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This paper is devoted to proving convergence rates of variational and iterative regularization methods

under variational source conditions VSCs for inverse problems whose linearization satisfies a range

invariance condition. In order to achieve this, often an appropriate relaxation of the problem needs to

be found that is usually based on an augmentation of the set of unknowns and leads to a particularly

structured reformulation of the inverse problem. We analyze three approaches that make use of this

structure, namely a variational and a Newton type scheme, whose convergence without rates has already

been established in [17]; additionally we propose a split minimization approach that can be show to

satisfy the same rates results.

The range invariance condition has been verified for several coefficient identification problems for

partial differential equations from boundary observations as relevant in a variety of tomographic imaging

modalities. Our motivation particularly comes from the by now classical inverse problem of electrical

impedance tomography EIT and we study both the original formulation by a diffusion type equation and

its reformulation as a Schrödinger equation. For both of them we find relaxations that can be proven to

satisfy the range invariance condition. Combining results on VSCs from [28] with the abstract framework

for the three approaches mentioned above, we arrive at convergence rates results for the variational, split

minimization and Newton type method in EIT.

Keywords: range invariance condition; convergence rates; iterative regularization; variational

regularization; electrical impedance tomography.

1. Introduction

Consider an inverse problem either in its all-at-once formulation

A(q,u) = 0 (model equation)

Bu = y (observation equation)

}
⇔: F(q,u) = (0,y)T (1.1)

or in its reduced formulation, with a parameter-to-state operator S : D(F)→V that is implicitly defined

by the first equation in

A(q,S(q)) = 0 and B(S(q)) = y ⇔: F(q) = y. (1.2)

Here A : D(S)(⊆ Q)×V → W ∗ is the (possibly nonlinear) model operator, B : V → Z the (linear)

observation operator and Q, V , W ∗, Z are Banach spaces. Often A represents the weak form of a partial

differential equation (with boundary and – if applicable – initial conditions) and W is the dual of a
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normed space. More generally, consider

F(x) = y (1.3)

with an operator F : D(F)(⊆ X)→ Y , mapping between Banach spaces X and Y , given noisy data yδ

with

‖y− yδ‖Y ≤ δ (1.4)

and denoting by x† an exact solution. This comprises both all-at-once (1.1) with x = (q,u), F = F and

reduced (1.2) with x = q, F = F formulations. Since (1.3) is typically ill-posed, regularization needs to

be applied, cf., e.g., [2, 9, 13, 21, 27]. We will here consider variational and iterative approaches for this

purpose.

Range invariance and other nonlinearity conditions

In order to prove convergence for regularization methods, conditions on the nonlinearity of the forward

operator F are needed. One of the most commonly used of these is the tangential cone condition

∀x, x̃ ∈U : ‖F(x)−F(x̃)−F ′(x)(x− x̃)‖Y ≤ ctc‖F(x)−F(x̃)‖Y (1.5)

in a neighborhood U of the exact solution. This condition (or closely related ones; cf. the introduction

of [17] for a somewhat more detailed overview) allows to show convergence of iterative regularization

methods [8, 11, 18] as well as local convexity of the Tikhonov functional in variational regularization

[7]. The control by the residual provided by (1.5) allows to use the discrepancy principle as an a

posteriori rule for the regularization parameter choice, which makes these methods - in particular the

iterative ones - very convenient to implement. However, the major drawback of (1.5) is that it could

so far only be verified in case of full observations or in a discretized (thus not ill-posed in the sense of

instability) setting.

An alternative condition that avoids these limitations is range invariance of the linearized forward

operator, cf., e.g., [4, 5, 8, 14, 15, 16, 26], which we here (like in [17]) impose in a differential

formulation:

∃x0 ∈U , K ∈ L(X̃ ,Y )∀x ∈U ∃r(x) ∈ X̃ : F(x)−F(x0) = Kr(x). (1.6)

This condition has been verified for a number of inverse problems with boundary (or actually arbitrary)

observations, see, e.g., [17, 19, 20]. However, as has been demonstrated there and we will also see in

Examples 1 and 2 below, establishing (1.6) sometimes requires extension of the original parameter

space X̌ to some larger space X , that is, a relaxation of the original inverse problem, and this may lead

to a loss of unique identifiability. Thus we add a penalty term that in the limit restricts reconstructions to

the original parameter space, where they can (more likely) be shown to be unique. We do so by means

of a penalty functional P : X → [0,∞] such that P(x†) = 0 for the exact solution x†, more concretely

P(x†) = ‖P(x)‖p
X for some operator P (typically a projection operator) and some p ∈ [1,∞).

The inverse problem (1.3) can therefore (locally in U) be rewritten as a system

Kr̂ = y−F(x0) in Y

r(x) = r̂ in X̃

P(x) = 0 in X

(1.7)

for the unknowns (r̂,x) ∈ X̃ ×U , U ⊆ X ; see also [8, Remark 2.2].
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Structure exploiting reconstruction approaches

A natural way of applying variational regularization to (1.7) is

(r̂δ
α,β ,x

δ
α,β ) ∈ argmin(r̂,x)∈X̃×U

Jδ
α,β (r̂,x)

where Jδ
α,β (r̂,x) := ‖Kr̂+F(x0)− yδ‖p

Y +αR(r̂)︸ ︷︷ ︸
=:Jα (r̂)

+βQ(r(x), r̂)p +‖P(x)‖p
X︸ ︷︷ ︸

=:Jβ (r̂,x)

(1.8)

with some p ∈ [1,∞), some regularization functional R : X̃ → [0,∞], and some distance functional

Q : X̃2 → [0,∞] such that Q(r̂1, r̂2) = 0 implies r̂1 = r̂2. Note that a minimizer of (1.8) can be computed

more easily than for the original Tikhonov functional

J̌δ
α(x̌) = ‖Kr(x̌)+F(x0)− yδ‖p

Y +αŘ(x̌), (1.9)

since if R is convex, so is Jα (in case of p = 2 and R being defined by a squared norm, Jα is even

quadratic) and for Q convex with respect to its first component, Jβ (r̂, ·) is locally uniformly convex.

An efficient way to solve a structured minimization problem like (1.8) is to alternatingly solve

minimization problems for the two additive parts for a subset of the variables only and iterate this

procedure, see, e.g. [1, 3, 10, 22, 25]. Since in our case Jα only depends on r̂, this leads to the following

(non-iterative) one-step split minimization procedure.

r̂δ
sm ∈ argmin

r̂∈X̃
Jα(r̂) where Jα(r̂) = ‖Kr̂+F(x0)− yδ‖p

Y +αR(r̂)

xδ
sm ∈ argminx∈U Jβ (r̂,x) where Jβ (r̂,x) = βQ(r(x), r̂sm)

p +‖P(x)‖p
X .

(1.10)

To define a regularized (frozen) Newton method, we locally linearize r in (1.8), assuming that it is

Gâteaux differentiable.

(r̂δ
n+1,x

δ
n+1) ∈ argmin(r̂,x)∈X̃×U

Jδ
n (r̂,x)

where Jδ
n (r̂,x) := ‖Kr̂+F(x0)− yδ‖p

Y +αnR(r̂)

+βnQ(r(xδ
n )+ r′(xδ

n )(x− xδ
n ), r̂)

p +‖P(x)‖p

(1.11)

with some p ∈ [1,∞), αn,βn > 0 and functionals Q, R as above.

In [17], convergence without rates has been proven for (1.8), (1.11) (but see Proposition 12 for

the current, slightly different setting). In this paper we aim to establish convergence rates under

additional regularity assumptions on the exact solution x† that can be cast into so-called variational

source conditions. Moreover, we will analyze convergence of the split minimization method (1.10)

under these conditions.

Some illustrative examples

Example 1 Identify c(x) (that is, q = c in (1.1) and (1.2)) in the elliptic PDE

−∆u+ cu = 0 in Ω (1.12)

on a smooth bounded domain Ω ⊆ R
d , d ∈ {2,3}, from the Neumann-to-Dirichlet N-t-D map Λ ∈

L(H−1/2(∂Ω),H1/2(∂Ω)); that is, F̌(c) := (trD
∂Ωun)n∈N where un solves
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−∆un + cun = 0 in Ω, ∂νun = ϕn on ∂Ω,

∫

∂Ω
un dΓ = 0 (1.13)

for a basis of boundary currents ϕn ∈ L2(∂Ω). Here trD
∂Ω : H1(Ω)→ H1/2(∂Ω) denotes the Dirichlet

trace operator; later on we will also use the Neumann trace trN
∂Ω : Hs(Ω)→ Hs−3/2(∂Ω), s ∈ R.

