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The coupling between defects and extended critical degrees of freedom gives rise to the intriguing theory
known as defect conformal field theory (CFT). In this work, we introduce a novel family of boundary and inter-
face CFTs by coupling N Majorana chains with SYKq interactions at the defect. Our analysis reveals that the
interaction with q = 2 constitutes a new marginal defect. Employing a versatile saddle point method, we com-
pute unique entanglement characterizations, including the g-function and effective central charge, of the defect
CFT. Furthermore, we analytically evaluate the transmission coefficient using CFT techniques. Surprisingly, the
transmission coefficient deviates from the universal relation with the effective central charge across the defect at
the large N limit, suggesting that our defect CFT extends beyond all known examples of Gaussian defect CFT.

Introduction.—Understanding the defect or boundary con-
formal field theory (CFT) holds significant implications
across various domains of theoretical physics [1–3]. In con-
densed matter physics, defect CFT provides a powerful frame-
work for deciphering critical behaviors of complex materi-
als characterized by boundaries, interfaces, and defects. Any
real-world materials possess boundaries, necessitating the
study of boundary CFT. In particular, boundary phenomena
host the most interesting physics in symmetry-protected topo-
logical phases [4, 5]. Additionally, within the framework of
string theory, defect CFT naturally emerges in the study of D-
branes [6, 7], offering insights on topics including brane in-
tersections and holographic correspondences [8–10] between
gravitational theories and boundary CFTs [11, 12].

Transmission and reflection are crucial characterizations of
interfaces in CFTs [13, 14]. Interactions can render defects
relevant or irrelevant, leading to asymptotic behaviors where
defects become completely reflective or transmitting. In 2D
free massless fermion theories, it was discovered that defects
can be marginal, resulting in partial transmission and reflec-
tion [14–19].

On the other hand, entanglement emerges as a useful char-
acterization of many-body wavefunctions [20–23]. One of
the most successful ways to quantify the many-body entangle-
ment is through the Rényi entropy [24]: given a pure many-
body wavefunction |Ψ⟩ and a bipartition A∪B, the Rényi en-
tropy is Sn(A) =

1
1−n log Tr[ρnA] with ρA = TrB [ρ] being the

reduced density matrix onA. While the entanglement entropy
in a CFT is closely related to its central charge [25, 26], it can
be altered by the presence of defects. In this context, bound-
ary entropy, or the g-function [27], characterizes ground state
degeneracy in the presence of boundaries or defects and serves
as a universal property. More explicitly, boundary conditions
contribute to the free energy by a constant independent of its
system size L when L is large. Moreover, for marginal de-
fects in free fermion CFTs, the entanglement entropy or Rényi
entropy across the defect is captured by an effective central
charge, which exhibits a universal function of the transmis-
sion coefficient [28–35].

While simple defects in free CFTs are well under-
stood, the Sachdev-Ye-Kitaev (SYK) model [36–39], a zero-
dimensional quantum mechanical model, presents a unique

FIG. 1. Illustration of the model. The dots denote each site of the
Majorana chain. There are N free Majorana chains, that are coupled
via SYK interactions at the orange site. We refer to this site as the
SYK site. Open boundary condition is assumed and the number of
sites to the left (right) of the SYK site is K (L).

and solvable candidate for defects, beyond all known exam-
ples. Initially introduced as a solvable toy model with in-
triguing properties akin to black holes, the SYK model has
found generalizations producing solvable models in various
fields, including non-Fermi liquid behavior [40–45], thermal-
ization [46–52], and non-Hermitian physics [53–57]. The in-
terplay between the SYK model and CFTs has been studied
in the context of black hole evaporation [58–60]. However,
the joint system, where SYK acts as a defect [61–63], remains
relatively unexplored. Key questions include constructing a
defect CFT from the SYK model and identifying unique char-
acterizations of such a defect CFT.

In this paper, we build boundary or defect CFTs by cou-
pling N Majorana chains with SYKq-type interactions at the
defect, as illustrated in Fig. 1. We show that the interaction
with q > 2 is irrelevant, whereas for q = 2 it is marginal.
We develop a saddle-point method to investigate the Rényi
entropy of various bipartitions in the joint system. In a sym-
metric island bipartition, the g-function is shown to be one.
Furthermore, we computed the Rényi entropy across the SYK
defect and extract a continuous effective central charge on the
SYK interaction strength. Finally, we analytically calculate
the transmission coefficient across the SYK defect, which de-
viates from the universal relation between the Rényi entropy
and the transmission. This deviation suggests that our defect
CFT is distinguished from all known examples of Gaussian
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FIG. 2. Local spectral functions at the SYKq site, on infinite chains
for q=2, 4, at different interaction strength and temperature. (a) The
SYK2-site spectral weights at various J/t. They are temperature
independent. (b) The temperature evolution of the spectral function
at an SYK4 site with J/t = 0.5. The two dashed black curves show
the spectral functions of the 0+1D SYK model at 2βJ = 0.005 and
100. Deviation from the SYK fixed point at low temperature near
zero frequency shows that the SYK4 term is irrelevant. On infinite
chains, the spectral function flow has almost settled at 2βJ ∼ 0.2.

defect CFT, owing to the non-Gaussianity induced by the ran-
dom coupling in our model [33].

Model.—We consider the Hamiltonian H = HCFT + HI,
where HCFT consists of N decoupled Majorana chains,

HCFT = −i2t
∑
r

ψj,rψj,r+1, (1)

and HI denotes the interface given by SYK interaction

HI = iq/2
∑

j1,...,jq

Jj1,...,jqψj1,0...ψjq,0. (2)

Here, r is the site index, and j = 1, ..., N denotes the flavor
of Majorana at each site. Namely, each site has N Majorana
fermions. Thus, ψj,r denotes the j-th Majorana fermion at
site r which satisfies {ψj,r, ψj′,r′} = δj,j′δr,r′ , and t gives
the hopping amplitude between nearest-neighbor sites. The
SYKq interaction that couples different chains sits at the site
r = 0. We refer to it as the SYK site. The interaction strength
Jj1,...,jq is a Gaussian variable with mean zero and variance

Jj1,...,jqJj′1,...,j′q = δj1,j′1 ...δjq,j′q
2q−1J2(q − 1)!

Nq−1
. (3)

A schematic plot of the model is in Fig .1.
We use the G-Σ action to solve the model, where G(τ) =

1
N

∑
j⟨ψj,0(τ)ψj,0(0)⟩ and Σ denotes the corresponding self-

energy [see Supplemental Material (SM) Sec. I for details].
Note that the bracket in G indicates both quantum and disor-
der averages, and τ denotes the imaginary time. In the large-
N limit, the Dyson-Schwinger equations are

G−1(iωn) = −iωn − Σ(iωn)− tRK

(−iωn

2t

)
− tRL

(−iωn

2t

)
,

Σ(τ) = J2[2G(τ)]q−1, (4)

where G(iωn) =
∫
dτG(τ)eiωnτ in the Matsubara frequency

domain with ωn = (2n+1)π
β and β is the inverse temperature.

