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Abstract

In inverse problems, many conditional generative models approximate the posterior
measure by minimizing a distance between the joint measure and its learned approxi-
mation. While this approach also controls the distance between the posterior measures
in the case of the Kullback–Leibler divergence, this is in general not hold true for the
Wasserstein distance. In this paper, we introduce a conditional Wasserstein distance
via a set of restricted couplings that equals the expected Wasserstein distance of the
posteriors. Interestingly, the dual formulation of the conditional Wasserstein-1 flow
resembles losses in the conditional Wasserstein GAN literature in a quite natural way.
We derive theoretical properties of the conditional Wasserstein distance, characterize
the corresponding geodesics and velocity fields as well as the flow ODEs. Subsequently,
we propose to approximate the velocity fields by relaxing the conditional Wasserstein
distance. Based on this, we propose an extension of OT Flow Matching for solving
Bayesian inverse problems and demonstrate its numerical advantages on an inverse
problem and class-conditional image generation.

1 Introduction

Many sampling algorithms for the posterior PX|Y=y in Bayesian inverse problems

Y = f(X) + Ξ (1)

with a forward operator f : X → Y, and a noise model Ξ, perform learning on some joint
measures. This means, given some observations y of Y , a probability measure PY,Gθ

is
learned, where Gθ also depends on y. Most approaches minimize (or upper bound) some
loss of the form

L(θ) = D(PY,X , PY,Gθ
),

where D denotes a suitable distance on the space of probability measures. For instance,
this is done in the framework of conditional (stochastic) normalizing flows [7, 26, 25, 54],
conditional GANs [40] or conditional gradient flows for the Wasserstein metric [18, 24]. Note
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that the robustness of such conditional generative models was shown under the assumption
that the expected error to the posterior EY

[
W1(PX|Y=y, PZ|Y=y)

]
is small in [3], which

shows that it is important to relate this quantity to the approximation of the joint measures.
In [31], the authors investigated the relation between the joint measures D(PY,Z , PY,X)

and its relation to the expected error between the posteriors EY

[
D(PZ|Y=y, PX|Y=y)

]
. For

the Kullback–Leibler divergence D = KL, it follows by the chain rule [16, Theorem 2.5.3]
that

EY

[
KL(PX|Y=y, PZ|Y=y)

]
= KL(PY,X , PY,Z).

Such results are important as they show that it is possible to approximate the posterior via
the joint distribution. Unfortunately, we have for the Wasserstein-1 distance that in general
only

W1(PY,X , PY,Z) ≤ Ey∼PY

[
W1(PX|Y=y, PZ|Y=y)

]
(2)

holds true, in contrast to the equality claim in [31, Theorem 2]. A simple counterexample is
given in Appendix A. Intuitively, strict inequality can arise when the optimal transport (OT)
plan needs to transport mass in the Y -component. This is the motivation for considering
only plans that do not have mass transport in the Y -component. This leads us to the
definition of conditional Wasserstein distances Wp,Y , where admissible transport plans are
restricted to the set Γ4

Y = Γ4
Y (PY,X , PY,Z) of 4-plans α fulfilling in addition (π1,3)♯α = ∆♯PY ,

where ∆(y) = (y, y) is the diagonal map:

W p
p,Y := inf

α∈Γ4
Y

∫
∥(y1, x1)− (y2, x2)∥p dα

Inspired by [31], we show that this conditional Wasserstein distance indeed fulfills

W p
p,Y (PY,X , PY,Z) = Ey∼PY

[
W p

p (PX|Y=y, PZ|Y=y)
]
.

Further, we prove results on gradient flows [6] with respect to our conditional Wasserstein
distance: we show the connections to the continuity equation, verify that there exists a
velocity field with no mass transport in Y -direction and recover a corresponding ODE
formulation. Indeed, this conditional Wasserstein distance can be used to explain a numerical
observation made by [18, 24], namely that rescaling the Y -component leads to velocity fields
with no mass transport in Y-direction in the limit. Using these ideas, we propose to relax the
conditional Wasserstein distance to allow "small amounts" of mass transport in Y -direction.

Then, we use our insights to design efficient posterior sampling algorithms. By leveraging
recent ideas of flow matching [35, 36], we design Bayesian OT flow matching. Note that the
recent approaches of [55, 53] do not respect the OT in X-direction as they always choose
the diagonal coupling. This leads to awkward situations, where the optimal Y -diagonal
coupling is not recovered even between Gaussians, see Example 9. We use our proposed
Bayesian OT flow matching and verify its advantages on a Gaussian mixture toy problem
and on class conditional image generation on the CIFAR10 dataset.
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Contributions

• We introduce conditional Wasserstein distances and highlight their relevance to condi-
tional Wasserstein GANs in inverse problems.

• We derive theoretical properties of the conditional Wasserstein distance and establish
geodesics in this conditional Wasserstein space, with velocity plans having no transport
in Y -direction.

• We show that the conditional Wasserstein distance can be used in conditional generative
approaches and demonstrate the advantages on MNIST particle flows [24, 4]. We
propose a version of OT flow matching [50, 44] for inverse problems which uses a
relaxed version of our conditional Wasserstein distance, and show that it overcomes
obstacles from previous flow matching versions for inverse problems [53].

Related work Our work is in the intersection of conditional generative modelling [1, 7, 40]
and (computational) OT [43, 51]. The recent work [22, Theorem 2] derives an inequality
based on restricting the admissible couplings in the their OT formulation to so-called
conditional sub-couplings. Note that their reformulation is only a restatement of the
expected value, but does not relate it to the joint distributions. Those authors also look for
geodesics in the Wasserstein space, but pursue a different approach. While we relate it to
the velocity fields in gradient flows, they pursue an autoencoder/GAN idea.

The closest work, which appeared after our first version of this paper, is [29]. Unfortu-
nately, we became aware of those paper when our paper was close to its finish. Here the
authors define the conditional optimal transport problem and calculate its dual. Their work
is more focused on the infinite dimensional setting, whereas we consider the velocity fields
needed for the flow matching application.

In the OT literature, there has been a collection of class conditional OT distances used
in domain adaption [41, 45]. In particular, conditional OT as in [48] is relevant as they
consider OT plans for each condition y minimizing Ey[W1(PX|Y=y, G(·, y)#PZ)]. However
they relax their problem using a KL divergence. The papers on Wasserstein gradient
flows [5, 23] investigate conditional Wasserstein distances from a different point of view
for defining the so-called geometric tangent space of the 2-Wasserstein space. Geometric
tangent spaces play a crucial role in Wasserstein flows of maximum mean discrepancies
with Riesz kernels in [27] and their neural variants in [4]. In [24, Remark 7], an inequality
between the joint Wasserstein and the expected value over the conditionals is derived, where
the result requires compactly supported measures and certain regularity of the associated
posterior densities. In [12]. the supervised training of conditional Monge maps is proposed,
for which the authors solved the dual problem using convex neural networks. The authors
of [37] also considers an amortized objective between the conditional distributions and
propose a relaxation, which only needs samples from the joint distribution involving maxi-
mum mean discrepancies. Numerically, we first verify our theoretical statements based on
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particle flows, which were also used in [4, 24]. Further, we apply our framework to solve
inverse problems using Bayesian flow matching [53, 55] and OT flow matching [35, 36, 50, 44].

This paper is an extension of our first ArXiv version [13] on conditional Wasserstein
distances with more focus on gradient flows and flow matching.

Outline of the paper In Section 2, we recall preliminaries from OT. Then, in Section 3,
we introduce conditional Wasserstein distances of joint probability measures, and show their
relation to the expectation over the Wasserstein distance of the conditional probabilities.
Moreover, we highlight the connection to work on geometric tangent spaces. In Section 4,
we calculate the dual of our conditional Wasserstein-1 distance and show how a loss function
used in the conditional Wasserstein GAN literature arises in a natural way. In Section 5, we
deal with geodesics with respect to the conditional Wasserstein distance, prove properties
of the corresponding velocity fields, showing that they vanish in the Y -component, and
show existence for flow ODEs. We propose a relaxation of the conditional Wasserstein
distance which appears to be useful for numerical computations in Section 6. We combine
our findings with OT flow matching to get Bayesian flow matching in Section 6. Finally, in
Section 8, we present numerical results: we verify a convergence result using particle flows to
MNIST, and demonstrate the advantages of our Bayesian OT flow matching procedure on a
Gausian mixture model toy example and on CIFAR10 class-conditional image generation.
All proofs are postponed to the appendix.

2 Preliminaries

Throughout this paper, we will use the following notation. These are basics from from
optimal transport theory and can be found in [51]. By P(X), we denote the set of probability
measures on X ⊆ Rn and by Pp(X), p ∈ [1,∞) the subset of measures with finite p-th
moments. For µ ∈ P(X) and a measurable function F : X → Y, we define the the push
forward measure by F♯µ = F ◦ µ−1. For a product space

∏K
i=1Xi, we denote the projection

onto the i1, . . . , ik-th component by πi1,...,ik . The Wasserstein-p metric [51] on Pp(X) is
given by

Wp(µ, ν) :=
(
min
γ∈Γ

∫
X2

∥x− y∥p dγ(x, y)
) 1

p (3)

=
(
min
γ∈Γ

E(x,y)∼γ

[
∥x− y∥p

]) 1
p
.

where Γ = Γ(µ, ν) denotes the set of all probability measures γ ∈ P(X× X) with marginals
π1♯ γ = µ and π2♯ γ = ν and ∥ · ∥ is the Euclidean distance on Rn, see [51]. If µ ∈ Pp(X) is
absolutely continuous, then, for p ∈ (1,∞), there exits a unique optimal transport map
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T ∈ Lp
µ(X,X), also known as Monge map, which solves

min
T measurable

{∫
X
∥x− T (x)∥p dµ(x) such that T♯µ = ν

}
.

