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Abstract— One of the critical challenges in automated driving
is ensuring safety of automated vehicles despite the unknown
behavior of the other vehicles. Although motion prediction mod-
ules are able to generate a probability distribution associated
with various behavior modes, their probabilistic estimates are
often inaccurate, thus leading to a possibly unsafe trajectory.
To overcome this challenge, we propose a risk-aware motion
planning framework that appropriately accounts for the ambi-
guity in the estimated probability distribution. We formulate the
risk-aware motion planning problem as a min-max optimization
problem and develop an efficient iterative method by incorpo-
rating a regularization term in the probability update step.
Via extensive numerical studies, we validate the convergence of
our method and demonstrate its advantages compared to the
state-of-the-art approaches.

I. INTRODUCTION

After two decades of development, automated vehicles
have been able to navigate a variety of traffic scenarios
successfully. Nevertheless, operating in highly interactive
environments, such as intersections without traffic lights, still
remains a significant challenge. One main reason is that
an automated vehicle struggles to properly account for the
different behavior modes of the surrounding vehicles. Specif-
ically, in the classic planning framework [1], the motion
planner receives the most likely predicted trajectories of the
surrounding vehicles, based on a motion prediction module,
and then generates a motion plan without considering multi-
modal behaviors. One drawback of not considering multiple
behaviors of the surrounding vehicles is that the generated
motion plan might be overly aggressive or overly conserva-
tive, thus resulting in collisions or traffic jams, respectively.

To properly consider multi-modal behaviors, the so-called
branch model predictive control (BMPC) [2] has been pro-
posed, also referred to as contingency planning in [3], [4],
or trajectory tree motion planning in [5]–[7]. An advantage
of BMPC planners is their ability to utilize the multi-modal
trajectory prediction provided by the latest motion prediction
module [8]. In contrast to traditional robust motion planners,
which aim to generate a motion plan that accommodates
all predicted trajectories, BMPC planners construct a trajec-
tory tree with multiple branches corresponding to (possibly)
different behavior modes. Thus, BMPC planners can avoid
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Fig. 1: Unsignalized intersection-crossing scenario. The other ve-
hicle (in pink) has two potential behavior modes: “Yield” and
“Assert”. In this case study, the motion predictor assesses the
likelihood of each behavior mode and indicates that the other
vehicle is more likely to “Yield”. However, the behavior mode
“Assert” can result in a potential collision. To avoid unsafe motion,
the risk-aware branch MPC planner generates a trajectory tree
that considers the different behavior modes by taking into account
their associated ambiguity. In this example, it focuses more on the
behavior mode “Assert” by appropriately reshaping the probability
distribution.

generating overly conservative motion plans since only the
shared branch needs to adapt to all potential predicted
scenarios.

However, a significant challenge arising with multi-modal
behaviors is that estimates on the probability of each tree
branch might be inaccurate [9]. To address this issue, it is
necessary to deal with ambiguity in the probability estimates
by leveraging tools from risk-aware stochastic optimization.
In [2], [10], [11], the authors propose a risk-aware MPC
framework, where they employ the so-called Conditional
Value at Risk (CVaR), a risk measure that accounts for
unlikely scenarios at the tail of the probability distribution.
They then apply this framework to risk-aware motion plan-
ning, leveraging the dual form of CVaR [12] to recast the
original problem as a min-max optimization problem with a
nonconvex-concave structure.

The works [2], [10] address the min-max reformulation by
converting the inner maximization problem into a minimiza-
tion problem via the dualization technique. However, such a
formulation introduces additional auxiliary decision variables
and hard constraints. Furthermore, the nonconvexity of such
constraints due to the collision cost renders this problem
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computationally challenging to solve. Another popular cat-
egory of algorithms for min-max optimization would solve
the maximization problem and perform a gradient descent
step for the minimization problem. Particularly, in [13], the
maximization problem is solved approximately by employing
multiple gradient ascent steps. In contrast, in single-loop
algorithms such as the gradient descent-ascent (GDA), the
update for one variable only occurs once before another
variable is updated. However, the GDA method fails to
converge even for some simple bilinear problems [14]. To
improve convergence, Lu et al. [15] propose the so-called
Hybrid Block Successive Approximation (HiBSA), where
a regularization term is introduced to the maximization
problem, resulting in a perturbed version of the original
projected gradient ascent step.

