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Abstract

This paper presents the concept of an equivalence relation between the set of optimal control problems. By leveraging this
concept, we show that the boundary of the reachability set can be constructed by the solutions of time optimal problems.
Alongside, a more generalized equivalence theorem is presented together. The findings facilitate the use of solution structures
from a certain class of optimal control problems to address problems in corresponding equivalent classes. As a byproduct,
we state and prove the construction methods of the reachability sets of three–dimensional curves with prescribed curvature
bound. The findings are twofold: Firstly, we prove that any boundary point of the reachability set, with the terminal direction
taken into account, can be accessed via curves of H, CSC, CCC, or their respective subsegments, where H denotes a helicoidal
arc, C a circular arc with maximum curvature, and S a straight segment. Secondly, we show that any boundary point of
the reachability set, without considering the terminal direction, can be accessed by curves of CC, CS, or their respective
subsegments. These findings extend the developments presented in literature regarding planar curves, or Dubins car dynamics,
into spatial curves in R3. For higher dimensions, we confirm that the problem of identifying the reachability set of curvature
bounded paths subsumes the well–known Markov–Dubins problem. These advancements in understanding the reachability of
curvature bounded paths in R3 hold significant practical implications, particularly in the contexts of mission planning problems
and time optimal guidance.
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1 Introduction

The analysis of reachability, or attainability, of dynami-
cal systems is crucial in a wide range of applications. This
includes solving optimal control problems (OCPs) (Mc-
Gregor et al. (1999)) and collision–avoidance path plan-
ning strategies (Althoff (2010), Bae et al. (2024)). With
such background, various studies have explored methods
for constructing the boundary of the reachability sets of
curvature–bounded curves (paths) in two–dimensional
(2D) plane (Wong and Korsak (1974), Cockayne and
Hall (1975), Patsko et al. (2003)). These methods lever-
age the foundational work of Lee and Markus (1967)
and the principles of optimal control theory, equipped
with the Pontryagin Maximum Principle (PMP). The
emphasis on the curvature–bounded paths is due to the
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fact that the dynamics of planar curves with a prescribed
curvature bound, also known as the Dubins path (Du-
bins (1957)), represents numerous practical applications.
These include scenarios involving fixed–wing unmanned
aerial vehicles (UAVs) (Lin and Saripalli (2014)), mis-
sile guidance problems (Zheng et al. (2021)), and au-
tonomous underwater vehicles (AUVs) (Scibilia et al.
(2012)).

For a more efficient analysis of the boundaries of reach-
ability sets, studies in Lygeros (2004) and McGregor et
al. (1999) have investigated the connections between the
problem of determining the boundary of a reachability
set and OCPs of optimizing the terminal state. This pa-
per aims to generalize these connections to derive more
generalized conclusions.

To further elucidate and expand the connections be-
tween the specific classes of problems related to reach-
ability, this paper introduces the concept of an equiva-
lent set of OCPs, grounded in PMP. Starting from the
developments of Lee and Markus (1967) on the bound-
ary points of the reachability set, we prove that the set
of solutions of OCPs, which aim to optimize the ter-
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minal state (i.e., end–point optimization problems), is
equivalent–up to PMP–to the set of solutions for time
optimal problems with a fixed terminal state. This find-
ing offers new insights into the reachability set. Subse-
quently, we present and prove a more generalized the-
orem that articulates the equivalence relation between
certain classes of endpoint optimization problems.

While the applications of our findings are not con-
fined to Dubins path, to illustrate the implications of
our theorem, we develop a construction method of the
boundary of the reachability set for three–dimensional
(3D) curvature–bounded paths. Two types of reacha-
bility problems are considered: one that considers the
terminal directions and one that does not, thereby ex-
tending the results presented in Cockayne and Hall
(1975) and Patsko et al. (2003) into 3D, respectively.
The minimum time problem was initially solved using
PMP in Sussmann (1995). Building upon the findings
of Sussmann (1995), we also address the maximum time
problem, which in turn aids in developing the method-
ology for constructing the boundary of the reachability
set. We conclude that the boundary points of the reach-
ability set can be accessed via H, CCC, CSC, or their
subsegments when considering the terminal directions.
Without regard to the terminal directions, the bound-
ary points can be reached by CC, CS, or their respective
subsegments. The developments naturally suggest that
the problem of determining the boundary of the reach-
ability set for curvature–bounded paths in general di-
mensions encompasses the well–known Markov–Dubins
problem, which questions the structure of the shortest
curvature–bounded paths in general dimensions.