Here, coupling to the Majorana chains results in corrections
to the self-energy in the form of ratios of the Chebyshev poly-
nomials, RL(x)≡ UL−1(x)

UL(x) , where U is the Chebyshev poly-
nomial of the second kind.

A simple scaling analysis reveals that the SYK interaction
is marginal for q=2 and irrelevant for q>2, since [J ] = 1− q

2 ,
where [.] denotes the scaling dimension. This is confirmed
by exactly solving the model in the thermodynamic limit,
K,L→ ∞, so that limL→∞RL(x) = x−

√
x2 − 1. The lo-

cal spectral function at the SYK site,A(ω) ≡ 2G′′(ω−iη) can
be used to expand G and solve for the advanced self-energy

Σ′′
q (ω − iη) = J2

∫ [q−2∏
i=1

dνi
π
A(νi)

]
A

ω −
q−2∑
j=1

νj


q−2∏
k=1

[
n1(νk)− nζk

(
q−2∑
l=k

νl − ω

)]
, (5)

where ζk =mod(k, 2), and nζk(ν) = 1/[(−1)ζk+1 + eβν ] is
related to the Fermi-Dirac (ζk=1) and Bose-Einstein (ζk=0)
distributions (see SM Sec. II for details). Hence, the self-
energy and Green’s function are temperature independent in
the marginal q=2 case, while they flow away from the SYK
fixed point when q > 2 at low temperature. This is confirmed
by the exact solutions plotted in Fig. 2. The spectral function
of the SYK2 site is shown in Fig. 2(a), where it evolves con-
tinuously in J/t. The two peaks originate from the band edges
of the Majorana chain, whereas the semicircle originates from
the SYK2 site. On the other hand, for q = 4 we compare the
spectral function of the defect site with that of a decoupled
SYK site in Fig. 2(b). The deviation between the two at low
temperature near zero frequency demonstrates the irrelevance
of the SYK4 interaction. Consequently, we will focus on q=2
in the remainder of the discussion, although our formalism ap-
plies to any q.

Rényi entropy.—Sitting between two 1+1D CFTs as in
Fig. 1, the SYK site constitutes a conformal defect at low en-
ergies and long wavelengths. Its conformal data are closely
related to the entanglement between different parts of the sys-
tem across the SYK site [28, 32, 33]. Using the replica trick
and the large-N analysis, we present a method [51, 60, 64]
to conveniently extract the Rényi entanglement entropy for
an arbitrary bipartition as depicted in Fig. 3(a). We compute
the second Rényi entropy below as an example, which is later
used to obtain the g-function and the effective central charge.

The second Rényi entropy of region A is given by its re-
duced density matrix,

S2 = − log TrA
[
(TrBρ)

2
]
= − log

Z(2)

Z2
. (6)

The replica trick conducts the partial trace with different
imaginary-time boundary conditions in regions A and B
[25, 51, 60]. Here Z(2) denotes a two-replica path integral
with a twisted boundary condition in region B, while Z is
the path integral corresponding to the thermal density matrix
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FIG. 3. (a) A generic bipartition of 1+1D open chains. For simplicity,
a single chain is plotted, which nevertheless should be understood as
N chains. The orange site is the SYK site. (b) The imaginary time
contour for the second Rényi entropy. The fermionic field in a closed
contour satisfies the conventional anti-periodic boundary condition,
that leads to the fermionic Matsubara frequency. Region B has the
twisted boundary condition threading the two replicas. (c) Setup for
the interface CFT induced at the SYK site, where L1=K2=0.

ρ :=e−βH/Z. Boundary conditions of the replica fields differ
between regions A and B,

ψ
(1)
j (β) = −ψ(1)

j (0), ψ
(2)
j (β) = −ψ(2)

j (0), j ∈ A,

ψ
(1)
j (β) = ψ

(2)
j (0), ψ

(2)
j (β) = −ψ(1)

j (0), j ∈ B.
(7)

where the superscripts 1 and 2 denote the two replicas. The
imaginary time contour for Z(2) is depicted in Fig. 3(b). We
join the two replicas into τ ∈ (0, 2β), so that the fields can be
expanded in Matsubara frequencies ω(1)

n =ω
(2)
n =(2n+1)π/β

in region A, and Ωn=(2n+ 1)π/2β in region B,

ψj(τ) =


1√
β

∑
n ψj(iω

(1)
n )e−iω(1)

n τ , j ∈ A, τ < β,
1√
β

∑
n ψj(iω

(2)
n )e−iω(2)

n τ , j ∈ A, τ > β,
1√
2β

∑
n ψj(iωn)e

−iΩnτ , j ∈ B.

(8)
At large-N , we compute Z(2) by solving for the Green’s

function G(2) at the SYK site, and then substitute it into the
twisted action. (See SM Sec. III for details.) At the partition
interface, the twist operator σ, defined below, breaks the time-
translational symmetry. The resulting saddle point solution is

G−1
(2)(iω

(a)
m , iω(b)

n ) = −iω(a)
n δabδmn − Σ(2)(iω

(a)
m , iω(b)

n )

−t(DK1,L1
)abmn − t(DK2,L2

)abmn,

Σ(2)(τ1, τ2) = J2[2G(2)(τ1, τ2)]
q−1. (9)

Here the self-energy due to the rest of the Majorana chain is
given by

D0,L = σRL

(−iΩ
2t

)
σ†,

DK,L =
(
− iω

t −DK−1,L

)−1
, (10)

where we have defined the Matsubara frequency matrices

ω = diag(ω
(1)
1 , ω

(1)
2 , . . . , ω

(2)
1 , ω

(2)
2 , . . . ),

Ω = diag(Ω1,Ω2, . . . ). (11)

[See SM Eq. (S34) for a general formula of D.] The twist
operator σ transforms fields across the partition, which in fre-
quency space is

σ(iω(a)
m , iΩn) =

{ ∫ β

0
dτ√
2β

exp{i[ω(a)
m − Ωn]τ}, a = 1,∫ 2β

β
dτ√
2β

exp{i[ω(a)
m − Ωn]τ}, a = 2.

(12)
Following (6), S2 = I(2)− 2I is the difference between the

actions corresponding to Z(2) and Z. The expression simpli-
fies after subtracting the zero S2 whenA andB are decoupled.
Denote the actions in a decoupled system by Ǐ , we arrive at the
formula for the second Rényi entropy between A and B,

S2

N
=

I(2)

N
− 2I

N
−

(
Ǐ(2)

N
− 2Ǐ

N

)
(13)

= −1

2
Tr log[G−1

(2)G̃] + J2

(
1

4q
− 1

4

)
×
∫

dτ1dτ2{[2G̃(τ1, τ2)]q − [2G(2)(τ1, τ2)]
q}

+
∑
s=1,2

1

2
Tr log

[
1−RLs

(−iω
2t

)
RKs

(−iω
2t

)
1− σRLs

(−iΩ
2t

)
σ†RKs

(−iω
2t

)],
where G̃ = G⊗ 12 is the Green’s function for Z, i.e. (4) with
K → L1 + K1 and L → L2 + K2, replicated diagonally
in the replica space. The last line is simply the entanglement
between free Majorana chains with uniform nearest-neighbor
hoppings.

