of stability. Nevertheless, as stated in

Corollary 4.3, in Setting III there exist policies (e.g. SLC) that are stable for parameters in MSRI

as the decision rate γ is set sufficiently large. A full characterization of MSRIII(γ) is left as future

research.

Another question that is left unanswered is which policies do stabilize the system for parameters in

MSRIII(γ). For now, we do not have an answer to this. We do believe however that a maximum stable

policy will need to occasionally serve a disconnected queue even though there are connected queues

with tasks waiting to be served1: Although choosing a disconnected queue is disadvantageous in the

short term, it might be beneficial in the long run. The latter follows because between two decision

epochs the queue might become connected and hence be able to serve tasks. If the disconnected queue

had a large backlog while the connected queue had very few tasks waiting, serving the disconnected

queue might be the preferred action in order to avoid unbalanced queues (see Section 4.1 for an

explanation as to why one would want to avoid unbalanced queues).

We conclude this section by mentioning two type of policies that might be able to provide a

maximum stable system in Setting III. The first one is a static policy (that is, whose actions do not

depend on the queue lengths) defined by a so-called Static Service Split (SSS) rule as introduced

1Note that the earlier mentioned “new version” of SLC was only different to SLC when all queues where disconnected.

This was sufficient to prove the strict inclusion of MSRP
III in MSRIII, but it will not be enough for the policy to be

maximum stable.

12

in [22] for a more general environment model (without restrictions on the decision epochs). Under

the SSS policy, each possible set of connected queues is associated a probability vector (the static

service split) that determines with which probability each of the queues is chosen to be served at a

decision epoch when only this set of queues is connected. For Setting I, stability of SSS rules was

proved in [22, Proposition 1]. More precisely, it is proved that for each set of parameters in the

maximum stability region MSRI there exists a static service split such that the SSS rule is stable

in Setting I. We believe that similar results hold true for MSRIII(γ) in Setting III, but leave this

for future research. Another candidate for a stable policy we would like to mention is based on the

restless bandit framework as introduced by Whittle in [26]. In this framework, a queue i is seen as

an arm whose two-dimensional state consists of the number of waiting tasks, Qi(t), and whether or

not the queue is connected, Ei(t). Each queue is associated a Whittle index as a function of Qi(t)

and Ei(t). The so-called Whittle index policy consists in serving at each decision epoch the queue

that has currently the highest Whittle index value. Results in the literature show that such a policy

can be very efficient, see [25, 24], and we plan to further investigate its stability properties in the

context of our model.

5 Test for fluid limits (TFL) and stability

This section is devoted to introducing a new methodological strategy to prove stability, that we

call test for fluid limits (TFL). In Section 6 we use this method to prove all the settings considered

in the article. Moreover, we believe that this strategy might be applied to cover other contexts. The

idea behind this approach is to obtain the stability of the system as a consequence of the verification

of a certain test for the fluid limit, the advantage of course being that this verification is easy to

carry out. In this way, we succeed in proving stability without the necessity of explicitly describing

the fluid limits, which turns out to be cumbersome in our examples. Before stating Proposition 5.3,

the result enclosing this idea, certain prerequisites must be defined.

We introduce the notion of fluid limit following [7]. All our Poisson point processes used to

construct our stochastic process are defined in the same probability space (Ω,F ,P). We fix an

almost sure event Ω′ ∈ F , which can be defined as a set for which the law of large numbers holds for

all these Poisson processes. Let ∥ · ∥ be the supremum norm in RK . For x = (q, e, c) ∈ X such that

∥q∥ ≠ 0, we define the random function Q̄x : [0,∞) → RK as

Q̄x(t) =
1

∥q∥
Qx(∥q∥t).

This function is the rescaled queue length process. A sequence (xn)n = ((qn, en, cn))n ⊆ X is said to

be divergent if limn→∞ ∥qn∥ = ∞.

Definition 5.1. A fluid limit is a (deterministic) function G : [0,∞) → RK for which there exist

ω ∈ Ω′ and a diverging sequence (xn)n such that

lim
n→∞

Q̄xn
(t)[ω] = G(t),

where the convergence is component-wise and uniformly over compact time subsets.

To a function G = (Gi)i : [0,∞) → RK , we associate the max and the argmax functions, which

are defined as

M(t) = max
i∈[K]

Gi(t) and L(t) = {i ∈ [K] : Gi(t) = M(t)}, t ≥ 0.

The definition of our test for fluid limits (TFL) follows.

13

Definition 5.2 (Test for fluid limits (TFL)). We say that the TFL is passed if there exists δ > 0

such that for every fluid limit G and every pair of times 0 ≤ t1 < t2 satisfying

L(t1) = L(t2) and min
i∈L(t1)

Gi(t) > max
i/∈L(t1)

Gi(t) for every t ∈ [t1, t2], (5.1)

we have

M(t2)−M(t1)

t2 − t1
≤ −δ. (5.2)

In Figure 3, we illustrate condition (5.1).

L(t1)

L(t2)

t1 t2

Figure 3: This picture represents condition (5.1). The three leading lines are the graphs of the

functions Gi for which i attains the maximum in the extremes of the interval under consideration,

[t1, t2]. The other lines are the graphs of the remaining Gi’s. The two groups of functions are not

allowed to intersect among the hole interval [t1, t2].

The following result is our methodological tool, that guarantees stability once the test is passed.

Its proof is given in Section 5.1 and relies on an inductive procedure that, to the best of our knowledge,

is novel.

Proposition 5.3. If the TFL is passed, then the process is stable.