Note that the Hilbert-Schmidt norm of Λ when considered as an operator from L2(∂Ω) into itself

[28, Section 6.1.2] is equivalent to the l2(N;L2(∂Ω)) norm of F̌(c), when ortho-normalizing the basis

functions ϕn in L2(∂Ω).
To establish (1.6), we extend the parameter space 1 by substituting c ∈ Q with a sequence of

potentials~c = (c j) j∈N ∈ ℓ∞(Q) and on the other hand penalizing ‖P~c‖, where

P~c =
(

c j −
(
∑
k∈N

wk

)−1
∑
k∈N

wkck

)
j∈N

. (1.14)

for some ~w ∈ ℓ1(R+) (e.g., ~w := ( j−2) j∈N). The ℓ∞ norm is used to allow for the true solution – the

constant sequence with value c – to be contained in this space. The projection I−P on the subspace of

constant sequences is Lipschitz continuous, cf. (3.6) below. Correspondigly, we re-define the forward

operator

F(~c)n := (trD
∂Ωun)n∈N where un = S(~c)n solves





−∆un + cn un = 0 in Ω
∂νun = ϕn on ∂Ω∫

∂Ω un dΓ = 0.
(1.15)

Indeed, it is readily checked that by setting

r(~c) j := (c j − c0, j)
u j

u0, j
, K := F ′(~c0) (1.16)

where u j = S(~c) j, u0 j = S(~c0) j , we formally obtain (1.6). The problem of dividing by zero in (1.16) in

view of the last condition in (1.15) can be avoided by using an all-at-once formulation, in which we

define the forward operator by

F(~c,~u)n :=




v 7→ ∫
Ω(∇un ·∇v+ cn un v)dx− ∫∂Ω ϕn vdΓ∫

∂Ω un dΓ
trD

∂Ωun


 (1.17)

Also in this setting, the function defined by (1.16) can be used to formally verify (1.6), but u0,n does not

need to be a PDE solution and in particular does not need to have vanishing average over the boundary

any more.

Example 2 Identify σ(x) (that is, q = σ in (1.1) and (1.2)) in

−∇ · (σ∇u) = 0 in Ω (1.18)

on a smooth bounded domain Ω ⊆ R
d , d ∈ {2,3}, from the N-t-D map Λ ∈ L(H−1/2(∂Ω),H1/2(∂Ω));

that is, F̌(σ) = (trD
∂Ωun)n∈N where un solves

1 the space Q yet to be specified, cf. Example 3 below
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−∇ · (σ∇un) = 0 in Ω, ∂ν un = ϕn, on ∂Ω,
∫

∂Ω
un dΓ = 0

for a basis of boundary currents ϕn ∈ L2(∂Ω). This is a prototype version of the well-known electrical

impedance tomography EIT problem going back to Calderón [6], and extensively studied in the inverse

problems literature, see, e.g., [23, Chapter 12] or [28, Chapter 6] for further references.

Here, in order to establish (1.6), we do the extension on the observations, by introducing artificial

boundary voltages~z = (zn)n∈N, thus extending the forward operator to

F(σ ,~z) = (trD
∂Ωun + zn)n∈N where un = S(~c)n solves





−∇ · (σ∇un) = 0 in Ω
∂ν un = ϕn on ∂Ω∫

∂Ω un dΓ = 0.
(1.19)

and penalizing ‖P(σ ,~z)‖, where

P(σ ,~z) =~z, (1.20)

This formally satisfies (1.6) with

r(σ ,~z) j := (σ −σ0, z j − z0, j + trD
∂Ωv j), K(dσ ,d~z) := F̌′(σ0)dσ +d~z,

where v j solves





−∇ · (σ∇v j) = ∇ ·
(
(σ −σ0)∇(u j −u0, j)

)
in Ω

∂νv j = 0 on ∂Ω∫
∂Ω v j dΓ = 0.

(1.21)

The relaxation we have done here is by far less extensive than the one from Example 1: In view of

the bijectivity of the operator mapping σ to the sequence of boundary voltage data corresponding to

currents (ϕn)n∈N it can be viewed as equivalent to adding a second conductivity function as an artificial

parameter.

Note that this extension follows a general concept of achieving (1.6) by extension in data space, that

we will briefly discuss in Section 2.4.

A well-known relation to Example 1 that has often been used for uniqueness and stability proofs

and also for establishing variational source conditions (1.28) in [28] is given by the identity

c = Φ(σ) =
∆
√

σ√
σ

. (1.22)

that allows to substitute u solving (1.18) by ũ :=
√

σ u solving (1.12). Vice versa, since σ is assumed to

take the known (often also constant) background value σbg outside a ball of radius ρ contained in Ω

σ(x) = σbg(x) x ∈ R
d \Bρ(0), Bρ+ε(0)⊆ Ω (1.23)

for some ρ , ε > 0, we can also uniquely determine σ from c by means of the elliptic boundary value

problem

−∆
√

σ + c
√

σ = 0 in Bρ(0),
√

σ =
√

σbg on ∂Bρ(0). (1.24)

The precise function space setting for both examples will be provided in Section 3 below, where

due to the relations (1.22), (1.24) we have also subsumed Example 1 under “application to EIT”.
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Notation and some convex analysis tools

With the dual space X∗ of some normed space X , we denote the dual pairing by 〈x∗,x〉X∗,X for x∗ ∈ X∗,

x ∈ X .

For some proper convex functional f on X , the subdifferential ∂ f (x) = {ξ ∈ X∗ : 〈ξ , x̃ − x〉X∗,X ≤
f (x̃)− f (x) for all x̃ ∈ dom( f )} is known to be nonempty.

We will use the Bregman distance:

∆
f

ξ2
(x1,x2) = f (x1)− f (x2)−〈x2,x1 − x2〉X∗,X for some selection ξ2 ∈ ∂ f (x2). (1.25)

The convex conjugate of a real function f : R→R is defined by

f ∗(s) = sup
t∈R

(st − f (t)). (1.26)

We denote the (smallest) Lipschitz constant of a Lipschitz continuous map f by L f .

Variational source conditions

In order to prove rates, we will make use of a variational source condition VSC in the original

formulation (before extension of the parameter space)

F̌(x̌) = y with F̌ : D(F̌)(⊆ X̌)→ Y, F̌(x̌) = F(x̌) = Kr(x̌)+F(x0) (1.27)

being defined on a subspace X̌ of X such that P|X̌ = 0 and endowed with a proper regularization

functional Ř : X̌ → [0,∞]. The VSC reads as follows

∃ξ̌ ∈ ∂Ř(x†)⊆ X̌∗∀x̌ ∈ L
Ř

R
: −〈ξ̌ , x̌− x†〉 ≤ b∆Ř

ξ̌
(x̌,x†)+ψ(‖F̌(x̌)− F̌(x†))‖p) (1.28)

for some b∈ (0,1) (with L Ř

R
= {x̌∈ X̌ : Ř(x̌)≤R} for some R≥ Ř(x†)). We use VSCs in this original

resticted setting because for some important inverse problems such as EIT, they are readily available

from the literature, see for example [28]. Here ψ is supposed to be an index function, that is,

ψ : [0,∞)→ [0,∞) is continuous and monotonically increasing with ψ(0) = 0, (1.29)

in particular a low rate one

ψ(t)≥ cψ t, t > 0. (1.30)

Additionally, we extend ψ by −∞ for t < 0 and assume that

−ψ is convex, (−ψ)∗ is an index function and t 7→ t (−ψ)∗(− 1
t
) is strictly monotone (1.31)

The most commonly used classes of such index functions are Hölder type and logarithm type,

respectively:

(a) ψ(t) = tµ , (b) ψ(t) = (− log(min{t,t0}))−ν (1.32)

for some µ ∈ (0,1], ν > 0, t0 > 0, cf, e.g., [28, Definition 2.2 and (2.3a), (2.3b)]. The convex conjugates

of −ψ are given by [28, (2.25 a), (2.25 b)]

(a) (−ψ)∗(− 1
t
) = cµ tµ/(1−µ), (b) ψ(− 1

t
) = (− log(min{t,t0}))−ν (1+o(1))

with cµ = µµ/(1−µ)−µ1/(1−µ) and satisfy (1.31).
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Since we will partly use VSCs in a reduced setting for proving rates in an all-at-once setting, it is

important to note that they are equivalent for the reduced and the all-at-once formulation in the following

sense.

Lemma 1 Condition (1.28) for F̌ = F as in (1.1) implies (1.28) for F̌ = F as in (1.2) with the same

regularization functional Ř (depending only on q).

If for any q ∈U, the operator A(q, ·) has a uniformly Lipschitz continous inverse and Ř only depends

on q, then condition (1.28) for F̌ = F as in (1.2) implies (1.28) for F̌ = F as in (1.1) with u† = S(q†),
the same regularization functional Ř, and ψ(t) replaced by ψ(C̄t) with C̄ = 2p−1 max{1,‖B‖pL

p

A−1}.

Proof. The first assertion is trivial. The second one follows from monotonicity of ψ and the fact that

for any fixed q ∈ Q and any u ∈ V

‖F(q)−F(q†)‖p
Y = ‖B(S(q)−S(q†))‖p

Y ≤
(
‖B(u−u†)‖Y +‖B‖‖u−S(q)‖

)p

≤
(
‖B(u−u†)‖Y +‖B‖LA−1‖A(q,u)−A(q,S(q))‖

)p

≤ 2p−1
(
‖B(u−u†)‖p

Y +‖B‖p L
p

A−1‖A(q,u)‖p
)
≤ C̄‖F(q,u)−F(q†,u†)‖p

Y ,

since A(q,S(q)) = 0.

♦
Since for fixed q ∈U , the forward problem A(q, ·) = 0 is typically well-posed, Lipschitz continuity

of the inverse of A(q, ·) is a natural condition to hold.

Note that also here we have the respective all-at-once and reduced formulations before extension of the

parameter space in mind in order to make use of the results from [28, Section 5] for Example 1; see

Example 3 below.

Plan of the paper

Most of this paper is devoted to proving convergence rates of the methods (1.8), (1.10), (1.11) in

Section 2. In Section 3 we apply these results to the EIT Examples 1, 2, thereby making use of results

on variational source conditions from [28].

