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MODULAR REPRESENTATIONS OF THE YANGIAN Y2

HAO CHANG, JINXIN HU and LEWIS TOPLEY

ABSTRACT. Let Y2 be the Yangian associated to the general linear Lie algebra gl2, defined
over an algebraically closed field k of characteristic p > 0. In this paper, we study the

representation theory of the restricted Yangian Y
[p]
2 . This gives a description of the rep-

resentations of gl2n, whose p-character is a nilpotent whose Jordan type is the two-row
partition (n, n).

INTRODUCTION

For each simple finite-dimensional Lie algebra a over the field of complex numbers, the
corresponding Yangian Y (a) was defined by Drinfeld in [D1] as a canonical deformation
of the universal enveloping algebra U(a[x]) for the current Lie algebra a[x]. The Yangian
YN := Y (glN) associated to the Lie algebra glN was earlier considered in the works of
mathematical physicists from St.-Petersburg around 1980; see for instance, [TF]. Finite
dimensional irreducible representations of the Yangians were classified by Drinfeld [D2].
In the case N = 2, classification of the finite dimensional irreducible representations of
Y2 is due to Tarasov [Ta1, Ta2], see also [Mol1]. In this paper, we initiate a study of the
representation theory of the Yangian Y2, over an arbitrary field k of positive characteristic
p > 0.

Let us explain our motivation. Over the field of complex numbers, Brundan–Kleshchev
[BK1] showed the shifted Yangians have some truncations which are isomorphic to the fi-
nite W -algebras associated to nilpotent orbits in glN , as defined by Premet [Pre1]. Premet’s
motiviation came from the representation theory of Lie algebras in positive characteristic,
he also discovered some remarkable finite dimensional restricted finite W -algebras, which
are Morita equivalent to the reduced enveloping algebras of modular reductive Lie al-
gebras. In [BT], Brundan and Topley developed the theory of the shifted Yangian YN(σ)
over k. In particular, they gave a description of the centre Z(YN(σ)) of YN(σ). One of the
key features which differs from characteristic zero is the existence of a large central subal-
gebra Zp(YN(σ)), called the p-center. Moreover, in their paper [GT2], the authors showed
that Brundan–Kleshchev’s isomorphism descends to positive characteristic, i.e., the mod-
ular finite W -algebra is a truncation of the modular shifted Yangian. Both algebras admit
the p-center, the restricted version of Brundan–Kleshchev’s isomorphism was established
by Goodwin and Topley (see [GT3, Theorem 1.1]). Premet’s restricted finite W -algebras
can be recovered from the modular shifted Yangians. Therefore, we may understand the
representations of certain reduced enveloping algebras from the representation theory of
Yangians.

As a first step towards developing the representation theory of modular Yangian, we
investigate the finite dimensional irreducible representations of the restricted Yangian
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Y
[p]
2 in detail. By definition, the restricted Yangian Y

[p]
2 := Y2/Y2Zp(Y2)+ is the quotient of

Y2 by the ideal generated by the generators of the p-center Zp(Y2) (see Subsection 1.2). Fix
n ∈ Z≥1. Let gl2n be the general linear Lie algebra consisting of 2n × 2n-matrices and
e ∈ gl2nthe 2×n-rectangular nilpotent element (see Subsection 3.1). Our applications will
rely on the following isomorphism ([GT3, Theorem 1.1]):

Y
[p]
2,n

∼= U [p](gl2n, e), (0.1)

where Y
[p]
2,n is the restricted truncated Yangian of level n and U [p](gl2n, e) is the restricted

finite W -algebra associated to e (see [GT3, §4]). Recently, the modular representations of
type A Lie algebras with a particular two-row nilpotent central character are studied, the
characteristic of the ground field are assumed to be large enough (see [DNY]).

We organize this article in the following manner. In Section 1, we recall some prelim-
inaries about the modular Yangian Y2 and its p-center. In Section 2, we define the baby

Verma modules for Y
[p]
2 and prove that every finite dimensional irreducible representa-

tion is isomorphic to the simple head of some baby Verma module. We give the neces-
sary and sufficient condition for an irreducible representation to be finite dimensional. In

Section 3, we give applications. Using (0.1), the irreducible modules of Y
[p]
2,n can be con-

structed from a certain Levi subalgebra. we also determine the irreducible modules for
reduced enveloping algebras Uχ(gl2n) and their dimensions, where χ is the p-character
corresponding to e.

Throughout this paper, k denotes an algebraically closed field of characteristic char(k) =: p > 0.
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1. RESTRICTED YANGIAN

In [BT], Brundan and Topley developed the theory of the Yangian YN over a field of
positive characteristic. We only need here the special case of N = 2.

1.1. Modular Yangian Y2. The Yangian associated to the general linear Lie algebra gl2,

denoted by Y2, is the associated algebra over k with the RTT generators {t
(r)
i,j ; 1 ≤ i, j ≤

2, r > 0} subject the following relations:

[
t
(r)
i,j , t

(s)
k,l

]
=

min(r,s)−1∑

t=0

(
t
(t)
k,jt

(r+s−1−t)
i,l − t

(r+s−1−t)
k,j t

(t)
i,l

)
(1.1)
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for 1 ≤ i, j, k, l ≤ 2 and r, s > 0. By convention, we set t
(0)
i,j := δi,j . We often put the

generators t
(r)
i,j for all r ≥ 0 together to form the generating function

ti,j(u) :=
∑

r≥0

t
(r)
i,j u

−r ∈ Y2[[u
−1]].

Then Y2 is a Hopf algebra with comultiplication ∆ given in terms of generating functions
by

∆(ti,j(u)) =
2∑

k=1

ti,k(u)⊗ tk,j(u). (1.2)

It is easily seen that, in terms of the generating series, the initial defining relation (1.1)
may be rewritten as follows:

(u− v)[ti,j(u), tk,l(v)] = tk,j(u)ti,l(v)− tk,j(v)ti,l(v). (1.3)

We need another set of generators for Y2 called Drinfeld generators. To define these, we
consider the Gauss factorization T (u) = F (u)D(u)E(u) of the matrix

T (u) :=

(
t1,1(u) t1,2(u)
t2,1(u) t2,2(u)

)
.

This defines power series di(u), e(u), f(u) ∈ Y2[[u
−1]] such that

D(u) =

(
d1(u) 0
0 d2(u)

)
, E(u) =

(
1 e(u)
0 1

)
, F (u) =

(
1 0

f(u) 1

)
,

Then we have that

t1,1(u) = d1(u), t2,2(u) = f(u)d1(u)e(u) + d2(u), (1.4)

t1,2(u) = d1(u)e(u), t2,1(u) = f(u)d1(u). (1.5)

The Drinfeld generators are the elements d
(r)
i , e(r) and f (r) of Y2 defined from the expan-

sions di(u) =
∑

r≥0 d
(r)
i u−r, e(u) =

∑
r>0 e

(r)u−r and f(u) =
∑

r>0 f
(r)u−r. Also define d

′(r)
i

from the identity d′i(u) =
∑

r≥0 d
′(u)
i u−r =: di(u)

−1.

