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ABSTRACT

We present a new second order accurate structure-preserving finite volume scheme for the solution of
the compressible barotropic two-phase model of Romenski et. al [53,54] in multiple space dimensions.
The governing equations fall into the wider class of symmetric hyperbolic and thermodynamically
compatible (SHTC) systems and consist of a set of first-order hyperbolic partial differential equations
(PDE). In the absence of algebraic source terms, the model is subject to a curl-free constraint for the
relative velocity between the two phases. The main objective of this paper is therefore to preserve
this structural property exactly also at the discrete level. The new numerical method is based on
a staggered grid arrangement where the relative velocity field is stored in the cell vertexes, while
all the remaining variables are stored in the cell centers. This allows the definition of discretely
compatible gradient and curl operators which ensure that the discrete curl errors of the relative
velocity field remain zero up to machine precision. A set of numerical results confirms this property
also experimentally.

Keywords Hyperbolic equations · compressible multiphase flows · curl-free schemes · finite-volume schemes ·
staggered grids

1. Introduction
Multiphase flows are ubiquitous in nature and in our everyday life. Already the rather simple flow of water with moving
free surface actually involves both the dynamics of the moving liquid and of the surrounding air. The modeling and
numerical simulation of such multi-material systems remains challenging even nowadays, as no prevalent approach
seems to be efficient for all applications.

In this paper, we are concerned with compressible barotropic two-phase flows and in particular we consider the
model of Romenski forwarded in [52–55]. The model belongs to the so-called class of Symmetric Hyperbolic
and Thermodynamically Compatible (SHTC) systems discovered by Godunov and Romenski in a series of seminal
works [33,36,52] and which was extensively studied and solved numerically more recently in [41,42,46,51,53–55,58,59].
Some of the reasons motivating our interest in this particular model are the fact that it is first order symmetric hyperbolic,
it can be rewritten in a similar form of the well-known Baer-Nunziato model [3] and offers a rather general framework
that can be extended also to viscous and heat conducting multi-material flows, including mixtures of solids, liquids
and gases within one and the same mathematical framework. One particular property of the model is that under
certain assumptions, one of its equations (describing the evolution of the relative velocity) is bound by a curl-free
constraint. The latter comes out as an involution in the sense that it is rather a direct consequence of the main system
of equations and not an additional condition to be supplied. The most prominent examples of involutions are the
well-known divergence-free condition of the magnetic field in the Maxwell and MHD equations, or the curl-free
property of the deformation gradient in solid mechanics. Such stationary differential constraints (involutions) are
present in many other systems of physics and continuum mechanics, see for example [2,11,13,18,24,26,29,34–36,46].
Involution constraints generally are of little consequence at the continuous level, since solutions of the governing PDE
system obey them by definition. One cannot say the same at the discrete level, as extra attention needs to be paid for
discrete solutions to remain compatible with the involution, thus preserving their physical relevancy. This spurred
the development of particular numerical methods allowing to preserve differential involutions, mainly divergence
and curl constraints, at the discrete level. Examples of such methods include for example constrained transport
methods [7, 10, 19, 23, 31, 32, 38, 62, 64], divergence and curl cleaning approaches [13, 18, 20, 21, 24, 29, 39, 43] and
structure-preserving discretizations [4–6, 8, 9, 37, 40, 61, 63].
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In this context, we present the following contribution, the main objective being to solve numerically the system of
two-phase flows forwarded by Romenski while guaranteeing that its intrinsic curl-free constraint is respected exactly
at the discrete level. For that, we will consider the second-order structure-preserving finite volume scheme proposed
in [9] and further studied in [17, 25, 28, 45]. One of the novelties here is that the constrained vector field is a velocity
field, thus requiring extra effort in the implementation of compatible boundary conditions as soon as reflective walls are
considered.

This paper is organized as follows. In section 2, we provide the notations and recall the structure of the compressible
two-phase model under consideration. We present the equations of state that shall be used in the simulations and offer a
concise review of the hyperbolic nature of the equations. In section 3, we explain all parts of the proposed curl-free
numerical scheme. We show how the discretization of the system is split between a primary and a dual grid, and we
recall how this staggering allows us to recover the curl-free property exactly at the discrete level. In section 4 we present
some numerical results. We show that the proposed scheme exhibits second-order convergence for a smooth vortex-type
solution. We compare the approximate solution calculated with the proposed methodology and a reference solution for
Riemann problems in one and two space dimensions. In particular, we show comparisons with reference solutions for a
one-dimensional Riemann problem and for a radial explosion test. The computed solution for a dam-break problem will
also be compared with the reference solution calculated using an equivalent Baer-Nunziato model. In this test case, we
will describe how the compatible wall boundary conditions have been implemented. Finally, the performance of the
scheme to satisfy the curl-free constraint of the relative velocity is illustrated via the simulation of a Kelvin-Helmholtz
instability, which exhibits rather complex flow features. In all cases, plots of the curl errors over time are given as
evidence of the structure-preserving property of the scheme.

2. The two-phase model of Romenski et al.
2.1. Governing equations

We consider the model of Romenski proposed in [52–56], describing the motion of a multiphase medium formed by
the mixture of two compressible fluids. Here, we neglect any effects due to viscosity and inter-phase friction, and we
assume that the motion takes place in the absence of any heat or mass exchange. As to clarify the notations in what
follows, a superscript shall be used to designate the phase (I for phase one, II for phase two). Subscripts will be reserved
for vector components and matrix entries. Repeated subscript summation via the usual Einstein summation convention
is implied. Under these assumptions and notations, the equations of motions are given as follows:

∂αI

∂t
+ uk
∂αI

∂xk
= 0, (1a)

∂αIρI

∂t
+
∂(αIρIuI

k)
∂xk

= 0, (1b)

∂αIIρII

∂t
+
∂(αIIρIIuII

k )
∂xk

= 0, αII = 1 − αI , (1c)

∂ρui

∂t
+
∂ (ρuiuk + Πik)

∂xk
= giρ, Πik = pδik + ρwi Ewk , i ∈ {1, . . . d}, (1d)

∂wk

∂t
+
∂(wlul + φ)
∂xk

+ ul

(
∂wk

∂xl
−
∂wl

∂xk

)
= 0, k ∈ {1, . . . d}, (1e)

Here, t ∈ R+ is the time and x ∈ Rd is the space coordinates vector. The quantities α j, ρ j and u j = (u j
1, · · · , u

j
d), where

j ∈ {I, II}, are the phase average volume fraction, density and velocity field, respectively, of the jth component. The
mixture density ρ, the mixture velocity u, and the relative velocity w are then given by

ρ = αIρI + αIIρII , u =
αIρIuI + αIIρIIuII

ρ
, w = uI − uII .

Note that the system’s state is fully determined by the knowledge of the variables
{
αI , ρI , ρII ,u,w

}
and any other quantity

should be understood as a function of the latter and not as an independent degree of freedom. Under the previous
definitions, equation (1a) describes the transport of the volume fraction. Equations (1b,1c) describe mass conservation
for each phase. Equation (1d) is the mixture momentum conservation equation. Note that the vector g is the gravity
field, which we will only consider in some test cases. Lastly, equation (1e) is the balance law for the relative velocity.
Note that in the absence of source terms in the latter, the equation is subject to a curl-free constraint, provided the field
is initially as such, that is

if ∇ × w = 0, at t = 0 then ∇ × w = 0 ∀t ≥ 0, (2)

2
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and which is an immediate consequence of equation (1e). For this reason, the field w can be seen as the gradient of a
scalar function ϕ. The total energy density of this system is defined as

E(αI , ρI , ρII ,w,u) =
1
2
ρulul + ρE(αI , ρI , ρII ,w),

where E(αI , ρI , ρII ,w) is the specific internal energy of the mixture and which can be written in separable form as

E(αI , ρI , ρII ,w) = cIeI(ρI) + cIIeII(ρII) +
cIcII

2
wlwl,

where e j is the internal specific energy of the jth phase, whose expression is given by the equation of state of the
corresponding phase. The mass fractions c j are only introduced to ease notation and are given as functions of the energy
functional arguments as follows

cI(ρI , ρII , αI) =
αIρI

αIρI +
(
1 − αI) ρII , cII(ρI , ρII , αI) =

(
1 − αI

)
ρII

αIρI +
(
1 − αI) ρII .