To iteratively solve the outer minimization problem, a
projected gradient descent (PGD) method is employed in
[13]. However, as the feasible set in the motion planning
problem is often non-convex, the projection to such a set is
computationally challenging. To compute the update more
efficiently, Li et al. [11] replace the gradient descent with
iterative LQR (iLQR), an efficient numerical optimization
method that exploits the sparse structure inherent in optimal
control problems [16, Chapter 8]. iLQR is initially applied
to unconstrained motion planning in [17], while in [18],
a projected quasi-Newton method is employed to consider
input constraints. To handle more general inequality con-
straints, a barrier function and an augmented Lagrangian
function are integrated into the framework of iLQR in [19]
and [20], respectively. The authors in [11], [21] have recently
developed iLQR-based solvers for the BMPC problem.

In this work, we propose an efficient implementation of
a risk-aware motion planner for applications in autonomous
driving. Our contributions with respect to the related litera-
ture can be summarized as follows:

(i) To circumvent the computational challenges of the
formulations in [2], [10], our work builds upon [11] and
proposes an iterative algorithm based on the augmented
Lagrangian iterative linear quadratic regulator (AL-
iLQR) to efficiently solve the minimization problem
in the min-max reformulation of the risk-aware motion
planning problem.

(ii) We combine the method above with a variant of Hy-
brid Block Successive Approximation (HiBSA) [15];
specifically, to address scenarios of oscillatory behavior
observed by implementing the numerical method in
[11], we introduce a regularization term to the inner
maximization problem. We empirically validate the ef-
fectiveness of such an additional term via extensive
numerical simulations.

(iii) We implement our method in C++ and demonstrate its
applicability in real-time motion planning by consider-
ing different case studies of unsignalized1 intersection
crossing. Even though this work focuses mainly on

1The term “unsignalized” is used in the literature to refer to the absence
of traffic lights.

unsignalized intersections, our proposed algorithm can
be applied to a variety of traffic scenarios.

This paper can be seen as a preliminary result towards a more
challenging research goal: integrating a risk-aware motion
planner together with a behavior planner, and applying them
to highly interactive automated driving scenarios [22], [23].

II. PROBLEM FORMULATION

A. Unsignalized intersection crossing

We consider an unsignalized intersection-crossing sce-
nario, where the ego vehicle interacts with the surrounding
vehicles. Fig. 1 illustrates such an example, where the ego
vehicle makes a left turn while the other vehicle follows
a straight path. To turn left successfully, the ego vehicle
should take into account the different behavior modes of the
other vehicle. In this example, two behavior modes can be
identified for the other vehicle. The first behavior mode is
called “Yield” mode, i.e., the other vehicle decides to slow
down and wait for the ego vehicle to turn left. In this case,
the ego vehicle can maintain the current speed (assuming it is
sufficiently slow to make a left turn) and proceed through the
intersection. The second behavior mode is the “Assert” mode,
where the other vehicle does not decelerate and continues
following the straight path. Consequently, the ego vehicle
should slow down to avoid a potential collision.

The traffic scenario in Fig. 1 illustrates how different
behavior modes can have a significant effect on motion plan-
ning. To account for the presence of multiple behavior modes
of surrounding vehicles, we introduce a motion planner based
on the branch MPC framework.

B. Nominal Branch MPC

A branch MPC planner generates a so-called trajectory
tree, i.e., a decision tree whose branches correspond to
distinct behavior modes of the surrounding vehicles. An
example of the trajectory tree is illustrated in Fig. 1, which
comprises one shared branch and a branching point that leads
to two possible outcomes. We denote the time step when the
shared branch splits into multiple individual ones by Ts and
the length of the entire planning horizon by T .

In the trajectory tree, the initial control inputs are con-
strained to remain consistent over the interval [0, Ts − 1] to
allow for adaptation to all potential predicted scenarios. We
denote the tree of control inputs by ū :=

(
ū0, ūi

)
i∈[1,d]

,
where d is the number of branches, ū0 := (u0

t )t∈[0,Ts−1]

represents the shared control input sequence from time step 0
to Ts−1, and ūi := (ui

t)t∈[Ts,T−1] denotes the control input
sequence for branch i from time step Ts to T−1. We consider
a state xi

t ∈ Rnx corresponding to branch i at time step t,
which evolves according to the dynamics xi

t+1 = f(xi
t, u

i
t),

where f : Rnx × Rnu → Rnx is a nonlinear function. The
initial state for the shared branch is denoted by x0, while xTs

denotes the state at the start of the branching. Note that the
state evolution can be expressed as a function of the initial
condition x0 and the input ū. We define the cost function