Energy defect.—Two distinct bipartitions for the Rényi en-
tropy that reveal universal conformal data have been consid-
ered in the literature: i) where the defect is located deep inside
one subsystem, say A; ii) where the bipartition between two
subsystems A and B is located at or near the defect. The first
bipartition reveals the g-function via a folding trick, i.e., the
offset of Rényi entropy between the system with and without
defect equals the boundary entropy of a folded system with
doubled degrees of freedom [16, 65, 66]. In the second bi-
partition, the second Rényi entanglement entropy across the
interface is S2 ∼ c̃2

8 logLA where LA is the size of region A
(for simplicity we set LB = LA). The prefactor c̃2 precisely
defines the effective central charge, which can differ from the
central charge of the bulk CFT. In free fermion CFTs, the ef-
fective central charge is a universal function of the transmis-
sion coefficient T [31], i.e.,

c̃2 ≡ 8

π2
arcsin2

√
T
2
. (14)

Before moving on to the SYK defect, we use our path inte-
gral method to evaluate the g-function and the effective cen-
tral charge for the energy defect as a warmup [15, 16, 34]. The
energy defect in the Ising CFT can be modeled by replacing
the SYK site by a defect bond with a distinct hopping am-
plitude t′ [31, 34]. Since different chains do not couple with
such a defect, we can instead consider N = 1. With a slight
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FIG. 4. The second Rényi entropy and the extracted effective central
charge under different partition schemes, in the presence of (a)–(b)
an energy defect with bond strength t′, and (c)–(d) SYK2 coupling
of strength J across N Majorana chains, both at the center of the
chain. The setups are depicted in the insets. In (a) and (c), subsystem
A is the center region. Its entropy per chain is plotted as a function
of the subsystem size fraction LA/L, varying symmetrically about
the center. The black curves give the analytical dependence of S2

on LA/L with c2 = 1/2 and L = 4000 [Eq. (15)]. In (b) and (d),
the partition is at the defect. The extracted central charge is plotted
against the defect strength, both from the logarithmic scaling of S2

(dots) and from the transmission probability T using Eq. (14) (line).
Their disagreement in (d) signals non-Gaussianity.

modification, our saddle-point method can be used to evalu-
ate the Rényi entropy of the free fermion chain with such a
defect. The result is shown in Fig. 4(a)(b): Fig. 4(a) shows
that log g = 0 for the energy defect, and Fig. 4(b) shows
the effective central charge. The effective central charge
is plotted along with the exact analytical result (14), with√
T = 2

t′/t+t/t′ . This benchmarks our method.
g-function.—To determine the g-function for the SYK de-

fect, we place an SYK2 defect in the middle of region A in
a symmetric setup, i.e., L1 = L2 and K1 = K2 in Fig. 3(a),
and compute S2 as the subsystem size fraction varies while
the total length is fixed. Since the g-function is universal, S2

should depend logarithmically on the size of region A, LA,
with a constant offset when β≫L [25, 34],

S2

N
=
c2
4
log

[
L

π
sin

(
πLA

L

)]
+ s, (15)

such that the constant s = log g is independent of the defect
strength J . Here, the factor c2/4 is the sum of the equal contri-
bution c2/8 from each of the two interfaces. The universality
of s is confirmed by our result in Fig. 4(c), which shows no
offset between the entropy curve at different J’s [67]. This

implies that the g-function is log g = 0, same as that of an
energy defect.

Effective central charge.—To determine the effective cen-
tral charge for the SYK defect, we partition our system at the
SYK site as depicted in Fig. 3(c). The result is a defect CFT
determined by the bulk free CFTs and the SYK defect [29].
The second Rényi entanglement entropy across the SYK de-
fect is S2

N ∼ c̃2
8 logLA [28, 31–33], where the factor N is due

to the large-N structure of the SYK interaction. Thus, we can
obtain the effective central charge c̃2 of the defect CFT by
tracking S2 while increasing the size of the system symmet-
rically in A and B. The result is plotted as dots in Fig. 4(d).
With increasing interaction strength, c̃2 decreases toward zero
and the two sides become decoupled. Therefore, the marginal
q = 2 SYK interaction induces an interface CFT with a con-
tinuously tunable effective central charge. For the irrelevant
cases of q > 2, the c̃2 remains at 1/2, that of a free Majorana
chain or Ising CFT. A relevant coupling can reduce c̃2 to zero
at any finite J , as is formally the case of bosonic chains cou-
pled by the SYK interaction, although the naive bosonic SYK
is ill-defined and unstable [61, 68, 69]. Finite-N calculations
in the SYK2 case give the same qualitative result.

Transmission and reflection.—In addition to the entangle-
ment properties, the defect CFT is further characterized by the
transmission and reflection probabilities, T and R= 1 − T ,
across the defect [14, 17]. To utilize the CFT technique, we
take the continuum limit using the low-energy chiral modes at
the two Fermi momenta, kF =0, π, where the lattice constant
is set to 1. These modes are ψL,R(x) ∼

∫
k∼0,π

e−ikxψ(k)dk.
The interaction strength in the continuum model becomes
J̃ ≡ J/t. The continuum Green’s function can be directly
solved and used to extract the stress-energy tensor (see SM
Sec. IV). For a conformal defect, T can be derived from the
holomorphic and antiholomorphic components of the stress-
energy tensor, T and T̄ , at two sides of the defect [14]. With
the defect at x = 0,

T = lim
x→∞

⟨T (x)T (−x) + T̄ (x)T̄ (−x)⟩
⟨[T (x) + T̄ (−x)][T̄ (x) + T (−x)]⟩

=
2

3 + J̃2 −
√
1 + 2J̃2

. (16)

Notice that in deriving this expression, we used a coarse
graining to obtain a continuous field theory. While the coarse
graining naturally asserts J̃ =J/t, the exact relation between
the UV parameters J , t and the CFT parameter J̃ is not clear
in general. Still, we expect J̃ = J/t to hold when J̃ ≪ 1. A
detailed discussion on this issue is given in the SM Sec. V. If
the transmission coefficient in (16) and the relation in (14) are
used to determine the effective central charge c̃2, the result
will differ significantly from the central charge c̃2 extracted
from the scaling of S2 even at J̃≪ 1. In particular, for small
J̃ , the entanglement scaling from both numerics and analytics
implies a decrease by J̃2, while the result from transmission
coefficient decreases by J̃4, as can be expected from expand-
ing (13) and (16), respectively. The disagreement signifies the
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deviation from the Gaussian defect due to the disorder aver-
aging of SYK2, even though each random realization is non-
interacting.