The contributions of this paper are summarized as fol-
lows: Firstly, we identify the equivalence relationship be-
tween endpoint optimization problems and time opti-
mal problems. This allows for the application of exist-
ing literatures on time optimal problems to address the
challenges in identifying the boundaries of reachability
sets, and vice versa. As a result, our understanding and
knowledge base regarding the solutions of both sets of
problems are considerably broadened. The generalized
theorem offers further insight by responding to a per-
tinent question: why are time optimal problems, rather
than other types of problems, associated with reachabil-
ity? Secondly, by utilizing the existing literature on the
Markov–Dubins problem in R3, the construction meth-
ods of reachability sets of curvature bounded paths in
R2 are extended to R3. This advancement further car-
ries substantial practical implications. The prior devel-
opment of construction methods of reachability set of
2D curves (Cockayne and Hall (1975) and Patsko et
al. (2003)) has enabled numerous subsequent advance-
ments in the field of mission planning and time opti-
mal guidance as seen in Chen et al. (2023), Zheng et
al. (2021), Buzikov and Galyaev (2021), and Buzikov
and Galyaev (2022). As such, the construction methods
of reachability set of 3D curves this paper presents are

poised to inspire numerous future studies by extending
the existing literature from 2D to 3D scenarios. For the
sake of accessibility and coherence, a more detailed elab-
oration on this issue will be deferred until the presenta-
tion of our main theorem.

The remaining sections of this paper are organized as
follows. Section 2 introduces the concept of equivalent
set of OCPs and states the equivalence theorem reveal-
ing the connections between time optimal problems and
reachability set. Section 3 utilizes the developments in
Section 2 to expand the developments of Cockayne and
Hall (1975) and Patsko et al. (2003) into 3D cases. Sec-
tion 4 presents the concluding remarks of this paper.

2 The Equivalence Theorem

Consider the process in Rnx

ẋ = f(x,u), x(0) = x0 (1)

with continuous f and ∂f
∂x , where x ∈ Rnx and u ∈

Rnu . x0 ∈ Rnx is assumed to be the initial value. The
admissible control set Ω is considered arbitrary. LetF be
the family of all measurable control inputs u in Ω which
the response of the above dynamical system is bounded.
For tf ∈ R>0, the Reachability Set G(tf ) is defined as
below.

Definition 1

G(tf ) ≡ {x(tf ) : u ∈ F} (2)

It was further proved in Lee and Markus (1967) the be-
low theorem.

Theorem 1 (Lee and Markus (1967)) Let u∗(t) ∈ F
have a response x∗(t) such that x∗(tf ) ∈ bd(G(tf )). Then
there exists a nontrivial adjoint system p∗(t) such that

ṗ∗(t) = −p∗(t)T
∂f

∂x
(x∗(t),u∗(t)) (3)

H(p∗(t),x∗(t),u∗(t)) = max
u∈Ω

H(p∗(t),x∗(t),u(t))

for a.e. t
(4)

where H(p,x,u) ≡ pT f(x,u).

The ‘almost everywhere’ condition is abbreviated as a.e.
t. Theorem 1 allows for determining the boundary of the
reachability set by aggregating all the endpoints of the
solutions satisfying conditions Eqs. (3) and (4). To offer
an intuitive understanding of the theorem, we propose
the concept of equivalent set of OCPs throughout this
section. Given terminal time tf > 0, let us begin by
considering the below OCP, P0Φ, where the function
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Φ : Rnx 7→ R is presumed to have a nonzero constant
gradient in any given direction. (i.e. a nonconstant affine
function of x)

[P0Φ] : maximize

J = Φ(x (tf )) (5)

subject to

ẋ (t) = f(x(t),u(t)), x(0) = x0 (6)

The optimal control problem, P0Φ, is an endpoint op-
timizing problem, with a fixed final time tf . We will
further refer to such kind of OCP as the reachability–
type of OCP. The PMP conditions of optimality of the
above problem are as follows (Hartl et al. (1995)):
The solution pair {x∗,u∗} satisfies the PMP if
∃{p∗0≥0

,p∗}, nontrivial, such that

(1) Costate differential: ṗ∗(t) = −p∗(t)T ∂f
∂x (x

∗(t),u∗(t))
(2) Pointwise maximum: H(p∗0,p

∗(t),x∗(t),u∗(t)) =
max
u∈Ω

H(p∗0,p
∗(t),x∗(t),u(t)) for a.e. t

(3) Transversality: p∗(tf ) = p∗0∇xΦ

where the Hamiltonian is defined analogously by
H(p0,p,x,u) ≡ pT f(x,u). From hereon, any pair
{x∗,u∗} that satisfies the PMP condition of an OCP
is referred as a PMP sense solution. Now, the set of
reachability–type OCPs and its solution set are defined
as follows.