J : Rnx ×RnuTs+nu(T−Ts)d → R of the branch MPC as the
weighted sum of the branch costs:

J(x0, ū) :=

Ts−1∑
t=0

ℓ0(x0
t , u

0
t )︸ ︷︷ ︸

J0(x0,ū0)

+

d∑
i=1

pi

(
T−1∑
t=Ts

ℓi(xi
t, u

i
t) + ℓiT (x

i
T )

)
︸ ︷︷ ︸

Ji(xTs ,ū
i)

, (1)

where ℓi : Rnx × Rnu → R and ℓiT : Rnx → R denote the
stage and final cost, respectively, and p = (pi)i∈[1,d] is the
collection of probability estimates for all branches, which
usually originates from an upstream prediction module or
behavior planner and takes values in the simplex P = {p ∈
Rd

≥0 |
∑d

i=1 p
i = 1}. In practice, however, the probability

estimate can often be inaccurate, resulting in possibly unsafe
motion plans.

C. Risk-aware branch MPC

Revisiting the unsignalized intersection-crossing problem
in Fig. 1, the motion predictor assesses the likelihood of
each behavior mode and indicates that mode “Yield” has
a larger probability of occurrence. However, the behavior
mode “Assert” could lead to a potential collision with the
ego vehicle, which implies that ambiguity in the probability
estimates carries a significant risk for the safety of both
vehicles. Therefore, the ego vehicle should be more aware
of the risk associated with potential misinterpretation of the
other vehicle’s intentions. To generate a robust motion plan
for such intricate cases, we develop a risk-aware branch MPC
planner, which focuses more on the potentially dangerous
scenarios by minimizing a risk measure of the cost function.

1) Preliminaries: Let us first introduce the concept of risk
measures. A popular class of risk measures used in stochastic
optimization is the so-called coherent risk measures, which
satisfy certain properties, including convexity, monotonic-
ity, translation equivariance, and positive homogeneity; see
[12] for technical details. While widely used as a coherent
risk measure, the expectation fails to effectively account
for events that lie at the tail of a given distribution. To
circumvent this issue, Conditional Value at Risk (CVaR)
[12], [24] is a popular means for improved risk assessment.
For computational efficiency, the dual representation of a
coherent risk measure [12, Eq. 6.40] is commonly employed:

ρ(X) := sup
Q∈A

EQ[X], (2)

where X is a random variable and the ambiguity set A is
closed and convex. The dual representation indicates that
a coherent risk measure can be viewed as the worst-case
expectation with respect to all probability distributions in
the ambiguity set.

In this work, we consider that uncertainty arises from
the unknown discrete behavior modes of the surrounding
vehicles. This motivates the study of discrete probability

distributions q = (qi)i∈[1,d], where the considered ambiguity
set of CVaRα for α ∈ [0, 1], is the intersection of the
probability simplex and the set of boxes, based on the
nominal probability vector p:

Aα(p) =

{
q ∈ Rd |

d∑
i=1

qi = 1, qi ≥ 0, αqi ≤ pi

}
. (3)

Selecting α = 0 implies a lack of confidence in the nominal
probability distribution, resulting in the ambiguity set being
equivalent to the entire probability simplex. For α = 1,
the decision maker has more confidence in the nominal
probability distribution.

2) Risk-aware formulation: By adopting CVaR as a risk
measure and leveraging its dual form (2), the original cost
in (1) has the following risk-aware counterpart:

JR(x0, ū) := J0(x0, ū
0) + max

q∈Aα(p)

d∑
i=1

qiJ i(xTs
, ūi), (4)

where the ambiguity set Aα(p) is given in (3). Informally
speaking, the solution to this maximization problem tends to
assign a larger probability to the branch with a higher cost.
With the cost function in (4), we can formulate the risk-aware
motion planning problem (RAMP) as follows:

(RAMP)



min
ū

JR(x0, ū)

s.t. x0
t+1=f(x

0
t , u

0
t ), ∀t ∈ [0, Ts − 1],

h0(x0
t , u

0
t ) ≤ 0, ∀t ∈ [0, Ts − 1],

xi
Ts

= xj
Ts
, ∀i, j ∈ [0, d],

xi
t+1=f(x

i
t, u

i
t),∀t ∈ [Ts, T − 1], ∀i ∈ [1, d]

hi(xi
t, u

i
t) ≤ 0, ∀t ∈ [Ts, T ], ∀i ∈ [1, d],

(5)
where hi(·) encapsulates general inequality constraints for
different branches, including control input bounds, colli-
sion avoidance constraints, and road boundary constraints.
The motion planning problem (RAMP) can be alternatively
viewed as a two-player zero-sum game, where the first player
seeks a comfortable and collision-free trajectory, while the
second player acts as an adversary wishing to increase the
total cost by redistributing the probability of each branch.
In what follows, we propose an algorithm based on iLQR
with augmented Lagrangian relaxation to solve the motion
planning problem.

III. EFFICIENT RISK-AWARE MOTION PLANNING

In the subsequent developments, we draw inspiration from
the methods in [11], [15] to obtain a solution to (RAMP).
Following [11], we keep the probability vector q fixed for
each step and solve an approximated optimal control problem
of (RAMP) via the iLQR scheme. We combine this method
with a variant of HiBSA as proposed in [15]. In particular,
to improve convergence, we introduce a regularization term
to the maximization problem, which perturbs the original
projected gradient ascent step. As in [11], we replace the
projected gradient descent with a Newton-like step to further
aid in convergence. Our proposed algorithmic scheme is



Algorithm 1: Risk-aware AL-iLQR tree
Input: x0, x̄ref, ūref, p
Output: ū∗, q
Initialize λ̄

0, µ0, ū0 ← ūref, k ← 0
Perform rollout using ūref to obtain x̄0

while stopping criterion not satisfied do
minmax iLQR tree(x0, x̄ref, ūk, p, λ̄k, µk);
Update λ̄

k;
Update µk;
k ← k + 1;

end

detailed in Algorithm 1. The vectors ūref and x̄ref denote the
reference trajectories for the state and input, respectively.

A. Augmented Lagrangian iLQR tree

To solve (RAMP) efficiently, we exploit the inherent
sparse structure of the optimal control problem by leveraging
ideas from dynamic programming [16]. This leads to an
iLQR-based method, where the following subproblem is
solved at each time step t:

iLQRi
t


min
u

Qi
t(x, u, x

′) = V i
t (x)

s.t. x′ = f(x, u),

hi
t(x, u) ≤ 0,

(6)

where the Q-function Qi
t(·) describes the cost incurred

after applying the control input u for branch i at time
step t, and hi

t(·) represents general state and control input
constraints. Based on dynamic programming, we compute
the Q-functions for the trajectory tree as follows:

Q0
t (x, u) = ℓ0t (x, u) + V 0

t+1 (f(x, u)) , t ∈ [0, Ts − 2], (7)

Q0
Ts−1(x, u) = ℓiTs−1(x, u) +

d∑
i=1

V i
Ts

(f(x, u)) , (8)

Qi
t(x, u) = ℓit(x, u) + V i

t+1 (f(x, u)) , t ∈ [Ts, T − 1], (9)

where (7) and (9) are associated with the Q-functions of
the shared branch and individual branches, respectively.
Equation (8) represents the Q-function of the branching
node, where the value functions for all branches at the
next time step are summed up. Next, we consider the hard
constraints by adding the augmented Lagrangian terms to the
Q-functions:

Qi
a,t(x, u, λ, µ) = Qi

t(x, u) + λ⊤hi
t(x, u)

+
1

2
hi
t(x, u)

⊤Iiµ,th
i
t(x, u),

where λ is a vector of Lagrange multipliers, µ is a penalty
weight. Iiµ,t denotes a diagonal matrix that selects the active
constraints:

Iiµ,t,mm =

{
0 if hi

t,m(x, u) < 0 and λm = 0

µ otherwise,

where, m is the index of the mth constraint.