5.1 Proof of Proposition 5.3

It is convenient to name the property used in the definition of the TFL.

Property 5.4. We say that a function G = (Gi)i : [0,∞) → RK satisfies Property 5.4 for δ > 0 if

(5.2) holds for every pair of times 0 ≤ t1 < t2 satisfying (5.1).

Under this definition, the TFL is passed if and only if there exists δ > 0 such that every fluid

limit satisfies Property 5.4 for δ > 0.

It is convenient to identify another similar property over functions.

Property 5.5. We say that a function G = (Gi)i : [0,∞) → RK satisfies Property 5.5 for δ > 0 if

(5.2) holds for every pair of times 0 ≤ t1 < t2 satisfying either

min
i∈L(t1)

Gi(t) > max
i/∈L(t1)

Gi(t) for every t ∈ [t1, t2] (5.3)

or

min
i∈L(t2)

Gi(t) > max
i/∈L(t2)

Gi(t) for every t ∈ [t1, t2]. (5.4)

14

L(t1)

t1 t2

Figure 4: Condition (5.3)

L(t2)

t1 t2

Figure 5: Condition (5.4)

Conditions (5.3) and (5.4) are represented in Figures 4 and 5, respectively. Observe that condi-

tion (5.1) in the definition of TFL implies both conditions (5.3) and (5.4). Said in different terms, for

a fixed δ > 0, the range of pairs t1, t2 over which inequality (5.2) is required to hold in Property 5.5

is larger than in in Property 5.4, so every function satisfying Property 5.5 also satisfies Property 5.4.

The following result shows that the two properties indeed coincide over Lipschitz functions.

Lemma 5.6. Let G : [0,∞) → Rk be a Lipschitz function, and fix δ > 0. Then G satisfies Property

5.4 for δ if and only if it satisfies Property 5.5 for δ.

Before giving a proof of this lemma, we show how our methodological contribution, Proposi-

tion 5.3, follows from it. Suppose that the TFL is passed, that is, there exists δ > 0 such that every

fluid limit satisfies Property 5.4 for this δ > 0. Fix now a fluid limit G. By Lemma 5.6, G satisfies

Property 5.5 for δ because fluid limits are Lipschitz. Fix t such that M(t) > 0 (recall that M is the

maximum function associated to G). By continuity, there exists ε > 0 such that (5.3) holds for t1 = t

and any t2 ∈ (t, t+ ε), which implies (5.2). The analogous implication holds also to the left, i.e. for

t2 = t and any t1 ∈ (t− ε, t), we have (5.4) and hence (5.2). We have obtained

lim sup
t′→t

M(t)−M(t′)

t− t′
≤ −δ for every t for which M(t) > 0. (5.5)

Since M is Lipschitz, its derivative exists for almost every time, and (5.5) proves that it is bounded

by −δ. In other words, the maximum function is Lyapunov for the fluid limit, and the stability of

the Markov process under the SLC policy follows, see [19].

Proof of Lemma 5.6

We only prove the sufficiency direction since the necessity direction is trivial. So assume that

the Lipschitz function G satisfies Property 5.4 for δ > 0. We will proceed by induction over m ∈ N,
the precise inductive hypothesis being the following one: inequality (5.2) holds for 0 ≤ t1 < t2 either

when |L(t1)| < m and (5.3) holds, or when |L(t2)| < m and (5.4) holds. Observe that the case m = 1

holds because in this case Properties 5.4 and 5.5 are equivalent.

Let now 0 ≤ t1 < t2 such that |L(t1)| = m and (5.3) holds. The trick is to define

t∗ = max{t ∈ [t1, t2] : L(t) = L(t1)}.

Since by assumption inequality (5.2) holds for every pair of times satisfying (5.1), we have

M(t∗)−M(t1)

t∗ − t1
≤ −δ. (5.6)

If t∗ = t2, we are trivially done. Otherwise, for every t ∈ (t∗, t2) we have that |L(t)| < |L(t1)| due to

the validity of condition (5.3) and the very definition of t∗. Hence we can apply (both cases of) the

inductive hypothesis to obtain that

lim sup
t′→t

M(t′)−M(t)

t′ − t
≤ −δ ∀t ∈ (t∗, t2).

15

From the fundamental theorem of calculus, we get

M(t2)−M(t∗)

t2 − t∗
≤ −δ. (5.7)

Inequalities (5.6) and (5.7) let us obtain the desired inequality (5.2). The second case in which

|L(t2)| = m and (5.4) follows analogously after defining

t∗ = min{t ∈ [t1, t2] : L(t) = L(t2)}.

6 Proof of the maximum stability region, Theorem 4.1

In this section we prove the sufficiency part of our main result, Theorem 4.1. More precisely,

we will prove that the SLC policy is stable under conditions (4.1), (4.2) and (4.3) established for

the corresponding settings. To do so, in view of Proposition 5.3, we only need to verify that the

corresponding fluid limits pass the TFL. These verifications for Settings II and III are presented

in Section 6.1 and Section 6.2, respectively, while we relegate the verification for Setting I to Ap-

pendix B.3. The proof that the conditions (4.1), (4.2) and (4.3) are necessary for the existence of a

stable policy is postponed to Appendix A.

We use the following standard queue length representation (see [10] for instance). Let Ax
i ⊆ [0,∞)

be the time subset in which queue i is receiving effective service. By effective, we mean that we count

only the time when the server is dedicated to this queue and the queue is connected and non-empty.

It is formally defined as

Ax
i = {t ∈ [0,∞) : Cx(t) = i, Ex

i (t) = 1, Qx
i (t) > 0}.