2. Convergence rates

In this section we will prove convergence rates for the three regularization schemes (1.8), (1.10), (1.11)

in the relaxed formulation (1.7) under a VSC (1.28) in the original formulation (1.27). To this end,

throughout this section we will assume that

(I −P)(X)⊆ X̌ , P(x†) = P(x0) = 0, thus x†, x0 ∈ X̌ . (2.1)

This is satisfied, e.g, if X is a Hilbert space, I−P = ProjX̌ , (the orthogonal projection onto the subspace

X̌).

The key steps for deriving convergence rates for Tikhonov regularization (1.9) in the original

formulation (1.27) are easily explained in case δ = 0. Firstly, minimality yields J̌δ
α(x̌

δ
α ) ≤ J̌δ

α(x
†) and
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thus by (1.4), (1.25), (1.28)

‖F̌(x̌δ
α )− F̌(x†)‖p +(1−b)α∆Ř(x̌δ

α ,x
†)≤ ψ(‖F̌(x̌δ

α )− F̌(x†)‖p),

that is, an estimate in terms of the residual ‖F̌(x̌δ
α)− F̌(x†)‖p and the error ∆Ř(x̌δ

α ,x
†). This can be

resolved for the two single quantities by means of the following Lemma, that can be found in several

recent publications on convergence rates, e.g., as part of [28, Theorem 2.20 (a)], and whose proof we

provide in the appendix, for the sake of completeness.

Lemma 2 For any α , c1, c2, C3, d, err, res ∈ [0,∞) the relation

c1res+ c2α err ≤ d+α ψ(C3res) (2.2)

implies the estimates

err ≤ 1

c2

( d

α
+(−ψ)∗

(
− c̃1

α

))
, res ≤ 2

c1

(
d+α(−ψ)∗

(
− c̃1

2α

))
, (2.3)

where (−ψ)∗(z) = sups∈R(zs− (−ψ)(s)) is the convex conjugate of −ψ and c̃1 =
c1
C3

.

Combined with a proper choice of α = α(δ ) this also yields convergence rates with noisy data. In

the relaxed setting (1.7) and for methods (1.8), (1.10), (1.11), the estimates resulting from minimality

become substantially more involved and have to take into account and control the interplay among the

three components in (1.7).

2.1. Variational regularization

Existence of a minimizer of (1.8) can be established under certain coercivity, lower semicontinuity

and closedness conditions on Jδ
α,β and X̃ ×U , cf. [17]. However, we can avoid them (as well as exact

computation of a minimizer) by defining (r̂δ
α,β ,η ,x

δ
α,β ,η) ∈ X̃ ×U to be any pair satisfying

∀(r̂,x) ∈ X̃ ×U : Jδ
α,β (r̂

δ
α,β ,η ,x

δ
α,β ,η )≤ Jδ

α,β (r̂,x)+η (2.4)

for some positive tolerance η > 0 that is chosen in dependence of the noise level δ , cf., e.g., [24] as is

of course also the regularization parameter α = α(δ )> 0. For the latter purpose, as opposed to the case

of a tangential cone condition (1.5), where the discrepancy principle is a natural a posteriori choice, we

here remain with an a priori choice:

η ≤Cηδ p, τδ p ≤ ϕ−1(α) := α(−ψ)∗
(
− 1

2C̄α

)
≤ τδ p (2.5)

cf. (1.31) with some sufficiently large C̄ > 0 (cf. (2.15), (2.29) below) and some fixed safety factors

0 < τ < τ . The parameter β will be chosen as a fixed constant independent of δ in most of what follows

(except for Proposition 12 where the choice is more general but includes constant β ) and Cη > 0 is a

fixed constant as well.
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We first of all aim to prove that under a variational source condition (1.28) the rates

∆Ř

ξ̌
((I −P)(r−1(r̂δ

α,β ,η )),x
†) = O(ψ̃(δ p)), ‖K(r̂δ

α,β ,η − r(x†))‖Y = O(δ ). (2.6)

hold with ψ̃ related to ψ (ideally ψ̃ =ψ), cf. Theorem 3 below. Later on, from this and further estimates,

we will derive convergence rates on xδ
α,β ,η , cf. Corollary 4.

To be able to make use of the VSC (1.28), we will require that the regularization functional used in

(1.8) is related to the functional appearing in (1.28) by

R(r̂) := Ř((I −P)(r−1(r̂))) (2.7)

and that the ties between x and r̂ imposed by the Q term in Jδ
α,β are strong enough to control the

out-of-X̌ parts

∀r̂1, r̂2 ∈ X : ‖P(r−1(r̂1))−P(r−1(r̂2))‖X ≤CQQ(r̂1, r̂2). (2.8)

The latter holds, e.g., if r : U 7→ r(U) is bijective with Lipschitz continuous inverse, Q(r̂1, r̂2) = ‖r̂1 −
r̂2‖X , and P is Lipschitz continuous, for example, the projection operator on a Hilbert space.

Theorem 3 Under the assumption (2.1), let F satisfy (1.6) with Lipschitz continuous r and let the

variational source condition (1.28) hold with ψ satisfying (1.29), (1.30), (1.31). Moreover, assume that

R, Q are chosen according to (2.7), (2.8).

Then for any family of data (yδ )δ∈(0,δ̄ ] satisfying (1.4) and regularization parameters α = α(δ ),

η = η(δ ) satisfying (2.5), any corresponding family of regularized reconstructions according to (2.4)

satisfies the convergence rate (2.6) with (2.16), as well as

‖P(xδ
α,β ,η)‖= O(δ ), Q(r(xδ

α,β ,η), r̂
δ
α,β ,η ) = O(δ ). (2.9)

Proof. As usual in the analysis of variational regularization methods, we start with a minimality

estimate. Comparing Jδ
α,β (r̂

δ
α,β ,η ,x

δ
α,β ,η) with Jδ

α,β (r(x
†),x†), using P(x†) = 0 and

‖Kr̂δ
α,β ,η +F(x0)− yδ‖p

Y = ‖K(r̂δ
α,β ,η − r(x†))+ y− yδ‖p

Y ≥ 21−p‖K(r̂δ
α,β ,η − r(x†))‖p

Y −δ p (2.10)

we obtain
21−p‖K(r̂δ

α,β ,η − r(x†))‖p
Y +α (R(r̂δ

α,β ,η )−R(r(x†)))

+βQ(r(xδ
α,β ,η), r̂

δ
α,β ,η )

p +‖P(xδ
α,β ,η)‖p ≤ (2+Cη)δ

p.
(2.11)

Now, using the VSC (1.28) with x̌ = (I −P)r−1(r̂δ
α,β ,η ) together with (1.25), (2.7) we conclude

R(r̂δ
α,β ,η )−R(r(x†)) = Ř((I −P)(r−1(r̂δ

α,β ,η )))− Ř(x†)

= ∆Ř

ξ̌
((I −P)(r−1(r̂δ

α,β ,η )),x
†)+ 〈ξ̌ ,(I −P)(r−1(r̂δ

α,β ,η ))− x†〉

where
−〈ξ̌ ,(I −P)(r−1(r̂δ

α,β ,η ))− x†〉

≤ b∆Ř

ξ̌
((I −P)r−1(r̂δ

α,β ,η),x
†)+ψ

(
‖K

(
r
(
(I −P)r−1(r̂δ

α,β ,η )
)
− r(x†)

)
‖p
)
.
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Here, using (2.1), (2.8), and the monotonicity of ψ , we can further estimate

ψ
(
‖K
(
r
(
(I −P)r−1(r̂δ

α,β ,η )
)
− r(x†)

)
‖p
)

≤ ψ
(

2p−1
(
‖K(r̂δ

α,β ,η − r(x†))‖p +‖K‖pLp
r ‖Pr−1(r̂δ

α,β ,η )‖p
))

≤ ψ
(

2p−1‖K(r̂δ
α,β ,η − r(x†))‖p +22p−2‖K‖pLp

r

(
‖P(xδ

α,β ,η)‖p +C
p
QQ(r(xδ

α,β ,η), r̂
δ
α,β ,η )

p
))

.

(2.12)

Altogether we obtain

21−p‖K(r̂δ
α,β ,η − r(x†))‖p

Y +βQ(r(xδ
α,β ,η), r̂

δ
α,β ,η )

p +‖P(xδ
α,β ,η)‖p

+α (1−b)∆Ř

ξ̌
((I −P)r−1(r̂δ

α,β ,η ),x
†)

≤ ψ
(

2p−1‖K(r̂δ
α,β ,η − r(x†))‖p +22p−2‖K‖pLp

r

(
C

p
QQ(r(xδ

α,β ,η), r̂
δ
α,β ,η )

p +‖P(xδ
α,β ,η)‖p

))

+(2+Cη)δ
p.

(2.13)

Abbreviating

err := (1−b)∆Ř

ξ̌
((I −P)(r−1(r̂δ

α,β ,η )),x
†),

res := 21−p‖K
(

r̂δ
α,β ,η)− r(x†)

)
‖p +βQ(r(xδ

α,β ,η), r̂
δ
α,β ,η )

p +‖P(xδ
α,β ,η)‖p,

we obtain that

res+α err ≤ (2+Cη)δ
p +α ψ(C̄res) (2.14)

with

C̄ := 22p−2 max{1,‖K‖pLp
r ,

‖K‖pL
p
r C

p
Q

β }. (2.15)

Now an application of Lemma 2 to (2.14) with the regularization parameter choice (2.5) and (1.31)

implies the rate

∆Ř

ξ̌
((I −P)(r−1(r̂δ

α,β ,η )),x
†)≤ ¯̄C(−ψ)∗

(
− 1

C̄α

)
≤ ¯̄C(−ψ)∗

(
− 1

2C̄ϕ(τδ p)

)

‖K(r̂δ
α,β ,η − r(x†))‖p

Y ≤ 2p−1
(
(2+Cη)δ

p +α(−ψ)∗
(
− 1

2C̄ϕ(τδ p)

))
≤ 2p−1(2+Cη + τ)δ p

with ¯̄C = 1
1−b

(
2+Cη

τ +1
)

; that is, (2.6) with

ψ̃(d) = (−ψ)∗
(
− 1

2C̄ϕ(τd)

)
, ϕ−1(t) = t (−ψ)∗(− 1

2C̄t
), (2.16)

cf. (1.31).

