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Abstract Feature selection plays an essential role

in improving the predictive performance and inter-

pretability of trained models in classical machine learn-

ing. On the other hand, the usability of conventional

feature selection could be limited for quantum machine

learning tasks; the technique might not provide a clear

interpretation on embedding quantum circuits for clas-

sical data tasks and, more importantly, is not appli-

cable to quantum data tasks. In this work, we pro-

pose a feature selection method with a specific focus

on quantum machine learning. Our scheme treats the

light-cones (i.e., subspace) of quantum models as fea-

tures and then select relevant ones through training of

the corresponding local quantum kernels. We numeri-

cally demonstrate its versatility for four different appli-

cations using toy tasks: (1) feature selection of classi-
cal inputs, (2) circuit architecture search for data em-

bedding, (3) compression of quantum machine learning

models and (4) subspace selection for quantum data.

The proposed framework paves the way towards appli-

cations of quantum machine learning to practical tasks.

Also, this technique could be used to practically test if

the quantum machine learning tasks really need quan-

tumness, while it is beyond the scope of this work.
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1 Introduction

Quantum enhancement of machine learning attracts

much attentions due to provable advantages of certain

quantum machine learning (QML) methods over clas-

sical counterparts [1,2,3,4,5]. Of particular interest are

QML approaches for data analysis. A family of fruit-

ful results have theoretically shown that tailored quan-

tum models can efficiently learn patterns of synthetic

datasets that are hard for classical ones to find [6,7,8].

Therefore, the next step is to quest whether such advan-

tages can be translated into practical machine learning

tasks.

A primary candidate of supervised QML models

in the near-term is the so-called quantum neural net-

works [9]. The key idea of this approach is to uti-
lize the Hilbert space as the feature space for ma-

chine learning tasks by exploiting the power of param-

eterized quantum circuits (PQCs) and data-embedding

circuits [10,11]. Due to the mathematical equivalence,

learning models based on quantum kernels can also

be in the same class of models as the quantum neu-

ral networks [12]; quantum neural networks and quan-

tum kernel methods are categorized as explicit and im-

plicit models within the same concept of QML, respec-

tively [13,14,15,16,17]. Focus of this paper is on these

supervised QML models.

Thus far, a number of attempts have been made

to understand these quantum models analytically. In

contrast to the original expectation, some literatures

have elucidated that the high expressivity of the

models causes trainability problems such as barren

plateaus [18,19,20,21,22] and the exponential concen-

tration [23,24,25,26]. This immediately suggests the

need to carefully construct quantum models for real-

world applications. A remedy for the issue in clas-
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sical machine learning is feature selection [27,28,29,

30]. With the technique, redundant features can be re-

moved and hence the predictive performance improves.

Moreover, the model’s interpretability can be enhanced

thanks to the reduced features.

We note that feature selection techniques have been

studied in the quantum computing community. For ex-

ample, Quadratic Unconstrained Binary Optimization

problems corresponding to the classical feature selec-

tion have been introduced, so that quantum comput-

ing can deal with it to boost the performance [31,32,

33]. Other works use quantum support vector machines

with multi-objective genetic algorithms [34], quantum

circuit evolution algorithms [35] and graph-theoretic

approach using quantum computers [36] for the per-

formance improvement. However, the usability of clas-

sical feature selection could be limited for QML tasks.

While classical feature selection methods still play a

critical role in embedding data on quantum circuits, it

does not help understand why some data embedding

quantum circuits work better than others. More impor-

tantly, when dealing with quantum data tasks such as

quantum phase recognition, classical input features do

not explicitly appear in input quantum data and thus

one cannot employ the classical techniques straightfor-

wardly.

In this work, we propose a feature selection method

with a specific focus on QML problems. More specif-

ically, we treat the light-cones structures (i.e., sub-

spaces) of local quantum kernels as quantum features

and then select a subset of beneficial ones through train-

ing of parameters in the kernels. Note that, by local

quantum kernels, we mean a family of quantum kernels

that measure local similarity between a pair of data; ex-

amples are projected quantum kernels (PQKs) [23] and

quantum Fisher kernels (QFKs) [26]. Thanks to the ex-

tension, the proposed framework is applicable not only

to the feature selection of classical inputs, but also to

the quantum data tasks that conventional feature selec-

tion methods cannot handle. To the best of our knowl-

edge, this is the first work to introduce a QML-oriented

feature selection method. Numerical simulations using

toy tasks demonstrate the effectiveness of our scheme

for four applications: (1) classical feature selection, (2)

circuit architecture search for data embedding, (3) the

compression of QML models and (4) relevant subspace

selection for quantum data tasks. These results indi-

cate that our proposal will encourage practitioners to

use QML models for real-world applications. In addi-

tion, as elaborated in Conclusion & Discussion section,

this scheme is linked to the argument about classical

simulability and trainability [37]. Therefore, our scheme

could work as a practical test to see if quantumness is

really needed for the QML tasks at hand, while this is

left for future work.