Theorem 1.1. [BT, Theorem 4.3] The algebra Y2 is generated by the elements {d
(r)
i , d

′(r)
i ; 1 ≤

i ≤ 2, r > 0} and {e(r), f (r); r > 0} subject to the following relations:

d
(0)
i = 1,

r∑

t=0

d
(t)
i d

′(r−t)
i = δr0; (1.6)

[d
(r)
i , d

(s)
j ] = 0; (1.7)

[d
(r)
i , e(s)] = (δi1 − δi2)

r−1∑

t=0

d
(t)
i e(r+s−1−t); (1.8)
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[d
(r)
i , f (s)] = (δi2 − δi1)

r−1∑

t=0

f (r+s−1−t)d
(t)
i ; (1.9)

[e(r), f (s)] = −

r+s−1∑

t=0

d
′(t)
1 d

(r+s−1−t)
2 ; (1.10)

[e(r), e(s)] =
s−1∑

t=1

e(t)e(r+s−1−t) −
r−1∑

t=1

e(t)e(r+s−1−t); (1.11)

[f (r), f (s)] =

r−1∑

t=1

f (t)f (r+s−1−t) −

s−1∑

t=1

f (t)f (r+s−1−t). (1.12)

For any power series f(u) ∈ 1 + u−1
k[[u−1]], it follows from the defining relation (1.3)

that there is an automorphism defined via

µf : Y2 → Y2; ti,j(u) 7→ f(u)ti,j(u). (1.13)

On Drinfeld generators, we have that

µf(di(u)) = f(u)di(u), µf(ei(u)) = ei(u) and µf(fi(u)) = fi(u). (1.14)

Here is the PBW theorem for Y2.

Theorem 1.2. [BT, Theorem 4.14] Ordered monomias in the elements

{d
(r)
i ; 1 ≤ i ≤ 2, r > 0} ∪ {e(r), f (r); r > 0} (1.15)

taken in any fixed ordering form a basis for Y2.

1.2. Restricted Yangian Y
[p]
2 . We proceed to recall the description of the p-central ele-

ments of Y2 given in [BT]. For i = 1, 2, we define

bi(u) =
∑

r≥0

b
(r)
i u−r := di(u)di(u− 1) · · · di(u− p+ 1). (1.16)

By [BT, Theorem 5.11(2)] the elements in

{b
(rp)
i ; 1 ≤ i ≤ 2, r > 0} ∪ {(e(r))p, (f (r))p; 1 ≤ i < j ≤ 2, r > 0} (1.17)

are algebraically independent, and lie in the center Z(Y2) of Y2. The subalgebra they
generated is called p-center of Y2 and is denoted by Zp(Y2). According to [BT, Corollary
5.13], the Yangian Y2 is free as a module over Zp(Y2) with basis given by the ordered
monomials in the generators in (1.15) in which no exponent is p or more, we refer to
such monomials as p-restricted monomials. We let Zp(Y2)+ be the maximal ideal of Zp(Y2)

generated by the elements given in (1.17). The restricted Yangian is defined by Y
[p]
2 :=

Y2/Y2Zp(Y2)+ (see [GT3, §4.3]). Clearly, the images in Y
[p]
2 of the p-restricted monomials

in the Drinfeld generators of Y2 form a basis of Y
[p]
2 . When working with Y

[p]
2 we often

abuse notation by using the same symbols d
(r)
i , e(r), f (r), t

(r)
i,j to refer to the elements of Y2

and their images in Y
[p]
2 .
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Remark 1. In fact, the elements {b
(r)
i ; i = 1, 2, r > 0} also belong to the p-center Zp(Y2) (see

[BT, Lemma 5.7, Theorem 5.8]). Hence 1 = bi(u) ∈ Y
[p]
2 [[u−1]].

1.3. Reduced enveloping algebras. A restricted Lie algebra is a Lie algebra l with a map
l → l sending x 7→ x[p] such that xp − x[p] ∈ Z(l) for all x ∈ l, where Z(l) is the center of
the enveloping algebra U(l). The p-center of U(l) is the subalgebra Zp(l) of Z(l) generated
by {xp − x[p]; x ∈ l}. Given χ ∈ l∗, we define Jχ to be the ideal of U(l) generated by
{xp−x[p]−χ(x)p; x ∈ l}, and the reduced enveloping algebra corresponding to χ to be Uχ(l) :=
U(l)/Jχ. For χ = 0 one usually calls U0(l) the restricted enveloping algebra of l (see [Jan,
§2.7]).

Let N ∈ Z≥1 and glN be the general linear Lie algebra, which is spanned by the matrix
units {ei,j; 1 ≤ i, j ≤ N}. Then glN is a restricted Lie algebra with the p-map glN →
glN ; x 7→ x[p] where x[p] denotes the pth matrix power of x ∈ glN . In particular, we note

that e
[p]
i,j = δijei,j for 1 ≤ i, j ≤ N . For the case N = 2, the evalutation homomorphism

ev : ti,j(u) 7→ δi,j + ei,ju
−1 (1.18)

defines a surjective homomorphism Y2 → U(gl2). By its virtue, any representation of Lie
algebra gl2 can be regarded as a representation of Y2, and any irreducible representation
of gl2 remains irreducible over Y2. Moreover, by [GT3, Theorem 1.1] the homomorphism
π induces an surjective algebra homomorphism

ev[p] : Y
[p]
2 ։ U0(gl2). (1.19)

By the same token, the homomorphism (1.19) allows us to equip any U0(gl2)-module with

a structure of Y
[p]
2 -module.

2. REPRESENTATIONS OF Y
[p]
2

In this section, we study the representation of the restricted Yangian Y
[p]
2 . To describe

the finite dimensional irreducible modules of Y
[p]
2 , we need to construct analogues of high-

est weight representations in characteristic 0.

2.1. Baby Verma modules. We first give some notation for the PBW basis of Y
[p]
2 . Let

IN := {(i1, i2, · · · ); ik ∈ Z≥0 and only finitely many are nonzero}

and |I| :=
∑

k≥1 ik for I ∈ IN. Given I = (i1, i2, · · · ) ∈ IN, set

f I :=
∏

r>0

(f (r))ir ∈ Y
[p]
2

and we may similarly define the elements dI1, d
I
2 and eI . For I = (i1, i2, · · · ) ∈ IN, note that

eI and f I are zero if some ik ≥ p. Consider the subset of IN

Ip := {(i1, i2, · · · ) ∈ IN; 0 ≤ ik < p}.

