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Abstract

We consider a Tamari interval of size n (i.e., a pair of Dyck paths which are comparable for the
Tamari relation) chosen uniformly at random. We show that the height of a uniformly chosen vertex on
the upper or lower path scales as n3/4, and has an explicit limit law. By the Bernardi-Bonichon bijection,
this result also describes the height of points in the canonical Schnyder trees of a uniform random plane
triangulation of size n.

The exact solution of the model is based on polynomial equations with one and two catalytic variables.
To prove the convergence from the exact solution, we use a version of moment pumping based on D-
finiteness, which is essentially automatic and should apply to many other models. We are not sure to
have seen this simple trick used before.

It would be interesting to study the universality of this convergence for decomposition trees associated
to positive Bousquet-Mélou–Jehanne equations.

1 Introduction and main results
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Figure 1: A Dyck path of size 7, with a marked down step followed by an up-step. The path
obtained by flipping this down-step with the shortest excursion following it is declared to be larger.
The Tamari lattice is the partial order generated by all such relations.

For n ≥ 0, a Dyck path of size n is a lattice path made of n up-steps and n-down steps, starting (and
ending) at height 0, and whose height stays always nonnegative. See Figure 1. Dyck paths of size n are in
immediate bijection with well-formed parenthesis words of length 2n, and they are counted by the Catalan
number

Cat(n) :=
1

n+ 1

(
2n

n

)
.

The set Dn of Dyck paths of size n can be endowed with several interesting (partial) orders. Maybe the most
interesting and natural one is the Tamari partial order, whose covering relation is nothing but the edge-flip
once interpreted through the classical bijection between Dyck paths and triangulations of a polygon. The
Tamari partial order is a lattice, whose covering relation can be described as follows: Let P be a Dyck path,
and let d be a down-step in P , followed by an up-step. Let e be the shortest excursion following d in P (an
excursion is a path staying higher than its starting point except for its last point). Then the Dyck path
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Q obtained from P by exchanging d and e is declared larger than P for the Tamari order. The reflexive
transitive closure of this relation defines the Tamari lattice. See Figure 1.

The Tamari lattice plays an important role in many facets of algebraic combinatorics and discrete math-
ematics. To name a few: its Hasse-diagram is the 1-skeleton of a famous polytope called the associahe-
dron, see e.g. [MHPS12, PSZ23]; determining its diameter has been a longstanding problem solved only
recently [Pou14], despite mysterious connections to hyperbolic geometry [STT88]; and, quite excitingly, de-
termining the mixing time on this graph is still an open problem despite recent partial results [MT99, EF23].

In this paper we are interested in yet another connection, related to Tamari intervals. Following the
standard combinatorics terminology, we define an interval of size n in the Tamari lattice as a pair (P,Q) ∈
(Dn)

2 such that P ≤ Q (for the Tamari partial order). We let In be the set of Tamari intervals of size n. In
a famous paper, Chapoton [Cha07] proved that the number of elements of In was given by

|In| =
2

n(n+ 1)

(
4n+ 1

n− 1

)
, (1)

which is also the number of rooted planar triangulations1 of size n [Tut62]. An elegant, and deep, direct
bijective proof has been given by Bernardi and Bonichon in [BB09]. Since Chapoton’s discovery, the analogy
between Tamari intervals and planar maps has been much developped. One the one hand, the enumeration of
Tamari intervals can be refined (or weighted), giving rise to product formulas [BMCPR13] surprisingly similar
to the ones counting planar constellations [BMS00], suggesting the existence of an underlying object maybe
as rich as the GUE 1-matrix model, with a potentially integrable structure, which is yet to be discovered.
On the other hand, many different variants of Tamari intervals have been introduced and enumerated. Their
enumeration exhibits a universality phenomenon very similar to the one existing in the world of planar maps,
and in fact many of these variants are equi-enumerated with some well-known family of planar maps. The
understanding of this phenomenon is still very partial, see [Fan21] and references therein. More recently,
non-lattice variants of the Tamari partial order have been introduced for which the similarity to maps is
even more stunning [BMC].

1.1 Main results

Although large random planar maps have been intensely studied in the last decades (see for example, among
hundreds of references, [CS04, BDFG03, LG19], it seems that the behaviour of random Tamari intervals has
not been studied (and we are not sure to know why). It is however natural to ask this question:

What does a large uniformly random Tamari interval look like?

We are not aware of any results in this direction. In this paper we give a first answer to this question. If
P ∈ Dn and i ∈ [0..2n], we write P (i) for the height of the point of P lying at abscissa i. We show:

Theorem 1.1. Let (P,Q) be a Tamari interval of size n, chosen uniformly at random in In. Let I ∈ [0..2n]
be an integer chosen uniformly at random, and let Qn(I) be the height of the point of the upper path Q lying
at abscissa I. Then we have the convergence in law

Qn(I)

n3/4
−→ Z = (XY )1/4 (2)

when n goes to infinity, where X ∼ β( 13 ,
1
6 ) and Y ∼ Γ( 23 ,

1
2 ) are independent random variables. In fact, we

have the convergence of all moments: for integer k ≥ 0,

E

[(
Qn(I)

n3/4

)k
]
−→

√
3 · 2− k

4−1

√
π

Γ( 14k + 1
3 )Γ(

1
4k + 2

3 )

Γ( 14k + 1
2 )

. (3)

1defined as embedded planar graphs with only faces of degree 3. These objects are much more complex than the triangula-
tions of a single polygon Dyck paths are in bijection with.
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Figure 2: Left: A uniform random Tamari interval (Pn, Qn) of size n = 65536 generated with a
python code generously provided by Wenjie Fang. Right: plot of Qn(i)/Pn(i).

We recall that the random variables β(a, b) and Γ(ℓ, θ) have respective densities Γ(a+b)
Γ(a)Γ(b)x

a−1(1 − x)b−1

on (0, 1) and xk−1e−x/θ

Γ(k)θk on R+. Their respective k-th moments are Γ(a+b)Γ(a+k)
Γ(a)Γ(a+b+k) , and

θkΓ(l+k)
Γ(ℓ) , so it is direct

to check that (3) with k substituted by 4k is indeed equal to the k-th moment of XY .
Interestingly, the random variable Z4 already appears as a limit law in a (seemingly unrelated) physics

context [PS02]. This reference also gives a closed form for the density (but does not identify it as a product
of a Gamma and a Beta variable)2.

One can also address the case of the lower path, at the price of more technical, and maybe less standard,
methods. We obtain the following theorem.

Theorem 1.2. Let (P,Q) be a Tamari interval of size n, chosen uniformly at random in In. Let I ∈ [0..2n]
be an integer chosen uniformly at random, and let Pn(I) be the height of the point of the lower path P lying
at abscissa I. Then we have the convergence in law

Pn(I)

n3/4
−→ 1

3
Z. (4)

when n goes to infinity, where Z is an in Theorem 1.1. Again, we have the convergence of all moments.

In view of Theorems 1.1 and 1.2, it is natural to suspect that

Pn(I) =
1

3
Qn(I) + o(Qn(I)), (5)

with a little-o in probability, i.e. that, roughly speaking, the lower path is almost a third of the lower path,
asymptotically almost surely and almost everywhere. See Figure 2 which shows a simulation for n = 105,
which supports this conjecture.

Unfortunately our methods based on functional equations make it hard to track the joint law of (Pn(I), Qn(I))
so we cannot prove (5). However, we can prove a result of similar strength for a slight variant of the problem.
For a Dyck path P of size n and an integer j ∈ [n], we let P̃ (j) be the initial height of the j-th up-step of P .
It turns out that we can write a functional equation for the generating function corresponding to the joint
law of (P̃n(J), Q̃n(J)) where J is uniform on [1, n]. We can prove:

Theorem 1.3. Let J be uniform on [n], and (P,Q) be uniform on In. Then one has, when n goes to infinity,

E[(Q̃n(J)− 3P̃n(J))
2] = O(n). (6)

2I thank Philippe Biane for help identifying the variable from its moments, and Thomas Budzinski for suggesting to look for
them in the OEIS, which is how I found the reference [PS02], see the sequence OEIS:A064352. Note that using the duplication

formula the R.H.S. of (3) can also be written
Γ(3k/4)
Γ(k/2)

2−1+k/431−3k/4, see [Cha], and see also (42) for yet another expression.
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In particular, we have, in probability,

P̃n(J) =
1

3
Q̃n(J) + o(Q̃n(J)). (7)

Note that if one is interested only in the individual convergence, studying Pn(I) and P̃n(J) does not
make much of a difference, thanks the following well-known lemma:

Lemma 1.4. Let Pn be a fixed Dyck path of size n. Then it is possible to couple a uniform variable J ∈ [n]
and a uniform variable I ∈ [0, 2n− 1] such that

|Pn(I)− P̃n(J)| ≤ 1.