The rest of this paper is organized as follows. In

Section 2, we provide the settings of QML framework

and elaborate on our proposal. Then, Section 3 demon-

strates numerical simulations to see the effectiveness

and versatility of our proposal. Lastly, we discuss the

potential of our methods in practical situations and

then conclude this paper in Section 4.

2 Method

2.1 Framework of Quantum Machine Learning

In this work, we focus on supervised quantum machine

learning (QML) tasks; given a training dataset that

consists of input data and the corresponding targets,

our goal is to train a QML model so that its output ac-

curately predicts the targets of new unseen data. Here,

we consider the case where the dataset is either classical

or quantum.

In case of classical data, the dataset is composed

of pairs of classical input xi and its target value or

label yi; an example of the input is a vectorized d-

dimensional image x ∈ Rd. For QML models to deal

with the classical data, we have to encode the input

to quantum states via embedding quantum circuits.

Namely, we apply an embedding circuit V (xi) to an

initial state ρ0 to construct data-dependent quantum

states ρi = V (xi)ρ0V
†(xi). We can also utilize param-

eterized quantum circuits (PQCs) U(θ) with tunable

parameters θ to find better features in the space. Typ-

ically, we employ data re-uploading technique [38] to

create quantum states from classical inputs;

ρi(θ) = U(xi,θ)ρ0U
†(xi,θ) (1)

with L-layer data re-uploading quantum circuits

U(x,θ) =

L∏
l=1

U(θl)V (x). (2)

In the numerical experiments in Section 3, we use the

re-uploading quantum circuits with a brick-like struc-

ture [19]; an example for n = 6 and L = 3 is shown in

Figure 1.

As for quantum data, the dataset constitutes quan-

tum states and their targets, i.e., {ρi, yi} [39,40]. In this

case, we employ PQCs U(θ) to the quantum inputs to

find better representation for the tasks;

ρi(θ) = U(θ)ρiU
†(θ). (3)

Previous work defined two approaches of construct-

ing quantum models [13]: explicit models where model
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Fig. 1 An example of the embedding quantum circuit with L = 3 for six features. The colored gates represent the light-cone
of measurement on l-th qubit with l = 3, 4 to construct the PQKs in Eq. (7).

predictions are given by measuring a certain Her-

mitian operator O on quantum states, and implicit

models where the inner products of quantum states

called quantum kernels are used for predictions. Then,

with a training dataset S = {xi, yi}i=1,...,N (S =

{ρi, yi}i=1,...,N ) of size N , we perform optimization to

obtain performant quantum models. For explicit mod-

els, we optimize θ to minimize a loss function L(θ) rep-
resented as

L(θ) =
N∑
i=1

l(fi(θ), yi) (4)

where fi(θ) = Tr[ρiO] is the output of explicit model

and l(fi(θ), yi) is the loss such as squared loss, i.e.,

l(fi(θ), yi) = (fi(θ) − yi)
2. On the other hand, the

representer theorem [41,42,43] guarantees that an op-

timal solution of implicit models can be in the form

of fopt
i (x) =

∑
i α

opt
i k(xi,x) with a kernel function

k(x,x′). A common choice of the kernel for QML is
the fidelity quantum kernel [10] expressed as

kQ(xi,xj) = Tr[ρi(θ)ρj(θ)]. (5)

For instance, the optimization problem for binary clas-

sification is reduced to minimizing the following func-

tion over the parameter α;

L(α) = −
∑
i

αi +
1

2

∑
i,j

αiαjyiyjk(xi, xj). (6)

Note that the kernel function can include the parame-

ters θ as shown in Eq. (5); the parameters θ can also be

optimized separately [44] or simultaneously [45]. Basi-

cally, classical optimizers are employed for both models

in the optimization.