Concluding remarks.—We have presented a novel family
of boundary and defect CFTs built from the SYK interaction
coupling 1+1D systems giving rise to a tunable effective cen-
tral charge. Based on path integral and functional determinant,
we developed a versatile method to compute the (conformal)
data of defects embedded in 1+1D. Our method can adopt ar-
bitrary partitioning of the system and go to low temperature
and large system sizes at very low cost. It can be extended
to 1+1D systems with different boundary conditions, next-
nearest-neighbor hoppings, etc. With this method, we have
evaluated the boundary entropy and effective central charge of
the defect CFT built from the SYK interaction. Our findings
suggest that it extends beyond all known examples of Gaus-
sian defect CFT.
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SUPPLEMENTAL MATERIAL

I. DERIVATION OF THE LARGE-N ACTION

The model is given by the Hamiltonian H = HCFT +HI, where HCFT consists of N decoupled Majorana chains,

HCFT = −i2t
∑
r

ψj,rψj,r+1, (S1)

and HI denotes the interface given by SYK interaction

HI = iq/2
∑

j1,...,jq

Jj1,...,jqψj1,0...ψjq,0. (S2)

Here, r is the site index, and j = 1, ..., N denotes the flavor of Majorana at each site. Namely, each site has N Majorana
fermions. ψj,r denotes j-th Majorana fermion at site r, {ψj,r, ψj′,r′} = δj,j′δr,r′ . t is the hopping amplitude between the
nearest-neighbor sites. The SYK interaction that couples different chains exists at the site r = 0. We refer to it as the SYK site.

The interaction strength Jj1,...,jq is a Gaussian variable with mean zero and variance

Jj1,...,jqJj′1,...,j′q = δj1,j′1 ...δjq,j′q
2q−1J2(q − 1)!

Nq−1
. (S3)

After integrating over the Gaussian distributed interaction, the action reads

−I = −1

2

∑
j,r1,r2

∫
dτ ψj,r1(τ)(∂τδr1,r2 − ithr1,r2)ψj,r2(τ) +

NJ2

4q

∫
dτ1dτ2

2
1

N

∑
j

ψj,0(τ1)ψj,0(τ2)

q

, (S4)

where the SYK interaction couples different chains at site r = 0, and hr1,r2 = δr2,r1+1 − δr2,r1−1 is the hopping matrix. We
introduce bilocal fields G(τ1, τ1) and Σ(τ1, τ2) to simplify the action,

−I = −1

2

∑
j,r1,r2

∫
dτ1dτ2 ψj,r1(τ1) [(∂τ1δr1,r2 − ithr1,r2)δ(τ1 − τ2)− δr1,0δr2,0Σ(τ1, τ2)]ψj,r2(τ1)

−N
2

∫
dτ1dτ2G(τ1, τ2)Σ(τ1, τ2) +

NJ2

4q

∫
dτ1dτ2 [2G(τ1, τ2)]

q
. (S5)

It is not hard to check that, by integrating over G and Σ, this reduces to the fermionic action. Now the action is only quadratic
in terms of Majorana fermions, so we can integrate them out to get

− I

N
=

1

2
log det [(∂τ1δr1,r2 − ithr1,r2)δ(τ1 − τ2)− δr1,0δr2,0Σ(τ1, τ2)]

−1

2

∫
dτ1dτ2G(τ1, τ2)Σ(τ1, τ2) +

J2

4q

∫
dτ1dτ2 (2G(τ1, τ2))

q
. (S6)

The determinant involves matrices whose indices range over the imaginary time and the lattice sites. Since the action has a
large-N structure, we can implement a saddle point analysis. The Schwinger-Dyson equations read

G(τ1, τ2) = (∂τ − Σ− ith)−1
00 (τ1, τ2), Σ(τ1, τ2) = J2[2G(τ1, τ2)]

q−1, (S7)

where the first equation should be understood as a matrix equation. The subscript denotes r1 = 0, r2 = 0 component.
We can further simplify the action by noting that the self-energy is nontrivial only at the SYK site. We assume the solution to

be time translationally symmetric, i.e., G(τ1, τ2) = G(τ1 − τ2), Σ(τ1, τ2) = Σ(τ1 − τ2). In this case, we can perform a Fourier
transformation in the imaginary time domain, i.e.,

G(τ1, τ2) =
1

β

∑
n

eiωn(τ1−τ2)G(iωn), Σ(τ1, τ2) =
1

β

∑
n

eiωn(τ1−τ2)Σ(iωn), ωn =
(2n+ 1)π

β
. (S8)

We consider the open boundary condition for these Majorana chains. In the frequency space, the matrix inside the determinant
becomes tridiagonal in the basis of ψr(iωn) at each Matsubara frequency,

Mrr′ =
⊕
n

[−iωnδrr′ − Σ(iωn)δr,0δ0,r′ − itδr+1,r′ + itδr,r′+1] . (S9)
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The determinant of a tridiagonal matrix has a simple analytical expression [70]. Therefore, we can first evaluate the determinant
at each frequency, and then take the product over all the frequencies. After a straightforward calculation, the large-N action can
be simplified as

− I

N
=

1

2
log
∏
n

[
−iωn − Σ(iωn)− tRK(

−iωn

2t
)− tRL(

−iωn

2t
)

]
−1

2

∫
dτ1dτ2G(τ1, τ2)Σ(τ1, τ2) +

J2

4q

∫
dτ1dτ2 [2G(τ1, τ2)]

q
+
I ′

N
. (S10)

where RL(x) =
UL−1(x)
UL(x) , and UL is the Chebyshev polynomial of the second kind. K − 1 and L are the number of sites to the

left and the right of the SYK sites, respectively, as shown in Fig. 1. The term

I ′

N
=

1

2

∑
n

log

[
tL+KUL(

−iωn

2t
)UK(

−iωn

2t
)

]
(S11)

is independent of G and Σ. Varying the bilocal fields, we obtain the corresponding Schwinger-Dyson equation

G(iωn) =

[
−iωn − Σ(iωn)− tRK

(
−iωn

2t

)
− tRL

(
−iωn

2t

)]−1

, (S12)

Σ(τ1, τ2) = J2[2G(τ1, τ2)]
q−1. (S13)

The effect of coupling to the Majorana chain is reflected in the correction to the self-energy in the form of ratios of the Chebyshev
polynomials.