Further, this optimal map is related to the optimal transport plan γ in (3) by γ = (Id, T )♯µ,
see [51]. The same holds true for empirical measures with the same number of points,
see [43, Proposition 2.1]. In this paper, we ask for relations between joint and posterior
probabilities: for random variables X,Z ∈ B ⊆ Rm and Y ∈ A ⊆ Rd, we are interested in
Wasserstein distances between PY,X , PY.Z ∈ Pp(A×B) and PX|Y=y, PZ|Y=y ∈ Pp(B). Since
π1♯PY,X = PY as well as π1♯PY,Z = PY , we see that the joint probabilities belong indeed to
the subset

Pp,Y (A×B) := {γ ∈ Pp(A×B) : π1♯ γ = PY }.
For p = 2, this set was considered as set of velocity plans at PY in [6, Sect. 12.4] and [23,
Sect. 4]. It is the basis for defining the so-called geometric tangent space of P2(Rd) which
was used, e.g. in [27, 4] for handling (neural) Wasserstein gradient flows of maximum mean
discrepancies.

We will frequently apply the disintegration formula [6, Theorem 5.3.1] which says that
for a measure γ ∈ P(A×B) with π1♯ γ = µ ∈ P(A), there exists a µ-a.e. uniquely determined
Borel family of probability measures (γy)y∈A such that∫

A×B
f(y, x) dγ(y, x) =

∫
A

∫
B
f(y, x) dγy(x)dµ(y)

for any Borel measurable map f : A×B → [0,+∞]. In particular, for γ = PY,X ∈ P(A×B),
the disintegration formula reads as∫

A×B
f(y, x) dPY,X(y, x) =

∫
A

∫
B
f(y, x) dPX|Y (x)dPY (y). (4)

3 Conditional Wasserstein distance

We have already seen that in general we can only expect inequality in (2). Towards equality,
we introduce a conditional Wasserstein distance which allows only couplings which leave the
Y -component invariant. To this end, we introduce the set of special 4-plans

Γ4
Y = Γ4

Y (PY,X , PY,Z) :=
{
α ∈ Γ(PY,X , PY,Z) : π

1,3
♯ α = ∆♯PY

}
,

where ∆ : A → A2, y 7→ (y, y) is the diagonal map. Note that ∆−1(y1, y2) = ∅ if y1 ̸= y2
and ∆−1(y1, y2) = y if y1 = y2 = y. Then, we define the conditional Wasserstein-p distance,
p ∈ [1,∞) by

Wp,Y (PY,X , PY,Z) :=
(

inf
α∈Γ4

Y

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα
) 1

p
. (5)

5



Indeed we will see in Corollary 2 that this is a metric on Pp,Y (A×B).
In terms of Monge maps, this means that we are considering functions (Id, T (y, ·)) :

(y, x) 7→ (y, T (y, x)), where T : Rd×Rm → Rm and (Id, T (y, ·))#PY,X = PY,Z . The following
proposition gives the desired equivalence of the form (2). The proof is given in Appendix B.

Proposition 1. The following relations holds true.

i) The conditional Wasserstein-p distance (5) fulfills

W p
p,Y (PY,X , PY,Z) = EY

[
W p

p (PX|Y=y, PZ|Y=y)
]
. (6)

ii) Let α ∈ Γ4
p,Y is an optimal plan in (5) with disintegration αy1,y2 with respect to π1,3♯ α.

Then αy,y ∈ P(R2m) is an optimal plan for Wp(PX|Y=y, PZ|Y=y) for PY -a.e. y ∈ A.

iii) There exists a collection of optimal plans αy ∈ Γ(PX|Y=y, PZ|Y=y), y ∈ A for

Wp(PX|Y=y, PZ|Y=y) such that

α :=

∫
A
dδy1(y2) dαy1(x1, x2)dPY (y1) (7)

is a well-defined coupling in Γ4
Y which is optimal in (5).

For p = 2, it was shown in [6, Sect. 12.4] and [23, Sect. 4] that the square root of
the right-hand side in (4) is a metric on P2,Y (A× B). The proof can be generalized in a
straightforward way for p ∈ [1,∞). Thus, by Proposition 1, we have the following corollary.

Corollary 2. The conditional Wasserstein distance Wp,Y is a metric on Pp,Y (A×B).

Interestingly, for p = 2, there was also given an equivalent definition by [23] of Wp,Y ,
namely

Wp,Y (PY,X , PY,Z) := inf
β∈Γ3

Y (PY,X ,PY,Z)

(∫
A×B2

∥x1 − x2∥p dβ(y, x1, x3)
) 1

p

with the set of 3-plans

Γ3
Y (PY,X , PY,Z) := {β ∈ Pp(A×B2) : π1,2♯ β = PY,X , π

1,3
♯ β = PY,Z}.

The relation between the admissible 3-plans and 4-plans is given in the following proposition
which proof can be found in the appendix.

Proposition 3. The map π1,2,4♯ : Γ4
Y (PY,X , PY,Z) → Γ3

Y (PY,X , PY,Z) is a bijection and for
every α ∈ Γ4

Y (PY,X , PY,Z) it holds∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα =

∫
A×B2

∥x1 − x2∥p dπ1,2,4♯ α.
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4 Dual formulation of W1,Y and relation to GAN loss

Interestingly, the conditional Wasserstein-1 distance recovers loss functions in the conditional
Wasserstein GAN literature [1, 31, 38]. Wasserstein GANs [8] aim to sample from a target
distribution PX based on a simpler distribution PZ , a generator G = Gθ is learned such
that the Wasserstein-1 distance in its dual formulation

W1(PX , G#PZ) = max
f∈Lip1

{
EX [f ]− EZ

[
f ◦G

]}
is minimized, where Lip1 denotes the set of 1-Lipschitz continuous functions. At the same
time, a discriminator f = fω is learned such that the final Wasserstein GAN learning
problem becomes

min
θ

max
ω

{EX [f ]− EZ [f ◦G]} subject to f ∈ Lip1.

Usually, the the 1-Lipschitz condition is enforced via so-called weight-clipping [8].
In [1], this approach was generalized to inverse problems. Assume that A ⊂ Rd and

B ⊂ Rm are compact sets throughout this section. For given y ∈ A, an optimal h(y, ·) ∈ Lip1

is found in

W1(PX|Y=y, G(y, ·)#PZ) = max
h(y,·)∈Lip1

{
EX|Y=y[h(y, x)]− EZ

[
h(y,G(y, ·))

]}
.

Now the authors take the expectation value on both sides and exchange expectation and
maximum to get, together with (4), the relation

EY [W1(PX|Y=y, G(y, ·)#PZ ] = max
h

{EY,X [h]− EY,Z [h(y,G(y, ·)]} , (8)

where the maximum is taken over functions h which are Lipschitz-1 continuous in the second
variable. However, exchanging maximum and expectation value requires that (y, x) 7→ h(y, x)
is measurable which is not always the case. This „gap” was fixed under stronger assumptions,
e.g. on the posterior, in [38].

In this section, we show that the dual formulation of the conditional Wasserstein distance
W1,Y leads naturally to the desired loss on the right-hand side of (8) for an appropriate
regular function set for h. More precisely, we have the following theorem which is proved in
the appendix.

Theorem 4. Let A ⊂ Rd and B ⊂ Rm be compact sets. Then it holds

W1,Y (PY,X , PY,Z) = sup
h∈F

{EY,X [h]− EY,Z [h(y,G(y, ·)]} ,

where F denotes the set of bounded, upper semi-continuous functions h : A × B → R
satisfying |h(y, x1)− h(y, x2)| ≤ ∥x1 − x2∥ for all y ∈ A and all x1, x2 ∈ B.
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5 Geodesics and velocity fields

In this section, we deal with geodesics and velocity fields in
(
PY,2(Rd × Rm),W2,Y

)
. We

restrict our attention to p = 2 and A = Rd, B = Rm. Coming from inverse problems, we
have considered probability measures PX,Y related to random variables (Y,X) ∈ Rd × Rm.
When switching to flows, it is more convenient to address equivalently just probability
measures on Rd × Rm.

Let us recall some results which can be found, e.g. in [6] for our setting. A curve
µ : [0, 1] → P2(Rd × Rm) is called a geodesic if

W2(µs, µt) = |s− t|W2(µ0, µ1) for all s, t ∈ [0, 1].

The Wasserstein space is geodesic, i.e. any two measures µ0, µ1 ∈ P2(Rd × Rm) can be
connected by a geodesic. Let et : (Rd × Rm)2 → Rn × Rm, t ∈ [0, 1] by defined by

et(y1, x1, y2, x2) :=
(
(1− t)π1,2 + tπ3,4

)
(y1, x1, y2, x2) = (1− t)(y1, x1) + t(y2, x2).

Any geodesic µ : [0, 1] → P2(Rd × Rm) connecting µ0, µ1 ∈ P2(Rd × Rm) is determined by
an optimal plan α ∈ Γ(µ0, µ1) in (3) via

µt := (et)♯α, t ∈ [0, 1]. (9)

Conversely, any optimal plan α ∈ Γ(µ0, µ1) gives by (9) rise to a geodesic connecting µ0
and µ1. The following lemma considers curves defined by (9) which connect measures
µ0, µ1 ∈ P2,Y (Rd × Rm). Its proof is given in the appendix and is similar to [6, Theorem
7.2.2].