For every i ∈ [K], we call Nλi
and Nµi the counting measures associated to the Poisson point

processes respectively used to define the arrivals and departures in queue i. The mentioned queue

length representation is given by

Qx
i (t) = qi +Nλi

([0, t])−Nµi(A
x
i ∩ [0, t]), i ∈ [K], t ≥ 0. (6.1)

Fix G to be a fluid limit associated to an element ω ∈ Ω′ and a diverging sequence (xn)n. Since

ω is considered fixed, we do not include it in the subsequent notations. An Arzelá-Ascoli argument

allows us to prove a fluid version of formula (6.1), namely, for every i ∈ [K],

Gi(t) = Gi(0) + λit− µiTi(t). (6.2)

Here Ti is the (uniformly over compacts) limit of the sequence of functions (T̄ xn

i)n defined as

T̄ xn

i (t) =

∣∣Axn

i ∩ [0, t∥qn∥]
∣∣

∥qn∥
, t ≥ 0.

This sequence represents the scaled versions of the cumulative effective service time.

6.1 TFL verification for Setting II

We first consider Setting II. In order to prove that SLC is stable when (4.2) holds, it is enough

to show that the fluid limit corresponding to the policy SLC satisfies the TFL. Recall the definitions

of the max and argmax functions M and L associated to the fluid limit G. Take t1 and t2 satisfying

(5.1). For the sake of notational compactness, we call L = L(t1), µ̃i = µiπi(1) and ρ̃i = λi/µ̃i. We

will prove that (5.2), and hence TFL, is satisfied for

δ =
1−

∑K
i=1 ρ̃i∑K

i=1 µ̃
−1
i

.

16

Since this is a positive parameter in view of condition (4.2), this implies the stability of the process

through Proposition 5.3. The numerator of δ has to be understood as the difference between the

capacity of the server and the total effective load; the denominator is a term that appears when

normalizing the queue sizes by the effective service rates.

Formula (6.2), in conjunction with assumption (5.1), readily implies

M(t2)−M(t1)

t2 − t1

∑
i∈L

µ̃−1
i =

∑
i∈L

Gi(t2)−Gi(t1)

µ̃i(t2 − t1)
=

∑
i∈L

ρ̃i −
∑
i∈L

Ti(t2)− Ti(t1)

πi(1)(t2 − t1)
.

We reduced the problem to proving that∑
i∈L

Ti(t2)− Ti(t1)

πi(1)(t2 − t1)
= 1 (6.3)

because, if true, we have

M(t2)−M(t1)

t2 − t1
=

∑
i∈L ρ̃i − 1∑
i∈L µ̃−1

i

≤ −δ.

We explain now why identity (6.3) holds, and we refer for the details to Appendix B.1. The

first observation is that, since we are assuming (5.1), the queues in L will have the leading queue

sizes during all the considered time interval in the pre-limit. Also, the non-preemptive nature of

the policy guarantees that there is always a connected queue at every decision epoch. These two

observations imply that, in this regime in which the queues in L are leading, the server will be

dedicated precisely to this queue subset L (except possibly during an initial negligible time interval).

The LHS of Equation (6.3) captures the proportion of time that the server is assigned to queues in

L during the time interval [t1, t2]. To see this, we note that Ti(t2)− Ti(t1) is the amount of time the

server is dedicated to i while this queue is connected. When we divide this time by the proportion

of time in which queue i is effectively connected during this interval, which is precisely πi(1) as

explained in the next paragraph, we get the total amount of time that the server is dedicated to

queue i. Thus, Ti(t2)−Ti(t1)
πi(1)(t2−t1)

represents the proportion of time that the server is dedicated to i. Since,

as just explained, the server is fully dedicated to queues in L, we can conclude that these fractions

sum up to 1, yielding (6.3).

We now explain why the proportion described above is given by πi(1). Consider the stochastic

process that encodes the state of the i-th environment only during the time the server is dedicated to

it. This is a Markov process with state-space {0, 1} that transitions from disconnected to connected

at rate λ′
i, and from connected to disconnected at rate µ′

i. Its invariant distribution is precisely πi,

and by the ergodic theorem πi(1) is the desired proportion. For clarity, it is important to note that,

if a departure occurs in queue i, the state of its environment, 1, remains unchanged. Indeed, since

the policy is in the family P, even if the server is dedicated to other queues for a period of time after

this departure, the i-th queue will necessarily be connected again when the server is re-dedicated to

it.

6.2 TFL verification for Setting III

Define µ̂i = θi(γ)µi and ρ̂i = λi/µ̂i for notational compactness. As in the previous case, but

replacing πi(1) by θi(γ), we get

M(t2)−M(t1)

t2 − t1

∑
i∈L

µ̂−1
i =

∑
i∈L

ρ̂i −
∑
i∈L

Ti(t2)− Ti(t1)

θi(γ)(t2 − t1)
.

17

We will prove in Appendix B.1 that∑
i∈L

Ti(t2)− Ti(t1)

θi(γ)(t2 − t1)
= 1− π0

L, (6.4)

which implies the desired inequality (5.2) for

δ =
min{1− π0

L −
∑

i∈L ρ̂i : L ⊆ [K], L ̸= ∅}∑K
i=1 µ̂

−1
i

.

The numerator of δ represents the minimum over subsets L of the difference between the maximum

capacity that the server can dedicate to the subset and the total effective load in question.