II. DERIVATION OF THE GREEN’S FUNCTION AT L = ∞ FOR AN ARBITARY q

Here we derive in detail the large-N Green’s function and self-energy of infinitely long SYKq-coupled Majorana chains,
which is Eq. (5). To proceed, we consider an infinite number of sites to the left and right of the SYK point, i.e., L,K → ∞.
Observing that

lim
L→∞

RL(x) = x−
√
x2 − 1, (S14)

the Schwinger-Dyson equation (4) becomes

G(iωn) =
[√

−4t2 − ω2
n − Σ(iωn)

]−1

. (S15)

Note that
√

−4t2 − ω2
n is simply the G−1(iωn) of a 1D chain. Unlike the SYK model, the coupling to the Majorana chain is

relevant at small frequencies for q > 2, while the SYKq type of interaction is irrelevant for q > 2. Therefore, we consider SYK2

where the interaction is marginal. To this end, we eliminate Σ(iωn) so that

G(iωn) =
[√

−4t2 − ω2
n − 2J2G(iωn)

]−1

. (S16)

Solving it for the retarded Green’s function gives

G(ω − iη) =
i

4J2

[√
4t2 − (ω − iη)2 −

√
4t2 + 8J2 − (ω − iη)2

]
. (S17)

The associated spectral function is shown in Fig. 2(a).
For the interacting cases q > 2, we expand G using its spectral function A(ω) in Eq. (S17). This leads to the imaginary part

of the retarded self-energies for any q in Eq. (5),

Σ′′
q (ω − iη) = J2

∫ [q−2∏
i=1

dνi
π
A(νi)

]
A

ω −
q−2∑
j=1

νj

 q−2∏
k=1

[
nF (νk)− nζk

(
q−2∑
l=k

νl − ω

)]
, (S18)
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Supplementary Figure S1. The imaginary time contour for the second Rényi entropy. The fermionic field in a closed contour satisfies the
conventional anti-periodic boundary condition, that leads to the fermionic Matsubara frequency.

where

nζi(ν) =

{
−nB(ν), i ∈ 2Z,
nF (ν), i ∈ 2Z+ 1.

(S19)

Hilbert transform of the spectral function recovers the full Green’s function [71]. Numerical computations of the integrals can be
formulated into convolutions that are expedited with the fast Fourier transform. For example, the self-energy of SYK4 is given
by convolutions in real frequencies which are denoted by ∗,

Σ′′
4(ω − iη) =

J2

π2
[(nFA) ∗A ∗A+ ({[(1− 2nF )A] ∗A}{1 + nB}) ∗A] . (S20)

The local spectral function at the SYK4 site is shown in Fig. 2(b)(c). Note that at high temperature, the Majorana chain-coupled
SYK4 dot behaves similarly to a 0+1D SYK dot. At low temperature, it flows away from the SYK point.

III. DERIVATION OF THE SECOND RÉNYI ENTROPY

To compute the Rényi entropy, we first assume that the chains satisfy an open boundary condition. Then, we divide the
system into two regions, A and B. We are interested in the entanglement entropy between these two regions. The computation
of entanglement entropy employs the replica trick [25]. Below, we first review the replica trick and then derive the Rényi
entanglement entropy the 1+1D chains.

A. Review of the replica trick

We consider the thermal density matrix ρ = e−βH

Z , Z = Tr(e−βH). The second Rényi entropy of the region A is

S2 = − log TrA[(TrBρ)
2] = − log

Z(2)

Z2
. (S21)

Here, Z(2) denotes a path integral with a twist boundary condition on the region A. In terms of replica fields, the boundary
condition reads

ψ
(1)
j∈A(β) = −ψ(1)

j∈A(0), ψ
(2)
j∈A(β) = −ψ(2)

j∈A(0), (S22)

ψ
(1)
j∈B(β) = ψ

(2)
j∈B(0), ψ

(2)
j∈B(β) = −ψ(1)

j∈B(0), (S23)

where the superscripts 1, 2 denote the two replicas. The imaginary time contour for Z(2) is shown in Fig. S1. The fermionic
field in a closed contour satisfies the conventional anti-periodic boundary condition that gives rise to the fermionic Matsubara
frequency. A crucial point is that the closed imaginary-time contours of the fermionic fields in regions A and B have different
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periods. To this end, we introduce a different parametrization of the imaginary time contour, s ∈ (0, 2β), such that s < β
(s > β) denotes the first (second) replica, i.e.,

ψj(s) =

{
ψ
(1)
j (s), s ∈ (0, β),

ψ
(2)
j (s− β), s ∈ (β, 2β).

(S24)

The boundary condition now becomes

ψj∈A(β−) = −ψj∈A(0+), ψj∈A(2β−) = −ψj∈A(β+), ψj∈B(2β−) = −ψj∈A(0+). (S25)

The fermionic field in the region A can be expanded using the fermionic mode with the Matsubara frequency Ωn = (2n+1)π
2β ,

while the fermionic field in the regionB needs to be expanded by two fermionic modes with Matsubara frequency ωn = (2n+1)π
β .

More explicitly, we have the following expansions,

ψj∈A(s) =
1√
β

∑
n

[
ψ
(1)
j∈A(iωn)e

−iωnsΘ(β − s)− ψ
(2)
j∈A(iωn)e

−iωnsΘ(s− β)
]
, ωn =

(2n+ 1)π

β
, (S26)

ψj∈B(s) =
1√
2β

∑
n

ψj∈B(iΩn)e
−iΩns, Ωn =

(2n+ 1)π

2β
. (S27)

At the interface of regions A and B, the fields on the two sides are glued together by the twist operator σ in (12), so that
σ(iω

(a)
m , iΩn) is the overlap between the modes ψ(a)

j∈A(iωm) and ψj∈B(iΩn). To prepare for the derivation of the replica action
and the corresponding Green’s functions, we also define the diagonal matrices of Matsubara frequencies ω := (

⊕
n ωn) ⊗ 12,

Ω :=
⊕

n Ωn.

B. Saddle point solution to the replica action

Supplementary Figure S2. Geometry for the SYK island. The system is partitioned into regions A and B for all of the N chains. All the chains
are coupled at the SYK site, marked by orange. For simplicity only one chain is drawn.

Consider the generic partition on the 1+1D chain, as depicted in Fig. S2 [Fig. 3(a) in main text]. We compute the entanglement
entropy between regions A and B.

We again introduce the bilocal fields G(2) and Σ(2) at the SYK site, and then integrate out the free Majorana fields on the rest
of the chain. The action becomes

−
I(2)

N
=

1

2
log detM− 1

2

∫
ds1ds2G(2)(s1, s2)Σ(2)(s1, s2) +

J2

4q

∫
ds1ds2

[
2G(2)(s1, s2)

]q
, (S28)

where M is given by

M =



−ir1tσ†

ir1tσ
−iq1t

iq1t −iω−Σ −iq2t
iq2t

−ir2tσ†

ir2tσ

B1

A1

A2

B2


. (S29)
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To make the result more versatile, we parametrize the hopping strengths between regions A and B by r1,2 at the left and right
interfaces, respectively. The hoppings to the SYK site from the left and the right are also parametrized by q1,2, respectively. This
extends our method to, e.g., the energy defect.

Discretizing imaginary time into an even number of points M , the sizes of the blocks A1,2 are K1,2M ×K1,2M . Similarly,
the sizes of B1,2 are L1,2M ×L1,2M , and the sizes of −iω−Σ, ±it and ±itσ are all M ×M . The ±it blocks are proportional
to identity in frequency space. The center block represents region A.