The tensor Πik that appears in the mixture momentum equation (1d) is the total mixture stress tensor, where the mixture
pressure p can be expressed as the average of the phase pressures so that

p = αI pI + αII pII , where p j =
(
ρ j

)2 ∂e j

∂ρ j .

The scalar field φ which appears in the relative velocity equation (1e) writes as

φ =
ρ

αI

∂E
∂ρI −

ρ

αII

∂E
∂ρII = µ

I − µII −
cI − cII

2
wlwl

where µ j = e j(ρ j) + p j/ρ j is the chemical potential of the jth phase. Finally, one can obtain an additional conservation
law for the total energy of the mixture as a consequence of the system of equations (1), which is written as

∂E

∂t
+
∂
(
Euk + Πikuk + ρφEwk

)
∂xk

= 0.

2.2. Equations of state

Throughout this paper, we shall make use of either an ideal gas or a stiffened gas equation of state. In particular, the
latter will be used whenever a liquid phase is considered. We recall hereafter the expressions of the internal energy and
the corresponding pressure for a fluid of density ρ, in the barotropic case. For an ideal gas, we have

e(ρ) =
ργ−1

(γ − 1)
, p(ρ) = ργ (3)

while for a stiffened gas, we have

e(ρ) =
c2

0

γ(γ − 1)

(
ρ

ρ0

)γ−1

+
ρ0c2

0 − γp0

γρ
, p(ρ) = p0 +

ρ0

γ
c2

0

((
ρ

ρ0

)γ
− 1

)
. (4)

In these expressions, γ = cp/cV is the ratio of the heat capacity at constant pressure to heat capacity at constant volume,
p0, ρ0 and c0 are reference quantities for the pressure, density, and sound speed, respectively.

2.3. Hyperbolicity

The hyperbolicity of system (1) was addressed in one dimension of space in [55, 58] while the multidimensional case
was discussed for the first time in [51]. In particular, it was shown therein that in three dimensions of space, under
considerations of rotational invariance, the system of equations (1) has nine real eigenvalues in the x− direction, whose
expressions are recalled here

λ1 = uII
1 − aII , λ2 = uI

1 − aI , λ3−7 = u1, λ8 = uII
1 + aII , λ9 = uI

1 + aI , (5)

where a j =
√
∂p j/∂ρ j is the phase averaged sound speed. In particular, the system of equations (1) is only weakly

hyperbolic for d ≥ 2 as the eigenvalue λ = u1 is defective and lacks d − 1 linearly independent eigenvectors. Such
a shortcoming occurs in many systems of continuum mechanics that share a similar structure to the one considered
here, namely systems of equations discussed in [33], whenever a curl-free vector field is evolved in time, see for

3
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example [13, 18, 24, 26]. A known fix allowing to recover strong hyperbolicity in multiple dimensions of space is the
addition of the well-known symmetrizing terms, also referred to as Godunov-Powell terms [34, 48–50]. In the case of
the present system of equations, this would require modifying the momentum equation by adding the vector product
(∇ × w) × ρEw so that it becomes

∂ρui

∂t
+
∂ (ρuiuk + Πik)

∂xk
− ρEwk

(
∂wi

∂xk
−
∂wk

∂xi

)
= giρ.

Such a modification is only legitimate under the assumption that the initial data satisfies ∇ × w = 0 as, in this case,
the added term also cancels out in virtue of Equation (2). This actually restores the system’s strong hyperbolicity, as
shown in [51]. A possible interpretation of this fact is that while the system of equations (1) is weakly hyperbolic for
general initial data, solutions of the associated initial-value problem are equivalent in some sense to the solutions of the
strongly hyperbolic system, altered through the Godunov-Powell terms for a restricted set of well-prepared initial data
satisfying ∇ × w = 0 at t = 0. An alternative treatment that allows to restore strong hyperbolicity without modifying the
momentum conservation law was pointed out in [51] and consists in the use of a generalized Lagrangian multiplier
(GLM) technique, see [12, 20, 22, 43] for the original GLM method applied to divergence-type involutions and its more
recent variant [13, 18, 24, 29, 51] for curl-type involutions.

3. Numerical method
In this section, we propose a structure-preserving discretization to solve the system of equations (1). This discretization
is based on a staggered mesh arrangement, where the relative velocity is stored in the vertices of the mesh, while the
remaining variables, such as the mixture density, the momentum and the phase volume fractions are stored in the cell
centers. The first part of this section is devoted to describing the used staggered grid, introducing also the necessary
details of the notation. In addition, we will describe the compatible discrete operators for the gradient and the curl that
are employed to discretize the relative velocity equation. Then, we introduce the flux splitting that is a key ingredient of
our methodology. Finally, we provide a brief description of the second-order MUSCL-Hancock-type scheme used to
discretize the remaining terms.

3.1. Notation

The main objective of this section is to present a compatible discretization method that satisfies the curl constraint
for the relative velocity exactly also at the discrete level. With this purpose, we consider a discretization based on
staggered grids, which will allow us to define some fields in the cell centers and others in the vertices of the elements
of the main grid. Figure 1 shows the considered staggered grids. The blue elements are the cells of the main grid
Ωp,q and the elements limited by dashed red lines are the vertex-based dual cells Ωp± 1

2 ,q±
1
2
. As it is shown in the left

sketch, the relative velocity w is defined in the vertices of the main grid, and the variables u, uI , uII , ρ, ρI , ρII are defined
in the cell centers. Below, we will provide a detailed description of the notation. Throughout this section, and to
distinguish coordinate indices from time and space discretization indices, we will denote the former as i, j, k, the time
discretization index as n and the spatial discretization indices as p, q. For the sake of simplicity, we will describe the
numerical method considering a two–dimensional domain Ω, with x1 = x and x2 = y. The computational domain
Ω = [− Lx

2 ,
Lx
2 ] × [− Ly

2 ,
Ly

2 ] is discretized with a uniform Cartesian grid composed of Nx × Ny cells. These cells are
given by Ωp,q = [xp− 1

2
, xp+ 1

2
] × [yq− 1

2
, yq+ 1

2
] = [xp −

∆x
2 , xp +

∆x
2 ] × [yq −

∆x
2 , yq +

∆y
2 ], with (xp, yq) the discrete spatial

coordinates located in the barycenter of the control volume Ωp,q, and ∆x = Lx
Nx

, ∆y = Ly

Ny
the uniform mesh spacing

in the x− and y−directions. The critical point of the presented structure-preserving method lies in the definition of
a discrete gradient and curl, which will be defined at the staggered grid points and which will be compatible at the
discrete level with the system structure. Below, the flux splitting considered for this problem is introduced, and the
compatible operators are defined.