Identity (6.4) has a similar explanation as (6.3), with some differences that we now outline. For

further details we refer to Appendix B.2. The first difference is that the coefficient equals θi(γ)

and not πi(1). As before, we define the Markov process encoding the state of the i-th environment

during the time the server is dedicated to queue i, which in this case transitions from disconnected

to connected at rate λ′
i + γ, and from connected to disconnected at rate µ′

i. The reason is akin to

what was mentioned earlier, with the additional matter that we pass from disconnected to connected

also when the exponential clock of intensity γ rings. Hence, by the ergodic theorem, θi(γ) =
λ′
i+γ

µ′
i+λ′

i+γ

is the asymptotic proportion of time this process is connected as expected.

The second difference is that the RHS of (6.4) is 1 − π0
L and not 1 as in the previous case. To

understand this consider two consecutive γ-marks s1, s2 ∈ (tn1 , t
n
2]. In an interval [s1, s2) the server is

either dedicated to a fixed queue, or is dedicated to ∅. Since we are under Setting III and consider

SLC, a queue i in L is always served, except when all queues in L are disconnected at time s1. The

latter happens with probability π0
L. Therefore, 1 − π0

L is the asymptotic proportion of this type of

intervals (those within (tn1 , t
n
2] that are delimited by γ-marks) for which queues in L are served. Since

the LHS of (6.4) is the proportion of time that the server is assigned to queues in L, this should

hence be equal to 1− π0
L.

7 Numerical evaluation of stability regions

In this section we provide some numerical examples of the comparison results we described in

Section 4. In particular we want to assess the impact of γ on the reduction in the stability region,

RedIII(γ), for which a closed-form expression is given in (4.5).

In Figure 6 (left), we plot the reduction in the maximum stability region when decision are at γ

epochs, i.e. RedIII(γ), as a function of the decision rate γ. The difference between the two lines lies

in the speed of the environments, which is 10 times faster in the dash line. As expected from (4.5),

the reduction of the stability decreases as γ increases and converges to zero. We further observe that

the solid line decreases much faster. The intuition for this is that the state of connectivity of the

queues changes less fast when α = 1, and hence, a smaller rate of decisions is already sufficient to

get a similar stability reduction as for the case where the connectivity changes faster, α = 10.

In Figure 6 (right) we illustrate the result of Corollary 4.3. We take a symmetric situation with

λ′
i = µ′

i = 1 and ρ1 = ρ2. From Theorem 4.1 we obtain that in order to be stable in Setting I, the

load should satisfy ρi ∈ [0, (1−π1(0)π2(0))/2). In Figure 6 (right) we plot γ0 as a function of ρi. We

recall that γ0, defined in Corollary 4.3, denotes the minimal value of γ such that the system is stable

in Setting III. We observe that the minimal value of γ0 remains relatively small until ρi gets very

close to the stability border of MSRI, which shows a sharp phase transition: stabilizing the system

in terms of decision rate is relatively cheap until we are very close to the frontier.

In Figure 7 (left) we illustrate the result of Corollary 4.5, that is, we plot the minimum rate γ1
such that for any γ ≥ γ1, the reduction in stability for Setting III is less than the tolerable reduction

18

Figure 6: (left) RedIII(γ) as a function of the parameter γ, with λ′
1 = α0.8, λ′

2 = α3, µ′
1 = 0.2α and

µ′
2 = α. We set α = 1 for the solid line and α = 10 for the dashed line. (right) Minimal γ0 as a

function of ρi, with λ′
i = µ′

i = 1 and ρ1 = ρ2.

Figure 7: (left) The normalized value γ1−U
U as a function of the tolerable stability reduction R. The

parameters from Figure 6 (left) are used here. (right) RedIII(γ) versus the number of queues, where

γ = 5 for the solid line, γ = 5
√
K for the dashed curve and γ = 5K for the dotted line.

given by R. To find γ1, we simply solve the 2nd degree polynomial obtained from RedIII(γ) =

(1−θ1(γ)θ2(γ)) = R. Again, we consider two set of parameters, where the difference is that the rates

of connectivity are scaled. In order to compare the values of γ1, we scale them by U = λ′
1+λ′

2+µ′
1+µ′

1

and plot (γ1 − U)/U. Firstly, we see that both curves overlap quite closely, despite the fact that

the rates of the environments for the dashed line are 10 times larger. Secondly, we observe that if

we want to make the stability reduction to be smaller than, say 1%, the parameter γ1 needs to be

around 50 times larger than the sum of the transition rates, U .

In Figure 7 (right) we plot the reduction in stability as a function of the number of queues, K.

The parameters of the queue, λ′
i and µ′

i, are chosen randomly from a uniform distribution on [0, 1].

In the solid curve, the value of γ is kept constant, and we see that the reduction tends to 100%, as

could also be seen directly from Equation (4.5). In the dash line, we scale the value of γ with the

square root of the number of servers, and we observe that, even though more slowly, the reduction

still converges to 100%. In the dotted line, we scale γ linearly with the number of servers and we

observe that the stability reduction tends to some positive value strictly smaller than 1. It would be

19

Figure 8: We set λ′
1 = 1, λ′

2 = 2, λ′
3 = 3, µ′

1 = 3 and µ′
2 = 2 and µ′

1 = 1. (left) VOLIII(γ) (as

determined by the inequalities (4.6)) as a function of γ. The inactivity duration c equals c = 0.001

for the solid line, c = 0.01 for the dashed line, and c = 0.05 for the dotted line. (right) Optimal

decision rate, γ∗c , as a function of c.

interesting to show that indeed scaling the decision rate γ linearly with the number of servers yields

a constant stability reduction asymptotically.