Lemma 5. Let µ0, µ1 ∈ P2,Y (Rd × Rm) and let α ∈ Γ4
Y (µ0, µ1) be an optimal plan in (5).

Then the following holds true.

i) The curve µt := (et)♯α is a geodesic in (P2,Y (Rd × Rm),W2,Y ).

ii) The curve (µt)y := (1− t)π1 + tπ2)♯αy,y is the disintegration of µt with respect to PY .
Further, (µt)y is a geodesic in (P2(Rm),W2) for PY -a.e. y ∈ Rd.

iii) µt is weakly continuous.

By the following proposition, the above geodesic µt has an associated vector field vt
which satisfy a continuity equation. Moreover, informally speaking, the associated vector
field vt does not transport any mass in the y-component. This is related to the observation
in [18].

Proposition 6. Let µ0, µ1 ∈ P2,Y (Rd × Rm). Let α ∈ Γ4
Y (µ0, µ1) be an optimal plan in (5)

and µt = (et)♯α, t ∈ [0, 1]. Then there exists a vector field vt ∈ L2
µt
(Rd ×Rm,Rd ×Rm) such

that the following relations are fulfilled:
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i) (et)♯ ((y2, x2)− (y1, x1))α) = vtµt,

ii) ∥vt∥L2
µt

≤W2,Y (µ0, µ1),

iii) for j ≤ d, we have (vt)j = 0 µt-a.e.,

iv) µt, vt fulfill the continuity equation

∂tµt +∇ · (vtµt) = 0

in a distribultional sense, i.e. we have for all φ ∈ C∞
c (Rd × Rm) that

d

dt

∫
Rd×Rm

φdµt =

∫
Rd×Rm

⟨∇ϕ, vt⟩dµt.

The proof is given in Appendix D and parts i), ii), iv) are adapted from the proofs of [5,
Theorem 17.2, Lemma 17.3.]

Furthermore, since by Lemma 5 iii), a geodesic induced by an optimal W2,Y plan is
weakly continuous, we obtain the following proposition from [6, Proposition 8.1.8] which is
needed in the numerical section.

Proposition 7. Let µ0, µ1 ∈ P2,Y (Rd × Rm). Let α ∈ Γ4
Y (µ0, µ1) be an optimal plan in

(5) and µt = (et)♯α, t ∈ [0, 1]. Assume that the corresponding Borel vector field vt from
Proposition 6 fulfills ∫ 1

0

(
sup
B

(∥vt∥L2
µt
) + Lip(vt, B)

)
dt <∞ (10)

for all compact subsets B ⊂ Rd × Rm, where Lip(vt, B) denotes the Lipschitz constant of vt
on B. Then, for µ0-a.e. (y, x) ∈ Rd × Rm, the ODE

d

dt
ϕt = vt(ϕt),

ϕ0(y, x) = (y, x),

admits a unique global solution and µt = (ϕt)♯µ0, t ∈ [0, 1].

For special cases we can drop the requirements (10) on the Borel vector field as the
following proposition, which is proved in the appendix, shows.

Proposition 8. For yi ∈ Rd, I = 1, . . . , n, let PY := 1
n

∑n
i=1 δyi . Let µ0, µ1 ∈ P2,Y (Rd×Rm)

fulfill one of the following conditions:

i) µ0,y, µ1,y are empirical measures with the same number of particles n ∈ N for PY a.e.
y ∈ Rd. Let Tyi be a choice of optimal transport maps between µ0,yi and µ1,yi and let
α be the corresponding optimal plan α ∈ Γ4

Y (µ0, µ1), or

9



ii) µ0,y, µ1,y for PY -a.e. y ∈ Rd are absolutely continuous with densities ρ0,y, ρ1,y which
are supported on open, convex, bounded, connected, subsets Ω0,y,Ω1,y on which they are
bounded away from 0 and ∞. Assume further that ρ0,y ∈ C2(Ω0,y), ρ1,y ∈ C2(Ω1,y) and
let Ty be the associated optimal transport maps and α ∈ Γ4

Y (µ0, µ1) be the associated
optimal transport plan.

Let µt = (et)♯α with associated vector field vt ∈ L2
µt

, where (vt)j = 0 for all j ≤ d. Then
there is a representative of vt such that the flow equation

d

dt
ϕt = vt(ϕt)

ϕ0(y, x) = (y, x)

admits a global solution and µt = (ϕt)♯µ0. Furthermore, for T ∈ L2
µ0

defined by T (yi, x) :=
(yi, Tyi(x)), we have

vt(ϕt(y, x)) = T (y, x)− (y, x) =
(
0, π2 ◦ T (y, x)− x

)
for µ0-a.e. (y, x) ∈ Rd × Rm.

A Benamou-Brenier type formula for Wp,Y is given in Appendix F.

6 Relaxation of the conditional Wasserstein distance

When working with conditional Wasserstein distances, we are facing the following problems:

1. We cannot use standard optimal transport algorithms [20] out of the box.

2. Assume that PY is not empirical and let µ ∈ P2,Y (Rd × Rm). Then it is impossible
to approximate µ by empirical measures in the W2,Y topology, since P2,Y (Rd × Rm)
does not contain any empirical measures.

3. Assume that we are interested in the optimal plan α ∈ Γ4
Y (µ0, µ1), but we are only

given empirical measures µn,0, µn,1, which are W2 approximations of µ0, µ1. Let Yn
be a random variable distributed as π1♯µn,0. Even if we assume that π1♯µn,0 = π1♯µn,1,
Example 9 shows that we cannot guarantee that there exists a sequence of the optimal
plans αn ∈ Γ4

Yn
(µn,0, µn,1) that converges in any sense to α.

Example 9. We consider independent, standard normal distributed random variables
Y,X,Z ∈ R. Let µ = ν := PY,X . Now we sample (yi, xi, zi) ∼ (Y,X,Z) and define

µn :=
1

n

n∑
i=1

δyi,xi , νn :=
1

n

n∑
i=1

δyi,zi ,

10



i.e. µn → µ and νn → ν as n → ∞ in the W2-topology. Let Yn be a random variable dis-
tributed like 1

n

∑n
i=1 δyi . Then Γ2,Yn(µn, νn) contains exactly one plan αn = 1

n

∑n
i=1 δyi,xi,yi,zi

which is clearly optimal. Let ∆ : R3 → R4 be defined by ∆(y, x, z) = (y, x, y, z). Then
α̂ := limn αn = ∆♯ (PY ⊗ PX ⊗ PZ) in the W2-topology. Moreover, α̂ ∈ Γ2,Y (µ, ν) and∫

R4

∥(y1, x1)− (y2, x2)∥2dα̂ =

∫
R3

∥(y1, x1)− (y1, x2)∥2 d(PY ⊗ PX ⊗ PZ)

=

∫
R2

∥x1 − x2∥2 d(PX ⊗ PZ) > 0 =W2,Y (µ, ν).

Hence α̂ is not an optimal coupling, although it is a limit of optimal couplings in the
W2 sense.

In order to overcome the above drawbacks, we define a cost function for which the OT
plan α ∈ Γ(µo, µ1) only approximately fulfills π1,3♯ α = ∆♯PY :

dpβ((y1, x1), (y2, x2)) = ∥x1 − x2∥p + β∥y1 − y2∥p, p ∈ [1,∞), β > 0.

For large values of β, it is very costly to move mass in y-direction. Then we denote by Wp,β

the OT distance with respect to the cost dpβ , i.e. for µ0, µ1 ∈ Pp(A×B) we set

Wp,β(µ0, µ1)
p := inf

α∈Γ(µ0,µ1)

∫
(A×B)2

dpβ((y1, x1), (y2, x2)) dα.

The same idea has been pursued in [2], where the authors rescaled the y-costs to obtain a
blocktriangular map in the Knothe-Rosenblatt setting [33, 46] and similarly in [29]. Note
that [2] was published on ArXiv after our first version of the present paper.

Proposition 10. Let µ0, µ1 ∈ Pp,Y (Rd ×Rm) and let αβ be a sequence of optimal transport
plans for µ0, µ1 with respect to Wp,β. Then, for β → ∞, we have∫

R2d

∥y1 − y2∥p dπ1,3#(αβ) → 0.

Remark 11. Alternatively, instead of rescaling the costs dβ we would also rescale the inputs,
which was done for instance in [18, 24]. Take for instance (as we do numerically) the cost
function d2β = ∥x1−x2∥2+β∥y1−y2∥2. Then this is equivalent to rescaling the Y -component
by

√
β.

The following proposition shows that the issue raised in Example 9 is addressed by
W2,dβ , at least on compact sets.

Proposition 12. Assume that µ, ν ∈ P2,Y (A × B) for compact subsets A ⊂ Rd, B ⊂ Rm

and let µn, νn be empirical measures that converge in W2 to µ, ν. Then for a sequence
βk → ∞ there exists an increasing subsequence nk and optimal plans αnk

∈ Γ(µnk
, νnk

) for
W2,dβk

(µnk
, νnk

) such that αnk
converges with respect to W2 to an optimal plan α ∈ Γ4

Y (µ, ν)
for W2,Y (µ, ν).
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7 Bayesian flow matching

In this section, we combine the conditional Wasserstein distance with Bayesian flow matching.
We start by briefly recalling flow matching and its OT variant. Then we turn to the
conditional setting, where we describe a method from the literature, which we call "diagonal"
Bayesian flow matching and introduce our new OT Bayesian flow matching.

Remark 13. Usually, in conditional generative modelling, the word "conditional" appears
the context of inverse problems (or solving class conditional problems). However, in the
vanilla flow matching [35] the word "conditional" is used for the loss and the whole procedure
is referred to as "conditional flow matching". Therefore, we will call the flow matching
procedure for inverse problems "Bayesian flow matching".