Denote the special matrices (en)ij := δi,nδn,j . The determinant simplifies to

detM = detB1 detB2 det
[
A− r21tσRL1

(−iΩ
2t

)
σ†e1 − r22tσRL2

(−iΩ
2t

)
σ†eK1+K2+1

]
= detB1 detB2 detA

′
1 detA

′
2 det

[
−iω − Σ(2) − q21t

2
(
A′

1
−1
)
K1,K1

− q22t
2
(
A′

2
−1
)
1,1

]
. (S30)

Here we denoted A′
1 = A1 − r21tσAL1

(−iΩ
2t

)
σ†e1, A′

2 = A2 − r22tσRL2

(−iΩ
2t

)
σ†eK2 . The diagonal corner entries of A′−1’s

can be obtained from the formula [72][
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
1 −BD−1

−CA−1 1

]
. (S31)

This gives (
A′

1
−1
)
K1,K1

=
1

t

1

− iω
t −

1

− iω
t −

1

· · · −
1

− iω
t − r21σRL1

(−iΩ
2t

)
σ†

. (S32)

In other words, let

D0,L = r2σRL

(
−iΩ
2t

)
σ†,

DK,L =

(
− iω
t

−DK−1,L

)−1

. (S33)

Note that when D0,L = 0, DK,L = RK

(−iω
2t

)
. The general formula is,

DK,L =

[
RK

(
−iω
2t

)
− UK−2

(
−iω
2t

)
D0,LU

−1
K

(
−iω
2t

)][
1− UK−1

(
−iω
2t

)
D0,LU

−1
K

(
−iω
2t

)]−1

. (S34)

Thus, (A′
1)

−1 = DK1,L1/t. Similar results hold for (A′
2)

−1. Furthermore,

detB1 = tL1UL1

(−iΩ
2t

)
, (S35)

detA′
1 = det

[
A1 − r21tσRL1

(−iΩ
2t

)
σ†e1

]
= tK1−1UK1−1

(−iω
2t

)
det
[
−iω − tRK1−1

(−iω
2t

)
− r21tσRL1

(−iΩ
2t

)
σ†]

= tK1−1UK1−1

(−iω
2t

)
det
[
tR−1

K1

(−iω
2t

)
− r21tσRL1

(−iΩ
2t

)
σ†] . (S36)

Therefore,

−
I(2)

N
=

1

2
log det

[
−iω − Σ(2) − q21tDK1,L1 − q22tDK2,L2

]
−1

2

∫
dτ1dτ2G(τ1, τ2)Σ(2)(τ1, τ2) +

J2

4q

∫
dτ1dτ2[2G(τ1, τ2)]

q

+
1

2
log det

[
tR−1

K1

(−iω
2t

)
− r21tσRL1

(−iΩ
2t

)
σ†]+ 1

2
log det

[
tR−1

K2

(−iω
2t

)
− r22tσRL2

(−iΩ
2t

)
σ†]

+
1

2
log det

[
tL1+L2+K1+K2−2UL1

(−iΩ
2t

)
UL2

(−iΩ
2t

)
UK1−1

(−iω
2t

)
UK2−1

(−iω
2t

)]
. (S37)
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The saddle point equations is

G−1
(2) = −iω − Σ(2) − q21tDK1,L1

− q22tDK2,L2
. (S38)

On the other hand, the untwisted action on a single replica can be obtained by modifying Eq. (S10),

− I

N
=

1

2

∑
n

log
[
−iωn − Σ(ωn)− q21tD

′
K1,L1

(−iωn

2t

)
− q22tD

′
K2,L2

(−iωn

2t

)]
−1

2

∫
dτ1dτ2G(τ1, τ2)Σ(τ1, τ2) +

J2

4q

∫
dτ1dτ2[2G(τ1, τ2)]

q

+
1

2

∑
n

log
[
tR−1

K1

(−iωn

2t

)
− r21tRL1

(−iωn

2t

)]
+

1

2

∑
n

log
[
tR−1

K2

(−iωn

2t

)
− r22tRL2

(−iωn

2t

)]
+
1

2

∑
n

log
[
tL1+L2+K1+K2−2UL1

(−iωn

2t

)
UL2

(−iωn

2t

)
UK1−1

(−iωn

2t

)
UK2−1

(−iωn

2t

)]
, (S39)

where D′
K,L has the same recursive structure as DK,L, with D′

0,L

(−iωn

2t

)
= r2RL

(−iωn

2t

)
. Since all terms commute, it can be

simplified into

D′
K,L

(
−iωn

2t

)
:=

1−RK−1

(−iω
2t

)
r2RL

(−iω
2t

)
R−1

K

(−iω
2t

)
− r2RL

(−iω
2t

) . (S40)

The second Rényi entropy is given by S2 = I(2)−2I . We can further simplify the expression by subtracting the zero S2 when
A and B are decoupled, thus dropping the last terms in (S37) and (S39). At r = 0, DK = D′

K

(−iω
2t

)
= RK

(−iω
2t

)
. Denote the

entropy terms in a decoupled system by Ǐ , and also let G̃ be the Green’s function G in (4) repeated on each replica, G̃ = G⊗12,
such that

G̃(τ1, τ2) =


G(τ1, τ2), 0 ≤ τ1, τ2 ≤ β,

G(τ1 − β, τ2 − β), β ≤ τ1, τ2 ≤ 2β,

0, otherwise.
(S41)

we arrive at

S2/N =
[
I(2) − 2I − (Ǐ(2) − 2Ǐ)

]
/N

= −1

2
log det

[
G−1

(2)G̃
]
+ J2

(
1

4q
− 1

4

)∫
dτ1dτ2{[2G̃(τ1, τ2)]q − [2G(2)(τ1, τ2)]

q}

+
1

2
log det

[
1− r21RL1

(−iω
2t

)
RK1

(−iω
2t

)
1− r21σRL1

(−iΩ
2t

)
σ†RK1

(−iω
2t

)]+ 1

2
log det

[
1− r22RL2

(−iω
2t

)
RK2

(−iω
2t

)
1− r22σRL2

(−iΩ
2t

)
σ†RK2

(−iω
2t

)] . (S42)

Note that with trivial modifications, the last line is simply the entanglement between two 1+1D Majorana lattice with (possibly
different) uniform nearest-neighbor hoppings.