2.2 Light-Cone Feature Selection

We here extend the idea of classical feature selec-

tion [27] to propose its counterpart for QML. The clas-

sical feature selection methods can be categorized into

three types: the filter, wrapper, and embedded meth-

ods. The filter approach performs selections based on

the relationship between features and the targets. The

wrapper approach evaluates the performance of the

model for different subsets of features and then select

features based on a performance metric. Lastly, the em-

bedded approach provides important features via train-

ing of models such as LASSO. See, e.g., Ref. [28,29,30]

for more comprehensive review of classical feature se-

lections.

Our proposal is similar in spirit to the embedded ap-

proach; we select relevant local light-cone of quantum

models through training of local quantum kernels. By

local quantum kernels, we mean quantum kernels which

measure local similarity between a pair of data. Note

that fidelity quantum kernels in Eq. (5) measure global

similarity and thus do not fall into the category. The ex-

amples are projected quantum kernels (PQKs) [23] and

simplified quantum Fisher kernels (QFKs) [26] defined

as

kPQ(xi,xj) =
∑
l

λlTr
[
ρ
(l)
i (θ)ρ

(l)
j (θ)

]
(7)

and

kQF (xi,xj) =
∑
l

λlTr
[
ρ0{B̃i,θl , B̃j,θl)}

]
(8)

respectively. Here, ρ
(l)
i = Trl̄[ρi(θ)] is the partial trace

of the quantum state ρi(θ) over all qubits except for

the l-th qubit. Also, B̃i,θl = U†
1:l(xi,θ)BθlU1:l(xi,θ)

with Bxi,θl = 2i(∂U(xi,θ)/∂θl)U
†(xi,θ), where

Uk:l(x,θ) denotes a sequence of unitary gates from

Uk(xi, θk) to Ul(xi, θl) in the representation U(x,θ) =

UNp
(x, θNp

) · · ·U2(x, θ2)U1(x, θ1) for the total number

of parameters Np.

These local quantum kernels can be expressed as

summation of local terms, k(x,x′) =
∑

l λlk
(l)(x,x′),

where each local kernel k(l)(x,x′) has the correspond-

ing light-cone, i.e, the subspace of quantum circuits (or
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quantum states) that are relevant to a certain operation

like a local gate operation and measurement. For exam-

ple, as illustrated in Figure 1, the light-cone obtained

by measurement on l-th qubit (l = 3, 4) for the PQK is

denoted by the colored gates. We regard the light-cones

induced by local quantum kernels as features and then

select important ones through training of parameters

(θ,λ) in quantum kernels.

As for the training of quantum kernels, we maximize

the kernel target alignment (KTA) [46] defined as

KTA =

∑
pq ypyqk(xp,xq)√∑

pq k(xp,xq)2
√∑

pq ypyq
. (9)

We note that the KTA is a common choice as an objec-

tive function for training kernels in both classical [44,

46] and quantum cases [24,25,47]. In this work, the op-

timization of (θ,λ) is done in two steps: (1) with λ

fixed, θ are optimized via the Adam optimizer by com-

puting the gradients of Eq. (9) with respect to θ, and

then, (2) λ are optimized following the approach pro-

posed in Ref. [44]:

λopt =
v∗

|v∗|1
, (10)

v∗ = argmin
v≥0

[∑
ij

viMijvj − 2
∑
i

viai

]
, (11)

Mij =
∑
pq

k(i)(xp,xq)k
(j)(xp,xq), (12)

ai =
∑
pq

k(i)(xp,xq)ypyq. (13)

This two-step process is iteratively carried out until the

value of the KTA stops changing significantly. The op-

timization can be done efficiently, as the first step re-

lies on gradient-based algorithms and the solution of

the second step can be obtained by solving a quadratic

program. In our numerical experiments, Eq. (11) in the

second step is solved using CVXOPT library [48,49].

After the optimization, we select relevant light-cones

based on the amplitude of parameters λ; that is, we in-

terpret the local kernel k(l)(x,x′) whose parameter λl

has a large absolute value as important.

We remark that our proposal is more versatile than

classical feature selection methods in QML tasks. This

scheme can be used not only for feature selection of

classical features as the conventional methods do, but

also for seeking relevant subspace of embedding quan-

tum circuits. More importantly, the proposed method

is applicable to quantum data tasks where classical fea-

tures do not appear and hence conventional ones cannot

work. In addition, while some previous works proposed

methods for feature selection using quantum computing

devices, all of them focus on improvement of the classi-

cal feature selection [31,32,33,34,36,35]. Therefore, to

the best of our knowledge, this work is the first to pro-

pose a QML-oriented feature selection scheme.