Flow matching and OT flow matching aim to sample from a target distribution PX by
learning the velocity field vt of a flow ODE [14]

d

dt
ϕt(x) = vt(ϕt(x)), t ∈ [0, 1], (11)

ϕ0(x) = x,

which transports samples from an initial distribution PZ to those from PX . Once an
approximate velocity field vθt is learned, it can be replaced in (11) to get a neural ODE [14].

Flow Matching The flow matching framework [35, 36] learns vθt based on linear interpo-
lation between independent Z and X, i.e.

Xt = (1− t) Z + t X

and consequently

X − Z =
d

dt
Xt = vt(Xt).

In a minibatch setting with (z,x) = ((zi, xi))
I
i=1 sampled from the product distribution

PZ ⊗ PX , this becomes

vt(xt) := x− z, xt := (1− t)z + tx.

Consequently, an approximating velocity field vθt can be learned by minimizing the loss
function

LFM(θ) := E(z,x)∼PZ⊗PX ,t∼U([0,1])

[
∥vθt (xt)− (x− z)∥2

]
.

The objective LFM can be also derived differently, with ideas inspired by the score
matching framework [30, 52]. Then instead of regressing to the true velocity field at xt, they
show that regressing to it has the same gradients when one conditions at x ("conditional"
flow matching [35, Theorem 2]), which leads to the same loss formulation.
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OT Flow Matching In contrast to the above linear interpolation, the authors in [50,
44] suggested to use the W2(PZ , PX) coupling γ, respectively its Monge map T and the
corresponding McCann interpolation [39]

Xt := Tt(Z) = (1− t)Z + tT (Z)

which leads to
T (Z)− Z =

d

dt
Xt = vt(Xt).

By Proposition 16, the associated Borel vector field of the geodesic is given by vt =
(T − Id) ◦ T−1

t . In a minibatch setting, this corresponds to sampling (z,x) from PZ ⊗ PX

and calculating the optimal plan γ between 1
I

∑I
i=1 δzi and 1

I

∑I
i=1 δxi , see (12), which is

supported on (zi, T (zi))
I
i=1. Consequently, the loss function becomes

LOT(θ) := E(z,x)∼γ,t∼U([0,1])

[
∥vθt (xt)− (x− z)∥2

]
,

where xt := Tt(z, x).

Let us turn to the conditional setting. In inverse problems, samples from the posterior
measure are usually not available. In the conditional setting the corresponding flow ODE
reads

d

dt
ϕt(y, x) = vt(ϕt(y, x)), t ∈ [0, 1],

ϕ0(y, x) = (y, x).

To this end, we pick the target measure as the joint distribution PY,X and start from
PY,Z . We do not want mass movement in Y -direction, as this would mean the measurement
would change and we would not sample the posterior, which amounts to the Y -component
of vt being (close to) zero, cf. Proposition 6.

Diagonal Bayesian Flow Matching In [53, 55] flow matching is extended to the condi-
tional setting. Given independent Z and (Y,X) we again consider the linear interpolation
between Z and X given by

Xt = (1− t) Z + t X.

Then (Y,Xt) interpolates between (Y,Z) and (Y,X). Consequently

(0, X − Z) =
d

dt
(Y,Xt) = vt(Y,Xt).

Given a minibatch (z,y,x) = ((zi, yi, xi))
I
i=1 sampled from the product distribution

PZ ⊗ PY,X , this becomes

vt(y,xt) := (0,x− z), xt := (1− t)z + tx.

13



This yields the diagonal Bayesian flow matching loss

LY,FM(θ) = E(z,y,x)∼PZ⊗PY,X ,t∼U([0,1])[∥vθt (y, xt)− (x− z)∥2].

Under the assumption yi ≠ yj for i ̸= j this diagonal matching coincides with the only
admissible plan in the conditional Wasserstein distance. In general however, according
to Example 9, this approach does not approximate OT plans as X and Z are essentially
independently.

OT Bayesian Flow Matching For PY,Z , PY,X as in Proposition 8 there exists an optimal
plan α ∈ Γ4

Y (PY,Z , PY,X) and corresponding map T . Furthermore there exists a vector field
vt ∈ L2

µt
such that there exists a solution ϕt to the flow equation which satisfies

vt(ϕt(y, x)) = T (y, x)− (y, x) =
(
0, (π2 ◦ T )(y, x)− x

)
.

Setting
Xt := Tt(Y,Z) = (1− t)Z + t(π2 ◦ T )(Y,Z)

we have that (Y,Xt) interpolates between (Y, Z) and (Y,X) and

(0, (π2 ◦ T )(Y,Z)− Z) =
d

dt
(Y,Xt) = vt(Y,Xt).

Given a minibatch (z,y,x) = ((zi, yi, xi))
I
i=1 sampled from the product distribution

PZ ⊗ PY,X , we can calculate the optimal map T and corresponding conditional coupling α
between (y, z) and (y,x). The plan α by construction is only supported on (yi, zi, yi, (π

2 ◦
T )(yi, xi))). Now let (y, z, y, x) ∼ α, then we have

vt(y, xt) = T (y, z)− (y, z) = (y, x)− (y, z) = (0, x− z)

where xt := Tt(y, z). This gives rise to the following loss

LY,OT(θ) = E((y,z,y,x)∼α,t∼U([0,1])[∥vθt (y, xt)− (x− z)∥2].

In practice, we use Proposition 10 to approximate the optimal coupling α. Therefore we
allow small errors in the Y -component, in order to move more optimally in the X-direction,
which is more in the spirit of Proposition 12. Numerically, instead of taking the optimal
transport plan with respect to the modified cost function, we rescale the Y -part, see remark
11.

8 Numerical experiments

In this section, we want to show cases in which it is beneficial to use the conditional
Wasserstein distance. First, we verify that the convergence result for an increasing parameter
β given in Proposition 10 for particle flows to MNIST [17]. Then we show the advantages of
our Bayesian OT flow matching procedure on a Gausian mixture model (GMM) toy example
and on CIFAR10 [34] class-conditional image generation.
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8.1 Particle flow convergence

In this example, we minimize WY,β(PY,X , PY,Z) for the empirical measures We consider
the particle flow, i.e., the flow from (Y, Z) to (Y,X) for empirical distributions, where we
compute a particle flow [4] from (Y,Z) to (Y,X). We follow a particle flow path, i.e., we
define a curve z(0)i ∼ N (0, I) which follows

ż(t) = −η∇z(t)D

(
1

n

n∑
i=1

δyi,xi ,
1

n

n∑
i=1

δyi,z(t)i

)
,

for an appropriate "distance" D, step size η and given joint samples (yi, xi)
n
i=1. We choose

D as an approximation of W2,β by rescaling Y and using the Sinkorn divergence as the
sample based distance measure [21, 19], where the "blur" parameter is chosen so small that
it is close to the Wasserstein distance. This way we can numerically verify the convergence
in Proposition 10. Note that there are no neural networks involved in this example.

We see in Fig. 1 that increasing β indeed yields plans which transport no mass in Y -
direction anymore, which has the consequence that the generated images fit the corresponding
label. It can be seen that for β = 5 each row only has one type of digit.

β = 1 β = 3 β = 4 β = 5

Figure 1: Class conditional MNIST particle flow for different choices of β. With increasing
β the labels are better fitted.

8.2 GMM example

Here we use an experimental setup from [26]: in (1), we choose PX to be a GMM in R5

with 10 mixture components, uniformly chosen means in [−1, 1] and standard deviation 0.1.
We apply linear diagonal forward model f = (fi,j)

5
i,j=1 with fi,i = 0.1

i+1 and zero components
otherwise and Gaussian noise with standard deviation 0.1. This yields a posterior measure
PX|Y=y which is a also a GMM [26, Lemma 11]. Therefore we can sample and evaluate
the true posterior as groundtruth. We train a diagonal Bayesian flow matching model
according to LY,FM and our OT Bayesian flow matching according to LY,OT with POT [20]
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for the same amount of time on a fixed dataset of size 10000, where we choose the best
model according to a validation set of size 2000. We parameterize both models with around
140k parameters. We evaluate them using the Sinkhorn distance [21, 19] with the package
GeomLoss averaged with 100 posteriors and over 10 training and test runs with randomly
sampled mixtures. The sampling is done via an explicit Euler discretization of 10 steps.
Our proposed model trained according to LY,OT with β = 20 obtains an average Sinkhorn
distance of 0.0235, whereas the naive model obtains a value of 0.0255. In Figure 2 one
can see that both models approximate the posterior very well.

8.3 Class conditional image generation

We apply our Bayesian OT flow matching for conditional image generation. We choose
the condition Y to be the class labels in order to generate samples of CIFAR10 for a given
class. We simulate the flows for different values of β, by which we mean that we rescale the
Y -component by β as mentioned in Remark 11. We also simulate flows using the "diagonal"
plans which coincide with the diagonal Bayesian flow matching objective [53]. For high
quality inference we use an adaptive step size solver (Runge-Kutta of order 5). We also
compare quantitatively when sampling with a Euler scheme with 20 steps. The samples
in Fig. 3 are generated using the adaptive step size solver and sorted by class labels. For
low values of β we see that the resulting samples do not match their class labels, increasing
β leads to accurate class representations. The samples are generated given the labels of
the training samples, therefore we see improved FID results as β increases. The diagonal
flow matching objective has the correct class representations, however since the associated
couplings are not optimal our experiments suggest that this leads to higher variance during
training and therefore slightly lower image quality, see [50] for more details on the advantages
of OT based flow matching. We evaluate the methods on a fixed number of epochs, for
completeness we note that the diagonal method improves to an FID (AD) of 4.88 under
additional training.