IV. DERIVATION OF TRANSMISSION AND REFLECTION IN THE SYK DEFECT CFT

In this section, we derive the transmission and reflection coefficients for the SYK defect CFT. We first carry out coarse
graining to obtain a continuum theory with the SYK defect, and then calculate the transmission and reflection coefficient from
the two-point function of the stress tensor across the defect. Consider the free Majorana chain,

H = i2t
∑
r

ψrψr+1, {ψr, ψ
′
r} = δij . (S43)

After a Fourier transformation, it is easy to see that the Fermi momenta are located at kF = 0 and kF = π
a , where a denotes the

lattice constant. Then, we take the following identification between the lattice fermion and the continuum fermion field{
ψ2r =

√
a
2 [ψR(xr) + ψL(xr)],

ψ2r+1 =
√

a
2 [ψR(xr)− ψL(xr)],

r ∈ Z, xr ≡ 2ra. (S44)
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Here, ψR,L(x) is the continuum fermion field operator with {ψL(x), ψL(x
′)} = {ψR(x), ψR(x

′)} = δ(x − x′), and
{ψL(x), ψR(x

′)} = 0. Thus, the unit cell is effectively doubled with the two low-energy chiral modes folded to k = 0.
Note also that ψ†

L = ψL and ψ†
R = ψR.

In terms of the continuum field, the Hamiltonian becomes

H = i

∫
dxvF (ψ

†
R∂xψR − ψ†

L∂xψL). (S45)

with vF = at and dropping the Umklapp terms.
For N decoupled Majorana chains, we can duplicate the theory with an additional index i = 1, ..., N . Then we are ready to

add the SYK interaction to the theory. Without loss of generality, consider the SYK site to be the even site at 0,

∑
jl

iJjlδr,0ψ
†
r,jψr,l =

∑
jl

iJjlaδ(x)[ψ
†
j,R(x) + ψ†

j,L(x)][ψl,R(x) + ψl,L(x)] =
∑
jl

i2aδ(x)J̃jlΨ
†
j(x)PΨl(x), (S46)

where Ψ = (ψL, ψR)
T , P = 1

2 (
1 1
1 1 ), δ(x) = δ(2ra) = δr,0/2a, and we have introduced the dimensionless coupling J̃jl = aJij .

Recall that Jij is a Gaussian random variable with mean zero and variance given by (S3).
Combined with the free part, it leads to the following continuum theory

LE =
∑
j

Ψ†
j(x)(∂τ − ivF∂xσ

z)Ψj(x) +
∑
jl

iδ(x)J̃jlΨ
†
j(x)PΨl(x). (S47)

Denoting G := 1
N

∑
i⟨ΨiΨ

†
i ⟩, the large-N equation of motion reads

G(x, x′;ω) = G0(x, x
′;ω) +G0(x, 0;ω)Σ(ω)G(0, x

′;ω),

Σ(ω) = 2J̃2PG(0, 0;ω)P. (S48)

where J̃ = Ja with J being the strength of the variance defined in (S3). In the following, we set vF = 1 for simplicity; in
other words, a = 1/t and J̃ = J/t. Notice that we have performed disorder average to arrive at the equation of motion. The
equation of motion is presented in mixed coordinates because the spatial translation symmetry is broken by the defect, whereas
the temporal one is respected. This large-N equation of motion can be solved straightforwardly, leading to the solution:

G(x, y;ω) = G0(x, y;ω) +
isgn(ω)(1 + J̃2 −

√
1 + 2J̃2)

4J̃2

×
(

(sgn(x) + sgn(ω)(sgn(y)− sgn(ω)) −(sgn(x) + sgn(ω)(sgn(y) + sgn(ω))
−(sgn(x)− sgn(ω)(sgn(y)− sgn(ω)) (sgn(x)− sgn(ω)(sgn(y) + sgn(ω))

)
e−(|x|+|y|)|ω|(S49)

G0(x, y;ω) = i

(
sgn(ω)

2
+

sgn(x− y)σz

2

)
e−|x−y||ω|, (S50)

which leads to the equal time correlation function

G(x, y) ≡ G(x, y; τ = 0) =
iσz

x− y
+
i(1 + J̃2 −

√
1 + 2J̃2)

2J̃2(|x|+ |y|)

(
−sgn(x) + sgn(y) −sgn(x)− sgn(y)
sgn(x) + sgn(y) sgn(x)− sgn(y)

)
. (S51)

The stress-energy tensor away from the defect is

T (x) = 2ψ†(x)PR∂xψ(x), T̄ = −2ψ†(x)PL∂xψ(x), (S52)

where PL = 1
2 (1 + σz), and PR = 1

2 (1 − σz) are the projection to right and left movers, respectively. Using the full Green’s
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function, the correlation function of stress-energy tensor is given by

⟨T (x)T (−x)⟩ = −4Tr
[
PRG

(1,0)(x,−x)PRG
(1,0)(x,−x)

]
=

(
1−

√
1 + 2J̃2

)2
4J̃4(2x)4

, (S53)

⟨T̄ (x)T̄ (−x)⟩ = −4Tr
[
PLG

(1,0)(x,−x)PLG
(1,0)(x,−x)

]
=

(
1−

√
1 + 2J̃2

)2
4J̃4(2x)4

, (S54)

⟨T (x)T̄ (x)⟩ = 4Tr
[
PRG

(1,0)(x, x)PLG
(1,0)(x, x)

]
=

(
1 + J̃2 −

√
1 + 2J̃2

)2
4J̃4(2x)4

, (S55)

⟨T̄ (−x)T (−x)⟩ = 4Tr
[
PLG

(1,0)(−x,−x)PLG
(1,0)(−x,−x)

]
=

(
1 + J̃2 −

√
1 + 2J̃2

)2
4J̃4(2x)4

, (S56)

in which G(1,0)(x, y) ≡ ∂xG(x, y) and G(0,1)(x, y) ≡ ∂yG(x, y). Hence, the transmission and reflection coefficients are [14]

T =
⟨T (x)T (−x)⟩+ ⟨T̄ (x)T̄ (−x)⟩

⟨T (x)T (−x)⟩+ ⟨T̄ (x)T̄ (−x)⟩+ ⟨T (x)T̄ (x)⟩+ ⟨T̄ (−x)T (−x)⟩
=

2

3 + J̃2 −
√
1 + 2J̃2

, (S57)

R =
⟨T (x)T̄ (x)⟩+ ⟨T̄ (−x)T (−x)⟩

⟨T (x)T (−x)⟩+ ⟨T̄ (x)T̄ (−x)⟩+ ⟨T (x)T̄ (x)⟩+ ⟨T̄ (−x)T (−x)⟩
= 1− 2

3 + J̃2 −
√
1 + 2J̃2

, (S58)

leading to the transmission coefficient presented in the main text.

V. DISCUSSIONS ON RÉNYI ENTROPY AND TRANSMISSION COEFFICIENT

A. Derivation of the transmission coefficient for energy defect in the Ising CFT

In this section, we briefly review the calculation of the transmission coefficient for an energy defect in the Ising CFT, i.e., the
free Majorana model. We used a similar model as in the previous section to evaluate the transmission and reflection coefficient.
In the presence of an energy defect, the continuum field theory reads

LE = Ψ†(x)(∂τ − iσz∂x)Ψ(x) + gδ(x)Ψ†(x)σyΨ(x), (S59)

where g denotes the defect strength, and we set the Fermi velocity to be one for simplicity. Comparing this Lagrangian with the
SYK defect (S47), the defect has a different form, and because the energy defect does not couple different flavors, we consider
N = 1.