So that

{f I1dI21 d
I3
2 e

I4 ; I1, I2, I3, I4 ∈ Ip} (2.1)

is the PBW basis of Y
[p]
2 (see Section 1.2).



6 HAO CHANG, JINXIN HU and LEWIS TOPLEY

Let Y
[p],−
2 denote the subalgebra of Y

[p]
2 generated by all the f ’s and (Y

[p],−
2 )+ be its

maximal ideal generated by the elements {f (r); r > 0}.

Lemma 2.1. For any x ∈ (Y
[p],−
2 )+, there exists a positive integer n such that xn = 0.

Proof. We fix an order on the set {f (r); r > 0} where the ordering is specified by f (1) <
f (2) < · · · . Given f (r1), f (r2), . . . , f (rt) ∈ {f (r); r > 0}, we consider the element

f (r1)f (r2) · · · f (rt) ∈ Y
[p],−
2 .

Using the relation (1.12), we may write

f (r1)f (r2) · · ·f (rt) =
∑

I∈T

cIf
I , (2.2)

where cI ∈ k and T is a finite subset of IN. Since both sides of (1.12) are homogeneous,
it follows that the f I in (2.2) is homogeneous with |I| = t for all I ∈ T. We put k :=
min{r1, . . . , rt} as well as l := max{r1, . . . , rt}. In view of (1.12), the Drinfeld generators
appearing in (2.2) are contained in the set {f (r); k ≤ r ≤ l}.

Let x =
∑

I∈I aIf
I ∈ (Y

[p],−
2 )+ be a non-zero element, where I ⊆ Ip is a finite subset and

|I| 6= 0 for all I ∈ I. Assume that the Drinfeld generators in x are f (s1), f (s2), . . . , f (sm) with
1 ≤ s1 < s2 < · · · < sm. Put q := min{|I|; I ∈ I}. Apply again the relation (1.12) one
obtains that xn has the form

(∗)
∑

J∈J

bJf
J ,

where J is a finite subset of IN and |J | ≥ nq for all J ∈ J. On the other hand, the fore-
going observation implies that the Drinfeld generators in (∗) must be contained in the set
{f (r); s1 ≤ r ≤ sm}. Given J = (j1, j2, · · · ) ∈ J, we have the summand

bJf
J = bJ (f

(s1))js1 (f (s1+1))js1+1 · · · (f (sm))jsm .

Consequently, for large enough n, it must be zero, as desired. �

Definition. A formal power series f(u) ∈ 1 + u−1
k[[u−1]] is called restricted, provided

f(u)f(u− 1) · · ·f(u− p+ 1) = 1.

Given two formal series

λ1(u) = 1 + λ
(1)
1 u−1 + λ

(2)
1 u−1 + · · ·

and
λ2(u) = 1 + λ

(1)
2 u−1 + λ

(2)
2 u−1 + · · · ,

we say that the tuple λ(u) = (λ1(u), λ2(u)) is restricted if both λ1(u) and λ2(u) are re-

stricted. The baby Verma module Z [p](λ(u)) corresponding to λ(u) is the quotient of Y
[p]
2 by

the left ideal generated by the elements e(r) with r > 0, and by d
(r)
i − λ

(r)
i with i = 1, 2 and

r > 0.

Given a baby Verma module Z [p](λ(u)), we denote by 1λ(u) the image of the element

1 ∈ Y
[p]
2 in the quotient. Clearly, Z [p](λ(u)) = Y

[p]
2 .1λ(u). Owing to (2.1) , there is an

isomorphism

Z [p](λ(u)) ∼= Y
[p],−
2 ⊗

k

k1λ(u)
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of vector spaces.
Alternatively, the baby Verma modules can be described in terms of the RTT presenta-

tion of Y2 (cf. [Mol2, Proposition 3.2.2]).

Proposition 2.2. Let λ(u) = (λ1(u), λ2(u)) be restricted. The baby Verma module Z [p](λ(u))

equals to the quotient of Y
[p]
2 by the left ideal J which is generated by the elements t

(r)
1,2 with r > 0

and by t
(r)
i,i − λ

(r)
i with i = 1, 2 and r > 0.

Proof. Let I be the left ideal generated by the elements e(r) with r > 0, and by d
(r)
i − λ

(r)
i

with i = 1, 2 and r > 0. It suffices to show that I = J .
Since e(u) ≡ 0 (mod I), it follows from (1.5) that

t12(u) = d1(u)e(u) ≡ 0 (mod I),

so that t
(r)
1,2 ∈ I . Note that t1,1(u) = d1(u), it is obvious that t

(r)
1,1 − λ

(r)
1 ∈ I . Using (1.4) one

obtains

t2,2(u)− λ2(u) = f(u)d1(u)e(u) + d2(u)− λ2(u) ≡ d2(u)− λ2(u) ≡ 0 (mod I).

Consequently, J ⊆ I .
One argues similarly for I ⊆ J applying again (1.4) and (1.5). �

Proposition 2.3. Z [p](λ(u)) has a unique maximal submodule.

Proof. We shall prove any proper submodule M of Z [p](λ(u)) is contained in (Y
[p],−
2 )+.1λ(u).

Suppose that M * (Y
[p],−
2 )+.1λ(u), then there is a nonzero element y = (1 − x).1λ(u) ∈ M

and x ∈ (Y
[p],−
2 )+. Lemma 2.1 provides an integer n such that xn = 0. We have for

x′ := 1+x+ · · ·+xn−1, x′y = 1λ(u) ∈ M , so that M = Z [p](λ(u)), a contradiction. Obviously,

(Y
[p],−
2 )+.1λ(u) is a proper subspace of Z [p](λ(u)). Hence, the sum of all proper submodules

of Z [p](λ(u)) is the unique maximal submodule. �

Definition. Given a restricted tuple λ(u) = (λ1(u), λ2(u)), the irreducible representation

L[p](λ(u)) of Y
[p]
2 is defined as the quotient of the baby Verma module Z [p](λ(u)) by the

unique maximal proper submodule.

Let Y
[p],0
2 denote the subalgebra of Y

[p]
2 generated by all d′s. The one dimensional quo-

tient L[p](λ(u))/(Y
[p],−
2 )+L

[p](λ(u)) can be viewed as Y
[p],0
2 -module and di(u) acts on this

space via λi(u). So we get L[p](λ(u)) ∼= L[p](ν(u)) if and only if λ(u) = ν(u).

Let L be a finite dimensional representation of Y
[p]
2 . We define the subspace L0 of L via

L0 := {v ∈ L; e(u)v = 0}.

Lemma 2.4. If L is a finite dimensional representation of Y
[p]
2 , then the space L0 is nonzero.