9 Conclusions

Inspired from applications in Bayesian inverse problems, we introduced conditional Wasser-
stein distances. We managed to rewrite these distances as expectations of the Wasserstein
distances with respect to the observation. Therefore we are able to directly infer posterior
guarantees when trained with the corresponding losses. Furthermore, we calculated the dual
of the conditional Wasserstein-1 distance, when the probability measures are compactly
supported and recovered well-known conditional Wasserstein GAN losses. We established
corresponding velocity fields in the gradient flow theory and used our results to design a new
Bayesian flow matching algorithm. Theoretically, improving Proposition 8 for non-discrete
PY distributions would be the next step. In particular one would need to show measurability
of the "conditional Monge maps", which does not seem to be easy. Further, from a practical
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Figure 2: Posterior histograms for different methods with diagonal Bayesian flow matching
on the left and our OT Bayesian flow matching on the right. Ground truth posterior is in
orange and model prediction in blue.

viewpoint, a clear use case would be in conditional domain translation, i.e., when the latent
distribution is not a standard Gaussian, but given by some data distribution. There, finding
a good OT matching and making use of our proposed framework could improve existing
algorithms.
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β = 1 β = 3 β = 5

β = 20 β = 100 diagonal

1 3 5 20 100 diagonal
FID (AD) 5.3 5.1 4.79 4.57 4.38 5.34

FID (Euler) 11.18 11.05 10.82 10.13 9.98 10.76

Figure 3: Class Conditional CIFAR results for different choices of β and for the diagonal
couplings. Additionally FID results are reported using an adaptive step size solver (AD)
and an Euler scheme with 20 steps (Euler).
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A Counterexample for equality in equation 2

We provide a simple example showing that we cannot expect equality in (2). Recall that for
two empirical measures µ = 1

n

∑n
i=1 δai and ν = 1

n

∑n
i=1 δbi , ai, bi ∈ Rd, the Wasserstein-p

distance, p ∈ [1,∞) can be written as

W p
p (µ, ν) = inf

σ∈Sn

1

n

n∑
i=1

∥ai − bσ(i)∥p, (12)

where Sn is the set of permutations on {1, . . . , n}, see [43, Proposition 2.1].
On the probability space (Ω,A,P) with Ω = {ω1, ω2}, A = 2Ω and P(ω1) = P(ω2) =

1
2 ,

we define the random variables X,Y : Ω → R by

X Y Z

ω1 0 0 n
ω2 n 1 0

, n > 1.
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Then we have

PY,X =
1

2
δ0,0 +

1

2
δ1,n, PY,Z =

1

2
δ1,0 +

1

2
δ0,n

which implies by (12) that

W1(PY,X , PY,Z) =
1

2
min

{
∥(0, 0)− (1, 0)∥+ ∥(1, n)− (0, n)∥,

∥(0, 0)− (0, n)∥+ ∥(1, n)− (1, 0)∥
}
= 1.

On the other hand, we get

PX|Y=0 = δ0, PX|Y=1 = δn, PZ|Y=0 = δn, PZ|Y=1 = δ0, PY =
1

2
δ0 +

1

2
δ1,

so that

Ey[W1(PX|Y=y, PZ|Y=y)] = n = nW1(PY,X , PY,Z).

Note that if we forbid the coupling to move mass across the y-direction, we actually would
obtain equality, which motivates our definition of conditional Wasserstein distance, for an
illustration see Fig. 4.

Note that in [31], the summation metric is considered, i.e. ∥(x1, y1) − (x2, y2)∥sum =
∥x1 − x2∥+ ∥y1 − y2∥ for which our counterexample is still valid.

B Proofs of Section 3

Proof of Proposition 1. i) First we show ≥. Let αy1,y2 be the disintegration of some
α ∈ Γ4

Y (PY,X , PY,Z) with respect to π1,3♯ α. Then we obtain

I(α) =

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα(y1, x1, y2, x2)

=

∫
A2

∫
B2

∥(y1, x1)− (y2, x2)∥p dαy1,y2(x1, x2)dπ
1,3
♯ α(y1, y2)

=

∫
A2

∫
B2

∥(y1, x1)− (y2, x2)∥p dαy1,y2(x1, x2) d∆♯PY (y1, y2)

=

∫
A

∫
B2

∥(y, x1)− (y, x2)∥p dαy,y(x1, x2)dPY (y)

=

∫
A

∫
B2

∥x1 − x2∥p dαy,y(x1, x2)dPY (y). (13)
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Next, we show that αy,y ∈ Γ(PX|Y=y, PZ|Y=y) a.e., which means π1♯αy,y = PX|Y=y and
π2♯αy,y = PZ|Y=y a.e.. Using (4), we obtain indeed for all Borel measurable functions
f : A×B → [0,∞] that∫

A

∫
B
f(y, x1) dπ

1
♯ (αy,y)(x1)dPY (y) =

∫
A2

∫
B
f(y1, x1) dπ

1
♯αy1,y2(x1) d(∆)♯PY (y1, y2)

=

∫
A2

∫
B
f(y1, x1) dπ

1
♯ (αy1,y2)(x1) dπ

1,3
♯ α(y1, y2)

=

∫
A2×B2

f(y1, x1) dαy1,y2(x1, x2) dπ
1,3
♯ α(y1, y2)

=

∫
A2×B2

f(y1, x1) dα =

∫
A×B

f(y1, x1) dπ
1,2
♯ α(y1, x1)

=

∫
A×B

f(y1, x1) dPY,X(y1, x1).

Consequently, we have I(α) ≥ Ey∼PY
E
[
W p

p (PX|Y=y, PZ|Y=y)
]

and since W p
p,Y (PY,X , PY,Z) =

infα I(α), this gives assertion.
Now we prove the opposite direction ≤. For any y ∈ A, let αy ∈ Γ(PX|Y=y, PZ|Y=y) be

an optimal plan, i.e.

Wp
p (PX|Y=y, PZ|Y=y) =

∫
B2

∥x1 − x2∥p dαy(x1, x2).

This implies∫
A
Wp

p (PX|Y=y, PZ|Y=y) dPY (y) =

∫
A

∫
B2

∥x1 − x2∥p dαy,y(x1, x2)dPY (y). (14)

ii) For an optimal α ∈ Γ4
Y (PY,X , PY,Z), we have by Part i) and (13) that

W p
p,Y (PY,X , PY,Z) =

∫
A
W p

p (PX|Y=y, PZ|Y=y) dPy(y)

=

∫
A

∫
B2

∥x1 − x2∥p dαy,y(x1, x2)dPY (y).

Hence we get

0 =

∫
A

(∫
B2

∥x1 − x2∥p dαy,y(x1, x2)−W p
p (PX|Y=y, (PZ|Y=y)

)
dPY (y).

The inner integrand is nonnegative which finally implies that it is zero PY -a.e. and therefore
αy,y is an optimal plan in Wp(PX|Y=y, PZ|Y=y).
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iii) Let α be defined by (7), i.e.,∫
(A×B)2

f(y1, x1, y2, x2) dα(y1, x1, y2, x2)

=

∫
A

∫
A×B2

f(y1, x1, y2, x2) d(δy1 × αy1)(y2, x1, x2)dPY (y1)

for all Borel measurable functions f : (A × B)2 → [0,+∞]. Indeed α is a well defined
probability measure on (A× B)2 by the following reasons: by [6, Lemma 12.4.7], we can
choose a Borel family (αy)y. For any Borel set S ⊆ A×B ×B, we have

(δy × αy)(S) =
∫
A×B2

1S(ỹ, x1, x2) d(δy × αy)(ỹ, x1, x2) =

∫
B2

1S(y, x1, x2) dαy.

By [6, Equation 5.3.1] the function y 7→
∫
B2 1S(y, x1, x2)dαy is Borel measurable. Conse-

quently also y 7→ δy × αy(S) is Borel measurable and thus α is well defined. Then (14) can
be rewritten as∫

A
Wp

p (PX|Y=y, PZ|Y=y) dPY (y) =

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα(y1, x1, y2, x2). (15)

It remains to show that α ∈ ΓY (PY,X , PY,Z) which means π1,3♯ α = ∆♯PY , π1,2♯ α = PY,X and
π3,4♯ α = PY,Z . The first equality follows from∫

A2

f(y1, y2)dπ
1,3
♯ α =

∫
(A×B)2

(f ◦ π1,3)(y1, x1, y2, x2) dα(y1, x1, y2, x2)

=

∫
(A×B)2

f(y1, y2) dδy1(y2) dαy1(x1, x2)dPY (y1)

=

∫
A
f(y, y) dPY (y) =

∫
A2

f(y1, y2) d(∆♯PY )(y1, y2)

for all Borel functions f : A2 → [0,+∞], and the second one from∫
A×B

f(y, x)dπ1,2♯ α(y, x) =

∫
(A×B)2

f(y1, x1) dδy1(y2)dαy1(x1, x2)dPY (y1)

=

∫
A×B

f(y, x)dπ1♯αy(x) dPY (y)

=

∫
A×B

f(y, x)dPX|Y=y(x) dPY (y)

=

∫
A×B

f(y, x) dPY,X(y, x)
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for all Borel functions f : A×B → [0,+∞]. The third equality follows analogously.
The final assertion follows from (15) and the equality relation (6). □

Proof of Proposition 3. Let κ : A × B2 → (A × B)2 be defined by (y, x1, x2) 7→
(y, x1, y, x2). We show that κ♯ : Γ3

Y (PY,X , PY,Z) → Γ4
Y (PY,X , PY,Z) is the inverse of π1,2,4♯ .