3.2. Flux splitting

Let Q =
(
αI , αIρI , αIIρII , ρu,w

)T
be the state vector, then the PDE system (1) can be written more compactly as

∂tQ + ∇ · F(Q) + B(Q) · ∇Q = S(Q),

where F(Q) is the nonlinear flux tensor, B(Q) · ∇Q contains the non-conservative terms and S(Q) is the algebraic source
term. To apply the numerical method to solve the proposed PDE system, it is more appropriate to split the system into
the form

∂tQ + ∇ ·
(
Fb(Q) + Fv(Q)

)
+ ∇Gv(Q) + Bb(Q) · ∇Q + Bv(Q) · ∇Q = Sb(Q), (6)

4
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Figure 1: Sketch of the staggered grid. The blue elements are the cells of the main grid Ωp,q, and those delimited by
dashed red lines are the cells of the dual grid. Left: the relative velocity w is defined at the vertices of the main grid,
and the rest of variables, such as u, are defined in the cell centers of the control volumes. Right: The scalar field ϕ is
also defined in the cell centers.

where the superscripts b and v distinguish terms that involve fields defined on the cell centers, or on the vertices,
respectively. The terms appearing in equation (6) are defined as

Fb =


0

αIρIuk
αIIρIIuk
ρuiuk + pδik

0

 , Fv =


0

αIρIcIIwk
−αIIρIIcIwk
cIcIIρwiwk

0

 , Gv =


0
0
0
0

w ju j + φ

 ,

Bb(Q) · ∇Q =


uk
∂αI

∂xk

0
0
0
0

 , Bv(Q) · ∇Q =


0
0
0
0

u j

(
∂wk
∂x j
−
∂w j

∂xk

)

, Sb =


0
0
0

giρ
0

 ,
where Fb is the flux containing the convective part as well as the pressure terms, Fv is the flux containing the terms related
to the relative velocity, Gv comprises the components whose gradient will be calculated using the compatible discrete
gradient operator that we will describe in the next section, Bb(Q) · ∇Q and Bv(Q) · ∇Q contain the non-conservative
products related to the phase volume fraction and to the curl terms, respectively, and Sb are the source terms of the
momentum equation related to gravity. The subsystem

∂tQ + ∇ ·
(
Fb(Q) + Fv(Q)

)
+ Bb(Q) · ∇Q = Sb(Q), (7)

will be discretized explicitly using a second-order MUSCL-Hancock type finite volume method with a TVD limiter,
using the Rusanov flux as approximate Riemann solver. On the other hand, the discretization of

∂tQ + ∇Gv(Q) + Bv(Q) · ∇Q = 0, (8)

will be performed using the compatible gradient and curl operators that will be described in the next section to obtain a
curl-free method at the discrete level.

3.3. Compatible gradient and curl operators

As we have indicated at the beginning of this section, the key point of the structure-preserving method presented in
this paper lies in properly defining the discrete differential operators, considering the grid points we have just defined.
Let ϕn

p,q = ϕ(xp, yq, tn) be a scalar field defined at the centers of the control volumes Ωp,q, the primitive variables
(ρp,q, ρ

I
p,q, ρ

II
p,q, u

I
p,q, u

II
p,q, . . .) which are stored in the cell centers (xp, yp) and the relative velocity field (wp± 1

2 ,q±
1
2
=

5
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∇ϕp± 1
2 ,q±

1
2
) that is stored at the dual grid points (xp± 1

2
, yq± 1

2
). If there is no confusion, we will omit the superscript n for

the time level for the sake of simplicity.
The discrete gradient operator ∇h of the scalar field ϕ is defined in each vertex as a constant value that can be computed
naturally using the finite differences of ϕ along the two independent directions via a central corner gradient (the right
sketch of Figure 1 shows more details). The degrees of freedom of the compatible gradient operator read as

(
∇hϕh

)
=


(
∂h

xϕ
)

p+ 1
2 ,q+

1
2(

∂h
yϕ

)
p+ 1

2 ,q+
1
2

 =


1
2
ϕp+1,q+1 − ϕp,q+1 + ϕp+1,q − ϕp,q

∆x
1
2
ϕp+1,q+1 − ϕp+1,q + ϕp,q+1 − ϕp,q

∆y

 . (9)

Once the compatible gradient operator has been presented, we will define the discrete curl operator ∇h× of a vector
field ∇hϕ at the center of the cells, making use of the discrete gradients in the surrounding cells. The component in the
z−direction is given by

(
∇h × ∇hϕ

)
p,q
· e3 =

(
∂h

yϕ
)

p+ 1
2 ,q+

1
2
−

(
∂h

yϕ
)

p− 1
2 ,q+

1
2

2∆x
+

(
∂h

yϕ
)

p+ 1
2 ,q−

1
2
−

(
∂h

yϕ
)

p− 1
2 ,q−

1
2

2∆x

−

(
∂h

xϕ
)

p+ 1
2 ,q+

1
2
−

(
∂h

xϕ
)

p+ 1
2 ,q−

1
2

2∆y
−

(
∂h

xϕ
)

p− 1
2 ,q+

1
2
−

(
∂h

xϕ
)

p− 1
2 ,q−

1
2

2∆y
, (10)

with e3 = (0, 0, 1). Once the compatible discrete gradient and curl operators have been defined, it is necessary to verify
that the continuous identity

∇ × ∇ϕ = 0, (11)
is also satisfied at the discrete level. Combining (9) and (10), it is easy to prove that for an arbitrary scalar field ϕ
defined in the barycenter of the main grid one has(

∇h× ∇hϕ
)

p,q
· e3

=
1
4


(
ϕp+1,q+1 − ϕp+1,q + ϕp,q+1 − ϕp,q

)
−

(
ϕp,q+1 − ϕp,q + ϕp−1,q+1 − ϕp−1,q

)
∆x∆y

+

(
ϕp+1,q − ϕp+1,q−1 + ϕp,q − ϕp,q−1

)
−

(
ϕp,q − ϕp,q−1 + ϕp−1,q − ϕp−1,q−1

)
∆x∆y

−

(
ϕp+1,q+1 − ϕp,q+1 + ϕp+1,q − ϕp,q

)
−

(
ϕp+1,q − ϕp,q + ϕp+1,q−1 − ϕp,q−1

)
∆x∆y

−

(
ϕp,q+1 − ϕp−1,q+1 + ϕp,q − ϕp−1,q

)
−

(
ϕp,q − ϕp−1,q + ϕp,q−1 − ϕp−1,q−1

)
∆x∆y

 = 0,

that is, (11) is satisfied also at the discrete level or equivalently,

∇h × ∇hϕ = 0, (12)

for all cells of the computational domain, which is the discrete curl-grad compatibility. This equality shows that any
gradient field defined using the discrete compatible operator (9) is exactly curl-free for the discrete compatible operator
(10).

3.4. Discretization of the relative velocity with the compatible operators

The relative velocity equation will be discretized making use of the compatible operators defined before. Thus,
Equation (1e) reads as

(wk)n+1
p+ 1

2 ,q+
1
2
= (wk)n

p+ 1
2 ,q+

1
2
− ∆t ∂h

k (wlul + φ)n
p+ 1

2 ,q+
1
2

−
∆t
4

1∑
r=0

1∑
s=0

(ul)n
p+r,q+s

(
∂h

l (wk)n
p+ 1

2 ,q+
1
2
− ∂h

k (wl)n
p+ 1

2 ,q+
1
2

)
, (13)

for each component k of the gradient field w. In the right-hand side of the equation (13), the last term can be computed
using the compatible gradient (9). Now, we will prove that for a curl-free vector w that satisfies ∇h × wh,n = 0, it is also

6
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satisfied ∇h × wh,n+1 = 0. If the discrete curl operator ∇h× is applied to (13), taking into account that ∇h × wh,n = 0, it
results

∇h × (wk)n+1
p+ 1

2 ,q+
1
2
= −∆t∇h ×

(
∂h

k (wlul + φ)n
p+ 1

2 ,q+
1
2

)
. (14)

Since the right hand side of Equation (14) is zero due to the definition of the compatible discrete curl-grad (12), then
∇h × (wk)h,n+1 = 0. That is, if the vector field w is curl-free at the initial time, it will be curl-free for every instant of
time.