♦
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Remark 1 Note that the ideal choice of α =α(δ ) minimizing d
α +(−ψ)∗

(
− 1

C̄α

)
with d =(2+Cη )δ

p

yields the best possible rate cf. [28, Chapter IV] and the references therein.

err ≤ inf
α

( d

α
+(−ψ)∗

(
− 1

C̄α

))
= inf

α

((
−C̄d

)(
− 1

C̄α

)
+(−ψ)∗

(
− 1

C̄α

))

=−sup
s

((
C̄d
)

s− (−ψ)∗(s)
)
=−(−ψ)∗∗

(
C̄d
)
= ψ

(
C̄d
)
.

On the other hand, in the logarithmic case (1.32) (b), it is readily checked that the simple choice

α(δ )∼ δ p̃ with p̃ ∈ (0, p] yields the same rate.

A convergence rate of xδ
α,β ,η to x† can be obtained by combining the ∆Ř

ξ , Q and P terms. To this

end, consider the more particular setting that Ř is defined by a norm on an s-convex space X and

correspondingly Q is defined by the norm on X̃

Ř(x̌) := ‖x̌‖s
X̌

∆Ř

ξ̌
(x̌,x†)≥ cs‖x̌− x†‖s

X̌
Q(r̂1, r̂2) := ‖r̂1 − r̂2‖X̃

(2.17)

for all r̂1, r̂2 ∈ X̃ , x̌ ∈ X̌ . Here s ≥ 2, cf. e.g. [27, Example 2.47].

Corollary 4 Under the assumption (2.1) with an s-convex space X̌ , let F satisfy (1.6) with Lipschitz

continuous r, r−1, P, and let the variational source condition (1.28) hold with ψ satisfying (1.29),

(1.30), (1.31). Moreover, assume that R, Q are chosen according to (2.7), (2.17).

Then

‖xδ
α,β ,η − x†‖s

X = O(ψ̃(δ p)).

Proof. By the triangle inequality we have

‖xδ
α,β ,η − x†‖X

≤ ‖P(xδ
α,β ,η)‖X +‖(I−P)(xδ

α,β ,η )− (I−P)(r−1(r̂δ
α,β ,η ))‖X +‖(I−P)(r−1(r̂δ

α,β ,η ))− x†‖X

≤ O(δ )+O(ψ̃(δ p))1/s,

where we have estimated

‖(I−P)(xδ
α,β ,η)− (I −P)(r−1(r̂δ

α,β ,η ))‖X ≤ LI−PLr−1Q(r(xδ
α,β ,η), r̂

δ
α,β ,η ).

and used (2.9).

♦

For the sake of completeness and to show that these results are compatible with convergence without

rates in case a source condition is missing or unknown, we provide a result (whose proof is very

similar to the one of [17, Theorem 2.3]) in the setting under consideration here in the appendix, see

Proposition 12 there.
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2.2. Split minimization

As in Section 2.1, in both subproblems of (1.10) we minimize only up to a tolerance η ≤Cηδ p,

∀r̂ ∈ X̃ : Jδ
α (r̂

δ
sm)≤ Jδ

α(r̂)+η

∀x ∈U : Jδ
β (r̂

δ
sm,x

δ
sm)≤ Jδ

β (r̂
δ
sm,x)+η

(2.18)

and compare with the value at r̂ = r(x†) and at x = x† to obtain

‖Kr̂δ
sm +F(x0)− yδ‖p

Y +αR(r̂δ
sm)≤ αR(r(x†))+ (1+Cη)δ

p

βQ(r(xsm), r̂sm)
p +‖P(xsm)‖p

X ≤ βQ(r(x†), r̂sm)
p +Cηδ p

(2.19)

Note that the additional right hand side term βQ(r(x†), r̂sm)
p is due to suboptimality of split as

compared to joint minimization and needs a dedicated estimate. For this reason, instead of (2.7) we

set

R(r̂) := Ř((I −P)(r−1(r̂)))+RP(P(r
−1(r̂)))

with RP(P(r
−1(r̂))) ≥ γψ(CP‖P(r−1(r̂))‖p)

(2.20)

for sufficiently large constants γ , CP > 0

γ >Cψ , CP ≥ 2p−1‖K‖pLp
r (2.21)

and make an assumption that allows to control βQ(r(x†), r̂sm)
p by means of the regularzation term

∀r̂ ∈ X̃ : Q(r(x†), r̂)p ≤ C̃Q

(
∆Ř

ξ̌
((I −P)r−1(r̂),x†)+ψ

(
CP‖P(r−1(r̂))‖p

)
. (2.22)

We also use an alternative estimate of the ψ term as compared to (2.12) that is obtained by replacing

the assumption (2.8) by

∀a,b ∈ R
+ : ψ(a+b)≤Cψ(ψ(a)+ψ(b)) (2.23)

for some Cψ > 0 (which is satisfied for all relevant cases of ψ , see the appendix).

Theorem 5 Under the assumption (2.1), let F satisfy (1.6) with Lipschitz continuous r and let the

variational source condition (1.28) hold with ψ satisfying (1.29), (1.30), (1.31), (2.23). Moreover,

assume that R, Q are chosen according to (2.20), (2.21), (2.22).

Then for any family of data (yδ )δ∈(0,δ̄ ] satisfying (1.4) and regularization parameters α = α(δ ),

η = η(δ ) satisfying (2.5), a corresponding family of regularized reconstructions according to (2.4) or

(2.18) satisfies the convergence rate (2.6) with (2.16) as well as

‖P(xsm)‖p = O(ψ̃(δ p)), Q(r(xδ
sm), r̂

δ
sm)

p = O(ψ̃(δ p))

‖P(r−1(r̂δ
sm))‖p

X = O(ψ−1(ψ̃(δ p))).
(2.24)
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Proof. Assumption (2.23) allows to bound the ψ term arising from setting x̌ := (I −P)r−1(r̂δ
sm) in

the VSC (1.28) as follows

ψ
(
‖K(r

(
(I −P)r−1(r̂δ

sm)
)
− r(x†))‖p

)

≤Cψ

(
ψ
(

2p−1‖K(r̂δ
sm − r(x†))‖p

)
+ψ

(
2p−1‖K‖pLp

r ‖Pr−1(r̂δ
sm)‖p

))
.

(2.25)

From (2.19), analogously to (2.13), using (2.10), (2.20), we obtain

21−p‖K(r̂δ
sm − r(x†))‖p

Y +α (1−b)∆Ř

ξ̌
((I −P)r−1(r̂δ

sm),x
†)

+α
(

γψ
(

CP‖P(r−1(r̂sm))‖p
)
−Cψψ

(
2p−1‖K‖pLp

r ‖Pr−1(r̂δ
sm)‖p

)

≤ αCψψ
(

2p−1
(
‖K(r̂δ

sm − r(x†))‖p
)
+(2+Cη)δ

p

βQ(r(xsm), r̂sm)
p +‖P(xsm)‖p

X ≤ βQ(r(x†), r̂sm)
p +Cηδ p,

(2.26)

(where the second estimate is just a repetition of the second estimate in (2.19) for the convenience of

the reader). This suggests to choose γ , CP such that (2.21) holds and motivates the assumption (2.22)

on Q.

With this, an additive combination of both estimates in (2.26) (after multiplying the second one with
α
β c, where c =

min{1−b,γ−Cψ}
2C̃Q

) yields

21−p‖K(r̂δ
sm − r(x†))‖p

Y +α
min{1−b,γ−Cψ}

2

(
∆Ř

ξ̌
((I −P)r−1(r̂δ

sm),x
†)+ψ

(
CP‖P(r−1(r̂sm))‖p

))

+αc

(
Q(r(xsm), r̂sm)

p + 1
β ‖P(xsm)‖p

X

)

≤Cψψ
(

2p−1
(
‖K(r̂δ

sm − r(x†))‖p
)
+(2+Cη + α

β cCη)δ
p.

(2.27)

Setting

err :=
min{1−b,γ−Cψ}

2Cψ

(
∆Ř

ξ̌
((I −P)r−1(r̂δ

sm),x
†)+ψ

(
CP‖P(r−1(r̂sm))‖p

))

+ c
Cψ

(
Q(r(xsm), r̂sm)

p + 1
β ‖P(xsm)‖p

X

)
,

res := 21−p

Cψ
‖K(r̂δ

sm)− r(x†)
)
‖p

we can rewrite this as

res+α err ≤
2+Cη+

α
β cCη

Cψ
δ p +α ψ(C̄res) (2.28)

with

C̄ := 22p−2. (2.29)

Estimate (2.19) (with the right hand side in the second line replaced by (1+Cη)δ
p) also holds true for

the original simultaneous minimization version (1.8), so that we can draw the same conclusions on it.