Definition 2

A(tf ) ≡ {P0Φ : ∇xΦ ∈ Rnx \ {0}}
A∗(tf ) ≡ {{x∗,u∗} : PMP sense solutions of A(tf )}

Proposition 1 For ∀tf > 0,A∗(tf ) and the solution set
of Eqs. (3) and (4) on [0, tf ] are identical.

Proof. It is evident that the costate differential and
the pointwise maximum conditions of P0Φ are pre-
cisely Eqs. (3) and (4). For some solution {x∗,u∗,p∗}
of Eqs. (3) and (4), the nontriviality condition of p∗

directly implies the nontriviality of the pair {p∗, p0}
for any p0 ∈ R. Hence, ∃p0 ∈ R and ∇xΦ ∈ Rnx \ {0}
such that p∗(tf ) = p0∇xΦ, where nontriviality of the
pair {p∗, p0} is guaranteed. Therefore, any solution
of Eqs. (3) and (4) is a PMP sense solution of some
P0Φ ∈ A(tf ).

Conversely, suppose the set of functions {x∗,u∗,p∗, p∗0}
solves the PMP conditions of some P0Φ ∈ A(tf ). If
p∗ ≡ 0, it follows p∗(tf ) = 0. Then, since ∇xΦ ̸= 0, the
transversality condition implies p∗0 = 0. This contradicts

the nontriviality condition. Hence, p∗ ̸≡ 0 and the pair
{x∗,u∗,p∗} solves Eqs. (3) and (4) nontrivially. 2

Proposition 1 indicates that the boundary of the reacha-
bility set G(tf ) can be obtained by collecting all the end-
points of PMP sense solutions of the reachability–type
OCPs. This is intuitive in a sense that the problem P0Φ

measures how far(close) an endpoint can be located in
the direction of ∇xΦ. Collecting the endpoints that are
located at the maximum (minimum) extent to a certain
direction would form the boundary of the reachability
set. To further expand the idea of these observations, let
us commence by defining the following OCP which final
time is considered as a cost. Since the final time is free,
the optimal solution is denoted as {x∗,u∗, t∗f}. The in-
tegrand ϕ ̸= 0 ∈ R is set to be positive for maximum
time and negative for minimum time problems.

[P1xf
] : maximize

J =

∫ tf

0

ϕdt (7)

subject to

ẋ (t) = f(x(t),u(t)),

x(0) = x0, x(tf ) = xf ,

final time tf is free

(8)

Then, the PMP conditions of P1xf
are as follows:

A triplet {x∗,u∗, t∗f} satisfies the PMP if ∃{p∗0≥0
,p∗},

nontrivial, such that

(1) Costate differential: ṗ∗(t) = −p∗(t)T ∂f
∂x (x

∗(t),u∗(t))
(2) Pointwise maximum: H(p∗0,p

∗(t),x∗(t),u∗(t)) =
max
u∈Ω

H(p∗0,p
∗(t),x∗(t),u(t)) for a.e. t

(3) H(p∗0,p
∗(t),x∗(t),u∗(t)) = 0 for ∀t ∈ [0, t∗f ]

where the Hamiltonian is defined as H(p0,p,x,u) ≡
pT f(x,u) + p0ϕ. Similar to the reachability–type prob-
lems, the set of time optimal problems and its solution
set are defined as follows.

Definition 3

B(tf ) ≡ {P1xf
: xf ∈ Rnx}

B∗(tf ) ≡ {{x∗,u∗} : PMP sense solutions of B(tf )

such that t∗f = tf}

Under these definitions, the following Theorem 2 states
the equivalence between the set of OCPs.

3



Theorem 2 A∗(tf ) = B∗(tf ) for ∀tf > 0.