The scheme just presented is based on a central discretization. We will define a compatible artificial viscosity to
suppress instabilities that may appear and to guarantee the stability of the method, while keeping the discretely curl-free
structure. Recall that the vector Laplacian of w at the continuous level can be written as

∇2w = ∇ (∇ · w) − ∇ × ∇ × w (15)

To discretize (15), defining a discrete divergence operator is necessary. We will define the discrete divergence
operator ∇h· acting on a discrete vector field wh = (wh

x,w
h
y)T at the corners, considering as a stencil a piecewise linear

reconstruction of w at the cell centers. We will calculate, therefore, the extrapolated values of the cell centers of w, for
each (xp, yq). Using such values, the discrete divergence operator at vertex (xp+ 1

2
, yq+ 1

2
) is then defined as:

∇h · wh =
(
∂h

kwk

)
p+ 1

2 ,q+
1
2
=

1
2

(
(wx)p+1,q+1 − (wx)p,q+1

∆x
+

(wx)p+1,q − (wx)p,q

∆x

)
+

1
2

(
(wy)p+1,q+1 − (wy)p+1,q

∆y
+

(wy)p,q+1 − (wy)p,q

∆y

)
. (16)

Having defined the discrete divergence operator (16), the discrete version of (15) at (xp+ 1
2
, yq+ 1

2
) is given as follows(

∇2
hw

)
p+ 1

2 ,q+
1
2
=

(
∇h

(
∇h · w

))
p+ 1

2 ,q+
1
2
−

(
∇h × ∇h × w

)
p+ 1

2 ,q+
1
2

(17)

Multiplying (17) by the mesh size h = max(∆x,∆y) and by an appropriate constant signal speed ch, the expression (13)
turns out to be

(wk)n+1
p+ 1

2 ,q+
1
2
= (wk)n

p+ 1
2 ,q+

1
2
− ∆t

(
∂h

k (wlul + φ) − hch∂
h
l wl

)n

p+ 1
2 ,q+

1
2

−
∆t
4

1∑
r=0

1∑
s=0

(ul)n
p+r,q+s

(
∂h

l (wk)n
p+ 1

2 ,q+
1
2
− ∂h

k (wl)n
p+ 1

2 ,q+
1
2

)
.

This compatible discretization can be used to discretize equation (1e), and thus, as long as it is curl-free at the initial
time, w remains curl-free for all times.

3.5. Discretization of the remaining terms

Once equation (8) has been discretized with the compatible operators described in the previous sections, to discretize
the remaining terms (Equations (7)) we will make use of a classical second-order MUSCL-Hancock scheme. Below,
we will briefly describe the numerical scheme. It reads

Qn+1
p,q = Qn

p,q −
∆t
∆x

(
(Fx)p+ 1

2 ,q
− (Fx)p− 1

2 ,q

)
−
∆t
∆y

((
Fy

)
p,q+ 1

2
−

(
Fy

)
p,q− 1

2

)
−
∆t
∆x

((
Db

x

)
p+ 1

2 ,q
+

(
Db

x

)
p− 1

2 ,q

)
−
∆t
∆y

((
Db

y

)
p,q+ 1

2
+

(
Db

y

)
p,q− 1

2

)
− ∆t Bb(Qn+ 1

2
p,q ) · ∇Qn+ 1

2
p,q + ∆t Sb(Qn+ 1

2
p,q ),

where (Fx)p+ 1
2 ,q

and
(
Fy

)
p,q+ 1

2
are the numerical fluxes in x and y direction, respectively, including Fb and Fv. The

path-conservative jump terms according to Castro and Parés [15, 16, 44] are given in the x and y direction by

Db
x,y(Q−h ,Q

+
h ) =

1
2

B̃x,y(Q+h −Q−h ), with B̃x,y =

∫ 1

0
Bb(Ψ(s,Q+h ,Q

−
h )) · nx,y dS .

They are defined as a function of two generic left and right boundary-extrapolated values Q−h and Q+h , respectively.
These terms take into account jumps of Q at the element boundaries. In this paper the simple straight-line segment path
is chosen

Ψ(s,Q+h ,Q
−
h ) = Q−h + s(Q+h −Q+h ), s ∈ [0, 1].
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In order to compute the numerical fluxes Fx and Fy, we will use the Rusanov flux, see [57]:

(Fx)p+ 1
2 ,q
=

1
2

(
Fb

x

(
Qn+ 1

2 ,−

p+ 1
2 ,q

)
+ Fb

x

(
Qn+ 1

2 ,+

p+ 1
2 ,q

)
+ Fv

x

(
Qn

p+ 1
2 ,q+

1
2

)
+ Fv

x

(
Qn

p+ 1
2 ,q−

1
2

))
−

1
2

sx
max

(
Qn+ 1

2 ,+

p+ 1
2 ,q
−Qn+ 1

2 ,−

p+ 1
2 ,q

)
,(

Fy

)
p,q+ 1

2
=

1
2

(
Fb

y

(
Qn+ 1

2 ,−

p,q+ 1
2

)
+ Fb

y

(
Qn+ 1

2 ,+

p,q+ 1
2

)
+ Fv

y

(
Qn

p+ 1
2 ,q+

1
2

)
+ Fv

y

(
Qn

p− 1
2 ,q+

1
2

))
−

1
2

sy
max

(
Qn+ 1

2 ,+

p,q+ 1
2
−Qn+ 1

2 ,−

p,q+ 1
2

)
,

where sx
max and sy

max are the maximum wave speeds in the x− and y direction, respectively, computed as the maximum
absolute value of the eigenvalues in each direction. The values Q± are the boundary extrapolated values, given by

Qn+ 1
2 ,−

p+ 1
2 ,q
= Qn

p,q +
1
2
∆x∂xQn

p,q +
1
2
∆t∂tQn

p,q,

Qn+ 1
2 ,+

p+ 1
2 ,q
= Qn

p+1,q −
1
2
∆x∂xQn

p+1,q +
1
2
∆t∂tQn

p+1,q,

Qn+ 1
2 ,−

p,q+ 1
2
= Qn

p,q +
1
2
∆y∂yQn

p,q +
1
2
∆t∂tQn

p,q,

Qn+ 1
2 ,+

p,q+ 1
2
= Qn

p,q+1 −
1
2
∆y∂yQn

p,q+1 +
1
2
∆t∂tQn

p,q+1,

with ∂xQn
p,q and ∂yQn

p,q the slopes defined as

∂xQn
p,q = minmod

Qn
p+1,q −Qn

p,q

∆x
,

Qn
p,q −Qn

p−1,q

∆x

 ,
∂yQn

p,q = minmod
Qn

p,q+1 −Qn
p,q

∆y
,

Qn
p,q −Qn

p,q−1

∆y

 ,
and with the time derivative ∂tQn

p,q computed as follows

∂tQn
p,q = −

Fb
x

(
Qn

p,q +
1
2∆x∂xQn

p,q

)
− Fb

x

(
Qn

p,q −
1
2∆x∂xQn

p,q

)
∆x

−
Fb

y

(
Qn

p,q +
1
2∆y∂yQn

p,q

)
− Fb

y

(
Qn

p,q −
1
2∆y∂yQn

p,q

)
∆y

−

Fv
x

(
Qn

p+ 1
2 ,q+

1
2

)
+Fv

x

(
Qn

p+ 1
2 ,q−

1
2

)
−Fv

x

(
Qn

p− 1
2 ,q+

1
2

)
−Fv

x

(
Qn

p− 1
2 ,q−

1
2

)
2∆x

−

Fv
y

(
Qn

p+ 1
2 ,q+

1
2

)
+Fv

y

(
Qn

p− 1
2 ,q+

1
2

)
−Fv

y

(
Qn

p+ 1
2 ,q−

1
2

)
−Fv

y

(
Qn

p− 1
2 ,q−

1
2

)
2∆y

+ Sb(Qn
p,q) − Bb(Qn

p,q) · ∇Qn
p,q.