Applying Lemma 2 to (2.28), analogously to Theorem 3 we obtain the assertion.
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♦

To obtain a convergence rate of xδ
sm to x† we again assume that Ř is defined by a norm on an s-

convex space X , but in order to be compatible with (2.22), make a slightly different assumption on Q

as compared to (2.17), namely:

Ř(x) := ‖x‖s
X ∆Ř

ξ̌
(x,x†)≥ cs‖x− x†‖s

X

CQQ(r̂1, r̂2)
p ≥ max

{
‖(I −P)r−1(r̂2)− (I−P)r−1(r̂1)‖s

X ,

cψCP‖P(r−1(r̂2))−P(r−1(r̂1))‖p
}
,

(2.30)

for all r̂1, r̂2 ∈ X̃ , x ∈ X , with cψ as in (1.31).

Corollary 6 Under the assumption (2.1) with an s-convex space X̌ , let F satisfy (1.6) with Lipschitz

continuous r, r−1, and let the variational source condition (1.28) hold with ψ satisfying (1.29), (1.30),

(1.31), (2.23). Moreover, assume that R, Q are chosen according to (2.20), (2.21), (2.22), (2.30).

Then

‖xδ
sm − x†‖s

X = O(ψ̃(δ p)).

Proof. By the triangle inequality we have

‖xδ
sm − x†‖X

≤ ‖xδ
sm − r−1(r̂δ

sm)‖X +‖r−1(r̂δ
sm)− x†‖X

≤ ‖(I −P)(xδ
sm)− (I −P)(r−1(r̂δ

sm))‖X +‖P(xδ
sm)−P(r−1(r̂δ

sm))‖X

+‖(I−P)(r−1(r̂δ
sm))− x†‖X +‖P(r−1(r̂δ

sm))‖X

≤ O(ψ̃(δ p)1/s)+O(ψ̃(δ p)1/p)+O(ψ−1(ψ̃(δ p)
)1/p

)

where we have estimated (cf. (2.24))

‖(I −P)(xδ
sm)− (I −P)(r−1(r̂δ

sm))‖X ≤C
1/s

Q Q(r(xδ
sm), r̂

δ
sm)

p/s = O(ψ̃(δ p)1/s)

‖P(xδ
sm)−P(r−1(r̂δ

sm))‖X ≤
(

CQ

CPcψ

)1/p

Q(r(xδ
sm), r̂

δ
sm) = O(ψ̃(δ p)1/p)

‖(I −P)(r−1(r̂δ
sm))− x†‖X ≤ c

−1/s
s ∆Ř

ξ̌
((I −P)r−1(r̂δ

sm)),x
†)1/s = O(ψ̃(δ p)1/s)

‖P(r−1(r̂δ
sm))‖X = O(ψ−1(ψ̃(δ p))1/p).

♦

Remark 2 Since ψ (or at least its decay rate) needs to be known to enable construction of

a regularization functional satisfying (2.20), a convergence result without source condition like

Proposition 12 would not make sense here.
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2.3. Frozen Newton

A minimizer to (1.11) exists if U is weakly closed (e.g., U is closed and convex) and P is weakly lower

semicontinuous, but as in (2.4), (2.18) we can avoid imposing conditions for existence of a minimizer

and computing it exactly by adding a tolerance ηn > 0 that tends to zero as n → ∞, thus defining the

Newton step by

∀(r̂,x) ∈ X̃ ×U : Jδ
n (r̂

δ
n+1,x

δ
n+1)≤ Jδ

n (r̂,x)+ηn (2.31)

More precisely, we will choose the tolerance, the regularization parameters and the stopping index

according to

∀n ∈ N : αn+1 < αn, ηn ≤Cηϕ−1(αn), n∗ = min{n ∈ N : αn ≤ ϕ(τδ p)}. (2.32)

for fixed Cη , τ > 0, where we additionally assume the growth condition

∀n ∈ N : (−ψ)∗
(
− 1

2C̄αn

)
≤C(−ψ)∗(−ψ)∗

(
− 1

2C̄αn+1

)
(2.33)

to hold for some C(−ψ)∗ > 1. Moreover, we set

βn = cβ α αn with 0 < cβ α ≤ min{1−b,γ−Cψ}
4C̃Q

, (2.34)

define R according to (2.20) with (2.21) and assume ψ to satisfy (2.23).

A further smoothness assumtion on r will have to be formulated in terms of Q so that we can

control the Taylor remainder estimates that will appear in the analysis. In order not cloud the procedure

too much with technicalities we here restrict ourselves to the simple norm-based choice

Q(r̂1, r̂2) := ‖r̂1 − r̂2‖X̃
(2.35)

that automatically satisfies (2.22), (2.30), and that we have already encountered earlier cf. (2.17). The

assumption we make on r

∀x1,x2 ∈U : ‖r(x1)− r(x2)− r′(x2)(x1 − x2)‖ ≤ ctcr‖r(x1)− r(x2)‖ (2.36)

with ctcr > 0 small enough

ctcr < 22−2p max
{

1,C(−ψ)∗(1+21−p)+1
}−1

(2.37)

resembles the tangential cone condition but now is naturally satisfied, given that r is a local

homeomorphism and we have constrained the minimization to a sufficiently small neighborhood U

of x†.

Theorem 7 Under the assumption (2.1) with a p-convex space X̌ , let F satisfy (1.6) with Lipschitz

continuous r satisfying (2.36), (2.37), and let the variational source condition (1.28) hold with ψ
satisfying (1.29), (1.30), (1.31), (2.23). Moreover, assume that R, Q are chosen according to (2.20),

(2.21), (2.35).
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Then for any family of data (yδ )δ∈(0,δ̄ ] satisfying (1.4) and regularization parameters αn, ηn, n∗
satisfying (2.32), (2.33), a corresponding family of regularized reconstructions according to (2.31)

satisfies the convergence rate

‖r̂n∗ − r(x†)‖= O(ψ̃(δ p))1/p, ‖r(xδ
n∗)− r(x†)‖= O(ψ̃(δ p))1/p,

‖K
(

r̂δ
n∗)− r(x†)

)
‖Y = O(δ ), ‖P(xδ

n∗)‖= O(δ )
(2.38)

with ψ̃ as in (2.16).

Proof. As in the analysis of (2.4), and (2.18) we start with a minimality estimate. Comparing

Jδ
n (r̂

δ
n+1,x

δ
n+1) with Jδ

n (r(x
†),x†), using P(x†) = 0 and an analogon to (2.10), we obtain the estimate

(cf. (2.11) with linearization in the first argument of Q)

21−p‖K(r̂δ
n+1 − r(x†))‖p

Y +αn

(
R(r̂δ

n+1)−R(r(x†))
)

+βnQ(r(xδ
n+1), r̂

δ
n+1)

p +‖P(xδ
n+1)‖p

≤ 2δ p +ηn +βnQ(r(xδ
n )+ r′(xδ

n )(x
† − xδ

n ),r(x
†))p

+βn max
{

0,Q(r(xδ
n+1), r̂

δ
n+1)−Q(r(xδ

n )+ r′(xδ
n )(x

δ
n+1 − xδ

n ), r̂
δ
n+1)

}p

.

Making use of (2.20), (2.35), (2.36) as well as the variational source condition (1.28) together with

(2.23) and

‖r(xδ
n+1)− r̂δ

n+1‖p ≥ 21−p‖r(xδ
n+1)− r(x†)‖p −‖r̂δ

n+1 − r(x†)‖p

‖r(xδ
n+1)− r(xδ

n )‖p ≤ 2p−1‖r(xδ
n+1)− r(x†)‖p +2p−1‖r(xδ

n )− r(x†)‖p

we arrive at

21−p‖K(r̂δ
n+1 − r(x†))‖p

Y

+αn
min{1−b,γ−Cψ}

2

(
∆Ř

ξ̌
((I −P)r−1(r̂δ

n+1),x
†)+ψ

(
CP‖P(r−1(r̂n+1))‖p

))

+βn(2
1−p −2p−1ctcr)‖r(xδ

n+1)− r(x†)‖p +‖P(xn+1)‖p

≤ βn(1+2p−1)ctcr‖r(xδ
n )− r(x†)‖p +βn‖r̂n+1 − r(x†)‖p

+αnCψψ
(

2p−1
(
‖K(r̂δ

n+1 − r(x†))‖p
)
+2δ p +ηn.

(2.39)

Here under condition (2.22) we can control βn‖r̂n+1 − r(x†)‖p by means of the second term on the left

hand side, provided βn is chosen according to (2.34). Setting

errn+1 :=
cβα

Cψ

(
‖r̂n+1 − r(x†)‖p +(21−p−2p−1ctcr)‖r(xδ

n+1)− r(x†)‖p
)
,

resn+1 := 21−p‖K

(
r̂δ

n+1)− r(x†)
)
‖p+‖P(xδ

n+1)‖p

dn :=
cβα

Cψ
αn(1+2p−1)ctcr‖r(xδ

n )− r(x†)‖p +
2δ p +ηn

Cψ

(2.40)
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and C̄ as in (2.29) we can rewrite this as

resn+1 +αn errn+1 ≤ dn +αn ψ(C̄resn+1),

thus by Lemma 2

errn+1 ≤
dn

αn

+(−ψ)∗
(
− 1

C̄αn

)
, resn+1 ≤ 2

(
dn +αn(−ψ)∗

(
− 1

2C̄αn

))
. (2.41)

As a consequence we get the recursion

errn+1 ≤ qerrn +
2δ p +ηn

Cψ αn
+(−ψ)∗

(
− 1

C̄αn

)
≤ qerrn +Ĉ (−ψ)∗

(
− 1

2C̄αn

)

with

q :=
1+2p−1

21−p −2p−1ctcr

ctcr ∈ (0,1/C(−ψ)∗)⊆ (0,1),

which holds under the smallness condition (2.37) on ctcr, and Ĉ = 2
τCψ

+
Cη

Cψ
+ 1 for n < n∗ by (2.32).