Proof. First, suppose {x∗,u∗,p∗, p∗0} solves the PMP
condition of an OCP in A(tf ). Choose x∗

B = x∗, u∗
B =

u∗, and p∗
B = p∗ on the interval [0, tf ]. Then the costate

differential and pointwise maximum conditions of P1xf

are readily satisfied. If p∗ ≡ 0, then the transversality
condition implies p∗(T ) = p∗0∇xΦ = 0. Since ∇xΦ is
nonzero, it follows that p∗0 = 0, which contradicts the
nontriviality condition. Consequently, the adjoint vari-
able p∗ is nontrivial alone and the nontriviality con-
dition of P1xf

is readily met by the choice p∗
B = p∗

as well. By the Beltrami identity, it follows that the
Hamiltonian < p∗, f >=< p∗

B , f > is constant over
time. Then the existence of p∗0B ≥ 0 and ϕ ̸= 0 such
that p∗0Bϕ = − < p∗

B , f >∈ R is obvious. Therefore,
{x∗

B ,u
∗
B ,p

∗
B , p

∗
0B} solves the PMP condition of an OCP

in B(tf ) and hence, {x∗
B ,u

∗
B} = {x∗,u∗} ∈ B∗(tf ).

Conversely, suppose {x∗,u∗,p∗, p∗0} solves the PMP
condition of an OCP in B(tf ). Then define x∗

A = x∗,
u∗
A = u∗, and p∗

A = p∗ on [0, tf ]. Then the costate
differential and pointwise maximum conditions of P0Φ

are readily satisfied. Similar to the previous case, if
p∗ ≡ 0, then the everywhere vanishing Hamiltonian
condition and ϕ ̸= 0 implies p∗0 = 0, contradicting
the nontriviality condition. Hence, the nontriviality
condition is readily met by the choice p∗

A = p∗. The
remaining condition is the transversality condition,
p∗
A(tf ) = p∗0A∇xΦ. However, existence of p∗0A ≥ 0

and ∇xΦ ∈ Rnx \ {0} such that p∗
A(tf ) = p∗0A∇xΦ is

trivial. Consequently, such choice of {x∗
A,u

∗
A,p

∗
A, p

∗
0A}

solves the PMP condition of an OCP in A(tf ). Hence,
{x∗

A,u
∗
A} = {x∗,u∗} ∈ A∗(tf ). 2

Theorem 2 states that the set of time optimal problems
and reachability–type problems are equivalent up to
PMP conditions. It is evident that this connection is
an equivalence relation. This generalizes the one–sided
inclusion relationship identified in Lewis (2006) that
time optimal trajectories lie on the boundary of the
reachability set. The inclusion in the converse direction,
asserting that any trajectory reaching the boundary of
the reachability set is a time optimal trajectory, was
made possible by relaxing the definition of boundary of
the reachability set into PMP sense. Consequently, this
enables to utilize the existing results on the time optimal
problems to obtain useful conclusions on reachability
sets. To further expand the idea of equivalence relation
on set of OCPs, let us introduce the definitions below.

Definition 4 Suppose I ⊂ {1, 2, . . . nx} is nonempty
and χi ∈ R are given for ∀i ∈ I. Consider the set of
functions from Rnx to R, S = {Φ : Φ(x) = cTx, c ̸= 0}
where c = [c1 c2 . . . cnx ]

T ∈ Rnx . Subsets SI and SIC

are defined as SI = {ΦI ∈ S : ci = 0, i ∈ IC} and

SIC = {ΦIC ∈ S : ci = 0, i ∈ I}, respectively. For each
ΦI ∈ SI and xf ∈ Rnx , define an OCP P2(ΦI ,xf ) as
follows:

[P2(ΦI ,xf )] : maximize

J = ΦI (x (1)) (9)

subject to

ẋ (t) = f(x(t),u(t)),

x(0) = x0,

xi(1) = xfi , i ∈ IC

(10)

Similarly, for each ΦIC ∈ SIC , the complementary
reachability problem is defined as follows:

[P3(ΦIC )] : maximize

J = ΦIC (x (1)) (11)

subject to

ẋ (t) = f(x(t),u(t)),

x(0) = x0,

xi(1) = χi, i ∈ I
(12)

Now, define the sets of OCPs and their solution sets as
below.

CI(1) ≡ {P2(ΦI ,xf ) : ΦI ∈ SI ,xf ∈ Rnx}

CIC (1) ≡ {P3(ΦIC ) : ΦIC ∈ SIC}
C∗

I(1) ≡ {{x∗,u∗} : PMP sense solutions of CI(1)

such that x∗i (1) = χi,∀i ∈ I}
C∗

IC (1) ≡ {{x∗,u∗} : PMP sense solutions of CIC (1)}

The terminal times are set to be 1 without loss of gener-
ality. This is because the free final time case can be cast
into the form of fixed final time problem, by normalizing
the final time, tf , to 1 and including the final time tf as
a new control variable.

Theorem 3 For every {χi}i∈I and nonempty I ⊂
{1, 2, . . . nx}, C∗

I(1) = C∗
IC (1).