Proof. First sample J ∈ [n] uniformly. Let I1 be the initial abscissa of the J-th up step of P , and let I2 be
the initial abscissa of the down-step that matches this step, viewing P as a parenthesis word. Then let I
be equal to I1 or I2 with probability 1

2 . It is clear that I is uniform on [0, 2n− 1] – the converse operation
consists in considering the step starting at I, which is part of a pair of up and down steps matched together
in the underlying parenthesis word, and letting J be the index of the up-step.

From the lemma and the fact that the case I = 2n has a negligible contribution to moments, the individual
convergences (in distribution and of all moments)

P̃n(J)

n3/4
→ Z

3
,

Q̃n(J)

n3/4
→ Z

are equivalent respectively to the one of Pn(I) and Qn(I). Note however that this coupling argument does
not apply to their joints laws, which is why (5) and (7) are a priori incomparable statements. However we
could deduce one from the other if we had some control on the regularity of the paths in their natural scaling
limit.

As we said, Bernardi and Bonichon [BB09] provided an explicit bijection between intervals in In and
rooted plane triangulations of size n. Such a triangulation can always be equipped in a canonical way with a
realizer or Schnyder wood, which is a partition of its internal edges into three subsets (say red, blue, green),
such that the edges of each subset form a tree, with certain conditions. See Figure 3. In the Bernardi-
Bonichon bijection, if the interval (P,Q) is in correspondence with the triangulation T , then P encodes the
blue tree in the canonical Schnyder wood of T . Therefore we have:

Corollary 1.5. Let Tn be a rooted plane triangulation of size n, chosen uniformly at random, and let

(T
(1)
n , T

(2)
n , T

(3)
n ) be its canonical Schnyder wood, that is to say, the one associated to its minimal orientation

in the sense of [BB09]. Let V be a uniform random internal vertex of Tn and let H
(i)
n be the height of the

vertex V in the tree T
(i)
n . Then, for any i ∈ [3] we have

H
(i)
n

n3/4
−→ 1

3
Z,

where Z is in as in Theorem (1.1).

Proof. The Bernardi-Bonichon bijection implies thatH
(1)
n has the same law as 1+P̃n(J) in previous notation.

This implies the result for i = 1, and by symmetry for i ∈ [3].

The proofs Theorems 1.1, 1.2, and 1.3 each have two parts: the first one consists in solving ”exactly”
the model, by obtaining an explicit algebraic equation for the generating function f(t, s) of Tamari intervals
having a marked abscissa, with control on the size n, and the random variable we want to control. This
requires to solve an equation with catalytic variables, which is specific to each case. The second part is to
deduce the asymptotic of moments from there, which is a problem of analytic combinatorics in 2 variables,
for which we need to find good tools. We describe below a simple method that will do the trick, and that
we believe is of independent interest.
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Figure 3: A figure taken from [BB09] (thanks to the authors). A rooted planar triangulation
equipped with its minimal Schnyder-wood, and its image (a Tamari interval) by the Bernardi-
Bonichon bijection. The lower path is nothing but the contour function of the blue tree.

1.2 A method to prove the convergence of moments from an algebraic equation

Assume that we have a combinatorial class A equipped with a size function | · | and an integer statistic µ,
and consider the random variable Xn = µ(An) where An is an object of size n in A chosen uniformly at
random. Consider the generating function

f(t, s) =
∑
n≥0

∑
p∈Z

an,pt
nsp =

∑
n≥0

∑
p∈Z

anP[Xn = p]tnsp, (8)

with an,p = |{α ∈ A, |α| = n, µ(α) = p}|, and an = |{α ∈ A, |α| = n}|.
Let us assume that the generating function f(t, s) is algebraic, i.e. there exists a nontrivial polynomial

A such that
A(f(t, s), t, s) = 0.

For k ≥ 0 we consider the generating function of factorial moments

f (k) ≡ f (k)(t) :=

((
d

ds

)k

f(t, s)

)∣∣∣∣∣
s=1

=
∑
n≥0

anE[(Xn)(k)]t
n,

with (Xn)(k) := Xn(Xn−1) . . . (Xn−k+1). To study the convergence of the random variable Xn, a standard
way called the method of moments consists in studying the asymptotics for fixed k of its k-th moment
E[(Xn)

k] (or factorial moment E[(Xn)(k)]). In our setting, this is equivalent to studying the asymptotics of

the coefficient [tn]f (k)(t), for fixed k. Now, since all the functions f (k)(t) are algebraic, they are amenable
to singularity analysis in the sense of [FO90, FS09], as we will recall now.

In what follows, for a function g and α, c ∈ R, ρ > 0 we write

g(t)∼̂c(1− t/ρ)α , t → ρ,

if g(t), as an analytic function, has no singularity on the closed circle of radius ρ except maybe at t = ρ, and
if g(t) has a Puiseux expansion of the form

g(t) = P (t) + c(1− t/ρ)α + o((1− t/ρ)α)

near t = ρ, where P is a polynomial. Let us now recall the classical transfer theorem, slightly reformulated3.
Note that we allow c = 0 in the statement, and also α ∈ N provided c = 0.

Proposition 1.6 (Transfer theorem for algebraic functions [FO90, FS09]). Let g(t) =
∑

n≥0 gnt
n be an

algebraic function, with radius of convergence ρ > 0, and assume that t = ρ is the unique singularity of g of
minimal modulus. Assume that g(t) has a singular expansion of the form

g(t)∼̂c(1− t/ρ)α , t → ρ, (9)

3We will consider only the case of a unique singularity of minimal modulus. See Remark 1.9
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with c ∈ R and α ∈ R, and c = 0 if α ∈ N. Then the coefficients gn = [tn]g(t) satisfy the asymptotics, when
n → ∞,

gn
n−1−αρ−n

→ c

Γ(−α)
.

Of course, when α ∈ N and c = 0 we interpret the right-hand side as zero.
Thanks to the transfer theorem, to estimate moments we only need to determine the expansion (9) for

each of the functions g = f (k). Here comes the main trick: since the function f(t, s) is algebraic, it is
also D-finite, i.e. the coefficients of its expansion in any variable satisfy a linear equation with polynomial
coefficients (see e.g. [Com64] or [Sta80]). We will apply this to the coefficients of the expansion4 in the
variable r such that s = r + 1. These coefficients are, up to a factorial factor, the functions f (k), i.e.
[rk]f(t, 1 + r) = 1

k!f
(k)(t). Therefore, we can write a recurrence formula of the form:

L∑
d=0

Pd(t, k)
f (k−d)(t)

(k − d)!
= 0 , k ≥ L, (10)

with L ≥ 1 and P0, . . . , PL being bivariate polynomials over Q. In practice, it will be useful to allow ourselves
to work under some change of variable (of the variable t), and for this reason we will more generally assume
that our algebraic function f satisfies (10) with P0, . . . , PL being polynomials in k whose coefficients are
algebraic functions of t (this will be the case in our main applications of the method).

To sum up, one can compute the f (k) by induction, using

f (k)(t) =

L∑
d=1

hd(t, k)f
(k−d)(t) , k ≥ L, (11)

with hd(t, k) = − k!Pd(t,k)
(k−d)!P0(t,k)

, which is a rational function in k whose coefficients are algebraic functions of t.

This leads us to:

Method 1.7 (D-finite trick for moment pumping). Given a bivariate algebraic function f , obtain a linear
equation for its derivatives f (k) of the form (11) using standard computer algebra tools. Then, use it to
determine the asymptotic of f (k) near t = ρ by induction on k. Deduce the asymptotics of [tn]f (k) using the
transfer theorem (Proposition 1.6).

The idea of this method is quite general, but of course one has to be careful to carry the analytical
details in the induction (check that no unwanted singularity appears, for example; or be careful about
multiple dominant singularities). Let us give a simple framework of application in the case of a unique
dominant singularity in the next theorem, whose proof is essentially immediate.

Theorem 1.8 (D-finite trick for moment pumping, an instance). Let f(t, s) be a generating function of the
form (8), and assume that f(t, s) is an algebraic function. Then f is D-finite in the variable s− 1, therefore
it satisfies an equation of the form (11), with L ≥ 1 and where for d ∈ [L], hd(t, k) is a rational function of
k whose coefficients are algebraic functions of t. Assume that:

(i) There is β > 0 such that for each d ∈ [L] ,

hd(t, k)(1− t/ρ)βd → ad(k) , t → ρ,

with possibly ad(k) = 0. Moreover, for k ≥ 1, hd(t, k) has no other singularity than ρ on the closed disk of
radius ρ.