Proof. Suppose that L0 = (0). Since e(1) is nilpotent, there exists a nonzero vector v1 such
that e(1)v1 = 0. By assumption, we can find an positive integer n1 such that e(r)v1 = 0 for
all 1 ≤ r ≤ n1 and e(n1+1)v1 6= 0.

Again, the element e(n1+1) is nilpotent. There exists some integer t with 1 ≤ t ≤ p − 1
such that (e(n1+1))lv1 6= 0 for all 1 ≤ l ≤ t and (e(n1+1))t+1v1 = 0. Setting v2 := (e(n1+1))tv1 6=
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0, we obtain e(n1+1)v2 = 0. For 1 ≤ i ≤ n1, the relation (1.11) yields

e(i)v2 = e(i)(e(n1+1))tv1 =
∑

ca1,··· ,ak(e
(n1+1))a1(e(n1))a2 · · · (e(i))akv1,

where k = n1 + 2 − i and a1 + a2 + · · · + ak = t + 1. The choice of v2 implies that the
above sum is zero. This show that e(r)v2 = 0 for all 1 ≤ r ≤ n1 + 1. So that we can find an
positive integer n2 > n1 such that e(r)v2 = 0 for all 1 ≤ r ≤ n2 and e(n2+1)v2 6= 0.

Repeat the above argument, we obtain two sequences v1, v2, . . . and 1 ≤ n1 < n2 < · · ·
which satisfy (a) vi 6= 0; (b) e(1)vi = e(2)vi = · · · = e(ni)vi = 0; (c) e(ni+1)vi 6= 0 for every
positive integer i. Let m be an arbitrary positive integer. Assume that c1v1 + c2v2 + · · ·+
cmvm = 0. It follows from (b) that c1e

(n1+1)v1 = 0, and implication (c) gives c1 = 0. By the
same token, we obtain all ci are zero. Therefore v1, v2, · · · , vm are linearly independent.
As L is finite dimensional, we arrive at a contradiction. �

Theorem 2.5. Every finite dimensional irreducible representation L of Y
[p]
2 is isomorphic to some

L[p](λ(u)).

Proof. This is very similar to the proof in the characteristic zero explained in [Mol2, Theo-
rem 3.2.7]. We just give a brief account by using the Drinfeld generators.

By Lemma 2.4, we know that L0 6= (0). We show that the subspace L0 is invariant with

respect the action of all elements d
(r)
i . If v ∈ L0, then (1.8) implies that [d

(r)
i , e(s)]v = 0 for

all r, s > 0. It follows that e(s)d
(r)
i v = 0, so that d

(r)
i v ∈ L0.

Furthermore, (1.7) implies that the elements d
(r)
i with i = 1, 2 and r > 0 act on L0 as

pairwise commuting operators. Hence, there exists a nonzero vector ζ ∈ L0 such that

d
(r)
i ζ = λ

(r)
i ζ , where λ

(r)
i ∈ k. Letting λi(u) := 1 + λ

(1)
i u−1 + λ

(2)
i u−1 + · · · ∈ k[[u−1]], we put

λ(u) = (λ1(u), λ2(u)). Then di(u)ζ = λi(u)ζ . Since 1 = bi(u) = di(u)di(u−1) · · ·di(u−p+1)

(Remark 1), it follows that λ(u) is restricted. Note that L is irreducible and L = Y
[p]
2 ζ .

Clearly, there is a surjective homomorphism Z [p](λ(u)) ։ L; 1λ(u) 7→ ζ . Proposition 2.3

now yields isomorphism L ∼= L[p](λ(u)). �

2.2. Evaluation modules. For any α, β ∈ Fp, we consider the irreducible U0(gl2)-module
L(α, β). The module L(α, β) is generated by a vector ξ and

e1,1ξ = αξ, e2,2ξ = βξ and e1,2ξ = 0. (2.3)

For n ∈ Fp, we denote by [n] ∈ N the minimal element such that [n] ≡ n (mod p). The mod-
ule L(α, β) has a basis ek2,1ξ for k from 0 to [α − β] (cf. [Jan, §5.2]). The homomorphism

(1.19) allows us to view L(α, β) as a Y
[p]
2 -module. Namely, for any indices i, j ∈ {1, 2} the

generator t
(1)
i,j acts on L(α, β) as ei,j , while any generator t

(r)
i,j with r ≥ 2 acts as the zero

operator. We will keep the same notation L(α, β) for this Y
[p]
2 -module and call it the evalu-

ation module. By (2.2), it is clear that L(α, β) is isomorphic to the module L[p](λ1(u), λ2(u)),
where λ1(u) = 1 + αu−1 and λ2(u) = 1 + βu−1.

Let L and M be two Y2-modules. Since the algebra Y2 is a Hopf algebra, the tensor
product space L⊗M can be equipped with a Y2-action with the use of the comlutiplication
∆ on Y2 (see (1.2)) by the rule

x.(a⊗ b) := ∆(x)(a⊗ b), x ∈ Y2, a ∈ L, b ∈ M.
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Proposition 2.6. Given two sequences αi, βi of elements of Fp for i = 1, . . . , k, renumerate them
in such a way that [αi − βi] is minimal among all [αj − βl] for i ≤ j, l ≤ k. Then the tensor
product

L(α1, β1)⊗ · · · ⊗ L(αk, βk) (2.4)

is an irreducible Y2-module.

Proof. We can use the same proof [Mol2, Proposition 3.3.2] (see also [Kal, Proposition
3.2.3] ).

Denote the module (2.4) by L. Let ξi be the generating vector of L(αi, βi) (2.3) for i =
1, . . . , k. Using the definition (1.2) of ∆, we obtain t1,2(u)ξ = 0, where ξ = ξ1 ⊗ · · · ξk.
It suffices to show that any vector ζ ∈ L satisfying t1,2(u)ζ = 0 is proportional to ξ.
Now proceed by induction on k. Write any such vector ζ =

∑s
r=0 e

r
1,2ξ1 ⊗ ζr and ζr some

elements of L(α2, β2)⊗ · · · ⊗L(αk, βk). We may assume that s ≤ [α1 − β1]. Then repeating
all the steps of the proof of [Mol2, Proposition 3.3.2], we obtain the following relation:

s(α1 − β1 − s+ 1)(α1 − β2 − s+ 1) . . . (α1 − βk − s + 1) = 0.