In Figure 8, we illustrate the result of Corollary 4.6 where the stability region is determined for

a system where each decision epoch causes an inactivity period of duration c. We set K = 3 and

in Figure 8 (left) we plot VOLIII(γ) (can be calculated from Equation 4.6) as a function of γ. We

observe the existence of an optimal rate γ∗c that maximizes the stability region and hence strikes the

right balance between a high frequency of taking actions and the overheads induced by them. In

Figure 8 (right) we plot γ∗c as a function of c. We observe that γ∗c is decreasing in c. Indeed, the

larger c, the more harmful it becomes to increase the frequency of actions.

8 Conclusions

Building on an original analysis of fluid limits of one server multi-class system in a random

environment, our results reveal the crucial impact of decision epochs on the stability properties of a

natural class P of policies. We conclude mentioning a few research avenues that stem out of our work.

Exploring the maximal stability region for policies outside P remains an open problem (see Section

4.6). Besides, exploring the impact of decision epochs on the stability region opens avenues for

further investigation, for instance in stochastic networks with more complex topologies and broader

statistical assumptions.

More generally, our approach finds potential application for the study of continuous-time Partially

Observable Markov Decision Processes (POMDP) with constrained action epochs and their model-

free counterpart in reinforcement learning, which currently gathers considerable attention. Finally,

we also mention that the methodological contribution we present on fluid limits, could be promising

for examining the stability of various other models.

References

[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting. Schedul-

ing in a queuing system with asynchronously varying service rates. Probability in the Engineering

and Informational Sciences, 18(2):191–217, 2004.

20

[2] U. Ayesta, M. Erausquin, M. Jonckheere, and I. M. Verloop. Scheduling in a random environ-

ment: Stability and asymptotic optimality. IEEE/ACM Transactions on Networking, 21(1):258–

271, 2013.

[3] F. Baccelli and A. M. Makowski. Stability and bounds for single server queues in random

environment. Communications in Statistics. Stochastic Models, 2(2):281–291, 1986.

[4] N. Bambos and G. Michailidis. Queueing and scheduling in random environments. Advances in

Applied Probability, 36(1):293–317, 2004.

[5] Nicholas Bambos and George Michailidis. Queueing networks of random link topology: station-

ary dynamics of maximal throughput schedules. Queueing Syst., 50(1):5–52, 2005.

[6] S.C. Borst. User-level performance of channel-aware scheduling algorithms in wireless data

networks. IEEE/ACM Transactions on Networking, 13(3):636–647, 2005.

[7] M. Bramson. Stability of queueing networks, volume 1950. Springer, Berlin, Berlin, 2008.

[8] Amarjit Budhiraja, Arka Ghosh, and Xin Liu. Scheduling control for markov-modulated single-

server multiclass queueing systems in heavy traffic. Queueing Systems, 78(1):57–97, 2014.

[9] G. D Celik, L. B. Le, and E. Modiano. Scheduling in parallel queues with randomly varying

connectivity and switchover delay. In 2011 Proceedings IEEE INFOCOM, pages 316–320. IEEE,

2011.

[10] J. G. Dai. On positive Harris recurrence of multiclass queueing networks: a unified approach

via fluid limit models. Ann. Appl. Probab., 5(1):49–77, 1995.

[11] B. D’Auria. m/m/∞ queues in semi-markovian random environment. Queueing Systems,

(58):221–237, 2008.

[12] Antonis Dimakis and Jean Walrand. Sufficient conditions for stability of longest-queue-

first scheduling: second-order properties using fluid limits. Advances in Applied Probability,

38(2):505–521, 2006.

[13] H. T Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing: architecture,

applications, and approaches. Wireless communications and mobile computing, 13(18):1587–

1611, 2013.

[14] Santiago Duran and Ina Maria Maaike Verloop. Asymptotic Optimal Control of Markov-

Modulated Restless Bandits. In ACM Sigmetrics 2018, Irvine, United States, June 2018.

[15] M. Khabbaz and C. M. Assi. Modelling and analysis of a novel deadline-aware scheduling scheme

for cloud computing data centers. IEEE Transactions on Cloud Computing, 6(1):141–155, 2015.

[16] L. Kleinrock. Queueing Systems, vol. 1. John Wiley and Sons, 1976.

[17] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff. Longest-queue-first scheduling under the sinr

interference model. In ACM MobiHoc, 2010.

[18] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin. Random task scheduling scheme based on

reinforcement learning in cloud computing. Cluster computing, 18:1595–1607, 2015.

[19] P. Robert. Stochastic networks and queues, volume 52 of Applications of Mathematics (New

York). Springer-Verlag, Berlin, french edition, 2003. Stochastic Modelling and Applied Proba-

bility.

21

[20] S. Shakkottai and A. L. Stolyar. Scheduling for multiple flows sharing a time-varying channel:

The exponential rule. Translations of the American Mathematical Society-Series 2, 207:185–202,

2002.

[21] R. Srikant and L. Ying. Communication Networks: An Optimization, Control, and Stochastic

Networks Perspective. Cambridge University Press, 2013.

[22] A.L. Stolyar. Maxweight scheduling in a generalized switch: State space collapse and workload

minimization in heavy traffic. Annals of Applied Probability, 14(1):1–53, 2004.

[23] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel queues with randomly

varying connectivity. IEEE Transactions on Information Theory, 39(2):466–478, 1993.

[24] I.M. Verloop. Asymptotically optimal priority policies for indexable and non-indexable restless

bandits. Annals of Applied Probability, 26(4):1947–1995, 2016.