This completes the description of the numerical method. To summarize: in our new structure-preserving algorithm we
employ a path-conservative MUSCL-Hancock-type finite volume scheme for the evolution of all quantities, apart from
the relative velocity field, which is updated using a special discretization on suitably staggered meshes which allows to
preserve the curl-free property of the relative velocity field exactly also at the discrete level.
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4. Numerical results
In this section, we will show some test cases that demonstrate the performance of the proposed method, the convergence
order and illustrate that the method is exactly curl-free. First, we will use the proposed methodology to solve a 1D
Riemann problem, perform some simulations to show the experimental order of convergence (EOC), and solve a 2D
circular explosion problem. In all cases, reference solutions are used for a fair comparison with the approximate solution.
Then, we will simulate a dam break and compare the results with those obtained using the reduced Baer–Nunziato
model. Finally, we will perform a simulation to show the Kelvin–Helmholtz instabilities and qualitatively compare the
results with those existing in the literature to show the good behavior of the proposed method. In all the results, the
gravity g is set to 0, except in the dam break test, where it has to be considered.

4.1. 1D Riemann problem

The first test case under consideration is a Riemann problem in 1D, where a shock in one phase appears within a
rarefaction wave of the other phase, see [58] for the exact solution of the Riemann problem and a detailed discussion of
possible wave patterns. The computational domain is Ω = [−1, 1] and has been discretized using a mesh with 30000
cells in order to show sufficiently converged numerical results. The final time is t = 0.25, and the CFL has been set
to 0.25. In both phases, we will consider the EOS for an ideal gas (3) with γI = 1.4, and γII = 2. The left and right
states used are shown in Table 1 (see [51] and [58] for more details on the test). A comparison has been made between
the numerical results obtained with the method proposed in this work and the reference solution computed with a
second-order MUSCL–Hancock scheme based on the Rusanov flux as an approximate Riemann solver and using a
mesh spacing of ∆x = 2 · 10−6 (see [58] for details about the reference solution). The results, for the densities of each
phase ρI , ρII , the mixture density ρ, the volume fraction αI , the mixture velocity u and the relative velocity w are shown
in Figure 2. Excellent agreement between the calculated and the reference solutions is observed in all cases. The choice
of the number of points in this one-dimensional test is due to the need to capture the resonance phenomenon of the
shock inside a rarefaction wave accurately enough, as illustrated in the zooms of the first phase density and relative
velocity.

Table 1: Left and right states of the one dimensional Riemann problem

αI ρI ρII uI uII

QL 0.7 1.2449 1.2969 -1.2638 -0.38947
QR 0.3 0.60312 0.73436 0.43059 -0.40507

4.2. Stationary vortex solution

In order to have a quantitative assessment of the scheme’s performance, we consider here a two-dimensional stationary
solution to check the experimental order of convergence and evaluate the curl-free property. For this, we consider the
rotationally symmetric exact solution of system (1) presented in [51]. In polar coordinates (r, θ), the solution can be
expressed in terms of primitive variables as follows

αI(r) =
1
3
+

e−
r2
2

2
√

2π
, ρI(r) = ρII(r) =

1 − e1−r2

4

5/7

,

uI
θ(r) = uII

θ (r) = 23/14

√√√
r2e1−r2(

4 − e1−r2
)5/7 .

For this test case, we use the same ideal gas equation of state for both fluids with γI = γII = 1.4. The acceleration
of gravity is neglected here. The computational domain is Ω = [−10, 10] × [−10, 10]. Periodic boundary conditions
are used in both directions. In Figure 3, the left plot shows the solution of the stationary vortex computed using the
structured preserving FV scheme for a mesh resolution of 1024 × 1024 cells at time t = 1000. On the right plot, we
show a graphical representation of the obtained solution using the structure-preserving FV scheme, plotted with dashed
red lines, compared with the exact solution, plotted with solid black lines. Figure 4 shows the L1 norm of the curl
errors for the simulation with final time t = 1000 using a mesh resolution of 1024 × 1024 cells for the solution using
the new structure-preserving scheme described in this work and without the compatible curl-free discretization. The
obtained results clearly show that the new method is able to maintain the curl-free property of the relative velocity field
up to machine precision. The number of time steps performed is around 400000. A convergence table for this test
case on different mesh resolutions is given in Table 2, which shows that the second order is well recovered in all the
representative variables.
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Figure 2: 1D Riemann problem solved with the structured preserving finite volume scheme on a Cartesian staggered
mesh with 30000 cells at final time t = 0.25. Top: densities of each phase, ρI and ρII . Center: mixture density ρ and
volume fraction αI . Bottom: mixture velocity u and relative velocity w = uI − uII . The zooms show the shock inside the
rarefaction which are a very special feature of the exact solution of this Riemann problem, see [58].
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Figure 3: Left: Solution of the stationary vortex with the curl-free scheme solved on a staggered mesh with 1024× 1024
cells at time t = 1000. Right: Comparison between the approximated solution (dashed red line) and the exact solution
(solid black line) at time t = 1000.
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Figure 4: Time-evolution of the L1 norm of the discrete curl errors using the staggered compatible curl-free discretization
(red line) and without the compatible curl-free discretization (black line) for the 2D stationary vortex problem, using a
mesh with 1024 × 1024 cells.

4.3. Two-dimensional circular explosion problem

To carry out another two-dimensional test, a circular explosion problem is considered. This problem can be interpreted
as the two-dimensional extension of Riemann problems in radial symmetry, see also [60]. The computational domain
contains in the center a circle of radius R = 0.5 that divides the domain into two different states, the inner state, and the
outer state, defining the initial condition as follows,

Q(x, t) =
{

QL if |x| < 0.5,
QR otherwise , (18)

where QL and QR are described in Table 3. As proposed in [30], a reference solution can be derived by solving an
equivalent PDE in radial direction with geometric source terms. To obtain more details about the radial system, the
reader is referred to [51]. The numerical solution has been computed in the domain Ω = [−1, 1] × [−1, 1], using
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Table 2: Convergence table for the vortex test case with the proposed curl-free scheme. ϵ represents the L2 error norm
of the corresponding variable and O is the experimental convergence order. All model parameters are taken similarly as
for Figure 3, except for the mesh sizes, and the final time set to t = 1.

Nx = Ny ϵα1 ϵρ1 ϵρ2 ϵu1 ϵu2

192 1.92 × 10−4 7.66 × 10−4 8.20 × 10−4 1.87 × 10−3 1.88 × 10−3

768 1.46 × 10−5 5.80 × 10−5 6.08 × 10−5 1.72 × 10−4 1.73 × 10−4

3072 1.00 × 10−6 3.74 × 10−6 3.91 × 10−6 1.27 × 10−5 1.27 × 10−5

6144 2.59 × 10−7 9.41 × 10−7 9.82 × 10−7 3.37 × 10−6 3.37 × 10−6

12288 6.68 × 10−8 2.36 × 10−7 2.46 × 10−7 8.91 × 10−7 8.91 × 10−7

O(α1) O(ρ1) O(ρ2) O(u1) O(u2)

1.86 1.86 1.88 1.72 1.72
1.93 1.98 1.98 1.88 1.88
1.95 1.99 1.99 1.91 1.91
1.95 2.00 2.00 1.92 1.92

Table 3: Left and right states of the circular explosion problem given by Equation (18)

αI ρI ρII uI
1 uI

2 uI
3 uII

1 uII
2 uII

3

QL 0.4 2 1.5 0 0 0 0 0 0
QR 0.8 1 0.5 0 0 0 0 0 0

the curl-free approach that has been described in this paper, considering a Cartesian staggered mesh discretized with
4800 × 4800 cells. As reported in [51], the reference solution has been computed using a second-order TVD finite
volume method with the Rusanov flux on a mesh with 128000 cells in 1D for the equivalent system in radial direction.
The final time of the simulation is t = 0.1 and the EOS for both phases is (3), with parameters γI = 1.4, and γII = 2.