Proof. The necessary conditions of optimality(PMP)
of P2(ΦI ,xf ) are as follows:
The solution pair {x∗,u∗} satisfies the PMP if
∃{p∗0≥0

,β∗,p∗}, nontrivial, such that

(1) Costate differential: ṗ∗(t) = −p∗(t)T ∂f
∂x (x

∗(t),u∗(t))
(2) Pointwisemaximum:H(p∗0,β

∗,p∗(t),x∗(t),u∗(t)) =
max
u∈Ω

H(p∗0,β
∗,p∗(t),x∗(t),u(t)) for a.e. t

4



(3) Transversality: p∗(tf ) = p∗0∇xΦI +∇xb
T
Iβ

∗

where the Hamiltonian is defined as H(p0,β,p,x,u) ≡
pT f(x,u) and bI : Rnx 7→ R|I| such that bIi(x) = xi.
Let us also define bIC in a straightforward manner.
p∗ ≡ 0 and the transversality condition together implies

p∗0 = 0 and β∗ = 0 as ∇xΦI /∈ col
(
∇xb

T
I

)
is nonzero

and ∇xb
T
I has full column rank. Therefore, the nontriv-

iality condition must be satisfied by p∗ alone. The PMP
conditions of P3(ΦIC ) have analogous costate differen-
tial and pointwise maximum conditions. The only dis-
tinction resides in the transversality condition, which is
in the form: p∗

IC (tf ) = p∗0,IC∇xΦIC +∇xb
T
ICβ

∗
IC .

Now, suppose the pair {x∗,u∗,p∗, p∗0,β
∗} solves the

above PMP condition of P2(ΦI ,xf ). Then define
x∗
IC = x∗, u∗

IC = u∗, p∗
IC = p∗ on [0, 1]. Then the

costate differential, pointwise maximum, and nontrivi-
ality conditions of P3(ΦIC ) are satisfied. Consequently,

p∗0,IC∇xΦIC + ∇xb
T
ICβ

∗
IC can span the entire Rnx if

the choice of p∗0,IC ∈ R, ΦIC ∈ SIC , and β∗
IC ∈ R|I

C |
are arbitrary. Hence, the transversality condition can
be met as well.

The converse direction is straightforward, as p∗0∇xΦI +

∇xb
T
Iβ

∗ can span the entire Rnx in an analogous man-
ner. 2

In Theorem 3, P2(ΦI ,xf ) corresponds to the general-
ized time optimal problem, where the state variables as-
sociated with I represent semantic time for the free final
time problem, P1xf

. On the other hand, the state vari-

ables associated with IC correspond to semantic state
variables. P3(ΦIC ) corresponds to the reachability type
problem with semantic terminal time fixed to {χi}i∈I .
The following remark articulates the essential insight
of Theorem 2, elucidating why it was the time optimal
problems but not other optimal control problems that
were associated with the reachability problems.

Remark 1 Time optimal problems fall within the cate-
gory of one–dimensional reachability–type problems, and
a similar structural symmetry is observed within the com-
plementary reachability problems as well. Therefore, the
conclusion of Theorem 2 is directforward by recognizing
this complementary relationship among the classes of op-
timal control problems. Theorem 3 allows to utilize the
symmetry in more general dimensions.

Throughout the subsequent section, we present the ma-
jor implication of Theorem 2.

3 Reachability Analysis of Curvature Bounded
Paths in 3D

The well–known Markov–Dubins problem questions the
structure of the shortest path between the two points in
Rn, with prescribed initial and terminal directions, and
curvature bound. (See Sussmann (1995) for the detailed
problem settings.) The 2D case was studied in Dubins
(1957), concluding that the minimal time trajectories
are curves of CSC, CCC, or their subsegments. Subse-
quently, the 3D case was then solved in Sussmann (1995)
by utilizing the tools of differential geometric control
theory and PMP.

Apart from the time optimal problems, there had been
several attempts to obtain the reachability set of pla-
nar curves, as outlined in Cockayne and Hall (1975)
and Wong and Korsak (1974). The main focus was to
find the reachable region in geometric coordinates, with-
out consideration of the terminal directions. Hence, the
reachability set of interest was living in R2. The reach-
ability problem of planar curves with consideration of
the terminal directions involves an additional degree of
freedom, the direction, and therefore the reachability set
lives in R3, although the curves of interest is planar.
Such reachability problem, namely the 3D reachability
set problem, was finally solved in Patsko et al. (2003) by
utilizing Theorem 1.