Resolving this recursion and using (2.32), (2.33), we obtain

errn∗ ≤ qn∗err0 +Ĉ
n∗−1

∑
n=0

qn∗−n−1 (−ψ)∗
(
− 1

2C̄αn

)

≤
(
(qC(−ψ)∗)

n∗ err0

(−ψ)∗
(
− 1

2C̄α0

) +
Ĉ

q(1−qC(−ψ)∗)

)
(−ψ)∗

(
− 1

2C̄αn∗

)

≤ C̃ (−ψ)∗
(
− 1

2C̄ϕ(τδ p)

)

with C̃ = err0

(−ψ)∗
(
− 1

2C̄α0

) + C
q(1−qC(−ψ)∗ )

.

This together with the second estimate in (2.41) and the definition (2.40) yields the convergence

rates.

♦

2.4. A canonical relaxation leading to range invariance

A general way of extending an arbitrary inverse problem

F̌(x̌) = y

with F̌ : D(F̌)(⊆ X̌)→ Y to an operator equation (1.3) satisfying the range invariance condition (1.6)

is by defining

X = X̌ ×Y, x = (x̌,z), F(x) = F̌(x̌)+ z, P(x) = z

Indeed, it is readily checked that (1.6) formally holds with

r(x) =

(
x̌− x̌0

z− z0 +
(
F̌(x̌)− F̌(x̌0)− F̌ ′(x̌0)(x̌− x̌0)

)
)
, Kdx = F̌ ′(x̌0)dx̌+dz.
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A sufficient condition for the requirements of the convergence results in Section 2, namely local

bijectivity of r and Lipschitz continuity of r and its inverse, is

‖r(x1)− r(x2)− (x1 − x2)‖ ≤ cr‖(x1 − x2)‖, x1,x2 ∈U ×Y

for some cr ∈ (0,1), which in the above setting amounts to a Taylor remainder estimate of the form

‖F̌(x̌1)− F̌(x̌2)− F̌ ′(x̌0)(x̌1 − x̌2)‖Y ≤ cr‖x̌1 − x̌2‖ x̌1, x̌2 ∈U. (2.42)

Likewise, the additional condition (2.36) required for proving convergence rates for (2.31) reads as

‖F̌(x̌1)− F̌(x̌2)− F̌ ′(x̌2)(x̌1 − x̌2)‖Y ≤ ctcr‖x̌1 − x̌2‖ x̌1, x̌2 ∈U. (2.43)

The methods analyzed above in this setting read as follows.

• variational regularization (1.8):

(r̂δ
x̌,α,β , r̂

δ
z,α,β , x̌

δ
α,β ,z

δ
α,β ) ∈ argmin(r̂x̌,r̂z,x̌,z)∈X̌×Y×U×Y Jδ

α,β (r̂x̌, r̂z, x̌,z)

where Jδ
α,β (r̂x̌, r̂z, x̌,z) = Jα(r̂x̌, r̂z)+ Jβ (r̂x̌, r̂z, x̌,z)

Jα (r̂x̌, r̂z) = ‖F̌ ′(x̌0)r̂x̌ + F̌(x̌0)+ r̂z + z0 − yδ‖p
Y +αŘ(r̂x̌)

Jβ (r̂x̌, r̂z, x̌,z) = β
(
Qx̌(x̌− x̌0, r̂x̌)

p

+Qz(z− z0 +
(
F̌(x̌)− F̌(x̌0)− F̌ ′(x̌0)(x̌− x̌0)

)
, r̂z)

p
)

+‖z‖p
X

(2.44)

• split minimization (1.10):

(r̂δ
x̌,sm, r̂

δ
z,sm) ∈ argmin(r̂x̌,r̂z)∈X̃

Jα(r̂x̌, r̂z)

(x̌δ
sm,z

δ
sm) ∈ argmin(x̌,z)∈U×Y Jβ (r̂

δ
x̌,sm, r̂

δ
z,sm, x̌,z)

(2.45)

• frozen Newton (1.11):

(r̂δ
x̌,n+1, r̂

δ
z,n+1, x̌

δ
n+1,z

δ
n+1) ∈ argmin(r̂x̌,r̂z,x̌,z)∈X̌×Y×U×Y Jδ

n (r̂x̌, r̂z, x̌,z)

where Jδ
n (r̂x̌, r̂z, x̌,z) := Jαn(r̂x̌, r̂z)+ Jβn,n(r̂x̌, r̂z, x̌,z)

Jβ ,n(r̂x̌, r̂z, x̌,z) = β
(
Qx̌(x̌− x̌0, r̂x̌)

p

+Qz(z− z0 +
(
(F̌ ′(x̌n)− F̌(x̌0))(x̌− x̌n)+ yn

)
, r̂z)

p
)

+‖z‖p
X

yn = F̌(x̌n)− F̌(x̌0)− F̌ ′(x̌0)(x̌n − x̌0)

(2.46)
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3. Application to EIT

Example 3 (Example 1 revisited) We adopt a convenient function space setting for this problem from

[28, Section 6.2] and show that formal range invariance (1.6) with (1.16) can be made rigorous in

this framework. This is done in the all-at-once formulation, since the latter allows to avoid division

by zero in (1.16) by a proper choice of u0. A logarithmic variational source condition for the reduced

formulation is taken from [28], cf. Theorem 8 below, and extended to the all-at-once setting by means

of Lemma 1.

The inverse problem can be written in reduced form as

F̌(c) = y (3.1)

or equivalently in all-at-once form as

F̌(c,u) :=

(
Ǎ(c,u)

Bu

)
=

(
0

y

)
(3.2)

(note that we are using the ·̌ notation for the formulation before extension) or equivalently, after

extension of the parameter space and penalization, as

F(~c,u) :=

(
A(~c,u)

Bu

)
=

(
0

y

)

P(~c,u) = 0

(3.3)

cf. (1.1) with

F̌ : D(F̌)(⊆ Q̌)→ Z, Ǎ : D(Ǎ)(⊆ X̌)→ (0,~ϕ ,0)+W∗,

A : D(A)(⊆ X)→ (0,~ϕ,0)+W ∗, B : V → Z

D(F̌) = Φ(D), D(Ǎ) = D(F̌)×V, D(A) = ℓ∞(D(F̌))×V

where D = {σ ∈ H2+s1(Ω) : 0 < σ ≤ σ(x) ≤ σ < ∞ x ∈ Ω and (1.23) holds},

Q̌ = Hs1(Ω), Q = ℓ∞(Q̌), V = ℓ2(H2(Ω)), W ∗ = ℓ2(L2(Ω))× ℓ2(H1/2(∂Ω))× ℓ2(R),

X̌ = Q̌×V, X = Q×V, Z = ℓ2(L2(∂Ω)), Y :=W ∗×Z.

(3.4)

Note that taking Z = ℓ2(L2(Ω)) together with the L2(∂Ω) normalization of the currents ϕn corresponds

to taking the Hilbert-Schmidt norm of the N-t-D operator. Also note that regardless of the use of ℓ∞ in

the definition of X, the original space X̌ is still s-convex with s = 2. The operators are defined by

A(~c,u) =




−∆un + cnun

trN
∂Ωun −ϕn∫
∂Ω un dΓ




n∈N

, Ǎ(c,u) = A(~c,u) with cn ≡ c,

Bu =
(
trD

∂Ωun

)
n∈N P(~c,u) =

(
cn −

(
∑
k∈N

wk

)−1
∑
k∈N

wkck

)
n∈N

,

F̌(c) = F(c) := (trD
∂Ωun)n∈N where un = S(c)n and Ǎ(c,S(c)) = 0

F(~c) := (trD
∂Ωun)n∈N where un =~S(~c)n and A(~c,~S(~c)) = 0

(3.5)



20 BARBARA KALTENBACHER

with the Neumann trace operator trN
∂Ω, Note that slightly deviating from [28], in order to avoid division

by zero in (1.16), we use all of H2(Ω) rather than incorporating the vanishing boundary average

constraint into the state space. Moreover, we increase regularity as compared to the H1(Ω) setting from

[28] as this is possible with s1 ≥ 0 (note that even s1 ∈ (1/2,3/2) is assumed in Theorem 8) and will

be needed in the rigorous verification of (1.6).

Indeed, the mapping property A(~c,u) : D(A) → W ∗ holds true due to boundedness of trN
∂Ω :

H2(Ω)→H1/2(∂Ω), as well as continuity of the multiplication operator M : Hs1(Ω)×H2(Ω) 7→L2(Ω),
(c,u) 7→ cu for s1 ≥ 0, that allows to estimate

‖A(~c,u)+ (0,~ϕ,0)‖W ∗

≤
(

∑
n∈N

(
1+CΩ

H2,L∞‖cn‖L2(Ω)+‖trN
∂Ω‖H2(Ω),H1/2(∂Ω)+‖trD

∂Ω‖H2(Ω),L1(∂Ω)

)2‖un‖2
H2(Ω)

)1/2

≤ C̃(1+‖~c‖ℓ∞(L2(Ω))‖u‖ℓ2(H2(Ω)).