(ii) ”Initial conditions”: there is α ∈ R \ N and numbers cℓ, with c0 > 0, such that

f (ℓ)∼̂cℓ(1− t/ρ)α−βℓ

4The function f(t, 1+r) is algebraic, therefore it is D-finite in the variable r. No notion of convergence is required to say this.
Of course, one has to be careful about which branch of this function one considers when performing that actual calculations.
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for all 0 ≤ ℓ ≤ ℓ0, with ℓ0 := L+max(⌊α/β⌋,−1). Moreover, cℓ = 0 if α− βℓ ∈ N.
Then one has f (k)∼̂ck(1− t/ρ)α−βk for any k ≥ 0, where ck is given by the recurrence formula

ck =

L∑
d=1

ad(k)ck−d , k > ℓ0, (12)

and the values of ck for k ≤ ℓ0 are given by the initial conditions. Moreover, for each k ≥ 0,

E[(Xn)
k]

nβk
→ ckΓ(−α)

c0Γ(βk − α)
. (13)

Proof. We will show by induction that f (ℓ)(t) has a unique singularity of minimal modulus at t = ρ, with
f (ℓ) = cℓ(1− t/ρ)α−βℓ + o((1− t/ρ)α−βℓ), for every ℓ ≥ 0 with ℓ > α

β .

For α
β < ℓ ≤ ℓ0, this is true by the initial conditions (note that α − βℓ < 0 for these values of ℓ, so the

polynomial part in the definition of the symbol ∼̂ has a subdominating contribution).
Now let k ≥ ℓ0+1 and assume the induction hypothesis for α

β < ℓ < k. Note that for all d ∈ [L], we have

k − d ≥ ℓ0 + 1− L ≥ ⌊α
β
⌋+ 1 >

α

β

we can thus use the induction hypothesis for all the functions f (k−d) appearing in the right-hand side of (11).
Using (11), the hypothesis on the singularity of hd, and induction, it then immediately follows that

f (k) = ck(1− t/ρ)α−βk + o((1− t/ρ)α−βk)

with ck given by (12), and moreover that f (k) has a unique dominant singularity at ρ. This concludes the
induction, and shows that we have f (ℓ)∼̂cℓ(1− t/ρ)α−βℓ for all ℓ ≥ 0.

By the transfer theorem, this implies that [tn]f (ℓ) ∼ cℓ
Γ(βℓ−α)n

βℓ−α−1ρ−n. Since E[(Xn)(k)] =
[tn]f(k)

[tn]f(0) , we

obtain from the transfer theorem that

E[(Xn)(k)]

nβk
→ ckΓ(−α)

c0Γ(βk − α)
.

Since β > 0, the asymptotics (13) follows from the triangular relation between moments and factorial
moments.

Remark 1.9. We do not try to provide minimal hypotheses in this theorem: our goal is to emphasize the
method, that seems applicable to various situations, including some D-finite non algebraic functions. The
only requirement for the method to work is that dominant singularities of f (k) are ”not too hard” to track
by induction from the linear recurrence formula (11). Note also that there is no direct objection to trying to
apply the method for more than bi-variate examples, i.e. for the asymptotic of joint moments of variables

of the form EXk1
n,1 . . . X

kj

n,j for fixed k1, . . . , kj when n → ∞, provided the corresponding (j + 1)-variate
generating function is algebraic.

Remark 1.10. We insist that Theorem 1.8 if applicable, is essentially automatic. Indeed, computer algebra
softwares (e.g. the Maple package gfun [SZ94]) are able to provide a recurrence of the form (11) automatically
from an algebraic equation for f . Also, since all the f (k) are algebraic with a computable algebraic equation,
it is in principle automatic to check the initial conditions required in the theorem for 0 ≤ ℓ ≤ ℓ0. All this
will be illustrated by the proofs of Theorems 1.1-1.2.

Example 1.11. As a simple (and somewhat artificial) application, let us rediscover the well-known limit
law for the height Hn of a uniform random point on a uniform random Dyck path of size n. Using standard
methods (e.g. last passage decompositions), the corresponding generating function is found to be

f(t, s) =
E(t)2

1− stE(t)2
, E(t) = 1 + tE(t)2.

7



Using a computer algebra system, it is immediate to eliminate E(t) to find an algebraic equation for f(t, s).
We then find automatically a linear recurrence equation for its derivatives at s = 1. The Maple package
gfun [SZ94] gives us:

f (k)(t)

k!
= − f (k−1)

(k − 1)!
+

t

1− 4t

f (k−2)

(k − 2)!
= 0 , k ≥ 2. (14)

This recurrence (multiplied by k!) fits in the framework of the theorem with L = 2, a1 = 0, a2 = 1
4k(k − 1),

and β = 1/2. It is then easy to check explicitely the initial conditions, which hold with α = − 1
2 , thus ℓ0 = 1,

and with c0 = 2 and c1 = 1. The recurrence (12) becomes ck = 1
4k(k− 1)ck−2, so that ck = 21−kk!, and (13)

immediately gives:
E[(Hn)

k]

nk/2
→

2−kk!Γ( 12 )

Γ(k2 + 1
2 )

= Γ

(
k

2
+ 1

)
.

This implies thatHn/
√
n converges in distribution to a random variable, which we recognize from its moments

as a Rayleigh law of parameter σ = 1/
√
2 (with density x

σ2 e
−x2/(2σ2) on (0,∞)).

In passing, we remark that we can also apply the theorem with a value of β larger than 1/2. In this case
get ad ≡ 0, and ck = 0 for k > 0. We conclude that all positive of moments of Hn/n

β go to zero – which is
true but weaker than the statement we obtained with the optimal value β = 1/2.

To conclude this section, let us recall that using D-finiteness to compute the coefficients of algebraic
functions in the univariate case is a well-known trick, that goes back at least to Comtet [Com64] and is
extensively used in the context of computer algebra. Here we are only recycling this idea in the context of
bivariate asymptotics.

1.3 Comments, questions, and plan of the paper

When we brought Theorem 1.1 to the attention of Nicolas Curien, he mentioned a book in preparation (joint
with Jean Bertoin and Armand Riera) containing (among other things) general convergence results for a
wide class of decomposition trees including the peeling trees of random planar maps and critical parking
trees. These results will apply as well to Tamari intervals and describe the scaling limit of the (whole) upper
path Q in terms of a certain conditionned self similar Markov tree which they introduce. It is not clear
however that these methods lead to the explicit form of the limit law for the typical height obtained in this
paper. In the other direction, we suspect that, all calculations made, the methods of our paper should enable
to obtain the limit law of the height of a uniform random point in other models in this class, for example
critical random Cayley parking trees (but have not tried to do so). Note that the limiting first moment
of the height of a random point for Cayley parking trees was already computed from generating functions
in [CC23].

A related question is to ask for the universality of the random variable Z1/4 appearing in our asymptotic
theorems. It is now well understood that bivariate generating functions F (t, x) satisfying non-linear poly-
nomial equations with one catalytic variable give rise to asymptotic counting exponents of the form n−5/2,
under natural positivity hypotheses for the equation (see [DNY22]). To each such equation, one can naturally
associate a decomposition tree, that roughly speaking tracks the recursive calculation of coefficients of the
function F (t, x). It is natural to expect that the random variable Z1/4 and the scaling exponent n3/4 are
universal in this context, possibly with slightly more restrictive hypotheses. We leave this question open –
studying the behaviour of factorial moments by induction from the equation as we do here could be a way
to try to prove this, but combining the estimates of [DNY22] with the aforementioned probabilistic methods
could be more direct.

The paper is organized as follows. In Section 2 we solve the exact counting problem which underlies
Theorem 1.1 by studying the classical equation with one catalytic variable for Tamari intervals, which we
enrich by an extra variable marking the height of a marked point. See Theorem 2.3.
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(P,Q)
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P2
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1P
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1

(P1, Q1) (P2, Q2)

Q2

Figure 4: The classical decomposition of Tamari intervals. To the left, an interval of size n + 1,
where v1, v2 are the first contacts of the lower and upper path, respectively. The decomposition
gives rises, to the right, to two Tamari intervals of total size n, the first of which has a marked
contact, called here ṽ. This construction is bijective.

In Section 3 we solve the exact counting problem which underlies Theorem 1.2 which deals with the
height of the lower path. See Theorem 3.2. Our proof is more technical, as we only manage to write an
equation with two catalytic variables for this problem (enriched, once again, by an extra variable for the
height). It turns out that this equation with two catalytic variables is not too hard to solve, as it can be
viewed as two nested equations with one catalytic variable each, which can be solved by standard methods.

In Section 4 we solve the exact counting problem which underlies Theorem 1.3 in which we manage to
compare the heights of steps on both paths. See Theorem 4.2. The method is similar to the one used in
Section 3.