These foundational studies facilitated subsequent devel-
opment in elongation of curvature bounded paths (Chen
et al. (2023)), which is essential in mission planning of
nonholonomic–constrained vehicles in practice. More-
over, these studies enabled analytical description of the
reachability sets (Patsko and Fedotov (2020)). This an-
alytical framework subsequently led to the advancement
of multiple guidance laws as detailed in Zheng et al.
(2021), Buzikov and Galyaev (2021), and Buzikov and
Galyaev (2022).

Acknowledging these impacts of reachability analysis on
subsequent topics and practical applications, we expand
the results of Cockayne and Hall (1975) and Patsko et al.
(2003) into 3D curves. The developments are grounded
on our Theorem 2 and the conclusions of Sussmann
(1995). In particular, we address the problem of deter-
mining the boundary of the reachability set for 3D curves
with prescribed curvature bound, both with and with-
out consideration of the terminal directions. The results
mirror similar conclusions as those delineated in Cock-
ayne and Hall (1975) and Patsko et al. (2003), but with
3D curves. Let us commence with the following remarks.

Remark 2 Our Theorem 2 suggests that the solution to
the reachability problem also solves the time optimal prob-
lem up to PMP sense. Indeed, although we do not pro-
vide a detailed exposition here, the conclusions of Dubins
(1957) on the 2DMarkov–Dubins problem, originally de-
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rived through geometric arguments, can be deduced using
the arguments developed in Patsko et al. (2003).

Remark 3 The solution to the Markov–Dubins problem
via the PMP can be readily adapted to solve the maximum
time problem by simply reversing the sign of the objec-
tive function. Therefore, once the PMP sense solutions
of the Markov–Dubins problem is known, Theorem 2 in-
dicates that we automatically know the boundary of the
reachability set as well. This development for 3D curves
is outlined in detail throughout this section.

3.1 Reachability Set Considering Terminal Direction

The Markov-Dubins problem in R3, or the minimum
time problem, was addressed in Sussmann (1995), pri-
marily through the application of PMP. According to
Theorem 2, this enables us to leverage the conclusions
drawn therein to address reachability problems. How-
ever, it is important to note that the conclusions of Suss-
mann (1995) were not solely based on PMP, but on two
key approaches: first, the application of PMP conditions
equipped with differential geometric control theoretic
approach, second, the relatively straightforward obser-
vation that any trajectory containing a cycle cannot con-
stitute a minimum time trajectory. Let us refer to the
latter argument by cycle argument. Theorem 2 allows
us to use the arguments derived from the PMP condi-
tions, however, not the cycle argument. Under these ob-
servations, the construction method of the boundary of
reachability sets for 3D curvature–bounded paths con-
sidering terminal direction is presented in the following
Theorem 4.

Theorem 4 Consider the helicoidal arcs that have con-
stant curvature of 1 and torsion τ , which satisfies the be-
low ordinary differential equation (ODE) for some con-
stant ζ ∈ R.

τ̈ =
3τ̇2

2τ
− 2τ3 + 2τ − ζτ

√
|τ | (13)

Let us denote the class of these helicoidal arcs scaled
by the maximum curvature bound as H. Any boundary
point of the reachability set with consideration of terminal
directions can be reached by the curves belonging to the
following classes: H, CCC, CSC, or their subsegments.
Moreover, curves of CCC or CC required to reach the
boundary points are limited to planar curves.

Proof. Theorem 1 in Sussmann (1995) states that the
minimum time trajectories are of H with ζ ≥ 0, CCC,
CSC, or their respective subsegments. A key difference
between the differential geometric control theory ap-
proach adopted in the proof of Theorem 1 in Sussmann
(1995) and the conventional PMP approach lies in the

application of the nontriviality condition. This condi-
tion is applied to the covector on a manifold, rather than
adhering to the simplistic interpretation viewing the ad-
joint system as residing in the ambient space.

During the proof of Theorem 2, it was proved that the
nontriviality condition must be fulfilled by the adjoint
system alone, irrespective of p0. As a result, the covec-
tor version of the nontriviality condition as discussed
in Sussmann (1995) is also applicable to our problem.
This is because the distinction of the nontriviality con-
dition stems from the way the dynamics are formulated
on a manifold, not the specific formulation of the OCPs.
Therefore, Theorem 2 implies that it suffices to solve the
PMP conditions of the time optimal problems to obtain
the boundary of the reachability set.