Since 0 ≤ [α1 − β1] ≤ p− 1 and 0 ≤ s ≤ [α1 − β1], it follows that (α1 − β1 − s+ 1) = 0 only
if s = 0 and [α1 − β1] = p − 1. Our assumption on the parameter αi and βi now implies
that [α1−βj ] ≥ [α1−β1] for all other j. So that (α1−βj − s+1) = 0 can be zero again only
for s = 0 and the claim follows. �

We still denote by L the tensor product (2.4). Let ξ = ξ1 ⊗ · · · ξk, where ξi be the gener-
ating vector of L(αi, βi) (2.3) . As L is irreducible, we have L = Y2ξ. We want to show that

L is a Y
[p]
2 -module. To do this, we need another description of the p-center of Y2 in terms

of the RTT generators. Let

si,j(u) =
∑

r≥0

s
(r)
i,j u

−r := ti,j(u)ti,j(u− 1) · · · ti,j(u− p+ 1) ∈ Y2[[u
−1]].

According to [BT, Lemma 6.8, Theorem 6.9], the p-center Zp(Y2) is generated by {s
(r)
i,j ; 1 ≤

i, j ≤ 2, r > 0}. Write down

λ1(u) := (1 + α1u
−1) · · · (1 + αku

−1)

and
λ2(u) := (1 + β1u

−1) · · · (1 + βku
−1).

Clearly both λ1(u) and λ2(u) are restricted, because all the elements αi and βi belong to
Fp.

Proposition 2.7. Suppose L is the tensor product module (2.4) satisfying the conditions of Propo-

sition 2.6. Then L is a Y
[p]
2 -module and is isomorphic to L[p](λ1(u), λ2(u)).

Proof. By the above discussion, we need to prove that

(i) s1,2(u)ξ = 0;

(ii) ti,i(u)ξ = λi(u)ξ, i = 1, 2;

(iii) si,i(u)ξ = ξ, i = 1, 2;
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(iv) s2,1(u)ξ = 0.

Using the definition of ∆, we have

ti,j(u)ξ =
∑

a1,...,ak−1

ti,a1(u)ξ1 ⊗ ta1,a2(u)ξ2 ⊗ · · · ⊗ tak−1,j(u)ξk, (2.5)

summed over a1, . . . , ak−1 ∈ {1, 2}. If (i, j) = (1, 2), then each summand in the sum
(2.5) is zero because it contains a factor of the form t1,2(u)ξm, which is zero. We obtain
(i). If i = j, then the only nonzero summand corresponds to the case where each index

am equals i. This yields (ii) and (iii). As s
(r)
i,j ∈ Zp(Y2), direct computation shows that

t1,2(u)s
(r)
i,j ξ = 0. The proof of Proposition 2.6 implies that s

(r)
i,j ξ is proportional to ξ. Hence

we have s2,1(u)ξ = f(u)ξ for some f(u) ∈ k[[u−1]]. Note that t2,1(u) acts nilpotently on the
module L, so is s2,1(u), Thus, f(u) = 0. This proves (iv). �

From Theorem 2.5, we know that every finite dimensional irreducible module of Y
[p]
2 is

isomorphic to a unique simple quotient module L[p](λ1(u), λ2(u)) of the baby Verma mod-
ule Z [p](λ1(u), λ2(u)) . We first consider the case that both λ1(u) and λ2(u) are polynomials
in u−1.

Lemma 2.8. Let λ(u) ∈ 1 + u−1
k[u−1] be a polynomial with the decomposition

λ(u) = (1 + α1u
−1) · · · (1 + αku

−1). (2.6)

If λ(u) is restricted, then all the elements αi belong to Fp.

Proof. Multiplying uk on both sides of (2.6), we have

ukλ(u) = (u+ α1) · · · (u+ αk).

It follows that
p−1∏

i=0

(u− i)k
p−1∏

i=0

λ(u− i) =
k∏

j=0

p−1∏

i=0

(u+ αj − i).

Note that
p−1∏
i=0

λ(u − i) = 1 because λ(u) is restricted. Then the assertion follows by com-

paring the roots of the above equation. �

Theorem 2.9. Suppose that λ1(u) and λ2(u) are restricted polynomials. Then L[p](λ1(u), λ2(u))
is isomorphic to some tensor product of evaluation modules. In particular, L[p](λ1(u), λ2(u)) is
finite dimensional.

Proof. Write the decomposition λ1(u) = (1 + α1u
−1) · · · (1 + αku

−1) and λ2(u) = (1 +
β1u

−1) · · · (1 + βku
−1) for some k ≥ 0 and some parameters αi, βi. By Lemma 2.8, all

of the elements αi, βi belong to the field Fp. Renumerate them in a way consistent with
Proposition 2.6. Now Proposition 2.7 yields the isomorphism

L[p](λ1(u), λ2(u)) ∼= L(α1, β1)⊗ · · · ⊗ L(αk, βk).

�

Lemma 2.10. If L[p](λ1(u), λ2(u)) is finite dimensional then there is a formal series f(u) ∈ 1 +
u−1

k[[u−1]] such that f(u)λ1(u) and f(u)λ2(u) are polynomials in u−1.
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Proof. we can repeat the proof of [Mol2, Proposition 3.3.1] for L[p](λ1(u), λ2(u)) without
any change. �

Remark 2. It should be notice that the f(u)λ1(u) and f(u)λ2(u) in the above Lemma might
no longer be restricted. Given a formal power series f(u) ∈ 1 + u−1

k[[u−1]] and we recall

that the automorphism µf (1.13) of Y2. If µf factors to an automorphism of Y
[p]
2 , then

clearly f must be restricted. For general λ(u) = (λ1(u), λ2(u)), there may not exist a
restricted power series f(u) such f(u)λ1(u) and f(u)λ2(u) are polynomials even L[p](λ(u))
is finite dimensional (see Remark 4).

Theorem 2.11. The irreducible representation L[p](λ1(u), λ2(u)) is finite dimensional if and only
if there exists a monic polynomial P (u) in u such that

λ1(u)

λ2(u)
=

P (u+ 1)

P (u)
. (2.7)

Proof. Suppose that the representation L[p](λ1(u), λ2(u)) is finite dimensional. Then by
Lemma 2.10 we can find a formal series f(u) such that f(u)λ1(u) = (1 + α1u

−1) · · · (1 +
αku

−1) and f(u)λ2(u) = (1 + β1u
−1) · · · (1 + βku

−1) for some k ≥ 0 and some parameters
αi, βi. Note that λ1(u)/λ2(u) = f(u)λ1(u)/f(u)λ2(u) is restricted, so that for each αi, there
exists βj such that αi − βj ∈ Fp. Renumerating them if necessary, we may thus assume
that αi − βi ∈ Fp. The the polynomial

P (u) =

k∏

i=1

(u+ βi)(u+ βi + 1) · · · (u+ αi − 1)

obviously satisfies (2.7).
Conversely, suppose (2.7) holds for a polynomial P (u) = (u+ γ1) · · · (u+ γs). Set

µ1(u) = (1 + (γ1 + 1)u−1) · · · (1 + (γs + 1)u−1),

µ2(u) = (1 + γ1u
−1) · · · (1 + γsu

−1).