The scattering of the energy defect leads to the Schwinger-Dyson equation,

G(x1, x2;ω) = G0(x1 − x2;ω) +G0(x1 − x2;ω)Σ(ω)G0(x2;ω) (S60)

Σ(ω) = g
σy

1− gG0(0;ω)σy
. (S61)

where G = ⟨ΨΨ†⟩ is the full propagator, and G0(x− y;ω) = G0(x, y;ω) in (S50). Note that this Schwinger-Dyson equation is
exact. The solution is

G(x1, x2, τ1, τ2) =

(
i[4+g2−2g2(Θ(x1)Θ(−x2)+Θ(−x1)Θ(x2))]

2π(4+g2)(x12+iτ12))
i2g(Θ(x1)Θ(x2)−Θ(−x1)Θ(−x2))

π(4+g2)(x1+x2+iτ12))

− i2g(Θ(x1)Θ(x2)−Θ(−x1)Θ(−x2))
π(4+g2)(x1+x2+iτ12))

− i[4+g2−2g2(Θ(x1)Θ(−x2)+Θ(−x1)Θ(x2))]
2π(4+g2)(x12+iτ12))

)
, (S62)

where x12 := x1 − x2 and τ12 := τ1 − τ2
With the full propagator, we can evaluate the transmission and reflection coefficient similarly to the previous section. The

results are

T = 1− 16g2

(4 + g2)2
, R =

16g2

(4 + g2)2
. (S63)

This is consistent with Ref. [17].
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B. Discussion on the effective central charge and the transmission coefficient

We discuss the relation between the transmission coefficient and the entanglement entropy. The entanglement entropy across
the defect is given by an effective central charge c̃n [26]

Sn =
c̃n(T )

12

(
1 +

1

n

)
log

(
L

a

)
, (S64)

where Sn denotes Rényi-n entropy and a is the lattice constant. For von Neumann entropy, the effective central charge is [29]

c̃1 = − 6

π2
{[(1 + s) log(1 + s) + (1− s) log(1− s)] log s+ (1 + s)Li2(−s) + (1− s)Lis(s)} , s =

√
T . (S65)

For the Rényi entropy, the results can be found in [31]. In particular, the Rényi-2 entropy calculated in our paper is

c̃2(T ) =
8

π2
arcsin2

(√
T
2

)
. (S66)

For the energy defect in the Majorana chain model, the transmission coefficient reads [29]
√
T = 2

1+g+1/(1+g) , where g is
a parameter that captures the strength of the defect. In particular, for the Majorana chain model with a modified bond hopping
studied in the main text, g = (t′ − t)/t, with t (t′) denoting the normal (defect) bond hopping strength. Note that the relation
between the transmission coefficient derived from the continuum field theory (S63), and from the transfer matrix method is not
straightforward. Nevertheless, they agree at the leading order as expected, since the continuum theory neglects higher-order
contribution:

T ≈ 1− g2, (S67)

Therefore, the field theory calculation correctly predicts the leading behavior of the effective central charge

c̃2 ≈ 1

4π2
− g2

2π2
. (S68)

However, such a minimal consistency is violated for the SYK defect as discussed in the main text, as will be shown next.
In the interface geometry where L1 = K2 = 0, the Rényi-2 entropy in (S42) or (13) in the main text simplifies to

S2/N =
1

2
Tr log[G(2)G̃

−1] + J2

(
1

4q
− 1

4

)∫
dτ1dτ2{[2G̃(τ1, τ2)]q − [2G(2)(τ1, τ2)]

q}. (S69)

To leading order in J at q = 2,

1

2
Tr log[G(2)G̃

−1] = −1

2
Tr log[G−1

(2)G̃] + J2

(
1

4q
− 1

4

)∫
dτ1dτ2{[2G̃(τ1, τ2)]q − [2G(2)(τ1, τ2)]

q}. (S70)

Let Γ(2) ≡ G(2)

∣∣
J=0

= (−iω − tDK1,L1
− tDK2,L2

)
−1 and Γ̃ ≡ G̃

∣∣∣
J=0

=
(
−iω − tD′

K1,L1
− tD′

K2,L2

)−1
. Then

1

2
Tr log

[
G(2)G̃

−1
]

=
1

2
Tr log

[
−iω − 2J2Γ̃− tD′

K1,L1
− tD′

K2,L2

−iω − 2J2Γ(2) − tDK1,L1
− tDK2,L2

]

=
1

2
Tr log

[
−iω − 2J2Γ̃− tRK1

(−iω
2t

)
− tRL2

(−iω
2t

)
−iω − 2J2Γ(2) − tRK1

(−iω
2t

)
− tσRL2

(−iω
2t

)
σ†

]
(S71)

=
1

2
Tr log

[
G(2)G̃

−1(1 + 2J2Γ(2)G(2) − 2J2Γ̃G̃)
]
+O(J4)

=
1

2
Tr log[Γ̃−1Γ(2)] + J2 Tr[Γ2

(2) − Γ̃2] +O(J4). (S72)

For the integral,

−3J2

4

∫
dτ1dτ2{[G̃(τ1, τ2)]2 − [G(2)(τ1, τ2)]

2} = −3J2

4

∫
dτ1dτ2{[Γ̃(τ1, τ2)]2 − [Γ(2)(τ1, τ2)]

2}. (S73)
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Due to fermionicity, Γ(τ1, τ2) = −Γ(τ2, τ1). Then Tr(Γ2) ≡
∫
dτ1dτ2Γ(τ1, τ2)Γ(τ2, τ1) = −

∫
dτ1dτ2Γ(τ1, τ2)

2. Thus,

S2

N
=
S2

N

∣∣∣∣
J=0

+
J2

4

∫
dτ1dτ2{[Γ̃(τ1, τ2)]2 − [Γ(2)(τ1, τ2)]

2}+O(J4). (S74)

Therefore, the leading order change in S2 and hence c̃2 is J2. However, from Eq. (S57) or (16) in the main text, T =

2/
(
3 + J̃2 −

√
1 + 2J̃2

)
≈ 1 − J4/2. Consequently, the leading-order change in c̃2(T ) is J4, in disagreement with that

extracted from the scaling of S2, as plotted in Fig. 4(d) in the main text.
Finally, we address the independence of the g-function on J in the thermodynamic limit. In the setup to compute the

g-function, K1 = K2 = K and L1 = L2 = L. When K is large, limK→∞ DK,L = limK→∞D′
K,L(

−iω
2t ) =

limK→∞RK+L(
−iω
2t ) for low-frequency components. In this case, the defect is too far from the interface to affect each other.

Thus, G(2) ≈ G̃. As a result, S2 comes only from noninteracting chains. In contrast, when the defect is next to the interface,
e.g., K2 = 0 as in (S71), the twist operator is immediately present in G(2), so its effect survives in the thermodynamic limit.
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