On the other hand, for any fixed c ∈ D(F̌), as a consequence of the Lax-Milgram Lemma and elliptic

regularity, the operator Ǎ(c,u) is Lipschitz continuously invertible, as needed for the application of

Lemma 1. More precisely, for any (~f ,~φ ,~m) ∈W ∗ we have that (~f ,~φ ,~m) = Ǎ(c,u1)− Ǎ(c,u2) iff for all

n ∈ N, ũn := u1,n −u2,n−mn/|∂Ω| solves

−∆ũn + c ũn = fn − cn
mn

|∂Ω| in Ω, ∂ν ũn = φn, on ∂Ω,
∫

∂Ω
ũn dΓ = 0

and therefore

‖u1 −u2‖ℓ2(H2(Ω)) =
(

∑
n∈N

‖ũn +
mn

|∂Ω|‖
2
H2(Ω)

)1/2

≤
(

∑
n∈N

(
C̃
(
‖ fn − cn

mn

|∂Ω|‖L2(Ω)+‖φn‖H1/2(∂Ω)

)
+‖ mn

|∂Ω|‖H2(Ω)

)2)1/2

≤ C̃‖~f‖ℓ2(L2(Ω))+
C̃

|∂Ω|‖~c‖ℓ∞(L2(Ω))‖~m‖ℓ2(R)+C̃‖~φ‖ℓ2(H1/2(∂Ω))+

√
|Ω|

|∂Ω| ‖~m‖ℓ2(R)

≤ ˜̃C‖Ǎ(c,u1)− Ǎ(c,u2)‖W ∗

Also Lipschitz continuity of (I −P) : X → X and therefore of P : X → X is easily verified:

‖(I −P)(~c1,u1)− (I −P)(~c2,u2)‖X ≤ 1
‖~w‖

ℓ1(R)
sup
j∈N

∑
k∈N

wk‖c1,k − c2,k‖Q̌ ≤ ‖~c1 −~c2‖ℓ∞(Q̌). (3.6)

We make use of the following result from [28] that we quote in a particularized way for the

convenience of the reader.

Theorem 8 ([28, Theorem 6.10, 6.12 with p = 2]) Let Ω = B1(0)⊆ R
d , d = 3, σbg ≡ 1. Set Ř(c) :=

1
2
‖c‖2

Hs1 (Ω) for some s1 ∈ (1/2,3/2) and assume that c† ∈ B
s2
2,∞ for some s2 ∈ (s1,2s1 + 1/2). Then

there exist constants C1, C2, t0 > 0 such that (1.28) holds for F̌ = F̌ with ψ(t) =C1(− log(min{t,t0}+
C2))

−2(s2−s1)
2s1+1

2s2+1 and b = 3/4.
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This follows directly from an application of [28, Theorem 6.12] with (in the notation from there)

p = q = r = 2, s0 =−1/2 to the stability result [28, Theorem 6.10].

In order to conclude a VSC for the all-at-once forward operator F̌, we apply Lemma 1. The purpose

of using the all-at-once formulation is to allow for a bound

( 1
u0, j

) j∈N ∈ ℓ∞(Hd/2+ε(Ω)) (3.7)

for some ε ∈ (0,2− d/2], that will be required for a rigorous verification of the range invariance

condition (1.6).

Using this in the convergence results of Sections 2.1, 2.2, 2.3, we obtain convergence rates for the

inverse protential problem.

Corollary 9 Under the conditions of Theorem 8, with (3.7), p = 2, Q(r̂1, r̂2) = ‖r̂1 − r̂2‖X , α ∼ δ p̃,

p̃ ∈ (0,2], we obtain the convergence rate

‖~c δ − c†‖ℓ∞(Hs1 (Ω))+‖uδ −S(c†)‖ℓ2(H2(Ω) = O((− log(δ 2 +C2))
−2(s2−s1)

2s1+1

(2s2+1)p

1. for (~c δ ,uδ ) = xδ
α,β ,η

defined by (1.8) with (2.7), (2.5);

2. for (~c δ ,uδ ) = xδ
sm defined by (1.10) with (2.20), (2.21), (2.5);

3. for (~c δ ,uδ ) = xδ
n∗ defined by (1.11) with (2.20), (2.21), (2.32).

Proof. Invertibility of r as defined in (1.16), that is, in the all-at-once setting used here,

r(~c,u) j :=

(
(c j − c0, j)(1+

u j−u0, j

u0, j
)

u j −u0, j

)
, r−1(r̂c, r̂u) =

(
r̂c, j(1+

r̂u, j

u0, j
)−1 + c0, j

r̂u +u0, j

)
, (3.8)

as well as Lipschitz continuity of r and r−1 follow from the estimate

‖r(~c1,u1)− r(~c2,u2)−
(
(~c1,u1)− (~c2,u2)

)
‖X

= ‖((c1, j − c0, j)
u1, j−u0, j

u0, j
− (c2, j − c0, j)

u2, j−u0, j

u0, j
) j∈N‖ℓ∞(Hs1 (Ω))

= sup
j∈N

‖ 1
u0, j

(
(c1, j − c2, j)(u1, j −u0, j)+ (c2, j − c0, j)(u1, j −u2, j)

)
‖Hs1 (Ω)

≤C sup
j∈N

‖ 1
u0, j

‖
Hd/2+ε (Ω)

(
‖c1, j − c2, j‖Hs1 (Ω)‖u1, j −u0, j‖H2(Ω)

+‖c2, j − c0, j‖Hs1 (Ω)‖u1, j −u2, j‖H2(Ω)

)

≤ C̃‖(~c1,u1)− (~c2,u2)‖X

(
‖(~c1,u1)− (~c0,u0)‖X +‖(~c2,u2)− (~c0,u0)‖X

)

≤ cr‖(~c1,u1)− (~c2,u2)‖X

(3.9)

with cr ∈ (0,1) for (~ci,ui) ∈ U := BX
ρ0
(~c0,u0), i ∈ {1,2} with ρ0 small enough. Here we have used

the assumption (3.7) and [12, Theorem 6.1] (see also [28, Theorem B.22]) with s0 = d/2+ ε and
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p0 = p1 = p = 2 to obtain, e.g, ‖ 1
u0, j

(c1, j − c2, j)(u1, j − u0, j)‖Hs1 (Ω) ≤C‖c1, j − c2, j‖Hs1 (Ω)‖ 1
u0, j

(u1, j −
u0, j)‖Hd/2+ε(Ω) and then the fact that Hd/2+ε(Ω) with the pointwise multiplication is a Banach algebra

as well as the embedding ℓ2(H2(Ω))⊆ ℓ∞(H2(Ω)) of the sequence spaces.

It only remains to verify the tangential cone condition for r, (2.36), that appears in the convergence

proof of (1.11)

‖r(~c1,u1)− r(~c2,u2)− r′(~c2,u2)
(
(~c1,u1)− (~c2,u2)

)
‖X

= sup
j∈N

‖(c1, j − c0, j)
u1, j−u0, j

u0, j
− (c2, j − c0, j)

u2, j−u0, j

u0, j

− (c1, j − c2, j)
u2, j−u0, j

u0, j
− (c2, j − c0, j)

u1, j−u2, j

u0, j
‖Hs1 (Ω)

= sup
j∈N

‖ 1
u0, j

(c1, j − c2, j)(u1, j −u2, j)‖Hs1 (Ω)

≤ C̃‖(~c1,u1)− (~c2,u2)‖2
X ≤ ctcr‖r(~c1,u1)− r(~c2,u2)‖X

similarly to (3.9).

♦

Alternatively, we could apply the general relaxation from Section 2.4, by remaining with the reduced

original formulation

F̌ : D(F̌)(⊆ Q̌)→ Z, X̌ = Q̌, Y = Z = ℓ2(L2(∂Ω)),

F̌(c) := (trD
∂Ωun)n∈N where un = S(c)n and Ǎ(c,S(c)) = 0

with D(F̌) as in (3.4), but defining the extended operator by

F : D(F̌)×Z → Z, X = Q̌×Z, F(c,z) := F(c)+ z

and
r(c,z) j := (c− c0, z j − z0, j + trD

∂Ωv j)

where v j solves





−∆v j + cv j = (c− c0)(S(c) j −S(c0) j) in Ω
∂ν v j = 0 on ∂Ω∫

∂Ω v j dΓ = 0.

(3.10)

Since the functions z j are defined on the d − 1 dimensional manifold ∂Ω, this is a more parsimonious

relaxation in the sense of augmentation of the set of unknowns. It also avoids a condition like (3.7)

and thus allows to stay in the reduced setting. However, this comes at the prize of the more involved

definition of r according to (3.10) and its inverse

r−1(r̂c, r̂z) j := (c0 + r̂c, z0, j + r̂z, j − trD
∂Ωv j)

where v j solves





−∆v j +(c0 + r̂c)v j = r̂c(S(c0 + r̂c) j −S(c0) j) in Ω
∂ν v j = 0 on ∂Ω∫

∂Ω v j dΓ = 0.

as compared to (3.8).
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Example 4 (Example 2 revisited) The plan is similar to the one in Example 3 above: Also here we

make use of the function space setting detailed in [28] and use a variational source condition from

there, but stay in the reduced setting.

We thus write the inverse problem as

F̌(σ) = y (3.11)

or equivalently, after extension of the parameter space and penalization according to Section 2.4, as

F(σ ,z) = (0,y)T

P(σ ,z) = 0
(3.12)

cf. (1.2) with

F̌ : D(F̌)(⊆ X̌)→ Y, F : D(F̌)×Z → Y,

D(F̌) = {σ ∈ Hs1(Ω) : 0 < σ ≤ σ(x) ≤ σ < ∞, x ∈ Ω, and (1.23) holds}
X̌ = Hs1(Ω), X = X̌ ×Z, Y = Z = ℓ2(L2(∂Ω))

with s1 > d/2 (so that X̌ continuously embeds into L∞(Ω)) and (1.19), (1.20), F̌(σ) = F(σ ,0). This

satisfies (1.6) with (1.21).