Since Id(A×B2) = π1,2,4 ◦ (∆◦π1, π2, π3), it remains to show that κ♯ ◦π1,2,4♯ = IdΓ4
Y (PY,X ,PY,Z).

For α ∈ Γ4(PY,X , PY,Z) and Borel measurable function f : (A×B)2 → [0,+∞], we have∫
(A×B)2

f(y1, x1, y2, x2) dκ♯π
1,2,4
♯ α =

∫
(A×B)2

f(y2, x1, y2, x2) dα(y1, x1, y2, x2)

=

∫
A2

∫
B2

f(y2, x1, y2, x2) dαy1,y2(x1, x2)dπ
1,3
♯ α(y1, y2)

=

∫
(A×B)2

f(y1, x1, y2, x2) dαy1,y2(x1, x2)d∆♯PY (y1, y2)

=

∫
(A×B)2

f(y1, x1, y2, x2) dα.

The second claim follows by∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα =

∫
A2

∫
B2

∥(y1, x1)− (y2, x2)∥p dαy1,y2dπ
1,3
♯ α(y1, y2)

=

∫
A2

∫
B2

∥(y1, x1)− (y2, x2)∥p dαy1,y2d∆♯PY (y1, y2)

=

∫
A

∫
B2

∥(y, x1)− (y, x2)∥pdαy,ydPY (y)

=

∫
A

∫
B2

∥x1 − x2∥p dπ2,3,4♯ α. □

C Proofs of Section 4

The proof uses similar arguments as the short notes [49] and [10], which are derivations for
the dual for the "usual" Wasserstein distance. We adapt these ideas for our conditional
Wasserstein distance.

Proof of Proposition 4. Let Cb = Cb(A×B) be the space of continuous bounded functions
on A × B and S the set of nonnegative finite Borel measures α on (A × B)2 which are
supported at most on the y-diagonal. By [47, Section 1.2], we know that

sup
f,g∈Cb(A×B)

EY,X [f ] + EY,Z [g]−
∫
(A×B)2

(f + g) dα =

{
0 if α ∈ Γ(PY,X , PY,Z),

∞ otherwise.
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Using this relation, we obtain

W1,Y (PY,X , PY,Z) = inf
α∈Γ4

Y

∫
∥(y1, x1)− (y2, x2)∥ dα

= inf
α∈S

sup
f,g∈Cb

L(α, f, g)

with the Lagrangian

L(α, f, g) := EY,X [f ] + EY,Z [g] (16)

+

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥ − f(y1, x1)− g(y2, x2) dα.

By Corollary 15 below, strong duality holds true, so that we can exchange infimum and
supremum to get

W1,Y (PY,X , PY,Z) = sup
f,g∈Cb

inf
α∈S

L(α, f, g).

From this, we see that the optimal f, g have to fulfill

f(y, x1) + g(y, x2) ≤ ∥x1 − x2∥ (17)

for all y ∈ A, since otherwise the attained infimum is −∞. Therefore we have for the optimal
f, g that L(α, f, g) ≥ EY,X [f ] + EY,Z [g] and choosing the plan α = 0 ∈ S, we obtain

inf
α∈S

L(α, f, g) = EPY,X
[f ] + EPY,Z

[g]

for all (f, g) ∈ F̃ , where

F̃ := {(f, g) ∈ (Cb(A×B))2 : f(y, x1) + g(y, x2) ≤ ∥x2 − x2∥}.

Consequently, we get

W1,Y (PY,X , PY,Z) = sup
(f,g)∈F̃

EY,X [f ] + EY,Z [g]. (18)

For (f, g) ∈ F̃ , we define f̃(y, x) := infu∈B ∥x− u∥ − g(y, u). Then

f̃(y, x) = inf
u∈B

{∥x− u∥ − g(y, u)}

≤ inf
u∈B

{∥x− z∥+ ∥z − u∥ − g(y, u)}

= f̃(y, z) + ∥x− z∥
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shows the 1-Lipschitz continuity of f̃ with respect to the second component. Using (17) we
obtain that f̃(y, x) ≥ f(y, x). Since f̃(y, x) ≤ ∥x− x∥ − g(y, x), we conclude

f(y, x) ≤ f̃(y, x) ≤ −g(y, x). (19)

Thus, f̃ is bounded. As pointwise infimum over continuous functions, f̃ is upper semicontin-
uous in (y, x). In summary, we have that f̃ ∈ F . By (18) and (19), we conclude

W1,Y (PY,X , PY,Z) = sup
(f,g)∈F̃

{EY,X [f ] + EY,Z [g]} ≤ sup
h∈F

{EY,X [h]− EY,Z [h]}

and further for α ∈ Γ4
Y (PY,X , PY,Z) ⊂ Γ(PY,X , PY,Z) that

sup
h∈F

{EY,X [h]− EY,Z [h]} ≤ sup
h∈F

inf
α∈Γ4

Y

∫
(A×B)2

h(y1, x1)− h(y2, x2)dα

= sup
h∈F

inf
α∈Γ4

Y

∫
(A×B)2

h(y1, x1)− h(y1, x2)dα

≤ inf
α∈Γ4

Y

∫
(A×B)2

∥x1 − x2∥dα

= inf
α∈Γ4

Y

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥dα

=W1,Y (PY,X , PY,Z).

Thus, W1,Y (PY,X , PY,Z) = suph∈F{EY,X [h]− EY,Z [h]}, which finishes the proof. □

The proof of strong duality relies on the following minimax principle from [9, Theorem 7
Chapter 6].

Theorem 14. Let X be a convex subset of a topological vector space, and Y be a convex
subset of a vector space. Assume f : X × Y → R satisfies the following conditions:

i) For every y ∈ Y , the map x 7→ f(x, y) is lower semi continuous and convex.

ii) There exists y0 such that x 7→ f(x, y0) is inf-compact, i.e the set {x ∈ X : f(x, y0) ≤ a}
is relatively compact for each a ∈ R.

iii) For every x ∈ X, the map y → f(x, y) is convex.

Then it holds

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

Based on the theorem we can prove the desired strong duality relation.
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Corollary 15. For the Lagrangian in (16) it holds

inf
α∈S

sup
f,g∈Cb

L(α, f, g) = sup
f,g∈Cb

inf
α∈S

L(α, f, g).

Proof. We will verify the conditions in Theorem 14. Recall that S is the set of finite
nonnegative Borel measures α on (A×B)2 such that there exists a finite nonegative finite
measure β on B with π1,3♯ α = ∆♯β. Let M be the topological vector space of finite signed
Borel measures on (A×B)2 with weak convergence topology. Thus, since the pushforward
is linear on S, we conclude that S is a convex subset. Now we use Theorem 14 with X := S,
Y := Cb × Cb and f := L.

Verifying i) The map α 7→ L(α, f, g) is linear and continuous on S under the weak
convergence of measures. This follows from the fact that the integrand of α in L(α, f, g) is
in Cb((A×B)2).

Verifying iii) Note that for any α ∈ S the map (f, g) 7→ L(α, f, g) is linear in (f, g) and
therefore convex.

Verifying ii) Setting f(y, x) := −1, g(y, x) := −1 for all (y, x), we will show that for any
fixed a ∈ R, the set

Sa := {α ∈ S : L(α,−1,−1) ≤ a}

is relatively compact. Since the integrand is bounded from below by 2 and S only contains
nonnegative measures, the measures in Sa are uniformly bounded in the total variation
norm, since otherwise

L(α,−1,−1) = 2 +

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥+ 2dα

can become arbitrary large which contradicts L(α,−1,−1) ≤ a. Therefore the compactness
of A,B implies that Sa is a family of tight measures. By [11, Theorem 8.6.7], the set Sa is
relatively compact in the weak topology.

D Proofs of Section 5

Proof of Proposition 5. i) We have µt ∈ Pp,Y (Rd × Rm) for every t ∈ [0, 1] by

(π1)♯µt = π1♯ (et)♯α = ((1− t)π1 + tπ3)♯(π
1,3)♯α = ((1− t)π1 + tπ2)♯∆♯PY = PY .

For s, t ∈ [0.1], let αs,t := (es, et)♯α. By definition we see that αs,t ∈ Γ(µs, µt). Further
π1,3♯ αs,t = ∆♯PY follows from

π1,3 ◦ (es, et) =
(
(1− s)π1 + sπ2, (1− t)π1 + tπ2

)
◦ π1,3
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and consequently

π1,3♯ αs,t =
(
(1− s)π1 + sπ2, (1− t)π1 + tπ2

)
♯
π1,3♯ α

=
((
(1− s)π1 + sπ2, (1− t)π1 + tπ2

)
◦∆
)
♯
PY = ∆♯PY .

In summary, we see that αs,t ∈ Γ2,Y (µs, µt). Thus, we have

W 2
2,Y (µs, µt) ≤

∫
(Rd×Rm)2

∥(y1, x1)− (y2, x2)∥2 dαs,t

=

∫
(Rd×Rm)2

∥∥(t− s) ((x1, y1)− (x2, y2))
∥∥2 dα

= |t− s|2W 2
2,Y (µ0, µ1). (20)

Finally, the desired equality follows like in [6, Theorem 7.2.2]for 0 ≤ s ≤ t ≤ 1 by

W2,Y (µ0, µ1) ≤W2,Y (µ0, µs) +W2,Y (µs, µt) +W2,Y (µt, µ1) ≤W2,Y (µ0, µ1),

which implies equality in (20).
ii) First, we show (et)♯α = (π1, (1 − t)π2 + tπ4)♯α. For any Borel measurable function
f : Rd × Rm → [0,∞], we have indeed∫

Rd×Rm

f d(et)♯α =

∫
(Rd×Rm)2

f((1− t)y1 + ty2, (1− t)x1 + tx2) dα

=

∫
R2d

∫
R2m

f((1− t)y1 + ty2, (1− t)x1 + tx2) dαy1,y2dπ
1,3
♯ α

=

∫
Rd

∫
R2m

f((1− t)y + ty, (1− t)x1 + tx2) dαy,ydPY

=

∫
Rd×Rm

f d(π1, (1− t)π2 + tπ4)♯α.