Figure 5 shows the numerical results compared with the reference solution described before. Moreover, Figure 6
illustrates the time evolution of the L1 norm of the curl errors for the solution computed without the curl-free approach
and for the solution calculated with the structure-preserving method detailed in this paper.

4.4. Dambreak

We consider here a 2D Riemann problem consisting in a dambreak test case. The total computational domain is
Ω = [0, 4] × [0, 2] discretized over 4800 × 2400 computational elements. The initial condition is such that water
(assumed here as fluid II) occupies a rectangular region in the bottom left of the domain denoted by ΩW = [0, 2] × [0, 1]
while the remaining region is occupied by air. The model variables are then initialized as follows

(x, y) ∈ ΩW :


αI(x, y) = 1,

ρI(x, y) =
(
ρI

0 g (y − 2)
)1/γI

,

ρII(x, y) = ρII
0 ,

uI = uI = (0, 0, 0)T,

else :


αI(x, y) = 0,
ρI(x, y) = ρI ,

ρII(x, y) = ρII
0

(
1 + ρII

0 g (y − 1)
)1/γII

,

uI = uI = (0, 0, 0)T.

The initial profiles of densities are such that initial pressure is hydrostatic in both phases, and the system is at
rest. Water then flows under the effects of gravity, assumed to act along the y−axis such that g = (0,−g) and
g = 9.80. As for the equations of state, we assume that water behaves as a stiffened gas (following the EOS (4), with
pII

0 = 1, cII
0 = 20, ρII

0 = 1000, γII = 2 ) while the surrounding air is an ideal gas (γI = 1.4). The CFL number is fixed
at 0.5, and the final simulation time is t = 0.4. Last, it is important here to discuss how the boundary conditions are
implemented. Indeed, we would like to impose slip wall boundary conditions on all the domain boundaries. In terms of
the mixture velocity u and the relative velocity w, this amounts to imposing the components normal to the boundary to
zero. While for the former, this can be done trivially, the uncareful treatment of this boundary condition for w may
result in the loss of the curl-free property. One solution to this problem would be introducing an additional layer of
points for the scalar field from which w is constructed, thus extending it beyond the boundaries, see Figure 7. We can
then impose a boundary condition directly on the scalar field, in such a way that the required boundary condition on w
is recovered, when computed from the compatible gradient. Thus, for no-slip wall boundary conditions, we impose for
the scalar field
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Figure 5: Solution of the 2D circular explosion problem with the structured preserving finite volume scheme for the
initial condition showed in Table 3 solved on a Cartesian staggered mesh with 4800 × 4800 cells at time t = 0.1, in
comparison with the radial reference solution. Top: densities of each phase, ρI and ρII . Center: mixture density ρ and
volume fraction αI . Bottom: mixture velocity u and relative velocity w = uI − uII .

{
ϕ0,q = ϕ1,q,

ϕNx+1,q = ϕNx,q,
∀q ∈ {0..Ny},

{
ϕp,0 = ϕp,1,

ϕp,Ny+1 = ϕp,Ny ,
∀p ∈ {0..Nx}.
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Figure 6: Time-evolution of the L1 norm of the discrete curl errors using the staggered compatible curl-free discretization
(red line) and without the compatible curl-free discretization (black line) for the 2D circular explosion problem, using a
mesh with 4800 × 4800 cells.

Figure 7: Schematic showing the extra layer of points of the scalar field from which w is calculated at the boundaries.
The highlighted areas are examples of stencils needed to compute w on the x = 0 and y = 0 walls.

The boundary conditions for the rest of variables are treated as for a classical finite volume scheme (slopes are set to
zero for all variables except for the mixture velocity component normal to the boundary which is taken with opposite
sign). The numerical results for this test case are presented in Figure 8. The left side of the figure shows the 2D
distribution of the volume fraction αI , where blue corresponds to water and red to air. The right side of the figure
shows a comparison of the water depth profile extracted from this simulation, with a reference solution computed
with a third-order ADER-WENO finite volume scheme on a very fine uniform Cartesian grid, solving the inviscid and
barotropic reduced Baer–Nunziato model presented in [27]. The comparison shows an excellent agreement between
both solutions, computed from two different models using two different numerical methods.

4.5. Kelvin-Helmholtz instability

Kelvin-Helmholtz instabilities are turbulent flow patterns formed at the interface between two moving flows with
different velocities or densities, which appear when a velocity gradient is created at the interface between the two fluids.
In this last test case, we will perform the simulation considering two flows with different initial velocities and densities
in the computational domain Ω = [−0.5, 0.5] × [−1, 1]. We will impose periodic boundary conditions in both x− and
y−direction and introduce a perturbation in the system to trigger instabilities at the interface between the two fluids.
The simulation will be performed on a 1024 × 2048 mesh, up to a final time of t = 6. We will consider that at the initial
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Figure 8: Dambreak problem at time t = 0.4. Left: Numerical solution, computed using the structure-preserving finite
volume method to solve the barotropic SHTC model proposed in this paper, considering a mesh with 4800 × 2400 cells.
Right: comparison between the same numerical solution with that of the barotropic reduced Baer–Nunziato model
presented in [27]
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Figure 9: Time-evolution of the L1 norm of the discrete curl errors using the staggered compatible curl-free discretization
and without the compatible curl-free discretization for the dambreak problem, using a mesh with 4800 × 2400 cells.

time, the densities are constant ρI = 1 and ρII = 2. The initial condition for αI is given by

αI =

{
0.5 + 0.25 tanh(25(y + 0.5))) if y < 0,
0.5 − 0.25 tanh(25(y − 0.5))) if y ≥ 0.

The EOS chosen for both phases is ideal gas (3), with γI = 1.4 and γII = 2. The pressure in both phases is initialized as
pI = pII = 100/γI , and the initial velocities are given by

uI
1 = uII

1 =

{
0.5 tanh(25(y + 0.5))) if y < 0,
−0.5 tanh(25(y − 0.5))) if y ≥ 0,

uI
2 = uII

2 =

{
−10−2 sin(2πx) sin(2π(y + 0.5)) if y < 0,
10−2 sin(2πx) sin(2π(y − 0.5)) if y ≥ 0,

The perturbation introduced in the y−component of both velocities causes the instabilities to be generated. In Figure 10,
the values of αI at times t = 0, 2, 3, 4, 5, 6 are shown, presenting the usual roll-up and vortex formation that is
characteristic of Kelvin-Helmholtz instabilities, see also [59]. In Figure 11 we show the temporal evolution of the curl
error of the relative velocity field, which remains at the level of machine precision for all times when using the new
structure-preserving FV scheme presented in this paper and which is several orders of magnitude larger when using a
classical MUSCL-Hancock-type scheme.
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Figure 10: Two-phase Kelvin-Helmholtz instability: numerical solution obtained with the structure-preserving finite
volume scheme at times t = 0, 2, 3, 4, 5, 6 using a mesh of 1024 × 2048 for the computational Ω = [−0.5, 0.5] × [−1, 1].
The plot shown in [0.5, 1.5] × [−1, 1] is the juxtaposition of the original numerical solution.
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Figure 11: Time-evolution of the L1 norm of the discrete curl errors using the staggered compatible curl-free dis-
cretization and without the compatible curl-free discretization for the Kelvin-Helmholtz instability, using a mesh with
2048 × 2048 cells.