In Section 5, we prove Theorems 1.1 and 1.2 by performing the asymptotics of moments from the algebraic
equations obtained in Theorems 2.3 and 3.2. The proofs are immediate verifications given Theorem 1.8 and
computer algebra calculations. We also prove Theorem 1.3 which is a direct consequence of Theorem 4.2.

We will try in this paper to focus on the methods, and leave the actual calculations to the accompanying
Maple worksheet [Cha]. Whether these calculations could be done or verified by hand will not be our concern.

2 Upper path: exact solution

2.1 The classical equation and its solution, after [Cha07, BMFPR11]

Let (P,Q) be a Tamari interval. Following [BMFPR11], we call contact of a path a vertex of that path lying
on the x-axis. We now present a recursive decomposition of Tamari intervals based on contacts of the lower
path, following [Cha07, BMFPR11]. See Figure 4 as a support for this discussion.

Let n ≥ 0 and let (P,Q) ∈ In+1 be a Tamari interval. Let v1 and v2 be respectively the leftmost contact
of P and Q different from the origin. Then v2 is also a contact of P and it is preceded by a down-step in
both P and Q. We can thus split paths as P = uP0dP2, Q = uQ1dQ2, where we write paths as words with
letters u/d representing up/down steps respectively, and where P2, Q2 start at the contact v2. Moreover, v1
is a contact of uP0d (possibly equal to v2), so we can write uP0d = uP ′

1dP
′′
1 , with P ′′

1 possibly empty, and P ′′
1

starting at v1. We now define the path P1 := P ′
1P

′′
1 , which is naturally equipped with a marked contact ṽ.

See Figure 4 again.
It is proved in [Cha07, BMFPR11] that (P1, Q1) and (P2, Q2) are two Tamari intervals. Moreover, this

operation is a bijection (!) between intervals of size n+1 and pairs of intervals of total size n, such that the
first interval of the pair has a distinguished contact on its lower path. To translate this recursive construction
into an equation for enumeration, one needs to introduce a two-parameter generating function of Tamari
intervals:

F (x) ≡ F (t, x) :=
∑
n≥0

tn
∑

(P,Q)∈In

xcontact(P )

where contact(P ) is the number of contacts of the lower path P .
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xk

+ . . .+

x1

7−→

xk

+

Q̃1

xk−1

P̃1 . . .
. . . . . . . . .

Figure 5: Tracking the number of contacts, and how the divided difference operator appears. On
the left, the power of x marks all contacts, while on the right it only marks contacts which are not
the last one.

Note that, if a path P̃1 has k contacts, there are k possible ways to mark a contact in P̃1, thus decomposing
it as P̃1 = P̃ ′

1P̃
′′
1 . When going through these k choices, the number of non-final contacts of the path

P̃0 := uP̃ ′
1dP̃

′′
1 goes through the values 1, 2, . . . , k, see Figure 5. Therefore, at the level of generating

functions, the operation of marking a contact in an interval (P̃1, Q̃1) and transforming into an interval of
the form (P̃ , Q̃) with this construction is taken into account by the operator:

∆x : xk 7−→ xk + · · ·+ x1 = x
xk − 1

x− 1
(15)

∆x : f(x) 7−→ x
f(x)− 1

x− 1
. (16)

The reason why we choose to count only non-final contacts is to avoid counting the final contact twice when
concatenating intervals (see Figure 4 again).

This observation being made, the recursive decomposition immediately translates into the following
functional equation [Cha07, BMFPR11]

F (x) = x+ xtF (x)
F (x)− F (1)

x− 1
. (17)

Indeed, the first term accounts for the empty path (of size n = 0), and in the second term the factor F (x)

is the contribution of the interval (P2, Q2), and the factor xF (x)−F (1)
x−1 = ∆xF (x) is the contribution of the

interval (P1, Q1).
Equation (17) is a typical example of a functional equation with one-catalytic variable, which is the name

given in the combinatorics literature5 to polynomial equations involving a bivariate series F (t, x) as well as
its specialisation at x = 1. Such equations are not easy to solve a priori, but fortunately a full theory has
been developed in [BMJ06], which makes their resolution essentially automatic. In the present case, the
solution can be written especially nicely with a rational parametrization as follows.

Proposition 2.1 ([BMFPR11, Thm. 10]). The generating functions F (x) and F (1) have the explicit rational
parametrisations:

F (x) =
1 + u

(1 + zu)(1− z)3
(1− 2z − z2u) , F (1) =

1− 2z

(1− z)3
, (18)

with

t = z(1− z)3, (19)

x =
1 + u

(1 + zu)2
. (20)

5We have been told that a part of the community is shifting towards the fancier terminology ”discrete differential equation”.
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v2

Q1

ṽv1

(P,Q)

Q1 Q2

(P1, Q1) (P2, Q2)

Q2

︸︷︷︸︸ ︷︷ ︸ ︸ ︷︷ ︸
case 2 case 3case 1

Figure 6: The decomposition of Figure 4, now with a marked abscissa. The three cases correspond
to the three terms in Equation (21). In cases 2 and 3, the upper point at this abscissa becomes an
upper point of the path Q1 and Q2 respectively, and in case 2 the height is shifted by one.

2.2 The enriched equation and its solution

One can apply the same decomposition as above to Tamari intervals in which the upper path Q carries a
marked point: one only has to track recursively the position of the marked point into the different components
of the decomposition. We introduce the generating function

H(x) ≡ H(t, x, s) :=
∑
n≥0

tn
∑

(P,Q)∈In

xcontact(P )
2n∑
i=0

sQ(i),

where we recall that Q(i) is the height of the point of the path Q lying at abscissa i. It is clear that the
height of the marked point can be tracked in the decomposition above. This leads to the functional equation:

Proposition 2.2. The generating function H(x) ≡ H(t, x, s) of Tamari intervals with a marked abscissa
where s marks the upper height is solution of the equation:

H(x) = F (x) + sxtF (x)
H(x)−H(1)

x− 1
+ xtH(x)

F (x)− F (1)

x− 1
. (21)

Proof. This follows directly from the combinatorial decomposition presented in the last section, applied to
intervals with a mark abscissa, see Figure 6. The first term accounts for the case where the marked abscissa
(and height) is zero. The second term accounts for the case where the marked abscissa appears before vertex
v2. Through the decomposition the corresponding vertex of the upper path becomes a marked vertex of
the path Q1, and its height is shifted by 1, hence a contribution of s∆xH(s, x) for the interval (P1, Q1),
while the contribution of the interval (P2, Q2), which has no marked abscissa, is just F (x). The third term
accounts for the case where the marked abscissa appears at v2 of after, in which case the corresponding
vertex becomes a marked vertex of the path Q2, with no shift in the height, hence a contribution of ∆xF (x)
for (P1, Q1) and H(x, s) for (P2, Q2).

Our most skeptical readers might convince themselves (again) that we haven’t forgotten any terms in the
equation by noting that H(t, x, 1) = (2xd

dx + 1)F (x), since there are 2n+ 1 possible abscissas to mark in an

interval of size n, and that Equation (21) for s = 1 can be obtained by applying the operator 2xd
dx +1 to (17).

Note that, since F (x) and F (1) are known, this equation for H(x) is again a polynomial equation with
catalytic variable x, in which the variable s only plays the role of a parameter. In some sense, this equation
is simpler than the previous one since it is linear in H. Linear equations with one catalytic variable are
easy to solve, at least in principle, via the kernel method, which we now apply (see [FS09, p. 508] for an
introduction to the kernel method).

We write (21) in kernel form as follows:

K(x)H(x) = F (x)− sxtF (x)H(1)

(x− 1)
(22)

11



with

K(x) =

(
−1 + sxt

F (x)

x− 1
+ xt

F (x)− F (1)

x− 1

)
. (23)

There is a unique formal power series X0(t) ∈ Q[s][[t]] that is such that

K(X0) = 0.

Indeed, multiplying by x− 1, this equation has the form X0(t) = 1 + tPolynomial(X0(t), t, s) which enables
one to compute the coefficients of X0(t) recursively. We will now apply the kernel method. The most obvious
way to do it consists in substituting x for X0(t) and solving for H(1), but we find more convenient to work
directly with the variables (u, z) rather than x, t. Expressing the kernel in terms of these variables we have
(see [Cha] for the calculation)

K̃ ≡ K̃(u) := K(x)
∣∣∣ t=z(1−z)3

x= 1+u

(1−zu)2

=
P (u, z, s)

(uz + 1)u(uz2 + 2z − 1)
,

with
P (u, z, s) = s(1 + u)2z(uz2 + 2z − 1) + u(1− z)3.