Using the above relation, we obtain∫
Rd×Rm

f d((µt)y ⊗ PY ) =

∫
Rd

∫
Rm

f(y, x) d((1− t)π1 + tπ2)♯αy,y(x)dPY (y)

=

∫
Rd

∫
Rm×m

f(y, (1− t)x1 + tx2) dαy,y(x1, x2)dPY (y)

=

∫
R2d

∫
R2m

f(y1, (1− t)x1 + tx2) dαy1,y2(x1, x2)d∆♯PY (y1)

=

∫
(Rd×Rm)2

f(y1, (1− t)x1 + tx2)dα(y1, x1, y2, x2)

=

∫
(Rd×Rm)2

f d(et)♯α =

∫
Rd×Rm

f dµt,
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which proves that (µt)y is indeed the disintegration of µt with respect to PY . By Proposition
1 ii) we know that αy,y ∈ P(R2m) is optimal in (3) for Py-a.e. y ∈ Rd. By (9) this implies
that (µt)y is a geodesic in P2(Rm).

iii) Recall (see [6, Section 5.1]) that a sequence µk ∈ P(Rn) is said to converge weakly
to µ ∈ P(Rn) if limk→∞

∫
Rn f(x) dµk(x) =

∫
Rn f(x) dµ(x) for all f ∈ Cb(Rn). By the

dominated convergence theorem, we have for µs = (es)♯α and every f ∈ Cb(Rd × Rm) that

lim
s→t

∫
Rd×Rm

f dµs = lim
s→t

∫
(Rd×Rm)2

f((1− s)(y1, x1)− s(y2, x2)) dα

=

∫
(Rd×Rm)2

f((1− t)(y1, x1)− t(y2, x2))dα =

∫
Rd×Rm

f dµt,

which finishes the proof. □

Proof of Proposition 6. The statements i),ii) can given in [5, Lemma 17.3] (with e := et,
µ = α, v = (y2, x2)− (y1, x1), w = vt).

The continuity equation in iv) follow as in the proof of [5, Theorem 17.2].
Towards iii), note that it holds for any Borel measurable set U ⊆ (Rd ×Rm)2 and j ≤ d

that ∣∣∣∣∫
U
(y2)j − (y1)j dα

∣∣∣∣ ≤ ∫
U
|(y2)j − (y1)j | dα ≤

∫
π1,3(U)

|(y2)j − (y1)j | dπ1,3♯ α

=

∫
π1,3(U)

|(y2)j − (y1)j |d∆♯PY

=

∫
∆−1(π1,3(U))

|yj − yj | dPY = 0.

Thus, for any Borel measurable set V ⊆ Rd × Rm and j ≤ d, we obtain by Part i) that∫
V
(vt)j dµt =

∫
V

d(et)♯((y2)j − (y1)j)α) =

∫
e−1
t (V )

((y2)j − (y1)j) dα = 0.

This implies (vt(y, x))j = 0 for µt-a.e. (y, x) ∈ Rd × Rm. □

For the proof of Proposition 8 we need the following proposition. Since we have not
found a proof in the literature, we give it for convenience.

Proposition 16. Let µ0, µ1 ∈ (P2(Rm),W2) which fulfill one of the following conditions:

i) µ0, µ1 are empirical measures with the same number of points and T is an optimal
map with associated optimal plan α ∈ Γ2(µ0, µ1), or
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ii) µ0, µ1 both admit densities ρ0, ρ1 which are supported on open, convex, bounded,
connected subsets Ω0,Ω1 ⊂ Rm on which they are bounded away from 0 and ∞.
Assume further that ρ0 ∈ C2(Ω0), ρ1 ∈ C2(Ω1). Let T be the optimal Monge map with
associated optimal plan α ∈ Γ2(µ0, µ1).

Let µt = (et)♯α and vt ∈ L2
µt
(Rm,Rm) with vtµt = (et)♯(x2 − x1)α which then satisfy the

continuity equation. Then there exists a solution of the flow equation

d

dt
ϕt = vt(ϕt),

ϕ0(x) = x,

such that µt = ϕt,♯µ0. Furthermore, we have

vt(ϕt(x)) = T (x)− x

for µ0-a.e. x ∈ Rm.

Proof. i): Let µ0 = 1
n

∑n
i=1 δai , µ1 = 1

n

∑n
i=1 δbi . The optimal plan is then α = 1

n

∑n
i=1 δai,T (ai).

Using et,♯(x2 − x1)α = vtµt and µt =
1
n

∑n
i=1 δTt(ai) for Tt(x) = (1 − t)x + tT (x) we can

conclude
vt((1− t)ai + tT (ai)) = T (ai)− ai.

Furthermore, we have

d

dt
Tt(ai) = T (ai)− ai = vt(Tt(ai)),

and thus ϕt := Tt fulfills the flow equation and vt(ϕt(x)) = T (x)− x for µ0-a.e. x ∈ Rm.

ii): First, note that by [5, (16.12)] if there exists an invertible Monge map T then the
geodesic between µ0, µ1 fulfills the continuity equation with vector field

vt = (T − Id) ◦ T−1
t

where Tt = (1− t)Id + tT . By Caffarelli’s regularity Theorem [51, Theorem 12.5, ii)], we
get the existence of a unique Monge map T ∈ C1(Ω1) mapping µ0 to µ1 and U ∈ C1(Ω2)
mapping µ1 to µ0. By [5, Theorem 5.2] we know that T ◦U = Id on Ω2 and U ◦T = Id on Ω2

and thus T : Ω1 → Ω2 is a C1 diffeomorphism and in particular det(∇T ) ̸= 0 on Ω1. Since
we know by [6, Proposition 6.2.12] that ∇T is positive definite µ1 a.e. on Ω1 we can deduce
from det(∇T ) ̸= 0 that ∇T is positive definite on Ω1. Consequently for Tt = (1− t)Id + tT
we have that ∇Tt = (1 − t)Id + t∇T is positive definite on Ω1 and thus the image of Ω1

under Tt is open. Furthermore, we know by the proof of [6, Proposition 6.2.12] that Tt as a
Monge map from µ0 to µt is injective on all points where ∇Tt is positive definite, which is
on the whole Ω1, and thus Tt is a diffeomorphism onto its image. Consequently, it possesses
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a C1 inverse T−1
t : Tt(Ω1) → Ω1. Then vt := (T − Id) ◦ T−1

t : Tt(Ω1) → Rm we have that vt
is measurable since it is continuous on Tt(Ω1) and the same is true for ϕt = Tt : Ω1 → Rm.
Furthermore, we have

d

dt
ϕt(x) = T (x)− x = (T − Id) ◦ T−1

t (Tt(x)) = vt(ϕt(x)).

Since we can set ϕt(x) = x on Rm \ Ω1 and vt(x) = 0 for x ∈ Rm \ Tt(Ω1), we obtain the
claim.

Proof of Proposition 8. We will use the results from Proposition 16 and stack them with
respect to yi. The main obstruction is the measurability of the resulting objects which we
address in the following.
For et((y1, x1), (y2, x2)) = (1− t)(y1, x1)+ t(y2, x2) and ẽt(x1, x2) = (1− t)x1 + tx2, it holds∫

Rd×Rm

f(y, x) d(et)♯((y2, x2)− (y1, x1)α) =

∫
(Rd×Rm)2

f ◦ et((y2, x2)− (y1, x1)) dα

=
1

n

n∑
i=1

∫
R2m

f ◦ et((yi, x1), (yi, x2)) dαyi

=
1

n

n∑
i=1

∫
R2m

f((yi, ẽt(x1, x2))) (0, x2 − x1)dαyi

=
1

n

n∑
i=1

∫
R2m

f((yi, ẽt(x1, x2))) (0, x2 − x1)dαyi

and thus (et)♯((y2, x2)− (y1, x1)α) =
1
n

∑n
i=1 δyi ⊗ (0, (ẽt)♯((x2 − x1)αyi)). Combining with

Proposition 6, we conclude

vtµt =
1

n

n∑
i=1

δyi ⊗ (0, (ẽt)♯((x2 − x1)αyi)) .

Furthermore, we have

vtµt =

∫
Rd

vtdµt,ydPY =
1

n

n∑
i=1

δyi ⊗ vt(yi, ·)µt,yi ,

which implies (ẽt)♯ ((x2 − x1)αyi) = π2 ◦ (vt(yi, ·))µt,yi for all i ∈ {1, . . . , n}. By Proposition
16 we know that there exists ṽt,yi ∈ L2(µt,yi) with (ẽt)♯ (x2 − x1))αyi) = ṽt,yi(·)µt,yi such

34



that there exists a µ0,yi-measurable solution ϕt,yi of

d

dt
ϕt,yi = ṽt,yi (ϕt,yi)

ϕ0,yi(x) = x

for µ0,yi a.e. x ∈ Rm and µt,yi = (ϕt,yi)♯µ0,yi . Since PY is a finite empirical measure
also ϕt : Rd × Rm → Rd × Rm defined on (yi, x) as (yi, ϕt,yi(x)) is µt measurable and
ṽt : (yi, x) 7→ (0, ṽt,yi(x)) is in L2

µt
and coincides with vt as element of L2

µt
. The latter is

true since they coincide on {yi} × Rm up to a µt,yi null set Ni because of

π2 ◦ (vt(yi, ·))µt,yi = (ẽt)♯ ((x2 − x1)αyi) = ṽt,yiµt,yi .