For the proof of this theorem and subsequent ones, we
will adopt the notations used during the proof of Theo-
rem 1 in Sussmann (1995). The counterpart of the vari-
able ν in Sussmann (1995) in our previous notation is
p0ϕ. The proof of Theorem 1 in Sussmann (1995) in-
volves a case study analysis following the problem formu-
lation via PMP. The structure of this case study is sum-
marized in Fig. 1. Throughout the case study analysis,

Fig. 1. Case Study Analysis in the Proof of Theorem 1
in Sussmann (1995)

four cases employed the cycle argument. First is when
C = 0, L ̸= ∅, and ∥λ∥ < ν, where it was concluded that
γ is a circular arc of length < 2π. Without the cycle ar-
gument, γ is a circular arc without such length bounds.
Second is when C = 0, L ̸= ∅, ∥λ∥ ≥ ν, and Q = ∅. Sim-
ilar to the previous case, without the cycle argument, it
follows that γ is a circular arc without length bounds.
Third is when C = 0, L ̸= ∅, ∥λ∥ ≥ ν, Q ̸= ∅, and
∥λ∥ = ν. Here, Ĵ was proven to be empty because any

J ∈ Ĵ must correspond to a cycle. However, detaching
the cycle and attaching it to any point on the trajectory
does not alter the overall length, as well as the initial
and terminal positions and directions. As a result, any
cycles corresponding to J ∈ Ĵ can be attached to ei-
ther the initial or terminal points. This modification ei-
ther results in an auxiliary trajectory that violates the
PMP conditions, or simplifies the overall trajectory to
CSC or its subsegments. Such statement is available due
to the subtlety between the statements of Theorem 1
and 2. Theorem 1 tells that every trajectory reaching
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the boundary of the reachability set must satisfy the
maximum principle, while Theorem 2 only states that
for every boundary points of the reachability set, there
exists a trajectory belonging to the stated classes that
reaches the point. Last is when C = 0, L ̸= ∅, ∥λ∥ ≥ ν,
Q ̸= ∅, and ∥λ∥ > ν. The most definitive conclusion
that can be made solely based on PMP conditions in
this case is as follows: γ is a planar curve constitutes a
finite concatenation of circular arcs, all with the same
length 2α ≥ π, except possibly the first and last ones,
with lengths ≤ 2α. Thus, the planar argument of this
theorem is proved here for the minimum time case. Let
us further denote such classes by multiple Cs. Further
conclusion that the minimum time paths must be CC
or CCC was derived from the geometric arguments per-
taining to planar situations, proved in Dubins (1957).
Hence, it remains to show that the curves of multiple Cs
with more than three components can be disregarded for
construction of the boundary of reachability sets. How-
ever, we will postpone this proof until the conclusion of
our discussion on the maximum time problem. The con-
clusion so far is that the endpoints of the PMP sense
solutions of minimum time problem can be reached by
H, CSC, multiple Cs, or their subsegments.

To solve the maximum time problem, it suffices to only
change the sign of the variable ν to be nonpositive. Then,
the developments until Eq. (27) of Sussmann (1995) are
identical. The subsequent part is the case study of C ̸= 0
and C = 0. When C ̸= 0, Eq. (26) of Sussmann (1995)
can be cast into Eq. (13) by means of elementary calcula-
tions, where ζ = 2ν√

|C|
≤ 0. The only difference between

Eq. (13) of our paper and Eq. (6) in Sussmann (1995) is
the nonpositivity of ζ instead of nonnegativity. Hence,
the existence theory for the solutions of ODE can be ap-
plied analogously. Resultingly, the first case when C ̸= 0
reduces to a similar result with the minimum time solu-
tion, an helicoidal arc.

When C = 0, α is characterized by A cosα = −ν where
ν ≤ 0. Then from the sign of ν, we see that 2α ≤ π. For
the first subcase when L = ∅, γ is a straight line by anal-
ogous arguments in Sussmann (1995). When L ̸= ∅, non-
positivity of ν indicates that it suffices to only consider
the case of ∥λ∥ ≥ ν. If Q = ∅, then W is nonvanishing
and hence γ is a circular arc. It is worth emphasizing that
the absence of the cycle argument allows such arc to have
length ≥ 2π. If Q ̸= ∅, the cases ∥λ∥ > ν and ∥λ∥ = ν
are considered separately. When ∥λ∥ > ν, analogous
steps imply that γ is of multiple Cs, but with lengths of
the middle arcs equal to 2α ≤ π. Again, analogous ap-
proach used in the minimum time problem case can be
applied to prove the planar argument here. If ∥λ∥ = ν,
nonpositivity of ν implies that λ = 0 and ν = 0. Conse-
quently, φ ≡ 0 by definition. Then the second equation
in Eq. (15) of Sussmann (1995) implies that W ≡ 0,
which contradicts the first inequality, ∥λ∥ + ∥W∥ > 0.
Therefore, there exists no nontrivial solution in this case.