Since P (u, z, s) = u − sz + O(z2 + u2 + zu), there is a unique series U ≡ U(z, s) ∈ Q[s][[z]] such that
P (U, z, s) = 0. Its expansion starts as

U = sz +O(z2).

Moreover, since P has degree 1 in s, we can also write s as a rational function of U and z,

s =
U(1− z)3

z(1 + U)2(1− Uz2 − 2z)
. (24)

We obtain

Theorem 2.3. The series H(1) ≡ H(t, s, 1) of Tamari intervals with a marked abscissa, where t marks the
size, and s the upper height at this abscissa, has the following rational parametrisation:

H(1) =
(1− 2z − Uz2)2(1 + U)

(1− z)6
(25)

with the change of variables (t, s) ↔ (z, U) given by (19) and (24).

Proof. We substitute t = z(1 − z)3 and x = 1+u
(1−zu)2 in (22), and we further substitute u = U(z, s), which

cancels the left-hand side. From the right-hand side, and using the explicit expression (18) of F (1) in terms
of z we thus get an expression for H(1) as a rational function of z, s, and U = U(z, s), in which s can be
substituted by (24), thus giving an expression for H(1) as a rational function of U and z. The only thing to
be done is to perform the explicit calculation. See [Cha].

3 Lower path: exact solution

We will now apply the same decomposition as in the previous sections, but keep track of the height of
points on the lower path P . In order to do this, we will have to treat differently the contacts of P which
appear before or after the marked abscissa, which will force us to work with two catalytic variables. We
write contact<i(P ), contact≥i(P ) for the number of contacts of P strictly before, or weakly after, abscissa i,
respectively.
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v2

Q1

ṽv1

(P,Q)

Q1 Q2

(P1, Q1) (P2, Q2)

Q2

︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
case 2 case 5case 1

︸ ︷︷ ︸
case 4

︸︷︷︸
case 3

Figure 7: The decomposition of Figure 4, with a marked abscissa, but we now track the height
of points of the lower path. There are now five cases, which correspond to the five terms in
Equation (26).

3.1 The enriched equation

We introduce the generating function

G(x, y) ≡ G(t, x, y, w) :=
∑
n≥0

tn
∑

(P,Q)∈In

2n∑
i=0

wP (i)xcontact<i(P )ycontact≥i(P ).

We have

Proposition 3.1. The generating function G(x, y) ≡ G(t, x, y, w) of Tamari intervals with a marked abscissa
where w marks the lower height is solution of the equation:

G(x, y) = F (y) + txw
G(1, y)−G(1, 1)

y − 1
F (y) + tx

F (y)− yF (1)

y − 1
F (y)

+ t
x2

y

G(x, y)− y
xF (x)−G(1, y) + yF (1)

x− 1
F (y) + tx

F (x)− F (1)

x− 1
G(x, y). (26)

Proof. Given an interval (P,Q) of size n + 1 with a marked abscissa, we apply again the decomposition of
Section 2.1. As before we let v1, v2, be the first non-initial contacts of the paths P and Q, respectively, and
we also let i1, i2 be their abscissa. We let i ∈ [0, 2n] be the marked abscissa. We distinguish five cases (we
will treat the third one last), see Figure 7,

• Case 1: i = 0. Then we are only considering a Tamari interval, where all contacts are marked by the
variable y. The corresponding contribution if F (y).

• Case 2: i ∈ (1, i1 − 1). In the decomposition, the corresponding vertex of P becomes a marked vertex
of P1 with a shift of 1 in the height, hence a contribution of w. Moreover, configurations in this case
are obtained by applying the construction of Figure 5 but restricting it to contacts appearing after
the marked abscissa, see Figure 8(up). Therefore, an interval (P̃1, Q̃1) having a marked abscissa, with
respectively k and ℓ contacts stricly before, and weakly after, this abscissa (thus having a contribution
of xkyℓ in G(x, y)) gives rise to ℓ intervals contributing to this case, with a contribution of

x1yℓ−1 + x1yℓ−2 + · · ·+ x1y0 = x
yℓ − 1

y − 1
.

In total, the contribution for the first interval is thus xG(1,y)−G(1,1)
y−1 . The contribution of the second

interval (P2, Q2) is just F (y), since all corresponding contacts appear after the marked abscissa. In

total, this cases gives a contribution of txwG(1,y)−G(1,1)
y−1 F (y), which is the second term in (26).
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• Case 4: i ∈ (i1, i2). In the decomposition, the vertex of P becomes a vertex of P1 with no shift
in height. Moreover, these configurations are obtained by applying the construction of Figure 5 but
restricting it to contacts appearing before the marked abscissa, see Figure 8(down). More precisely,
an interval (P̃1, Q̃1) having a marked abscissa which is not the final one, with respectively k and ℓ
contacts stricly before, and weakly after, this abscissa (thus having a contribution of xkyℓ in G(x, y))
gives rise to k intervals contributing to this case, with a contribution of

xk+1yℓ + xk−1yℓ−1 + · · ·+ x2yℓ−1 =
x2

y

xk − 1

x− 1
yℓ.

In total, the contribution for the first interval is thus

t
x2

y

G̃(x, y)− G̃(1, y)

x− 1
,

where G̃ is the same generating function as G, but in which the marked abscissa is not the last one.
We have

G̃(x, y) = G(x, y)− y

x
F (x),

since an interval with the last abscissa marked is the same as an unmarked interval (and the corre-
sponding vertex has height zero), and since in such a case all contacts are counted with weight x except
the last one which receives a weight y.

Moreover, the contribution of the second interval (P2, Q2) is just F (y), since all corresponding contacts

appear after the marked abscissa. In total, this case gives a contribution of tx
2

y
G̃(x,y)−G̃(1,y)

x−1 F (y), which

is the fourth term in (26).

• Case 5: i ≥ i2. In this case, the marked vertex becomes a marked vertex of Q2 and there is not shift
in height. The contribution of (P2, Q2) is simply G(x, y), while the contribution of the first interval

(P1, Q1) is xt
F (x)−F (1)

x−1 as in the classical case, since all its contacts appear before the marked abscissa.
This gives the last term in (26).

• Case 3: i = i1 and i1 ̸∈ {0, i2}. Such configurations are made of the concatenation of two intervals.
The second one has no constraint, hence a contribution of F (y). The first one has several constraints.
First, its upper path has only two contacts. Arguing as in the classical decomposition, the generating
function for intervals where the upper path has two contacts is

ty
F (y)− F (1)

y − 1
.

Second, in the first interval, the first nonzero contact of the lower path should be different from the
one of the upper path (since we want i1 ̸= i2 in the end). We thus have to substract the corresponding
contribution, and in total we find that the contribution of the first interval is

ty
F (y)− F (1)

y − 1
− tyF (1).

Putting things together, the generating function for Case 3 is

x

y

(
ty

F (y)− F (1)

y − 1
− tyF (1)

)
F (y),

where the prefactor x
y accounts for the initial contact. This is the third term in (26).

For skeptics, we have (successfully) tested the expansion of G(x, y) given by Equation 26 up to order
n = 8, using an exhaustive generation of Tamari lattices made by independent means.
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+ + . . .+
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Figure 8: Refining the operator of Figure 5 to distinguish the case where the marked abscissa is
before (upper figure) or after (lower figure) the contact v1.

3.2 Solution

Although equations with two catalytic variables are notoriously difficult, Equation (26) is of a very particular
kind. First, it is again linear in the main unknown G(x, y). Second, the equation involves the specializations
G(x, y), G(1, y), and G(1, 1), but not G(x, 1). As we will see, this will enable us to treat this equation as two
nested equations, each having only one catalytic variable6. The reader interested in more difficult cases of
equations with two catalytic variables might consult, for example, the reference [BBMR21] for entry points
into this fastly growing literature.

3.2.1 First step: eliminating variable x (or u).

We start by writing Equation (26) in kernel form

K2(x, y)G(x, y) =F (y) + txw
G(1, y)−G(1, 1)

y − 1
F (y)

+ tx
F (y)− yF (1)

y − 1
F (y) + t

x2

y

− y
xF (x)−G(1, y) + yF (1)

x− 1
F (y). (27)

with

K2(x, y) =
tx2F (y)

y(x− 1)
− 1 + xt

F (x)− F (1)

x− 1
. (28)

We will now work under the change of variables (19), (20). Since we have two catalytic variables, we
introduce a new variable v, which is to y what u is to x. To summarize, we write

t = z(1− z)3, x =
1 + u

(1 + zu)2
, y =

1 + v

(1 + zv)2
, (29)

We write respectively G̃(u, v), G̃1(v), G̃11, K̃2 for the quantities G(x, y), G(1, y), G(1, 1),K2 expressed in the
variables z, u, v after the substitutions (29).