By using augmented penalty terms, we now convert iLQRi
t

into an unconstrained optimization problem. We then lin-
earize the dynamics and approximate the Q-functions using
second-order Taylor expansions. We employ the generalized
Gauss-Newton Hessian approximation due to its ease of com-
putation and the theoretical guarantee that the approximated
Hessian is always positive semi-definite [25]. The Newton
descent direction at time step t can then be obtained by
minimizing the approximated version Q̂i

a,t of the augmented
Langrangian Q-function:

min
δu

Q̂i
a,t(δx, δu). (10)

Since Q̂i
a,t is in quadratic form, we can derive an affine

control law of the form δu = Ki
tδx+dit [20]. The backward

pass involves solving (10) from the leaf tree nodes to the
root node. It is worth noting that the computation from
the leaf nodes to the branching node can be performed in
parallel, thus improving the computation speed significantly.
After the backward pass, we conduct a forward rollout
using the nonlinear dynamics to obtain the updated trajectory
tree. A standard backtracking line search [26] is performed
to guarantee a sufficient decrease in the trajectory cost.
Similarly to [18], we introduce a regularization term to guide
the Newton direction towards the gradient descent direction
in case the line search fails.

B. Projected gradient ascent with regularization

We note that the risk-aware motion planning in (5) is
a nonconvex-concave problem. For this class of problems,
applying the GDA method directly might result in oscil-
lations [14]. Therefore, motivated by [15], we render the
original cost function (4) strongly concave with respect to q
by introducing a quadratic regularization term:

JR(x0, ū) := J0(x0, ū
0)+

max
q∈Aα(p)

d∑
i=1

qiJ i(xTs , ū
i)− ρ

2
qi2, (11)

where ρ > 0 is the regularization weight. A high value of
ρ drives the probability vector q towards the centroid of the
simplex. However, we note that this additional regularization
term modifies the saddle point of the original problem. To
mitigate its impact on the saddle point, we adopt a diminish-
ing regularization weight given by ρk = ρ0/(k+1). We then
perform a projected gradient ascent to approximately solve
(11) at iteration k:

qk+1 ← projAα(p)

(
(1− γρk)qk + γJ̄(xTs

, ū)
)
, (12)

where J̄(·) = (J i(·))i∈[1,d] is the collection of all branch
costs except for the shared branch, proj(·) is the projection
operator, and γ > 0 is the step size. We compute the
projection onto the ambiguity set as follows [27, Chapter
6.4.3]:

projAα(p)(q) = projbox[0, p
α ](q − ϕ∗1d),



Algorithm 2: minmax iLQR tree

Input: x0, x̄ref, ū0, p, λ̄, µ
Output: ū∗, q
Perform rollout using ū0 to obtain x̄0

while stopping criterion not satisfied do
Approximate Q-functions;
Compute backward pass through Riccati equation;
Compute forward pass, including rollout and line

search;
if line search failed then

Add regularization terms to Hessian matrices;
else

Update the probability vector q using (12);
end

end

where box[0, p
α ] := {q ∈ Rd | 0 ≤ qi ≤ pi

α ,∀ i ∈ [1, d]},
1d = (1, 1, . . . , 1) ∈ Rd represents a vector with all elements
being 0, and ϕ∗ is a root of the equation:

m(ϕ) := 1⊤
d projbox[0, p

α ](q − ϕ1d)− 1 = 0.

According to [27, Chapter 6.4.3], m(ϕ) is a non-increasing
function. Thus, its root can be efficiently computed through
the bisection method.

C. Detailed formulation

1) Vehicle modeling: We model the vehicle as a kinematic
bicycle with the state vector x̃ := (px, py, θ, v) and the
control input vector u := (a, δ), where (px, py), θ, and v
represent the rear-axle position, heading angle, and speed of
the vehicle, respectively; a and δ are the acceleration and
steering angle. In (5), the stage cost only depends on the
current state and control input. Therefore, to penalize the rate
of change of the control inputs, we augment the original state
by concatenating it with the previous control input, resulting
in xk := [x̃⊤

k , u
⊤
k−1]

⊤. Additionally, we ensure feasibility of
physical quantities such as speed, acceleration, and steering
angle by constraining them within lower and upper limits.

2) Cost function: The motion planner is designed to track
the reference trajectory tree, maximize the driving comfort
level, and keep a safe distance from surrounding vehicles.
To account for the driving comfort, we penalize the control
input and its rate of change. Moreover, we design the safety
cost ℓ : R2 → R between the ego vehicle and the other
vehicle at positions pEV and pSV, respectively, as follows:

ℓsaf(p
EV, pSV) =

{
(d− dprox)

2 if d < dprox

0 otherwise,

where d is the Euclidean distance between the center po-
sitions of the ego vehicle and the other vehicle, and dprox
represents the threshold distance.