[25] Richard R Weber and Gideon Weiss. On an index policy for restless bandits. Journal of applied

probability, pages 637–648, 1990.

[26] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied

Probability, 25:287–298, 1988.

22

A Necessity proof of Theorem 4.1

We prove now that the conditions given in Theorem 4.1 are necessary.

Setting I

For this setting, this result is not new (see [5] for instance), but nevertheless we give a proof for

completeness. Suppose that condition (4.1) is not fulfilled, namely, that there exists a non-empty

subset of queues L ⊆ [K] such that ∑
i∈L

ρi > 1− π0
L.

Under this condition, we will prove that any policy is unstable, the idea being that, even in the

extreme scenario in which all the service is dedicated to the subset L, tasks will necessarily accumulate

in these queues.

From formula (6.1), for an arbitrary initial condition x, we get∑
i∈L

Qx
i (t)

tµi
=

∑
i∈L

qi
tµi

+
∑
i∈L

Nλi
([0, t])

tµi
−
∑
i∈L

Nµi(A
x
i ∩ [0, t])

tµi
. (A.1)

The last sum can be controlled as follows:∑
i∈L

Nµi(A
x
i ∩ [0, t])

tµi
≤

∑
i∈L

Nµi ({s ∈ [0, t] : Cx(s) = i, Ex
i (s) = 1})

tµi

=
1

t

∑
i∈L

|{s ∈ [0, t] : Cx(s) = i, Ex
i (s) = 1}|+Rt (A.2)

≤ 1

t

∣∣∣ ⋃
i∈L

{s ∈ [0, t] : Ex
i (s) = 1}

∣∣∣+Rt.

In the first inequality, we simply neglected the per-queue unbusy periods, i.e., the periods in which the

queue is empty. The error Rt is defined for the equality to hold. The second inequality involves two

steps: first, we use that the sets appearing in the sum in (A.2) are disjoint; secondly, as anticipated,

we bound by the most beneficial case in which all the service is dedicated to the queues in L. Since

Rt goes to zero as t → ∞ —due to the law of large numbers—, the last expression converges almost

surely to 1−π0
L. Coming back to (A.1), and using that the second sum in the RHS of (A.1) converges

to
∑

i∈L ρi, we obtain

lim inf
t→∞

∑
i∈L

Qx
i (t)

tµi
≥

∑
i∈L

ρi − (1− π0
L) a.s.

Since by assumption the RHS in this inequality is strictly positive, we can conclude that

lim inf
t→∞

∑
i∈L

Qi(t)

µi
= +∞ a.s.,

and hence the process is unstable.

Setting II

Suppose that condition (4.2) is not satisfied, i.e., suppose that

K∑
i=1

ρi
πi(i)

> 1.

23

Under this assumption, we will prove that any policy is unstable.

Again from formula (6.1),

K∑
i=1

Qi(t)

tπi(1)µi
=

K∑
i=1

qi
tπi(1)µi

+

K∑
i=1

Nλi
([0, t])

tπi(1)µi
−

K∑
i=1

Nµi(A
x
i ∩ [0, t])

tπi(1)µi
. (A.3)

We can deal with the last sum as follows:

K∑
i=1

Nµi(A
x
i ∩ [0, t])

tπi(1)µi
⪅

1

t

K∑
i=1

|{s ∈ [0, t] : Cx(s) = i, Ex
i (s) = 1}|

πi(1)

⪅
1

t

K∑
i=1

|{s ∈ [0, t] : Cx(s) = i}| . (A.4)

The symbol ⪅ means ‘less or equal with an error that vanishes as t → ∞’. In the first line, we

neglected the unbusy periods and used the law of large numbers, exactly as we did right before in

the necessity proof for Setting I. To justify the second line, we refer to the argument that we used at

the end of the test verification for the same Setting II, in Section 6. In that argument, we used that

πi(1) is the asymptotic proportion of time in which a certain queue i is connected within the time it

is receiving service. In the case of a general policy, πi(1) instead works as an upper bound for such a

proportion because it may happen that, at a decision epoch, we serve a queue that is disconnected.

If this happens, the time interval between such epoch and the moment in which the queue under

service connects, is a disconnected time interval that is not counted in the SLC case. Using that the

expression in (A.6) is bounded by 1, we obtain

lim sup
t→∞

K∑
i=1

Nµi(A
x
i ∩ [0, t])

tπi(1)µi
≤ 1 a.s.

Substituting in (A.3), we get

lim inf
t→∞

K∑
i=1

Qi(t)

tµiπi(1)
≥

K∑
i=1

ρi
πi(i)

− 1 a.s.,

which let us conclude.

Setting III

Suppose that ∑
i∈L

ρi
θi(γ)

> 1− π0
L (A.5)

for some non-empty subset L ⊆ [K]. Unlike the other settings, in Setting III we can only prove that

any policy in the family P is unstable. This is related with the discussion given in 4.6, in which me

mention that, even if (A.5) holds, there might stable policies outside the family P.

The proof in this setting has the same spirit than in the previous ones. In this case we have again

formula (A.3), but with θi(γ) instead of πi(1), and with the sums running only over the queues in L.

We control the sum concerning the services as∑
i∈L

Nµi(A
x
i ∩ [0, t])

tθi(γ)µi
⪅

1

t

∑
i∈L

|{s ∈ [0, t] : Cx(s) = i, Ex
i (s) = 1}|

θi(γ)

≈ 1

t

∑
i∈L

|{s ∈ [0, t] : Cx(s) = i}| (A.6)

⪅ 1− π0
L.