By (18), the kernel K̃2 is an explicit rational function of z, u, v. Its numerator is a polynomial k̃2(z, u, v, w)
which, computations made [Cha], is given by

k̃2(u, v) = ((vz2 + z2)u+ vz2 + 2z − 1)((vz2 − z2 + 3z − 1)u+ vz2 + z).

6After we prepared this work, Mireille Bousquet-Mélou has informed us of a paper of her in preparation with Hadrien
Notarantonio, studying such equations with several catalytic variables where some variable specializations are missing. They
also solve them iteratively as ”nested” equations as we do here, and they prove that this works in a generic context with mild
hypotheses. It is not clear that their theorems apply to our case since our equations also involve the known function F (x) and
are thus not directly polynomial, but we definitely recommend having a look at that paper when it is out!
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The equation k̃2 = 0 has a unique root U0 ≡ U0(z, v) which is a power series in z, given by the root of the

second factor. Explicitly, it is given by with U0 = z(1+vz)
1−3z+z2−vz2 = z +O(z2).

Making the substitutions (29) and using the known expressions of F (x), F (y), Equation (27) takes the
form

K̃2(u, v)G̃(u, v) = L̃2(z, u, v, G̃1(v), G̃11)

for some rational function L̃2 that can be written explicitly (its numerator has 228 terms, [Cha]). Substituting
u = U0 in this equation, we cancel the left-hand side, hence we also cancel the right-hand side. We are thus
left with the following polynomial equation satisfied by z, v, w, G̃1(v) and G̃11,

L̃2(z, U0(z, v), v, G̃1(v), G̃11) = 0. (30)

The numerator of this equation has 91 terms, but it has only degree one in G̃1(v). At this stage, we have
eliminated the unknown G̃(u, v) and the variable u.

3.2.2 Second step: eliminating variable y (or v).

At this stage, we have shown that the series G̃1(v) and G̃11 satisfy the explicit polynomial equation (30).
But we recognize again this equation as an equation with one catalytic variable, which is now the variable
v! Even more, since the equation is linear in G̃1(v), we can just use the kernel method again. We write the
numerator of (30) in the form

a(G̃11, v, z, w)G̃1(v) + b(G̃11, v, z, w) = 0,

where in fact a(G̃11, v, z, w) = a(v, z, w) does not depend on G̃11. A direct check shows that the equation
a(V0, z, w) = 0 as a unique solution V0(z) which is a formal power series in z, with V0 = zw + O(z2).
Substituting v = V0 in the equation, we finally obtain the equation

b(G̃11, V0(z), z, w) = 0,

which shows that G̃11 is algebraic. Explicitly, we can eliminate the variable v from the equations a(v, z, w)
and b(G̃11, v, z, w), and we obtain a polynomial equation for the function G̃11. It turns out that this equation
is not even so big, and computations made [Cha] we finally obtain:

Theorem 3.2. The generating function G(x, y) is an algebraic function. Moreover, the function G(1, 1)
after the change of variables z ↔ t given by (19) satisfies the polynomial equation C(G(1, 1), z, w) = 0 with

C(h, z, w) = wz(−1 + z)9h3 + (−1 + z)6(2w2z2 − w2z + 2z2 + w − z)h2

− (−1 + z)3(w2z3 − 3w2z2 − 2wz3 + w2z − 2wz2 + z3 + 5wz − 3z2 − 2w + z)h

+ 4wz2 − 4wz + w. (31)

4 Tracking marked up steps on both paths

We will now apply the same decomposition as in the previous sections, but consider paths with a marked up
step, rather than a marked abscissa. As mentioned in the introduction, the reason to do that is that in this
setting we are able to study the joint law of the heights of the two paths. Our goal is to prove Theorem 1.3.

Recall that we let P̃ (j) be the height (of the initial point of) the j-th up step of the path P .
We write contact′≤j(P ), contact′≥j(P ) for the number of contacts of P weakly before, or after, the j-th

up step of P , respectively.
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Ṽ

Ũ
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Figure 9: The decomposition of Figure 4, where the j-th up step for some j ∈ [n] is marked on
both paths. There are four cases to consider, corresponding to the four terms in Equation (32).

4.1 The enriched equation

We introduce the generating function

J(x, y) ≡ J(t, x, y, r, s) :=
∑
n≥0

tn
∑

(P,Q)∈In

n∑
j=1

rP̃ (j)sQ̃(j)xcontact′≤j(P )ycontact
′
≥j(P ).

We have

Proposition 4.1. The generating function J(x, y) ≡ J(t, x, y, r, s) of Tamari intervals where the j-th up
step of each path is marked for some integer j, where r marks the lower height and s the upper height is
solution of the equation:

J(x, y) = x
F (y)− y

y
+ rstx

J(1, y)− J(1, 1)

y − 1
F (y) + stx2 J(x, y)− J(1, y)

(x− 1)y
F (y) + xtJ(x, y)

F (x)− F (1)

x− 1
.

(32)

Proof. The proof is very similar to the proof of Proposition 3.1, except that we keep track of the height on
both paths. It is actually less involved since there are less cases to consider. Given an interval (P,Q) of size
n + 1 with a marked j ∈ [n], we apply again the decomposition of Section 2.1. We let U, V be the j-th up
step of P and Q, respectively. As before we let v1, v2, be the first non-initial contacts of the paths P and
Q. We distinguish four cases, see Figure 9,

• Case 1: U = V is the first step of the path (j = 1). In this case we are only counting intervals by
contacts as in the series F (y). However we have to exclude the empty interval (hence a correcting term
−y), and we should count all contacts with weight y except for the first one, hence a correcting factor
x/y. This gives the first term in (32).

• Case 2: U is not the initial step of P , but U appears before v1. In this case V belongs to Q1. In
this case, after applying the decomposition, U, V give rise naturally to marked contacts Ũ , Ṽ of P1, Q1

appearing before the vertex ṽ. The height of both steps is shifted by 1, hence the factor rs. The
remaining factors are understood in a similar way as in case 2 of the proof of Proposition 26. Namely,
an interval (P̃1, Q̃1) with marked up steps Ũ , Ṽ , with respectively k and ℓ contacts before and after Ũ
(thus having a contribution of xkyℓ in J(x, y)) gives rise to ℓ intervals contributing to this case, with
a contribution of

x1yℓ−1 + x1yℓ−2 + · · ·+ x1y0 = x
yℓ − 1

y − 1
.

In total, the contribution for the first interval is thus xJ(1,y)−J(1,1)
y−1 . The contribution of the second

interval (P2, Q2) is just F (y), since all corresponding contacts appear after the marked abscissa. In
total, we obtain the second term in (32).
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• Case 3: U appears (weakly) after v1 but before v2. In this case again V belongs to Q1. In this case,
after applying the decomposition, U, V give rise naturally to marked contacts of of P1, Q1 appearing
(weakly) after the vertex ṽ. Only the height of the steps of the upper path is shifted by 1, hence the
factor s. The rest of factors are understood in a similar way as in case 4 of the proof of Proposition 3.1,
but is simpler. Namely, an interval (P̃1, Q̃1) with marked up steps Ũ , Ṽ , with respectively k and ℓ
contacts before and after Ũ (thus having a contribution of xkyℓ in G(x, y)) gives rise to k intervals
contributing to this case, with a contribution of

xk+1yℓ + xk−1yℓ−1 + · · ·+ x2yℓ−1 =
x2

y

xk − 1

x− 1
yℓ.

In total, the contribution for the first interval is thus

t
x2

y

J(x, y)− J(1, y)

x− 1
.

(Note that the situation is simpler than in Proposition 3.1 since we do not have to deal with the subtle
case where the vertex whose height is considered is the last on the path – since we mark only up steps).
Moreover, the contribution of the second interval (P2, Q2) is just F (y), and in total we obtain the third
term in (32).

• Case 4: U appears (weakly) after v2. In this case V belongs to Q2. This case is similar to the last case
of the proof of Proposition 26 and directly gives the fourth term in (32)

4.2 The specialized equation

In view of proving Theorem 1.3, we will consider the following specialisation of the function J(x, y):

M(x, y) ≡ M(t, x, y, w) := J(x, y)
∣∣∣
s=w,r=w−3

=
∑
n≥0

tn
∑

(P,Q)∈In

n∑
j=1

wQ̃(j)−3P̃ (j)xcontact′≤j(P )ycontact
′
≥j(P ).

From Proposition 4.1 it satisfies the equation

M(x, y) = x
F (y)− y

y
+ w−2tx

M(1, y)−M(1, 1)

y − 1
F (y) + wtx2F (y)

M(x, y)−M(1, y)

(x− 1)y
+ xt

F (x)− F (1)

x− 1
M(x, y).