3 Numerical Demonstration

In what follows, we perform numerical simulations to

demonstrate efficacy and versatility of our proposal.

More specifically, we deal with four application tasks:

(1) feature selection of classical inputs, (2) circuit ar-

chitecture search for data embedding, (3) compression

of QML models and (4) subspace feature selection for

quantum data. For all the simulations shown below,

PennyLane library [50] is used for quantum circuit sim-

ulation. Also, in the learning tasks, we used 80 data

points for both training and test, where models’ per-

formance are checked for different 25 settings of data

samples and initial parameters θ; five sets of data sam-

ples and five different parameters are prepared and then

we tried all combinations of these settings. As for local

quantum kernels, we set a uniform weights to the initial

parameters λ, i.e., λl = 1/(the number of terms in the

local quantum kernel) for all l. The learning rate and

the number of iterations in the Adam optimization step

are set to 0.01 and 500, respectively.

3.1 Feature Selection of Classical Inputs

To begin with, we check the performance of our scheme

for classical feature selection tasks. Here, we utilize the

importance of light-cones determined by our proposal

to seek out relevant classical features; that is, we evalu-

ate the importance of the features based on a quantity

determined by the optimized parameters λ. We call the

quantity the importance score. In this study, we define

the importance score P (µ) of a classical feature µ as

P (µ) =
1

N
∑
l

wλl
(µ)λl (14)

where wλl
(µ) is the frequency for the classical feature

µ to appear in the l-th local quantum kernel k(l)(x,x′),

and N =
∑

µ P̃ (µ) with P̃ (µ) =
∑

l wλl
(µ)λl is the

normalization constant. Recall that λ satisfy
∑

l λl = 1

with λl ≥ 0. In case of the light-cone structure shown in

Figure 1 (i.e., λl with l = 3 or 4 for PQKs), wλl
(µ) = 1

for µ = x1, x6, wλl
(µ) = 2 for µ = x2, x5, and wλl

(µ) =

3 for µ = x3, x4. We notice that one can take another

quantity as the importance score, so long as it tells the

relevance of features in the tasks.

As a toy example, we consider a so-called parity-

based binary classification task introduced in Ref. [13]
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Fig. 2 Importance scores of features for the parity(1,2)
dataset.

The goal of this task is to classify d-dimensional binary

input x ∈ {−1, 1}d whose label is determined based on

its parity for a certain subset Ap ⊂ {1, . . . , d}; namely,

the input’s label is assigned according to y(x) =∏
i∈Ap

xi. We chose this task because important classi-

cal features are clearly Ap and hence we can interpret

the performance of our proposal easily. In the follow-

ing, we consider a dataset with Ap = {1, 2}, which we

denote as parity(1,2). Here, the number of qubits n is

equal to the dimension of inputs d and we set d = 8.

Also, the data re-uploading quantum circuits with the

depth L = 3 is used.

Figure 2 shows the importance scores of the local

quantum kernels for the parity(1,2) dataset. Features

whose importance scores are higher than the thresh-

old Pth = 0.1 for QFKs are x1 and x2, suggesting our

scheme with QFKs can pinpoint key features for the
task. As for PQKs, features x1, x2, x3 and x8 wit-

ness the scores larger than Pth. Hence, the PQKs can

also select relevant features on the dataset. The fea-

tures chosen by the PQKs include more features than

the minimum required. This is because the number of

classical features in the light-cone induced by a local

measurement gets larger as the depth increases [51]. We

note that the light-cone of l-th term of QFKs is deter-

mined by the position of gates with the local parameter

θl [26], and thus only necessary features can be selected

in this case. Actually, the performance difference be-

tween these two kernels can be seen by looking at the

KTAs; the values of the KTAs for PQKs and QFKs

are 0.605 and 0.987, respectively. Recall that the KTA

of the best kernel outputs one, and the larger value of

the quantity indicates the better performance. Hence,

the performance gap between the PQK and the QFK

would be enlarged as the depth increases. Yet, we could

resolve the problem in the PQKs, e.g., by using different

feature scores.