24

Of course, the symbol ≈ means ‘equal with an error that vanishes as t → ∞’. In the first line,

we neglected the per-queue unbusy periods, as usual. In the second line, we used that θi(γ) is the

proportion of connected periods within the time that we are serving queue i. We emphasize that this

is an inherent property of the family P and not of the SLC policy, and this is also the reason why, in

this line, we have an ≈ instead of an ⪅ as we had in the Setting II. The last line is due to the fact

that the proportion of time intervals separated by consecutive γ-marks in which we serve a queue in

L is at most 1− π0
L because, since the policy is in the family P, at decision epochs we cannot select

a queue that is disconnected. Importantly, this last step would fail if we considered policies outside

P.

B Remaining proofs from the TFL verifications

B.1 Proof of Equations (6.3)

This identity follows from the convergence

lim
n→∞

∑
i∈L

T̄ xn

i (t2)− T̄ xn

i (t1)

πi(1)(t2 − t1)
= 1 (B.1)

simply because, by definition, T̄ xn

i approximates Ti. Let tn1 = ∥qn∥t1 and tn2 = ∥qn∥t2 represent the

microscopic versions of t1 and t2. Let also τn be the first time after tn1 a queue in L receives service,

formally defined as

τn = inf{t ≥ tn1 : Cxn
(t) ∈ L}. (B.2)

Considering that it is sufficient for one of the queues in L to be connected in an decision epoch for

the SLC policy to start serving this group of queues, it is not difficult to believe that

lim
n→∞

τn
∥qn∥

= t1. (B.3)

This is proven at the end of the section.

Convergence (B.1) follows from the following sequence of steps:

∑
i∈L

T̄ xn

i (t2)− T̄ xn

i (t1)

πi(1)(t2 − t1)
=

∑
i∈L

∣∣Axn

i ∩ (tn1 , t
n
2]
∣∣

πi(1)(tn2 − tn1)

≈
∑
i∈L

∣∣Axn

i ∩ (τn, t
n
2]
∣∣

πi(1)(tn2 − τn)

=
∑
i∈L

∣∣{t ∈ (τn, t
n
2] : C

xn
(t) = i, Exn

i (t) = 1, Qxn

i (t) > 0}
∣∣

πi(1)(tn2 − τn)

≈
∑
i∈L

∣∣{t ∈ (τn, t
n
2] : C

xn
(t) = i, Exn

i (t) = 1}
∣∣

πi(1)(tn2 − τn)

≈
∑
i∈L

∣∣{t ∈ (τn, t
n
2] : C

xn
(t) = i}

∣∣
tn2 − τn

−−−→
n→∞

1.

The symbol ≈ means ‘equal with an error that vanishes as n → ∞’. The first and second identities

((B.1) and (B.1)) are respectively because of the definitions of T̄ xn

i and Axn

i . The first approximation

(B.1) is due to (B.3). The validity of (5.1) implies that its microscopic version

min
i∈L

Q̄xn

i (t) > max
i/∈L

Q̄xn

i (t) ∀t ∈ [t1, t2] (B.4)

25

holds for n large enough, which explains the second approximation in which we simply neglect the

condition of having a positive queue length. The convergence to 1 stated in the last line also uses

the asymptotic validity of (B.4). Indeed, for large values of n, the SLC policy will dedicate service

only to the queues in L during the time interval (τn, t
n
2] because, on the one hand, the leading queue

is necessarily in L and, on the other hand, the queue under service is connected at decision epochs

as explained before. We recall that the last approximation was already explained towards the end of

Section 6.1.

While starting with xn as initial condition, let ([an(m), bn(m)))m∈N be the sequence of intervals

after t1∥qn∥ inside which all the environments are connected. We now prove convergence (B.2).

Let An
i (m) be the event defined as follows: in the time interval [an(m), bn(m)), there are exactly

one λi-mark and exactly one µi-mark, and the λi-mark comes before the µi-mark. Let An(m) =⋂
i∈[K]A

n
i (m). For n large enough such that (B.4) holds, the occurrence of An(m) for an m such that

bn(m) ≤ t2∥qn∥ implies that Cxn
(bn(m)) ∈ L. Indeed, under these conditions, we can guarantee that

a decision epoch occurs inside [an(m), bn(m)), epoch at which we will pass to serve the maximum

queue (that is in L) because all the queues are connected. In conclusion, if An(m) occurs then

τn ≤ bn(m), or, in other terms,

τn ≤ min{bn(m) : m ∈ N, bn(m) ≤ t2∥qn∥, An(m) occurs}.

We can conclude from the fact that the occurrences of the events {An(m) : m ∈ N} represent

independent trials of positive probability.

B.2 Proof of (6.4)

It follows from the following steps:

∑
i∈L

T̄ xn

i (t2)− T̄ xn

i (t1)

θi(γ)(t2 − t1)
≈

∑
i∈L

∣∣{t ∈ (tn1 , t
n
2] : C

xn
(t) = i, Exn

i (t) = 1}
∣∣

θi(γ)(tn2 − tn1)
(B.5)

≈
∑
i∈L

∣∣{t ∈ (tn1 , t
n
2] : C

xn
(t) = i}

∣∣
tn2 − tn1

−−−→
n→∞

1− π0
L.

The first approximation follows as in Section B.1 but without the necessity of introducing the stop-

ping time τn. We highlight that (5.1) is required in this step. The second approximation and the

convergence were already explained in Section 6.2.