Thus they coincide up to the set

∪n
i=1{yi} × Ni ∪ {(y, x) ∈ Rd+m : y /∈ {y1, . . . , yn}}

which is a µt null set. Hence

d

dt
ϕt = ṽt(ϕt)

for µ0-a.e. (y, x) ∈ Rd × Rm. Furthermore

(ϕt)♯µ0(a× b) =

∫
(y,ϕt,y(x))∈a×b

dµ0 =

∫
y∈a

∫
ϕt,y(x)∈b

dµ0,y(x)dPY (y)

=

∫
a

∫
b
dϕt,y,♯µ0,ydPY (y) =

∫
a

∫
b
dµt,ydPY (y)

= µt(a× b)

shows µt = (ϕt)♯µ0. The last claim follows from

ṽt((yi, ϕt,yi(x)) = (0, Tyi(x)− x)

for µ0,yi-a.e. x ∈ Rd. □

E Proofs of Section 6

Proof of Proposition 10. Denote by αopt the optimal transport plan associated to the
conditional Wasserstein metric Wp,Y . Since it is only Y diagonally supported, we have that

∥(y1, x1)− (y2, x2)∥p = dpβ((y1, x1), (y2, x2))
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for αopt a.e. (y1, x1, y2, x2) ∈ (A×B)2. Thus, for an optimal plan α for Wp,β , we conclude

Wp,Y (µ0, µ1)
p =

∫
(A×B)2

∥(y1, x1)− (y2, x2)∥p dα =

∫
(A×B)2

dpβ((y1, x1), (y2, x2)) dα

≥
∫
(A×B)2

dpβ((y1, x1), (y2, x2)) dα

≥
∫
B2

∥x1 − x2∥p dπ2,4♯ α+ β

∫
A2

∥y1 − y2∥p dπ1,3♯ α

≥ β

∫
A2

∥y1 − y2∥p dπ1,3♯ α

and thus the claim. □

In order to proof Proposition 12 we need the following lemma which is a variant of [6,
Proposition 7.1.3].

Lemma 17. Let β > 0, let A ⊂ Rd, B ⊂ Rm be compact sets and let µn → µ, νn → ν in
(P2(A×B),W2). Then there exists a subsequence of optimal plans αnk

for W2,dβ (µnk
, νnk

)

and an optimal plan α ∈ P2

(
(A×B)2

)
for W2,dβ (µ, ν) such that αnk

→ α with respect to(
(P2

(
(A×B))2

)
,W2

)
.

Proof. Let f : A × B →
√
βA × B be defined by (y, x) 7→ (

√
βy, x). Then for µ1, µ2 ∈

P2(A×B) we have that W2,dβ (µ1, µ2) =W2(f♯µ1, f♯µ2) since there is a bijection of couplings

α 7→ (f, f)♯α (21)

and we can compute∫
(
A×

√
(β)B

)2
∥(y2, x2)− (y1, x2)∥2d(f, f)♯α =

∫
(A×B)2

β∥y2 − y1∥2 + ∥x2 − x1∥dα

which implies that optimal couplings are mapped to optimal couplings. Furthermore

W 2
2 (f♯µ1, f♯µ2) =W 2

2,dβ
(µ1, µ2) ≤ βW 2

2 (µ1, µ2) (22)

W 2
2 (µ1, µ2) ≤W 2

2,dβ
(µ1, µ2) =W 2

2 (f♯µ1, f♯µ2)

and thus also f♯µn → f♯µ, f♯νn → f♯ν in W2. Then we can use [6, Proposition 7.1.3] to
guarantee the existence of a subsequence of optimal plans α̃nk

for W2(f♯µnk
, f♯νnk

) such that
α̃nk

→ α̃ for an optimal plan α̃ for W2(f♯µ, f♯ν). Thus by (21) there exists a subsequence of
optimal plans αnk

for W2,dβ (µn, νn) such that αnk
→ α for an optimal plan α for W2,dβ (µ, ν).

Note that the W2 convergence of αnk
→ α follows from a computation similar to (22) for

(f, f)♯ instead of f♯.
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Proof of Proposition 12. Since we are in the compact setting the concept of weak
and W2 convergence coincide which we will use without mentioning in the following [51].
Now by [6, Proposition 7.1.3] and Lemma 17, there exists a subsequence of αn converging
in W2 to an optimal plan αβk for W2,dβk

(µ, ν). Choose nk monotonely increasing such
that W2(α

βk , αnk
) < 1

k . We know by [29, Proposition 3.11] that αβk
→ α in W2 for an

optimal plan α ∈ Γ4
Y (µ, ν) for W2,Y (µ, ν). Thus, for ϵ > 0, there exists a k such that

1
k +W2(α

βk , α) < ϵ and we obtain

W2(αnk
, α) ≤W2(αnk

, αβk) +W2(α
βk , α) ≤ 1

k
+W2(α

βk , α) < ϵ

which proves the claim. □

F Benamou-Brenier like formula for Wp,Y

Theorem 18. Let µ1, µ2 ∈ P2,Y (Rd×Rm) and denote by A(µ1, µ2) the set of tuples (µt, vt),
where

i) µt ∈ Pp,Y is a continuous curve,

ii) There exists a family of disintegrations µt = (µt)y ⊗ PY such that (µt)y is continuous
PY -a.e.,

iii) vt is a Borel vector field fulfilling
∫ 1
0 ∥vt∥L2(µt)dt <∞ and (vt)j = 0 for all j ≤ d for

µt a.e. (y, x) ∈ Rd+m,

iv) µt fulfills the continuity equation in the sense of distributions for vt.

Then we have that

Wp,Y (µ1, µ2) = min
(µt,vt)∈A(µ1,µ2)

{∫ 1

0
∥vt∥2L2(µt)

dt

}
In order to prove Theorem 18, we need the following auxiliary lemma.

Lemma 19. Let µt ∈ Pp,Y (Rd × Rm) be a solution of the continuity equation with vt such
that (vt)j = 0 for j ≤ d and

∫ 1
0

∫
Rd+m ∥vt∥dµtdt <∞. Then the disintegration (µt)y satisfies

the continuity equation for vt,y for PY -a.e. y ∈ Rd.

Proof. Let ϕ ∈ C∞
c ((0, 1)×Rm) be a test function and let g ∈ C∞

c (Rd). Then for ψ(t, y, x) =
g(y)ϕ(t, x) we have that ψ ∈ C∞

c ((0, 1)×Rd+m) is a valid test function which we can insert
into the continuity equation, use the theorem of Fubini to change the order of the integrals
and obtain ∫

Rd

g(y)

∫ 1

0

∫
Rm

∂tϕ(x, t) + ⟨vt,y,∇xϕ⟩d(µt)y(x)dPY (y) = 0
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Since g was arbitrary we obtain that
∫ 1
0

∫
Rm ∂tϕ(x, t) + ⟨vt,y,∇xϕ⟩d(µt)y(x) = 0 for PY a.e.

y ∈ Rd. Since C∞
c ((0, 1)× Rd) contains a dense countable subset in the ∥ · ∥∞ topology we

only need to test on countably ϕ we can conclude that (µt)y is a solution of the continuity
equation for vt,y for PY a.e. y ∈ Rd.

Proof of Theorem 18. First we show ” ≤ ”. By Proposition 19, we have that (µt)y
fulfills the continuity equation for vt,x1 PY -a.e. and by assumption (µt)y is weakly continuous.
Thus we have that W2((µ1)y, (µ2)y) ≤

∫ 1
0

∫
Rm ∥vt,y∥2(µt)ydt. Now we get

W2,Y (µ1, µ2) =

∫
Rd

Wp((µ1)y, (µ2)y) dPY ≤
∫
Rn

∫ 1

0

∫
Rm

∥vt,y∥2d(µt)y dtdPY

=

∫ 1

0

∫
Rd

∫
Rm

∥vt,y∥2d(µt)y dPY dt =

∫ 1

0

∫
Rd

∫
Rm

∥vt∥2d(µt)y dPY dt

=

∫ 1

0
∥vt∥2L2(µt)

dt,

where we used that
∫
∥vt,y∥2dµt =

∫
∥vt∥2dµt, since (vt)j = 0 for all j ≤ n for µt a.e.

(y, x) ∈ Rd+m.
The direction ” ≥ ” follows from Proposition 6 and Lemma 5ii). □

G Implementation Details

We use a setup similar to [50], using the time dependent U-Net architecture from [42] which
are trained using Adam [32]. As in [50] we clip the gradient norm to 1 and use exponential
moving averaging with a decay of 0.9999. The differences are we use a constant learning
rate of 2e-4, 256 model channels and no dropout. We train using 50k target samples for
300 epochs using a batch size of 500 for the minibatch OT couplings and a batch size of
100 for training the networks. We set the same random seed during training to be able
to compare runs for different sources of couplings. The conditional coupling plans are
calculated using the Python Optimal Transport package [20]. For inference simulate the
corresponding ODEs using the torchiffeq [15] package. To evaluate our results, we use the
Fréchet inception distance (FID) [28]1. We compute the distance on 50k training samples,
for which we generate 50k samples given the same labels as the training samples.

Further generated samples for the best performing method i.e β = 100:

1We use the implementation from https://github.com/mseitzer/pytorch-fid.
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Figure 5: Uncurated samples sorted by class labels of the OT Bayesian Flow matching
method with β = 100.
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