For each γi, we consider the gl2-module L(γi + 1, γi) which is generated by ξi and the
module structure is given by

e1,1ξi = (γi + 1)ξi, e2,2ξi = γiξi, e1,2ξi = 0, e22,1ξi = 0. (2.8)

In particular, the module L(γi + 1, γi) is two dimensional with basis {ξi, e2,1ξi}. We can
regard them as Y2-modules via (1.18) and consider the tensor product module

L := L(γ1 + 1, γ1)⊗ · · · ⊗ L(γs + 1, γs).

Clearly, dim
k

L = 2s. We put ξ := ξ1 ⊗ · · · ⊗ ξs. Using the comultiplication (1.2) in
conjuntion with (2.8) one can show by direct computation that

t1,2(u)ξ = 0, t1,1(u)ξ = µ1(u)ξ, t2,2(u)ξ = µ2(u)ξ

and t2,1(u) acts nilpotently on the module L. Let M := Y2ξ ⊆ L be the cyclic submodule of
L. By twisting the action of Y2 on M by the automorphism (1.13) with f(u) = µ2(u)

−1, we

obtain a module over Y2 which is still denoted by M̃ . It is clear that M̃ is also generated
by ξ and

(∗) t1,2(u)ξ = 0, t1,1(u)ξ =
µ1(u)

µ2(u)
ξ =

λ1(u)

λ2(u)
ξ, t2,2(u)ξ = ξ.
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We define a subspace V of M̃

V := Span{s
(r1)
2,1 s

(r2)
2,1 · · · s

(rm)
2,1 ξ; m ≥ 0, r1, r2, . . . , rm ≥ 1}.

Since the set {s
(r)
2,1; r ≥ 1} is a Lie subset that acts on V by nilpotent transformations.

Thus, the Engel-Jacobson theorem provides a vector η ∈ V such that s2,1(u)η = 0. Then

we consider the submodule Y2η of the module M̃ . By (∗), we obtain

t1,2(u)η = 0, t1,1(u)η =
µ1(u)

µ2(u)
η =

λ1(u)

λ2(u)
η, t2,2(u)η = η.

There results a surjective homomorphism

Z [p](
λ1(u)

λ2(u)
, 1) ։ Y2η; 1λ1(u)/λ2(u) 7→ η.

As a result, L[p](λ1(u)
λ2(u)

, 1) is finite dimensional. Since λ2(u) is restricted, we apply again

the twisted action of Y
[p]
2 on L[p](λ1(u)

λ2(u)
, 1) with f(u) = λ2(u) (see Remark 2) to obtain the

module L[p](λ1(u), λ2(u)). Thus, the module L[p](λ1(u), λ2(u)) is also finite dimensional.
�

Remark 3. As observed by Kalinov ( [Kal, Remark, p. 6985]), the polynomial P (u) in
Theorem 2.11 is not unique. Suppose that Q(u) is another monic polynomial in u and
P (u+1)
P (u)

= Q(u+1)
Q(u)

. It follows that P (u)
Q(u)

=: F (u) satisfies F (u+1) = F (u). Thus F (u) ia a ratio

of products of expressions of the form (u+ α)p − (u+ α) for some α ∈ k.

Remark 4. Let α /∈ Fp. We consider the 2-dimensional gl2-module L(α + 1, α) as defined
in (2.8). By twisting the action of Y2 on L(α + 1, α) by the automorphism (1.13) with

f(u) = (1 + αu−1)−1, we obtain a module over Y
[p]
2 which is isomorphic to the irreducible

module L[p](1+(α+1)u−1

1+αu−1 , 1). However, there does not exist a restricted polynomial g(u) in

u−1 such that g(u)1+(α+1)u−1

1+αu−1 is a restricted polynomial.

3. FINITE W -ALGEBRAS

We turn to the W -algebra side. We fix n ∈ Z≥1. Let G := GL2n(k) be the general linear
group of degree 2n with Lie algebra g := Lie(G) = gl2n. We write {ei,j; 1 ≤ i, j ≤ 2n}
for the standard basis of g consisting of matrix units. In this section, we only consider the
W -algebras associated to 2× n-rectangular nilpotent elements in g. The reader is referred
to [GT1] for the theory of modular finite W -algebras.

3.1. Restricted finite W -algebras. We consider the partition (n, n) ⊢ 2n of 2n. Let π be
the corresponding pyramid. The boxes in the pyramid are numbered along rows from
left to right and from top to bottom. For exmaple, if n = 5, then the pyramid associated
to (5, 5) is

1 2 3 4 5
6 7 8 9 10 .

For 1 ≤ i ≤ n, we use the notation i′ := i+n. The box in π containing i is referred to as the
ith box, and let row(i) and col(i) denote the row and column numbers of the brick in which
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i appears, respectively. We therefore have row(i) = 1, row(i′) = 2 and col(i) = col(i′) = i
for every 1 ≤ i ≤ n.

The pyramid π is used to determine the nilpotent element

e :=
∑

1≤i≤n−1

ei,i+1 +
∑

1≤i≤n−1

ei′,(i+1)′ ∈ g, (3.1)

which has Jordan type (n, n). We call it 2× n-rectangular nilpotent element.
Consider the cocharacter µ : k× → T ⊆ G defined by

µ(t) = diag(t−1, t−2, . . . , t−n, t−1, t−2, . . . , t−n),

where T is the maximal torus of G of diagonal matrices. Using µ we define the Z-grading

g =
⊕

r∈Z

g(r) where g(r) := {x ∈ g; µ(t)x = trx for all t ∈ k

×}. (3.2)

Since the adjoint action of µ(t) on a matrix unit is given by µ(t)ei,j = tcol(j)−col(i)ei,j , we
have g(r) = span{ei,j; col(j)− col(i) = r}.

We define the following subalgebras of g:

p :=
⊕

r≥0

g(r), h := g(0), and m :=
⊕

r<0

g(r). (3.3)

Then p is a parabolic subalgebra of g with Levi factor h and m is the nilradical of the
opposite parabolic to p. We see that h is isomorphic to the direct sum of n copies of gl2.

The finite W -algebra U(g, e) associated to e is a subalgebra of U(p) generated by

{d
(r)
i ; 1 ≤ i ≤ 2, r > 0} ∪ {e(r), f (r); r > 0}. (3.4)

These elements were defined by remarkable formulas, given in [BK2, §9]; see also [GT2,
§4]. We note there is an abuse of notation as there generators of U(g, e) have the same
names as the generators for Y2 given in (1.15), this overloading of notation will be justified
in the next subsection.