(33)

We will now solve this equation.

4.3 Solving the equation

Our method to solve (33) is similar to the one used in Section 3.2, except that the equation to be solved in
the second step will now be quadratic instead of linear.

4.3.1 First step: eliminating variable x (or u).

We start by writing Equation (33) in kernel form

K2(x, y)M(x, y) =x
F (y)− y

y
+ w−2tx

M(1, y)−M(1, 1)

y − 1
F (y) + wtx2F (y)

−M(1, y)

(x− 1)y
(34)

with

K2(x, y) = −1 + +wtx2F (y)
1

(x− 1)y
+ xt

F (x)− F (1)

x− 1
. (35)
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We will again work under the change of variables (29). We write respectively M̃(u, v), M̃1(v), M̃11, K̃2

for the quantities M(x, y),M(1, y),M(1, 1),K2 expressed in the variables z, u, v after the substitutions (29).
By (18), the kernel K̃2 is an explicit rational function of z, u, v. Its numerator is a polynomial k̃2(u, v) ≡

k̃2(z, u, v, w) which, computations made [Cha], is given by

k̃2(u, v) = u2v2wz4 + 2uv2wz4 + 3u2vwz3 + v2wz4 − u2vwz2 − u2z4 + 6uvwz3 + 2u2wz2 + 3u2z3

−2uvwz2 + 3vwz3 − u2wz − 3u2z2 + 4uwz2 − uz3 − vwz2 + u2z − 2uwz + 3uz2 + 2wz2 − 3uz − wz + u.

The equation k̃2 = 0 has a unique root U0 ≡ U0(z, v) which is a power series in z. It satisfies U0 =
wz +O(z2).

Making the substitutions (29) and using the known expressions of F (x), F (y), Equation (34) takes the
form

K̃2(u, v)M̃(u, v) = L̃2(z, u, v, M̃1(v), M̃11)

for some rational function L̃2 that can be written explicitly (its numerator has 99 terms, [Cha]). Substituting
u = U0 in this equation, we cancel the left-hand side, hence we also cancel the right-hand side. We are thus
left with the following polynomial equation satisfied by z, v, w, M̃1(v) and M̃11,

L̃2(z,U0(z, v), v, M̃1(v), M̃11) = 0. (36)

We can eliminate U0 between this equation and k̃2(U0(z, v), v), and we thus obtain [Cha] a polynomial
equation of the form

B(z, v, w, M̃1(v), M̃11) = 0. (37)

This polynomial has 854 terms, and it has degree two in M̃1(v). At this stage, we have eliminated the
unknown M̃(u, v) and the variable u.

4.3.2 Second step: eliminating variable y (or v).

Let us write polynomial equation (37) in the form.

a(M̃11, v, z, w)M̃1(v)
2 + b(M̃11, v, z, w)M̃1(v) + c(M̃11, v, z, w) = 0.

We will solve this equation using (a variant of) the quadratic method (see [BMJ06] and references therein).
Introduce notation:

B(v) := a(v)M̃1(v)
2 + b(v)M̃1(v) + c(v) , B2(v) := 2a(v)M̃1(v) + b(v), (38)

where in the notation we only indicate dependencies in the variable v, for example a(v) = a(M̃11, v, z, w).
We first claim that there exists a formal power series V0(z) = zw−1 + O(z2) such that B2(V0(z)) = 0. To
see this, we generate the first few terms of the series M̃1(v) to see [Cha] that

B2(v) = a2,0v
2 + a1,1vz + a1,2vz

2 + a2,1v
2z + a3,0v

3 +O4(z, v)

where the ai,j are explicit polynomials in w and where O4(z, v) is a formal power series in z, v (and coefficients
polynomial in w) with all terms of homogeneous degree at least 4. Therefore the equation B2(V0) = 0 can
be written

V0 = −(a2,0)
−1(a1,1z + a1,2z

2 + a2,1V0z + a3,0V
2
0 + V −1

0 O4(z, V0)).

This is enough to see that the equation B2(V0) = 0 has a formal power series root V0(z) of the form
V0(z) =

−a1,1

a2,0
z + O(z2). Indeed all coefficients of V0 can be computed inductively from this germ. This

proves the claim (note that this is essentially a Newton-Puiseux argument). Making constants explicit, we
have V0(z) = zw−2 +O(z2). There is also another power series root V0 with constant coefficient −1 but we
will not use it.
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We can now apply (a variant of) the quadratic method. We have two equations involving the series V0:
the one that defines it, and the one obtained by substituting v = V0 in (37). Namely:

B(z, V0, w, M̃1(V0), M̃11) = 0 , B2(z, V0, w, M̃1(V0), M̃11) = 0.

We can eliminate the series M̃1(V0) between these two equations (which amounts to saying that the discrinant
b2 − 4ac vanishes), and we obtain an equation of the form

P (z, V0, w, M̃11) = 0.

Computations made [Cha], this equation has three nontrivial irreducible factors, P1, P2, P3, where only P3

depends (in fact, linearly) on M̃11. It is a direct check than none of the v-roots of P1 and P2 is equal to V0 (in
fact none is a formal power series in z), from which we conclude that P3(z, V0, w, M̃11) = 0. This equation
can be written as a rational expression of M̃11 in the variable V0, namely [Cha] we have M̃11 = R(z, V0) with

R(z, V ) =
(V z2 − z2 + 3z − 1)V w2

V z4 − 3V z3 + 3V z2 + z3 − V z − 3z2 + 3z − 1
. (39)

One can check that substituting v = V0 and this expression of M̃11 cancels both b and c. Therefore it
also cancels a, which gives us an explicit equation satisfied by V0, namely [Cha] we have S(V0, z) = 0 with:

S(V, z, w) = V 5w5z5 + V 5w4z5 + V 5w3z5 + 5V 4w5z4 + V 5w2z5 − 2V 4w5z3 + 5V 4w4z4 − V 3w4z5 + V 5wz5

− 2V 4w4z3 + 5V 4w3z4 + 2V 4w2z5 + 8V 3w5z3 + 3V 3w4z4 − V 3w3z5 − 2V 4w3z3 + 4V 4w2z4 + 2V 4wz5

− 6V 3w5z2 + 5V 3w4z3 + 3V 3w3z4 + V 3w2z5 − 2V 2w4z4 − V 4w2z3 + 4V 4wz4 + V 3w5z − 5V 3w4z2

+ 5V 3w3z3 + 8V 3w2z4 + V 3wz5 + 4V 2w5z2 + 7V 2w4z3 − 2V 2w3z4 − V 4wz3 + V 3w4z − 5V 3w3z2+

V 3w2z3 + 8V 3wz4 − 4V 2w5z − 5V 2w4z2 + 7V 2w3z3 + 4V 2w2z4 + V 3w3z − V 3w2z2 + V 3wz3 + V 2w5

+ V 2w4z − 5V 2w3z2 + 6V 2w2z3 + 4V 2wz4 − V 3wz2 − 2V 3z3 + V 2w3z − 5V 2w2z2 + 5V 2wz3 + 4V w2z3

+ V 3z2 + 3V 2w2z − 2V 2wz2 − 4V 2z3 − 4V w2z2 + 3V wz3 − V 2w2 + 3V w2z − V wz2 − 2V z3 + V 2z − V w2

− 3V z2 + 2V z − 2z2 + z. (40)

We have thus proved:

Theorem 4.2. The generating function M(1, 1) ≡ M(1, 1; t, w) is an algebraic function given by

M(1, 1) = R(z, V0)

where the change of variables (t, w) ↔ (z, V ) is given by (19) and by the equation S(V0, z, w) = 0.

By eliminating V0 in (39)-(40) one obtains an explicit polynomial cancelling M(1, 1). Written in the
variables z and w, it has 601 terms and degree five in M(1, 1). See [Cha]. Given the previous calculations it
is not difficult to see that the full series M(x, y) is algebraic but we will never use it.

We leave to our readers the task of proving algebraicity of the full function J(1, 1) (with both variables
r and s) rather than of its specialization M(1, 1) (involving only w) as we do here. We suspect that this is
possible with similar methods, but by lack of application in mind we have not tried to do so – therefore we
do not know if the calculations are manageable nor if unexpected dificulties arise.

5 Asymptotics of moments

In this section we prove Theorems 1.1 and 1.2. In both cases this will be a direct application of the method
of Section 1.2, in particular Theorem 1.8, up to computer algebra calculations done in [Cha]. We will also
prove Theorem 1.3 which is a direct check.
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5.1 Proof of Theorem 1.1

We start with Equation (21) in Theorem 2.3. This equation shows that f(t) = H(t, 1, s) ≡ H(1) is algebraic,
therefore H(x, r + 1) is algebraic. Therefore (see e.g. [Com64] again), there exists a recurrence formula of
the form (11) to compute its derivatives

f (k) ≡ f (k)(t) :=

((
d

ds

)k

H(1)

)∣∣∣∣∣
s=1

.