B.3 Test verification for J = I

We will verify the TFL for

δ =
min{1− π0

L −
∑

i∈L ρi : L ⊆ [K], L ̸= ∅}∑K
i=1 µ

−1
i

,

which is a positive quantity due to condition (4.1). Let t1 < t2 satisfying (5.1), and call L = L(t1) =

L(t2). As in the other settings, we have

M(t2)−M(t2)

t2 − t1

∑
i∈L

µ−1
i =

∑
i∈L

ρi −
∑
i∈L

Ti(t2)− Ti(t1)

t2 − t1
,

and the proof is now reduced to proving that∑
i∈L

Ti(t2)− Ti(t1)

t2 − t1
= 1− π0

L.

26

As before, condition (5.1) let us obtain this identity through the following steps:∑
i∈L

T̄ xn

i (t2)− T̄ xn

i (t1)

µi(t2 − t1)
≈

∑
i∈L

∣∣{t ∈ (tn1 , t
n
2] : C

xn
(t) = i, Exn

i (t) = 1
}∣∣

tn2 − tn1

≈
∣∣{t ∈ (tn1 , t

n
2] : E

xn

i (t) = 1 for some i ∈ L
}∣∣

tn2 − tn1
−−−→
n→∞

1− π0
L.

C Additional proofs

C.1 Proof of Corollary 4.4

We first note that vertices characterizing both MSRI and MSRP
III(γ) are related. Indeed, if

(x1, x2, . . . , xK) is a vertex of MSRI, it then follows that (θ1(γ)x1, θ2(γ)x2, . . . , θK(γ)xK) is a vertex

of MSRP
III(γ). To see this it suffices to observe that with the change of variable ρ̃i = ρi/θi(γ), the

inequalities of Setting III, see Equation (4.3), coincide with those of Setting I, see Equation (4.1).

This now allows us to relate their volumes. The volume is a measure of the ”size” of the convex set

and if we scale each dimension by a factor θi(γ), the volume scales by the product θ1(γ)×· · ·×θK(γ).

In other words, VOLI and VOLIII(γ) satisfy the relation VOLIII(γ) = θ1(γ)θ2(γ) · · · θK(γ)VOLI,

which directly yields the expression for RedIII(γ) in Equation (4.5).

C.2 Proof of Corollary 4.6

We can follow the exact same steps of the proof of stability of the system without delays. In

equation (B.2), the limit is replaced by 1/γ
1
γ
+c

(1− π0
L).

C.3 Proof of Proposition 4.7

The proof is very similar to the test verification for J = III given in Section 6. With the new

policy, the RHS of (B.5) need to be decomposed as∑
i∈L

∣∣{t ∈ (tn1 , t
n
2] : C

xn
(t) = i, Exn

i (t) = 1, t ∈ Bn

}∣∣
θi(γ)(tn2 − tn1)

+
∑
i∈L

∣∣{t ∈ (tn1 , t
n
2] : C

xn
(t) = i, Exn

i (t) = 1, t /∈ Bn

}∣∣
θi(γ)(tn2 − tn1)

.

Here Bn is the union of the intervals delimited by consecutive γ-marks for which all the queues are

disconnected at the beginning of the interval. The second sum is controlled as we did before, with

the only difference that the concerning tailor-made Markov process only considers the time outside

Bn. To control the first sum, we need to define a similar process but that only records the time inside

Bn. For the same reasons than before, the asymptotic proportion of time that such a new process is

connected is

ϕi(γ) =
λ′
i

λ′
i + µ′

i + γ
.

If we define

ε(γ) = min
i∈[K]

ϕi(γ)

θi(γ)
= min

i∈[K]

λ′
i

γ + λi
,

then the second sum is asymptotically larger or equal than ε(γ)π0
L. Repeating the same steps than

before, we obtain that the region∑
i∈L

ρi
θi(γ)

< 1− π0
L(1− ε(γ)) ∀L ⊆ [K], L ̸= ∅,

27

which of course strictly contains MSRP
III(γ), is contained in the stability region of the policy at issue.

To prove the second inequality, we observe that

ε′(γ) = min
i∈[K]

ϕi(γ)

gives a lower bound for the proportion of capacity wasted when the γ-decision epochs are imposed,

whatever the policy is and whichever queue is receiving service. Fix a queue i, take ρi such that

1− πi(0)− ε′(γ) < ρi < 1− πi(0),

and chose the rest of the ρj ’s to be inside MSRI. Under these choices, we are of course inside the

maximal stability region for Setting I, but at the same time tasks in queue i accumulate in Setting

III, and hence we are outside MSRIII(γ) as desired.

28

	Introduction
	Related work
	Model description
	Multi-class scheduling in a random environment
	Decision epochs
	Scheduling policies and maximum stability regions

	Main stability results
	Are P-policies always maximum stable?
	Non-preemptive versus preemptive scheduling
	Different time scale regimes
	Sufficiently large frequency to guarantee stability
	 Optimizing the maximum stability region in the presence of communication overhead
	Could SLC be improved upon?

	Test for fluid limits (TFL) and stability
	Proof of Proposition 5.3

	Proof of the maximum stability region, Theorem 4.1
	TFL verification for Setting II
	TFL verification for Setting III

	Numerical evaluation of stability regions
	Conclusions
	Necessity proof of Theorem 4.1
	Remaining proofs from the TFL verifications
	Proof of Equations (6.3)
	Proof of (6.4)
	Test verification for J=I

	Additional proofs
	Proof of Corollary 4.4
	Proof of Corollary 4.6
	Proof of Proposition 4.7