Now let t be the Lie algebra of T , and write {ǫ1, . . . , ǫ2n} for the standard basis of t∗. We
define the weight η ∈ t∗ by

η :=

n∑

i=1

2(i− n)(ǫi + ǫi′), (3.5)

and we note that η extends to a character of p. For ei,j ∈ p define

ẽi,j := ei,j + η(ei,j).

Then by definition

d
(r)
i :=

r∑

s=1

(−1)r−s
∑

i1,...,is
j1,...,js

(−1)|{t=1,...,s−1|row(jt)≤i−1}|ẽi1,j1 · · · ẽis,js ∈ U(p) (3.6)

where the sum is taken over all 1 ≤ i1, . . . , is, j1, . . . , js ≤ 2n such that

(a) col(j1)− col(i1) + · · ·+ col(js)− col(is) + s = r;
(b) col(it) ≤ col(jt) for each t = 1, . . . , s;
(c) if row(jt) ≥ i, then col(jt) < col(it+1) for each t = 1, . . . , s− 1;
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(d) if row(jt) < i then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;
(e) row(i1) = i, row(js) = i;
(f) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

The expressions for the elements e(r) ∈ U(p) and f (r) ∈ U(p) are given by similar formulas,
see [BK2, §9] or [GT2, §4] for more details.

Since p is a restricted subalgebra of g. We write Zp(p)+ for the ideal of Zp(p) generated
by {xp − x[p]; x ∈ p}, so the restricted enveloping algebra of p is U0(p) = U(p)/U(p)Zp(p)+
(see Section 1.3). Then the restricted W -algerbra is defined as

U [p](g, e) := U(g, e)/(U(g, e) ∩ U(p)Zp(p)+).

Since the kernel of the restriction of the projection U(p) ։ U0(p) to U(g, e) is U(g, e) ∩
U(p)Zp(p)+, we can identify U [p](g, e) with the image of U(g, e) in U0(p).

3.2. U [p](g, e) as restricted truncated Yangian. Let I
[p]
2,n be the ideal of Y

[p]
2 generated by

{d
(r)
1 + Zp(Y2)+; r > n}. The restricted truncated Yangian Y

[p]
2,n is defined to the quotient of

Y
[p]
2 by the ideal I

[p]
2,n ([GT3, (4.13)]). As before, we will use the same symbols d

(r)
i , e(r), f (r)

for their canonical images in the quotient Y
[p]
2,n and U [p](g, e), respectively. According to

[GT3, Theorem 1.1], the map from Y
[p]
2,n to U [p](g, e), determined by sending the generators

e(r), d
(r)
i , f (r) of Y

[p]
2,n to the generators (3.4) of U [p](g, e) with the same names, defined an

isomorphism

φ[p] : Y
[p]
2,n → U [p](g, e). (3.7)

3.3. Irreducible representations for Y
[p]
2,n. Recall from Theorem 2.5 each finite dimen-

sional simple Y
[p]
2 -module has the form L[p](λ1(u), λ2(u)). Our next proposition deter-

mines for which of these simple modules the action of Y
[p]
2 factors through the quotient

Y
[p]
2 ։ Y

[p]
2,n.

Proposition 3.1. Let λ(u) = (λ1(u), λ2(u)) be restricted. Then L[p](λ(u)) factors to a module for

Y
[p]
2,n if and only if λ1(u) and λ2(u) are polynomials in u−1 and deg λi(u) ≤ n.

Proof. Suppose that both λ1(u) and λ2(u) are restricted polynomials. Thanks to Theorem
2.9, L[p](λ(u)) is isomorphic to some tensor product of evaluation modules which has at

most n tensor factors. Using the comultiplication (1.2), we see that every generator t
(r)
i,j

with r > n acts on the module as the zero operator. Note that t
(r)
1,1 = d

(r)
1 (1.4). We thus

obtain I
[p]
2,n.L

[p](λ(u)) = (0).

On the other hand, Proposition 2.2 implies that L[p](λ(u)) is generated ζ and ti,i(u)ζ =

λi(u)ζ . Now our assertion follows from the fact that t
(r)
i,i = 0 in Y

[p]
2,n for r > n ([GT3,

Corollary 3.6]). �

In conjunction with the isomorphism φ[p], this also shows the following:
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Corollary 3.2. The isomorphism classes of finite dimensional irreducible representations of the
restricted W -algerbra U [p](g, e) are parameterized by the set

{
(λ1(u), λ2(u));

p∏

j=1

λi(u− j + 1) = 1, deg λi(u) ≤ n, i = 1, 2
}
.

4. MODULES FOR REDUCED ENVELOPING ALGEBRAS

In this section, we continue to use the notation from Section 3. We will determine the
irreducible modules for the reduced enveloping algebra of g associated with the 2 × n-
rectangular nilpotent element.

4.1. Baby Verma modules for U [p](g, e). We recall that the grading g = ⊕i∈Zg(i) from
(3.2) and the notation h = g(0) and p = ⊕i≥0g(i) from (3.3). Note that h is reductive and is
isomorphic to the n copies of gl2. We let bh be the Borel subalgebra of h with basis

{ei,i; 1 ≤ i ≤ n} ∪ {ei′,i′; 1 ≤ i ≤ n} ∪ {ei,i′; 1 ≤ i ≤ n}, (4.1)

which is the direct sum of the Borel subalgebras of upper triangular matrices in each of
the gl2.

Given two n-tuples α := (α1, . . . , αn) and β := (β1, . . . , βn) of elements of Fp, we define
the weight λα,β ∈ t∗ by

λα,β :=

n∑

i=1

αiǫi +

n∑

i=1

βiǫi′ .

We define kα,β = k.1α,β to be the 1-dimensional t-module on which t acts via λα,β −
η, where we recall that η is defined in (3.5). It is obvious that kα,β is a U0(t)-module.
Furthermore, we view it as module for U0(bh) on which the nilradical acts trivially. Then
we define the baby Verma module

Zh(α, β) := U0(h)⊗U0(bh) kα,β.

We put zα,β := 1 ⊗ 1α,β. We may view Zh(α, β) as a U0(p)-module on which the nilrad-
ical ⊕i>0g(i) of p acts trivially. As the restricted W -algebra U [p](g, e) is a subalgebra of
U0(p), we restrict Zh(α, β) to U [p](g, e) and write Zh(α, β) for the restriction and zα,β for
zα,β viewed as an element of Zh(α, β).

Remark 5. In [GT3], the authors defined the weight ρh. In our situation, the weight ρh is just

equal to −
n∑

i=1

ǫi′ . They defined 1-dimensional t-module on which t acts via λα,β − η − ρh.

Equivalently, the n-tuple β is replaced by (β1 − 1, . . . , βn − 1).

We let er denote the rth elementary symmetric polynomial. The proof of the following
result is based on [GT3, Lemma 5.6].