5. Conclusion

In this paper, we have numerically solved the barotropic two-phase model of Romenski [52–55] using a new structure-
preserving finite volume scheme that conserves the curl-free constraint of the relative velocity exactly also at the
discrete level. This property was highlighted in a set of test cases, also when compatible wall boundary conditions
on the relative velocity were imposed. One could extend the presented scheme to higher-order, similarly to what was
done in [8]. Another interesting approach under consideration, consists in the development of Thermodynamically
Compatible Schemes [1, 12, 14], allowing to conserve both the mathematical structure of the system while also keeping
its energy conserved and its entropy production admissible at the discrete level. The latter property, in particular, was
addressed for this model in [59]. Last, it would be of practical interest to extend the presented model to the dissipative
case where viscosity and heat transfer are both present while safeguarding the hyperbolic structure, which can be done
in the framework of SHTC equations, as in [46, 47].

Acknowledgements

This research was funded by the Italian Ministry of Education, University and Research (MIUR) in the frame of the
Departments of Excellence Initiative 2018–2027 attributed to DICAM of the University of Trento (grant L. 232/2016)
and in the frame of the PRIN 2022 project High order structure-preserving semi-implicit schemes for hyperbolic
equations. FD was also funded by NextGenerationEU, Azione 247 MUR Young Researchers – SoE line. LR, FD, and
MD are members of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).
The authors would like to acknowledge support from the CINECA under the ISCRA initiative, for the availability
of high-performance computing resources and support (project number IsB27_NeMesiS). This research was also
co-funded by the European Union NextGenerationEU (PNRR, Spoke 7 CN HPC). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the granting authority can be held responsible for them.

References

[1] R. Abgrall, S. Busto, and M. Dumbser. A simple and general framework for the construction of thermodynamically
compatible schemes for computational fluid and solid mechanics. Applied Mathematics and Computation,
440:127629, 2023.

[2] D. Alic, C. Bona, and C. Bona-Casas. Towards a gauge-polyvalent numerical relativity code. Physical Review D,
79(4):044026, 2009.

[3] M. R. Baer and J. W. Nunziato. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in
reactive granular materials. International Journal of Multiphase Flow, 12(6):861–889, 1986.

17



L. RÍO-MARTÍN, F. DHAOUADI AND M. DUMBSER

[4] D. Balsara, R. Käppeli, W. Boscheri, and M. Dumbser. Curl constraint-preserving reconstruction and the guidance
it gives for mimetic scheme design. Communications in Applied Mathematics and Computational Science,
5(1):235–294, 2023.

[5] D. Balsara and D. Spicer. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal
magnetic fields in magnetohydrodynamic simulations. Journal of Computational Physics, 149:270–292, 1999.

[6] D. S. Balsara. Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction.
The Astrophysical Journal Supplement Series, 151(1):149, 2004.

[7] C. Birke, W. Boscheri, and C. Klingenberg. A high order semi-implicit scheme for ideal magnetohydrodynamics.
In E. Franck, J. Fuhrmann, V. Michel-Dansac, and L. Navoret, editors, Finite Volumes for Complex Applications
X—Volume 1, Elliptic and Parabolic Problems, pages 21–37, Cham, 2023. Springer Nature Switzerland.

[8] W. Boscheri, G. Dimarco, and L. Pareschi. Locally structure-preserving div-curl operators for high order
discontinuous Galerkin schemes. Journal of Computational Physics, 486:112130, 2023.

[9] W. Boscheri, M. Dumbser, M. Ioriatti, I. Peshkov, and E. I. Romenski. A structure-preserving staggered semi-
implicit finite volume scheme for continuum mechanics. Journal of Computational Physics, 424, 2021.

[10] S. H. Brecht, J. Lyon, J. A. Fedder, and K. Hain. A simulation study of east-west IMF effects on the magnetosphere.
Geophysical Research Letters, 8(4):397–400, 1981.

[11] J. D. Brown, P. Diener, S. E. Field, J. S. Hesthaven, F. Herrmann, A. H. Mroué, O. Sarbach, E. Schnetter, M. Tiglio,
and M. Wagman. Numerical simulations with a first-order BSSN formulation of Einstein’s field equations.
Physical Review D, 85(8):084004, 2012.

[12] S. Busto and M. Dumbser. A new thermodynamically compatible finite volume scheme for magnetohydrodynamics.
SIAM Journal on Numerical Analysis, 61(1):343–364, 2023.

[13] S. Busto, M. Dumbser, C. Escalante, S. Gavrilyuk, and N. Favrie. On high order ADER discontinuous Galerkin
schemes for first order hyperbolic reformulations of nonlinear dispersive systems. Journal of Scientific Computing,
87, 2021.

[14] S. Busto, M. Dumbser, I. Peshkov, and E. I. Romenski. On thermodynamically compatible finite volume schemes
for continuum mechanics. SIAM Journal on Scientific Computing, 44(3):A1723–A1751, 2022.

[15] M. J. Castro, J. M. Gallardo, J. A. López, and C. Parés. Well-balanced high order extensions of Godunov’s method
for semilinear balance laws. SIAM Journal of Numerical Analysis, 46:1012–1039, 2008.

[16] M. J. Castro, J. M. Gallardo, and C. Parés. High-order finite volume schemes based on reconstruction of states for
solving hyperbolic systems with nonconservative products. Applications to shallow–water systems. Mathematics
of Computation, 75:1103–1134, 2006.

[17] S. Chiocchetti and M. Dumbser. An exactly curl-free staggered semi-implicit finite volume scheme for a first order
hyperbolic model of viscous two-phase flows with surface tension. Journal of Scientific Computing, 94, 2023.

[18] S. Chiocchetti, I. Peshkov, S. Gavrilyuk, and M. Dumbser. High order ADER schemes and GLM curl cleaning for
a first order hyperbolic formulation of compressible flow with surface tension. Journal of Computational Physics,
426:109898, 2021.

[19] W. Dai and P. R. Woodward. A simple finite difference scheme for multidimensional magnetohydrodynamical
equations. Journal of Computational Physics, 142(2):331–369, 1998.

[20] A. Dedner, F. Kemm, D. Kröner, C. D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning
for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.

[21] A. Dedner, C. Rohde, and M. Wesenberg. A new approach to divergence cleaning in magnetohydrodynamic
simulations. In Hyperbolic Problems: Theory, Numerics, Applications, pages 509—-518. Springer Berlin
Heidelberg, 01 2003.

[22] D. Derigs, A. R. Winters, G. Gassner, S. Walch, and M. Bohm. Ideal GLM-MHD: About the entropy consistent
nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys.,
364:420–467, 2018.

[23] C. R. DeVore. Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics.
Journal of Computational Physics, 92(1):142–160, 1991.

[24] F. Dhaouadi and M. Dumbser. A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based
on the GPR model and an augmented Lagrangian approach. Journal of Computational Physics, 470, 2022.

[25] F. Dhaouadi and M. Dumbser. A structure-preserving finite volume scheme for a hyperbolic reformulation of the
Navier–Stokes–Korteweg equations. Mathematics, 11, 2023.