The conclusion so far is that the PMP sense solutions of
maximum time problem are of H, S, or multiple Cs.

Now, suppose γ is of multiple Cs with more than three
segments, denoted by C1C2C3 . . . Cn−1Cn. Then C2 and
C3 have same lengths. Then it follows that the sum of the
lengths of C1 and C3 are larger than C2. Consequently,
if the middle arcs are of length < 2π, Lemma 2 of Patsko
et al. (2003) indicates that there exists an auxiliary tra-
jectory that violates the PMP. Therefore, the endpoints
of such trajectories cannot lie on the boundary of the
reachability set. If the middle arcs are of lengths ≥ 2π,
consist of full cycles, then the circle C2 can be attached
to an arbitrary point on the circle C3 while maintaining
the initial and terminal positions and directions, and the
overall length of the trajectory. This auxiliary trajectory
violates the PMP, that the middle arcs must have same
lengths. Analogous argument was used to prove Lemma
3 in Patsko et al. (2003). This completes the proof. 2

3.1.1 Reachability Set Without Considering Terminal
Direction

In this subsection, we present the construction method
of the reachability set boundary without considering the
terminal direction. The results coincide with the 2D case
studied in Cockayne and Hall (1975).

Theorem 5 Any boundary point of the reachability
set without consideration of terminal directions can be
reached by the curves belonging to the following classes:
CS, CC, or their subsegments. Moreover, curves of CC
required to reach the boundary points are limited to
planar curves.

Proof. Consideration of the reachability only on x but
not on y implies that ∇Φ = [(·), (·), (·), 0, 0, 0]T in
P0Φ, where (·) are unspecified values. The components
corresponding to y are considered zero, as the cost de-
pendency on y, or the terminal direction is not consid-
ered. Then from the transversality condition of P0Φ, it
follows µ(b) = 0. Consequently, W = 0 at b by defi-
nition, and hence C = ψ∥W∥ = 0. Therefore, H can
be disregarded when constructing the boundary of the
reachability set. It remains to show that CSC or CCC
curves can be reduced to CS or CC.

When C = 0, a C1C2C3 curve can be a PMP sense so-
lution in two cases. First is when L ̸= ∅, ∥λ∥ > ν, and
Q ̸= ∅. Consequently, W = 0 at b further implies b /∈ L
and b ∈ Q. Since Q is a finite set as proved in Sussmann
(1995), C2 and C3 have same length 2α. Then Lemma
2 of Patsko et al. (2003) can be applied to construct an
auxiliary trajectory, as in the previous proof of Theo-
rem 4 in our paper. Second is when L ̸= ∅, ∥λ∥ = ν,
and Q ̸= ∅. In this case, for the overall trajectory to
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be a C1C2C3 curve, Ĵ must be nonempty and K must
consist of isolated points. Then from ∥λ∥ = ν, it follows
cosα = − ν

∥λ∥ = −1 which implies that C2 correspond-

ing to J ∈ Ĵ must have length of a cycle, 2α = 2π, or
multiple cycles. As a result, the winding direction of C2

can be reversed without altering the initial and termi-
nal positions and directions, as well as maintaining the
overall length of the trajectory. Then the overall curve
is reduced to C.

Similarly when C = 0, a CSC curve can be a PMP sense
solution only if L ̸= ∅, ∥λ∥ = ν, andQ ̸= ∅. Then similar
to the previous case of CCC, the last C corresponding to
the interval J ∈ J̃ must have length 2α = 2π of a cycle,
or of multiple cycles. Consequently, the last C can be
attached to the first C while preserving the initial and
terminal positions and directions, and the overall length
of the trajectory. Then the overall curve is reduced to
CS. 2

4 Conclusion

This paper introduces the concept of equivalence rela-
tion on set of optimal control problems based on the Pon-
tryagin maximum principle. Utilizing this concept, it is
proved that the boundary points of the reachability set
can be accessed by time optimal solutions. As a byprod-
uct, the construction method of reachability sets for 3D
curvature bounded paths are presented as well. The re-
sults generalize the existing literatures on 2D. As the
foundational studies on identifying the reachability set
of planar curves did, such generalization into 3D curves
is anticipated to enable various advancements in guid-
ance laws and mission planning methods.
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