Lemma 4.1. Let α := (α1, . . . , αn) and β := (β1, . . . , βn) of elements of Fp and let zα,β be as
defined above. Then

(a) e(r)zα,β = 0 for all r > 0;

(b) d
(r)
1 zα,β = er(α1, . . . , αn)zα,β for all 0 < r ≤ n; and

(c) d
(r)
2 zα,β = er(β1, . . . , βn)zα,β for all 0 < r ≤ n.
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Proof. Instead of the construction of Zh(α, β), we define the Verma module Mh(α, β) :=
U(h) ⊗U(bh) kα,β and write mα,β := 1 ⊗ 1α,β. We can inflate it to a U(p)-module and

then restrict it to U(g, e) ⊆ U(p). We write M h(α, β) for the restriction and mα,β for
mα,β viewed as an element of M h(α, β). There is a surjective homomorphism Mh(α, β) ։
Zh(α, β); mα,β 7→ zα,β of U(p)-modules. As U(g, e) ⊆ U(p), this gives a surjective homo-
morphism

M h(α, β) ։ Zh(α, β); mα,β 7→ zα,β

of U(g, e)-modules. Now [GT3, Lemma 5.6(a)] and its proof imply (a). For (b) and (c), this
follows from [GT3, Lemma 5.6(b)] in conjunction with the foregoing observation (Remark
5). �

We denote by Lh(α, β) the unique simple quotient of the baby Verma module Zh(α, β)
(see [Jan, 10.2]). Recall that h ∼= gl⊕n

2 . For 1 ≤ i ≤ n, we write gi for the ith gl2 correspond-
ing to the ith column. It follows that gi has basis {ei,i, ei′,i′, ei,i′, ei′,i}. For each i, we have
(λα,β −η)(ei,i) = αi+2(n− i) and (λα,β −η)(ei′,i′) = βi+2(n− i) . Consequently, we obtain

Lh(α, β) ∼= L(α1 + 2(n− 1), β1 + 2(n− 1))⊗ · · · ⊗ L(αn, βn), (4.2)

where L(αi+2(n−i), β1+2(n−i)) is the irreducible U0(gi)-module and dim
k

= [αi−βi]+1
(see Section 2.2). As before, we restrict Lh(α, β) to U [p](g, e) and write Lh(α, β) for the
restriction. We denote by lα,β the image of zα,β in Lh(α, β). Also, we can view Lh(α, β) as

a Y
[p]
2,n-module via the isomorphism (3.7).

Given two n-tuples α := (α1, . . . , αn) and β := (β1, . . . , βn) of elements of Fp, we define

λα(u) = (1 + α1u
−1) · · · (1 + αnu

−1),

λβ(u) = (1 + β1u
−1) · · · (1 + βnu

−1).

Theorem 4.2. Given two n-tuples α := (α1, . . . , αn) and β := (β1, . . . , βn) of of elements of Fp,
and let λα(u) and λβ(u) be as defined above. Suppose that for every i = 1, . . . , n, the following
condition hold: [αi − βi] is minimal among all [αj − βl] for i ≤ j, l ≤ n. Then the irreducible
module L[p](λα(u), λβ(u)) is isomorphic to Lh(α, β).

Proof. Thanks to Lemma 4.1, there is a well-defined homomorphism

Z [p](λα(u), λβ(u)) → Lh(α, β); 1(λα(u),λβ(u)) 7→ lα,β

of L
[p]
2 -modules. We let L

[p]
2 .lα,β be the cyclic submodule of Lh(α, β) generated by lα,β.

As L[p](λα(u), λβ(u)) is the simple quotient of Z [p](λα(u), λβ(u)). There results a surjective
homomorphism

Lh(α, β) ⊇ L
[p]
2 .lα,β ։ L[p](λα(u), λβ(u)). (4.3)

A consecutive application of Theorem 2.9 and Proposition 2.6 implies

L[p](λα(u), λβ(u)) ∼= L(α1, β1)⊗ · · · ⊗ L(αn, βn).

We note that the evaluation module L(αi, βi) has dimension [αi − βi] + 1 (see Subsec-
tion 2.2). As a result, dim

k

L[p](λα(u), λβ(u)) = ([α1 − β1] + 1) · · · ([αn − βn] + 1). More-
over, observing (4.2) one gets dim

k

L[p](λα(u), λβ(u)) = dimLh(α, β) and (4.3) ensures that
L[p](λα(u), λβ(u)) ∼= Lh(α, β). �
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4.2. Simple Uχ(g)-modules. We recall e ∈ g the 2×n-rectangular nilpotent element from
(3.1). Let (·, ·) : g × g → k denote the trace from associated to the natural representation
of g. We define χ ∈ g∗ to be the element dual to e via the trace from (·, ·) , i.e. χ = (e, ·).
Recall that

Uχ(g) = U(g)/Jχ = U(g)/(xp − x[p] − χ(x)p; x ∈ g).

To describe the simple Uχ(g)-modules, we require some notations. Since e ∈ g(1), we
have that χ vanishes on g(k) for k 6= −1. Therefore χ restricts to a character of m, so that
χ defines a one dimensional representation kχ = k.1χ of Uχ(m). We define the restricted
Gelfand–Graev module to be

Qχ := Uχ(g)⊗Uχ(m) kχ
∼= Uχ(g)/Uχ(g)mχ, (4.4)

where we recall that mχ = {x − χ(x); x ∈ m}. Note that Qχ is a left Uχ(g)-module and a
right U [p](g, e)-module.

We recall that the following Premet equivalence. This theorem is based on [Pre1, Theo-
rem 2.4], see also [Pre2, Proposition 4.1] and [GT3, Theorem 2.4].

Theorem 4.3. The functor from U [p](g, e)-mod to Uχ(g)-mod given by

M 7→ Qχ ⊗U [p](g,e) M

is an equivalence of categories of quasi-inverse given by

V 7→ V mχ := {v ∈ V ; mχv = (0)}.

Taking into account Theorem 4.2, we obtain the following corollary:

Corollary 4.4. Let α := (α1, . . . , αn) and β := (β1, . . . , βn) be two n-tuples of elements of
Fp. Suppose that for every i = 1, . . . , n, the following condition hold: [αi − βi] is minimal
among all [αj − βl] for i ≤ j, l ≤ n. Then Qχ ⊗U [p](g,e) Lh(α, β) is a simple Uχ(g)-module

and dim
k

Qχ ⊗U [p](g,e) Lh(α, β) = p2n
2−2n([α1 − β1] + 1) · · · ([αn − βn] + 1). In particular, the

isomorphism classes of simple Uχ(g)-modules are parameterized by the set

{
(λ1(u), λ2(u));

p∏

j=1

λi(u− j + 1) = 1, deg λi(u) ≤ n, i = 1, 2
}
.
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