Since we employ the relaxation from Section 2.4, we also have to verify the Taylor remainder

estimate (2.42) and, in case of Newton (1.11) also condition (2.43). We do so by observing that with

uk, j = S(σk) j , k ∈ {1,2, i}, i ∈ {0,2}

F̌(σ1)− F̌(σ2)− F̌′(σi) = (trD
∂Ωṽ j) j∈N where ṽ j solves





−∇ · (σi∇ṽ j) = ∇ ·
(
(σ1 −σi)∇(u1, j −u2, j)+ (σ1 −σ2)∇(u2, j −ui, j)

)
in Ω

∂ν ṽ j = 0 on ∂Ω∫
∂Ω ṽ j dΓ = 0.

Thus with the Poincaré-Friedrichs type estimate

‖v‖H1(Ω) ≤CPF

(
‖∇v‖L2(Ω)+

∣∣∣∣
∫

∂Ω
vdΓ

∣∣∣∣
)
, v ∈ H1(Ω)

applied to the weak formulation

∫

Ω
σi∇ṽ j ·∇wdx =−

∫

Ω

(
(σ1 −σi)∇(u1, j −u2, j)+ (σ1 −σ2)∇(u2, j −ui, j)

)
·∇wdx,

for all w ∈ H1(Ω) with

∫

∂Ω
wdΓ = 0,
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setting w = ṽ j and applying the Cauchy-Schwarz inequality, we obtain

‖F̌(σ1)− F̌(σ2)− F̌′(σi)‖L2(∂Ω)

≤ 1
σ CPF‖trD

∂Ω‖H1(Ω),L2(∂Ω)‖(σ1 −σi)∇(u1, j −u2, j)+ (σ1 −σ2)∇(u2, j −ui, j)‖L2(Ω)

≤ 1
σ CPF‖trD

∂Ω‖H1(Ω),L2(∂Ω)

(
‖σ1 −σi‖L∞(Ω)‖u1, j −u2, j‖H1(Ω)

+‖σ1−σ2‖L∞(Ω)‖u2, j −ui, j‖H1(Ω)

)

≤ C̃
(
‖σ1 −σi‖X̌ +‖σ2 −σi‖X̌

)
‖σ1 −σ2‖,

due to Lipschitz continuity of S : L∞(Ω)→ H1(Ω).
Thus (2.42) and (2.43) hold on a sufficiently small neighborhood U of σ†.

Theorem 10 ([28, Theorem 6.15 with p = 2]) Let Ω = B1(0) ⊆ R
d , d = 3, σbg ≡ 1. Set Ř(σ) :=

1
2
‖σ‖2

Hs1 (Ω) for some s1 ∈ (5/2,7/2) and assume that σ† ∈ B
s2
2,∞ for some s2 ∈ (s1,2s1 − 1). Then

there exist constants C, t0 > 0 such that (1.28) holds with ψ(t) =C(− log(min{t,t0}))−(s2−s1)
2s1−3

s1−1 and

b = 3/4.

Combining this with the convergence results of Sections 2.1, 2.2, 2.3, we arrive at the following

convergence rates result for EIT.

Corollary 11 Under the conditions of Theorem 10, with p = 2, Q(r̂1, r̂2) = ‖r̂1 − r̂2‖X , α ∼ δ p̃,

p̃ ∈ (0,2], we obtain the convergence rate

‖σδ −σ†‖Hs1 (Ω)+‖zδ‖ℓ2(L2(∂Ω)) = O((− log(δ p +C2))
−(s2−s1)

2s1−3

(s1−1)p

1. for (σδ ,zδ ) = xδ
α,β ,η defined by (2.4) with (2.7), (2.5);

2. for (σδ ,zδ ) = xδ
sm defined by (2.18) with (2.20), (2.21), (2.5);

3. for (σδ ,zδ ) = xδ
n∗ defined by (2.31) with (2.20), (2.21), (2.32).

A. Appendix

A.1. Proof of Lemma 2.2

Proof. Splitting the res term into a convex combination res = λ res+(1−λ )res we obtain from (2.2)

λc1res+ c2α err ≤ d +α
(
− (1−λ )c1

C3α
C3res− (−ψ)(C3res)

)
≤ d +α(−ψ)∗

(
− (1−λ )c1

C3α

)

Setting λ = 0 yields the estimate on err and setting λ = 1
2

the one on res.

♦
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A.2. Convergence of (1.8) without VSC

under the following conditions.

Assumption 1 r is injective and there exist tolopogies T̃ ,
˜̃
T , on X̃ and T on X such that

(i) sublevel sets of R are T̃ compact;

(ii) For any two sequences (r̂1
k )k∈N, (r̂2

k )k∈N

Q(r̂1
k , r̂

2
k )→ 0 and r̂2

k

T̃−→ r̂2 ⇒ there exists a subsequence r̂1
kℓ

˜̃
T−→ r̂2;

(iii) r−1 : r(U)→U is
˜̃
T −T continuous;

(iv) ‖K · ‖Y is T̃ lower semicontinuous;

(v) P is T lower semicontinuous.

Moreover, the regularization and tolerance parameters α = α(δ ), β = β (δ ), η(δ ) are assumed to

satisfy

α(δ )→ 0,
δ p +η(δ )

α(δ )
→ 0,

δ p +η(δ )

β (δ )
→ 0, as δ → 0. (A.1)

The a priori choice (2.5) is compatible with (A.1), and so is the particular one in the logarithmic case

indicated in Remark 1 when slightly restricted to α(δ )∼ δ p̃ with p̃ ∈ (0, p).

Proposition 12 Under condition (1.6) and Assumption 1, the approximations xδ
α,β ,η defined by

(2.4) with (A.1) converge T subseqentially to a solution of (1.7), that is, every subsequence of

(r̂δ
α,β ,η ,x

δ
α,β ,η)δ>0 has a T̃ ×T convergent subsequence and the limit (r̂,x) of every T̃ ×T convergent

subsequence solves (1.7). If the R minimizing solution (r̂†,x†) of (1.7)2 is unique and then r̂δ T̃−→ r(x†)

and xδ T−→ x†.

Proof. For an arbitrary sequence δn → 0, abbreviating (r̂n,xn) := (r̂δn

αnβnηn
,xδn

αnβnηn
, from (2.11) (with

(2+Cη)δ
p replaced by the more general bound 2δ p +η(δ ) and (A.1) we obtain

(a) limsup
n→∞

R(r̂n)≤ R(r(x†))

(b) limsup
n→∞

Q(r(xn), r̂n) = 0

(c) limsup
n→∞

‖K(r̂n − r(x†))‖Y = 0

(d) limsup
n→∞

‖P(xn)‖= 0.

From (i) and (a) we conclude existence of a subsequence r̂nk
an and element r̂ ∈ X̃ with R(r̂)≤R(r(x†))

such that r̂nk

T̃→ r̂. This together with (b), (ii) yields existence of a subsequence such that r(xnkℓ
)

˜̃
T→ r̂.

2 i.e., (r̂†,x†) solving (1.7) such that ∀(r̂,x) solving (1.7) : R(r̂†,x†)≤ R(r̂,x)
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Now by (iii) we obtain xnkℓ

T→ x and r(x) = r̂. Finally, (c), (iv) imply K(r(x)) = K(r(x†)) and (d), (v)

imply P(x) = 0.

♦

A.3. Verification of (2.23) for Hölder or logarithmic source conditions (1.32)

Lemma 13 The functions defined in (1.32) satisfy

ψ(a+b)≤ ψ(a)+ψ(b), for all a,b > 0

Proof. In the Hölder case, with m := 1/µ , x = (b/a)µ the claim is equivalent to

φ(x) :=
1+ xm

(1+ x)m
≤ 1, for all x > 0

which in case of an integer m immediately follows from the binomial theorem, otherwise from the fact

that limxց0 φ(x) = 1, limxր∞ φ(x) = 1, φ ′(x) = (1+ x)−2m(mxm−1(1+ x)m − (1+ xm)m(1+ x)m−1 =
m(1+ x)−m−1(xm−1 −1) = 0 iff x = 1 and φ(1) = 21−m ≤ 1, since m = 1/µ ≥ 1.

In the logarithmic case for simplicity of exposition we just consider ν = 1, t0 = 1/e. With α :=
(− loga)−1, β := (− logb)−1, the claim is equivalent to

φ(β ) :=
− log

(
e−1/α + e−1/β

)

α +β
≤ 1, for all β > 0

and any fixed α > 0. It is readily checked that limβց0 φ(β ) = 1, limβր∞ φ(β ) =

0 and φ ′(β∗) = (α + β∗)−2
(
−
(
e−1/α + e−1/β∗

)−1
e−1/β∗ α+β∗

β 2∗
+ log

(
e−1/α + e−1/β∗

))
= 0 iff

log
(
e−1/α + e−1/β∗

)
=
(
e−1/α + e−1/β∗

)−1
e−1/β∗ α+β∗

β 2∗
≥ 0 which inserted into φ yields φ(β∗) =

−
(
e−1/α + e−1/β∗

)−1
e−1/β∗ β−2

∗ =− b∗
a+b∗ (− logb∗)−2 ≤ 0.

♦
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