3) Safety constraints: The distance between two vehicles
is a nonsmooth function, which poses numerical challenges
to the optimization algorithm. To account for the lack of
smoothness, we use instead an overapproximation of the

(a) Test scenario 1 (TS1) (b) Test scenario 2 (TS2)

Fig. 2: Test scenarios. The ego vehicle (in blue) intends to turn left.
(a) Both surrounding vehicles have two potential behavior modes:
“Yield” and “Assert”, represented by the red and orange arrows,
respectively. (b) The upper vehicle exhibits different behavior
modes: “TurnLeft” and “GoStraight”.

shape of each vehicle, which comprises the union of a
collection of linked circles [6]. We then compute the smooth
collision avoidance constraints as follows:

(rEV + rSV)2 −
∥∥ci(xEV)− cj(xSV)

∥∥2
2
≤ 0,

i ∈ [1, nEV
c ], j ∈ [1, nSV

c ],

where rEV and rSV represent the safety circles’ radii, corre-
sponding to the ego vehicle and the other vehicle, respec-
tively, ci : Rnx → R2 is a function that computes the center
of each circle, and nEV

c , nSV
c denote the number of circles

used to approximate the vehicle footprint.
Finally, enforcing boundary constraints for curved roads

can be challenging for motion planning in Cartesian coor-
dinates. Following [28], we approximate the road boundary
constraints by constructing a safe driving corridor along the
reference trajectory tree provided by the behavior planner.

IV. NUMERICAL STUDY

A. Simulation setup

We test our method in two distinct unsignalized
intersection-crossing scenarios illustrated in Fig. 2. In both
scenarios, the ego vehicle (in blue) intends to turn left, while
two surrounding vehicles are present with different driving
intentions per scenario. Specifically, in the first scenario
(TS1), both surrounding vehicles have two potential behav-
ior modes: “Yield” and “Assert”, with their corresponding
motion plans represented by the red and orange arrows,
respectively. In the second scenario (TS2), the vehicle on the
right exhibits two different behavior modes: “TurnLeft” and
“GoStraight”. Since, for each case study, two possible behav-
ior modes are considered for each surrounding vehicle, we
have in total four different combinations of behavior modes
or, equivalently, four separate branches in the trajectory tree.

Note that the choice of the initial guess of the trajectory
tree can significantly influence the convergence speed or in
some cases hinder the convergence of the motion planner.
As such, the initial guess should be appropriately selected.
In our setup, we adopt a simple sampling-based behavior
planner [29], [30]. Specifically, we control the longitudinal
and lateral motion of the ego vehicle via a PD controller and
a pure pursuit controller, respectively, and forward simulate
its motion under different desired speeds to obtain a set



of trajectories. For each joint behavior mode, we select the
best trajectory from the trajectory set based on certain user-
defined criteria.

Our motion planner operates at 10 Hz with a discretization
step of 0.1 s and a planning horizon of 5 s. The number of
shared nodes Ts is set to 5. We conduct all simulations on
a laptop with a 2.30GHz Intel Core i7-11800H processor
and 16GB RAM. The motion planning algorithm is coded
in C++.

B. Numerical convergence results

We run open-loop Monte Carlo simulations to empirically
validate the convergence of the proposed motion planner
under 500 different initial states of the ego vehicle. To obtain
these states, we perturb the nominal initial state by ±3m
for the longitudinal position, ±1m for the lateral position,
±10% for the longitudinal speed. Additionally, we set pi =
0.25 for all i ∈ [1, d] and α = 0.6 when constructing the
ambiguity set. We compare our motion planner with MARC
[11] and Dual MPC [2]. We implement Dual MPC using the
IPOPT [31] interface provided by CasADi [32] with MA57
[33] as the linear solver for enhanced performance. The
statistical results on convergence and average computation
time are presented in Table I. Our method achieves successful
convergence in the majority of cases. However, when em-
ploying MARC, we observe that in certain cases the values
of the probability vector q oscillate between two vertices
of the ambiguity set. A potential reason is that the solver
of the linear program often outputs a vertex as the optimal
solution, but the saddle point might be a point on a facet
of the ambiguity set that is not necessarily a vertex. Dual
MPC has the highest computational cost since additional
decision variables are introduced and the original nonconvex
cost becomes a part of hard constraints after dualization.
Consequently, such reformulation is often not well-suited for
efficient computation.