Given the form of our parametrization, we will prefer to work under the variable z given by (19), and in fact
it is even more convenient to introduce the variable δ = (1− 4z)1/2. It is easily cheched [Cha] that the main
singularity of H(1) is at t = ρ := 27

256 , which corresponds to z = 1
4 , i.e. δ = 0. In what follows we will still

write f (k) for the function f (k)(t) expressed in the variable δ.
Using the package gfun, we immediately find [Cha] that the f (k) satisfy an equation of the form (11)

with L = 6, namely

f (k)(t) =

L∑
d=1

hd(t, k)f
(k−d)(t) , k ≥ L,

where the hd(t, k) for d = 1..6 are Laurent polynomials in δ with coefficients which are rational functions
of k. The degree of h1, . . . , h6 in δ−1 are respectively 0, 6, 6, 10, 10, 10. Since δ behaves as (1− t/ρ)1/4, this
implies that hypothesis (i) of Theorem 1.8 holds with β = 3

4 . One can explicitly check the values of the
corresponding constants ad(k), which are nothing but top coefficients of hd in δ−1 up to a scaling factor.
They are given [Cha] by

a1(k), . . . , a6(k) = 0,

√
6

96
(3k − 4)(3k − 8), 0, 0, 0, 0. (41)

Now it only remains to check the initial conditions (ii). From the explicit Equation (21), the dominant
singulariy of f (0), and indeed of each given f (i), can be computed automatically. We find that f (0) = 64

(δ+3)3 ,

with singular expansion f (0)∼̂c0(1− t/ρ)α with α = 1
2 and c0 = − 32

√
6

27 .
Given α, β we compute ℓ0 = L− 0 = 6, and to check the initial conditions we need to estimate the main

singularity of f (1), . . . , f (6). This is done automatically and one gets f (ℓ)∼̂cℓ(1− t/ρ)α−βℓ for ℓ ≥ 6, with

c0, . . . , c6 = −32

27

√
6,

16

27
33/4

4
√
2,

8

27
,
5

54
4
√
323/4,

8

81

√
2
√
3,

385

2592
33/4

4
√
2,

70

81
.

We have now verified al hypotheses of Theorem 1.8. The main recurrence formula becomes

ck =

√
6(3k − 4)(3k − 8)

96
ck−2 , k > 6,

with initial conditions above. It is a direct check that the solution of this recurrence is given by

ck =
16

27

Γ
(
k
2 + 1

3

)
Γ
(
k
2 − 1

3

)√
24−k63/4 k

π
.

for all k ≥ 0. Applying Theorem 1.8, we immediately get:

E

[(
Qn(I)

n3/4

)k
]
−→

Γ
(
k
2 + 1

3

)
Γ
(
k
2 − 1

3

)
4−k63/4 k

√
3πΓ

(
3k
4 − 1

2

) =

√
3 · 2− k

4−1

√
π

Γ( 14k + 1
3 )Γ(

1
4k + 2

3 )

Γ( 14k + 1
2 )

, (42)

where the equality follows from the duplication formula for the Gamma function (see also [Cha]). This proves
Theorem 1.1.
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5.2 Proof of Theorem 1.2

The proof is similar, we will be more succinct (all calculations are in [Cha]). We now write f(t) = G(1, 1).
We start with Equation (31) in Theorem 3.2. We use this equation to compute a recurrence formula for the
functions

f (k) ≡ f (k)(t) :=

((
d

dw

)k

G(1, 1)

)∣∣∣∣∣
w=1

.

The main singularity of f (0) (which is the same as in the previous section) is at t = ρ := 27
256 , which

corresponds to z = 1
4 , i.e. δ = 0.

Using the package gfun, we immediately find [Cha] that the f (k) satisfy an equation of the form (11) with
L = 9, where the hd(t, k) for d ∈ [9] are rational functions in δ with coefficients which are rational functions
of k. The poles of h1, . . . , h9 at δ = 0 are respectively of order 0, 6, 6, 10, 10, 10, 10, 10, 10. This implies that
hypothesis (i) of Theorem 1.8 holds with β = 3

4 . One can explicitly check the values of the corresponding
constants ad(k), which are nothing but the coefficients of the leading term of hd in the expansion at δ−1 = ∞,
up to a scaling factor. They are given [Cha] by

a1(k), . . . , a9(k) = 0,

√
6(3k − 4)(3k − 8)

864
, 0, 0, 0, 0, 0, 0, 0. (43)

Now it only remains to check the initial conditions (ii). From the explicit Equation (21), the dominant
singulariy of f (0), and indeed of each given f (i), can be computed automatically. The function f (0) = 64

(δ+3)3

is the same as in the previous section, with singular expansion f (0)∼̂c0(1−t/ρ)α with α = 1
2 and c0 = − 32

√
6

27 .
We now have ℓ0 = L+0 = 9, and to check the initial conditions we need to estimate the main singularity

of f (1), . . . , f (9). This is done automatically and one gets f (ℓ)∼̂cℓ(1− t/ρ)α−βℓ for ℓ ≤ 9, with cℓ given by

c1, ..., c9 =
16 · 3 3

4 2
1
4

81
,

8

243
,
5 · 2 3

4 3
1
4

1458
,
8
√
6

6561
,
385 · 3 3

4 2
1
4

629856
,

70

59049
,
85085 · 3 1

4 2
3
4

181398528
,
700

√
6

1594323
,
37182145 · 3 3

4 2
1
4

78364164096
.

We have now verified al hypotheses of Theorem 1.8. The main recurrence formula becomes

ck =

√
6(3k − 4)(3k − 8)

864
ck−2 , k > 9,

with initial conditions above. It direct check to obtain the solution of this recurrence and, this concludes
the proof of Theorem 1.2 in the same way as we did for Theorem 1.1.

5.3 Proof of Theorem 1.3

From Theorem 4.2 it is automatic to obtain an algebraic equation for M(1, 1) at w = 1, or any of its
derivatives at w = 1 of given order. In particular one checks [Cha] that the second derivative has a unique
dominant singularity at z = 1/4 and an expansion of the form(

d

dw

)2

M(1, 1)
∣∣∣
w=1

= O((1− 4z)−1)

at this point. Note that this is one order of magnitude more singular (in powers of (1 − 256
27 t) ∼ (1 − 4z)2)

than the singularity of the main function

M(1, 1)
∣∣∣
w=1

∼̂c(1− 4z)

for some c > 0.
By transfer theorems, this immediately shows that the second moment of Q̃n(J)− 3P̃n(J) is bounded by

O(n). This proves (6) in Theorem 1.3. By the Chebyshev inequality this implies that Q̃n(J)−3P̃n(J)
n3/4 converges
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to zero in probability (i.e. is o(1) in probability), therefore (7) in Theorem 1.3 follows from the previously

proven convergence of P̃n(J)
n3/4 and Q̃n(J)

n3/4 to Z and Z/3 – note that Z is almost surely nonzero. This concludes
all remaining proofs.

The order of magnitude O(n) for the second moment, as well as the explicit computation of a few more
higher moments, strongly suggests that n−1/2(Q̃n(J) − 3P̃n(J)) has a Gaussian limit law, but we did not
prove it. Theorem 1.8 does not immediately apply as there is an even/odd phenomenon in the form of
asymptotic singularities of successive derivatives of M(1, 1) (this is not surprising given the fact that odd
moments of the standard Gaussian are null). We suspect that the general idea of Section 1.2 might apply
with some adaptations. However, for Gaussian limit laws there are many available tools, in particular
experts in classical ACSV or quasi-power theorems might be able to prove Gaussian convergence directly
from Theorem 4.2, while we hope experts of the Bernardi-Bonichon bijection might be able to see it directly
from the central limit theorem.

In any case, we believe it is a good point to end this paper.
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vals in the m-Tamari lattices. Electron. J. Combin., 18(2):Paper 31, 26, 2011.

[BMJ06] Mireille Bousquet-Mélou and Arnaud Jehanne. Polynomial equations with one catalytic vari-
able, algebraic series and map enumeration. J. Combin. Theory Ser. B, 96(5):623–672, 2006.

[BMS00] Mireille Bousquet-Mélou and Gilles Schaeffer. Enumeration of planar constellations. Adv. in
Appl. Math., 24(4):337–368, 2000.

[CC23] Alice Contat and Nicolas Curien. Parking on Cayley trees and frozen Erdős-Rényi. Ann.
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