18



L. RÍO-MARTÍN, F. DHAOUADI AND M. DUMBSER

[26] F. Dhaouadi and S. Gavrilyuk. An eulerian hyperbolic model for heat transfer derived via Hamilton’s principle:
analytical and numerical study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 480(2283):20230440, 2024.

[27] M. Dumbser. A simple two-phase method for the simulation of complex free surface flows. Computer Methods in
Applied Mechanics and Engineering, 200(9):1204–1219, 2011.

[28] M. Dumbser, S. Chiocchetti, and I. Peshkov. On Numerical Methods for Hyperbolic PDE with Curl Involutions,
pages 125–134. Springer International Publishing, 2020.

[29] M. Dumbser, F. Fambri, E. Gaburro, and A. Reinarz. On GLM curl cleaning for a first order reduction of the
CCZ4 formulation of the Einstein field equations. Journal of Computational Physics, 404:109088, 2020.

[30] M. Dumbser, A. Hidalgo, M. Castro, C. Parés, and E. F. Toro. FORCE schemes on unstructured meshes II:
Non–conservative hyperbolic systems. Computer Methods in Applied Mechanics and Engineering, 199:625–647,
2010.

[31] C. R. Evans and J. F. Hawley. Simulation of magnetohydrodynamic flows-a constrained transport method. The
Astrophysical Journal, 332:659–677, 1988.

[32] T. A. Gardiner and J. M. Stone. An unsplit Godunov method for ideal MHD via constrained transport. Journal of
Computational Physics, 205(2):509–539, 2005.

[33] S. K. Godunov. An interesting class of quasi-linear systems. Doklady Akademii Nauk SSSR, 139(3):521–523,
1961.

[34] S. K. Godunov. Symmetric form of the magnetohydrodynamic equation. Numerical Methods for Mechanics of
Continuum Medium, 3(1):26–34, 1972.

[35] S. K. Godunov and E. I. Romenski. Nonstationary equations of the nonlinear theory of elasticity in Eulerian
coordinates. Journal of Applied Mechanics and Technical Physics, 13:868–884, 1972.

[36] S. K. Godunov and E. I. Romenski. Elements of Continuum Mechanics and Conservation Laws. Kluwer
Academic/Plenum Publishers, 2003.

[37] A. Hazra, P. Chandrashekar, and D. S. Balsara. Globally constraint-preserving FR/DG scheme for Maxwell’s
equations at all orders. Journal of computational physics, 394:298–328, 2019.

[38] R. Holland. Finite-difference solution of Maxwell’s equations in generalized nonorthogonal coordinates. IEEE
Transactions on Nuclear Science, 30(6):4589–4591, 1983.

[39] G. B. Jacobs and J. S. Hesthaven. Implicit–explicit time integration of a high-order particle-in-cell method with
hyperbolic divergence cleaning. Computer Physics Communications, 180(10):1760–1767, 2009.

[40] R. Jeltsch and M. Torrilhon. On curl–preserving finite volume discretizations for shallow water equations. BIT
Numerical Mathematics, 46:S35–S53, 2006.

[41] M. Lukácová-Medvid’ová, I. Peshkov, and A. Thomann. An implicit-explicit solver for a two-fluid single-
temperature model. Journal of Computational Physics, 498:112696, 2024.

[42] M. Lukácová-Medvid’ová, G. Puppo, and A. Thomann. An all Mach number finite volume method for isentropic
two–phase flow. Journal of Numerical Mathematics, 31(3):175–204, 2023.

[43] C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, and U. Voss. Divergence correction techniques for
Maxwell solvers based on a hyperbolic model. Journal of Computational Physics, 161(2):484–511, 2000.

[44] C. Parés. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM Journal on
Numerical Analysis, 44:300–321, 2006.

[45] I. Peshkov, M. Dumbser, W. Boscheri, E. I. Romenski, S. Chiocchetti, and M. Ioriatti. Simulation of non-
Newtonian viscoplastic flows with a unified first order hyperbolic model and a structure-preserving semi-implicit
scheme. Computers & Fluids, 224:104963, 2021.

[46] I. Peshkov, M. Pavelka, E. I. Romenski, and M. Grmela. Continuum mechanics and thermodynamics in the
Hamilton and the Godunov-type formulations. Continuum Mechanics and Thermodynamics, 30(6):1343–1378,
2018.

[47] I. Peshkov and E. I. Romenski. A hyperbolic model for viscous newtonian flows. Continuum Mechanics and
Thermodynamics, 28:85–104, 2016.

[48] K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one
dimension). Technical Report ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center,
Hampton, VA, 1994.

19



L. RÍO-MARTÍN, F. DHAOUADI AND M. DUMBSER

[49] K. G. Powell. An Approximate Riemann Solver for Magnetohydrodynamics, pages 570–583. Springer Berlin
Heidelberg, 1997.

[50] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw. A solution-adaptive upwind scheme for
ideal magnetohydrodynamics. Journal of Computational Physics, 154(2):284–309, 1999.

[51] L. Río-Martín and M. Dumbser. High-order ADER discontinuous Galerkin schemes for a symmetric hyperbolic
model of compressible barotropic two-fluid flows. Communications on Applied Mathematics and Computation,
2023.

[52] E. I. Romenski. Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics.
Mathematical and computer modelling, 28(10):115–130, 1998.

[53] E. I. Romenski, D. Drikakis, and E. F. Toro. Conservative models and numerical methods for compressible
two-phase flow. Journal of Scientific Computing, 42:68–95, 2010.

[54] E. I. Romenski, A. D. Resnyansky, and E. F. Toro. Conservative hyperbolic formulation for compressible two-
phase flow with different phase pressures and temperatures. Quarterly of Applied Mathematics, 65(2):259–279,
2007.

[55] E. I. Romenski and E. F. Toro. Compressible two-phase flows: Two-pressure models and numerical methods.
Computational Fluid Dynamics Journal, 13, 2012.

[56] E. I. Romensky. Thermodynamics and Hyperbolic Systems of Balance Laws in Continuum Mechanics, pages
745–761. Springer US, New York, NY, 2001.

[57] V. Rusanov. The calculation of the interaction of non-stationary shock waves and obstacles. USSR Computational
Mathematics and Mathematical Physics, 1(2):304–320, 1962.

[58] F. Thein, E. I. Romenski, and M. Dumbser. Exact and numerical solutions of the Riemann problem for a
conservative model of compressible two–phase flows. Journal of Scientific Computing, 93(83), 2022.

[59] A. Thomann and M. Dumbser. Thermodynamically compatible discretization of a compressible two-fluid model
with two entropy inequalities. Journal of Scientific Computing, 97(1):9, 2023.

[60] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer, 2009.
[61] M. Torrilhon and M. Fey. Constraint-preserving upwind methods for multidimensional advection equations. SIAM

Journal on Numerical Analysis, 42:1694–1728, 2004.
[62] G. Tóth. The ∇· B= 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational

Physics, 161(2):605–652, 2000.
[63] Z. Xu, D. S. Balsara, and H. Du. Divergence-free WENO reconstruction-based finite volume scheme for solving

ideal MHD equations on triangular meshes. Communications in Computational Physics, 19(4):841–880, 2016.
[64] K. Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media.

IEEE Transactions on antennas and propagation, 14(3):302–307, 1966.

20


	Introduction
	The two-phase model of Romenski et al.
	Governing equations
	Equations of state
	Hyperbolicity

	Numerical method
	Notation
	Flux splitting
	Compatible gradient and curl operators
	Discretization of the relative velocity with the compatible operators
	Discretization of the remaining terms

	Numerical results
	1D Riemann problem
	Stationary vortex solution
	Two-dimensional circular explosion problem
	Dambreak
	Kelvin-Helmholtz instability

	Conclusion