Fig. 3 illustrates that the number of total iterations required
to solve a risk-aware branch MPC problem is slightly larger
than that required for the nominal branch MPC problem.
Simulation studies indicate that the difference in the number
of required iterations is due to the presence of gradually
decaying oscillations in the probability update. Such an
update is not present in the case of the nominal branch
MPC. Note that such extra computational overheads are
still acceptable from a practical point of view, since the
projection in (12) can be efficiently computed in just a
few microseconds, and the average computation time of our
method is below 100ms. Thus, the proposed planner is well-
suited for real-time motion planning after code optimization.

C. Closed-loop trajectories

We now compare the closed-loop performance between the
risk-aware branch MPC and the nominal branch MPC for the
scenario (TS1). Specifically, we assume that the ego vehicle
does not fully know the behavior modes of the surrounding
vehicles before ta = 1 s. In practice, the ego vehicle can
identify the intentions of the surrounding vehicles after a

TABLE I: Statistical Results

Test Scenario Metric Ours MARC [11] Dual MPC [2]

TS1
Convergence

Comp. time (ms)
100%

25.9
90.6%

36.9
100%

1300.8

TS2
Convergence

Comp. time (ms)
99.8 %

53.1
95.2 %

59.7
100%

1520.7
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Fig. 3: Box-plots obtained from 500 Monte Carlo simulations: The
total number of iterations to solve our risk-aware branch MPC
problem (blue dots) is for some cases larger compared to those
required to solve the nominal branch MPC problem (orange) in
both test scenarios (TS1) and (TS2). The difference is due to the
presence of gradually decaying oscillations in the probability update
for the case of risk-aware MPC.

certain period. Considering this, we assume that the ego
vehicle has complete knowledge of these intentions after
ta = 1 s. Simulation studies indicate that, as expected,
an increase in ta, results in gradually more conservative
behavior. As the risk-aware planner accounts for the risk
against different behavior mode realizations before ta, its
trajectory differs from that of the nominal motion planner.
Note that even after ta, when the ego vehicle knows the
intentions of the surrounding vehicles, the trajectory of the
risk-aware and nominal planners are still different since
the initial differences in the trajectory affect their future
evolution. The risk-aware motion plan is illustrated in Fig.
4a. The number on the snapshot of each vehicle denotes the
simulation timestamp. At first, the ego vehicle does not know
whether the red vehicle will yield or continue its straight
trajectory. To account for this risk, the ego vehicle chooses
to slow down and merge behind the green vehicle.

Fig. 4b shows the velocity profile of the ego vehicle for the
nominal motion planner and the risk-aware motion planner
for two distinct values of the risk parameter α ∈ [0, 1]. We
remind the reader that smaller values of α imply the presence
of more ambiguity concerning the probabilistic estimates of
the behavior modes of the red and green vehicles. We observe
that for up to t = 3 s, the velocity of the risk-aware motion
is slower than the nominal one, as the risk-aware approach
considers the risk of the red vehicle not yielding. After t =
3 s the velocity increases compared to the nominal motion



(a) Closed-loop trajectories of risk-aware motion planning.
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(b) Velocity profiles generated by different planners.

Fig. 4: (a) Closed-loop trajectories of risk-aware motion planning:
The actual behavior of the red vehicle is to yield, while the green
one keeps a constant velocity. Initially, since the ego vehicle (in
blue) is unaware of the true intentions of the surrounding vehicles,
it slows down and merges behind the green vehicle to mitigate the
risk of the red vehicle not yielding. (b) Velocity profile comparison
among risk-aware motion planners for two values of the risk
parameter α = 0.1 and α = 0.8 and the nominal motion planner.

planner, and the profiles coincide after t = 7 s. Finally, we
note that for α = 0.1, the motion planner is, as expected,
more risk-aware of the behavior of the red vehicle, while
for α = 0.8, its behavior is closer to the nominal one, since
ambiguity is smaller.

V. CONCLUSION

Risk-aware branch model predictive control is applica-
ble to motion planning for automated vehicles subject to
behavioral uncertainty. However, general-purpose numerical
solvers are currently not fast enough to solve the considered
motion planning problem within the given sampling time.
Our method shows high potential in closing this computa-
tional gap and paves the way towards more efficient real-time
motion planning. In future work, we aim at designing an
efficient interaction-aware behavior planner for intersection-
crossing scenarios. Our final goal is to develop a general
motion planning framework by integrating an advanced be-
havior planner with the proposed risk-aware motion planner.
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