3.2 Circuit Architecture Search for Data Embedding

Next, we check if our scheme can be exploited to find

better embedding quantum circuits. For classical data

tasks, embedding quantum circuits play a crucial role

in the performance, since the data distribution in the

Hilbert space is determined by them. Previous works

introduced techniques to increase the expressivity in

terms of Fourier analysis [52,53]. Still, there is room for

investigation in guidelines for constructing performant

embedding quantum circuits. Hence, we here propose a

new embedding strategy based on our light-cone feature

selection technique.

Specifically, this work focuses on the order in which

classical features are encoded onto qubits. A straight-

forward and the most popular strategy is to assign a

feature xi to the i-th qubit for i = 1, . . . , n. However,

due to the restricted connectivity of entangling gates,

underlying patterns of data in the Hilbert space might

not be found with the standard encoding approach in

some cases; for example, the features assigned in the

farthest qubits in the quantum circuit could be less

correlated, leading to poor expressivity of the model

for certain tasks. With this in mind, we introduce a

problem-specific ordering of data encoding. Here, we

consider the following scheme: we start with the stan-

dard encoding described above and, after the light-cone

feature selection optimization, the order of features en-

coded onto the qubits are sorted in descending order of

their importance scores in Eq. (14). Let us note that

our technique is applicable to more complicated set-

tings; one could also use this idea to find a better gate

set among some candidates.

For the proof-of-concept demonstration of this

scheme, we again work on the parity-based binary clas-

sification task. In the numerical experiments, we con-

sider the dataset with Ap = {1, 5} denoted as par-

ity(1,5). Table 1 shows the KTA values for the cases

with and without the re-ordering technique. Here, the

optimization of local kernels are done three times for

both cases. It turns out that the KTAs increase from

-0.033 to 0.987 (-0.015 to 0.560) for QFKs (PQKs).

The performance improvement can be interpreted in

terms of feature selection. Figure 3 shows the impor-

tance scores for these cases. When the technique is not

employed, every feature is evenly regarded as impor-

tant for QFKs and PQKs. Together with the KTA val-

ues, this indicates that the optimization works poorly

because the restriction on entangling gates limits the

spread of light-cones. Note that a few local terms in

PQKs can cover features x1 and x5, but they are so far

away that optimization could not lead to good predic-

tion. On the other hand, QFKs and PQKs can success-
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(b) parity(1,5), sorted

Fig. 3 Importance scores of features for the parity(1,5)
datasets (a) without and (b) with re-ordering of input en-
coding.

Table 1 The KTA values for the parity(1,5) and the breast-
cancer datasets.

parity(1,5) PQK QFK

without sorting train 0.037 0.077
test -0.015 -0.033

with sorting train 0.562 0.987
test 0.560 0.987

breast-cancer PQK QFK

without sorting train 0.397 0.749
test 0.366 0.719

with sorting train 0.389 0.752
test 0.377 0.726

fully select the relevant features, suggesting that the

re-ordering facilitates the optimization and results in

the better performance.

Moreover, we work on the benchmark dataset, the

breast-cancer dataset, to see the performance for a more

practical task. This is a classical dataset for binary clas-

sification where 212 data points are labeled as “malig-

nant” and 357 as “benign”. In the numerical experi-

ments, we choose d(= 12) features out of 30 and then

rescale the data so that it has a mean zero and unit

variance. The distribution of each feature is shown in

Figure 4 (a), in which we show the L1 norm of “malig-

nant” and “benign” distributions δ to show the discrep-

ancy (i.e., separability) of them. The dataset is taken

from scikit-learn [54]. Also, we employ the same quan-

tum circuits as the parity-based classification tasks.

As shown in Table 1, the re-ordering technique

increases the KTA values of QFKs (PQKs) from

0.719 to 0.726 (from 0.366 to 0.377) for test, while

the KTA of PQKs for training slightly decreases.

The improvement in the test data is reasonable be-

cause more compact models are constructed by our

scheme. Figure 4 (b) illustrates importance scores with

and without re-ordering. We observed that four fea-

tures (x5, x10, x11, x12) for QFKs with re-ordering show

smaller importance scores than the smallest value for

the case without the technique (0.04 for x6), imply-

ing that the model gets sparse thanks to our scheme.

Similarly, the number of important features selected

by PQKs with the threshold Pth = 0.1 is reduced by

this scheme; six features (x3, x4, x5, x6, x7 and x8)

are higher than the threshold for the case without the

method, whereas five (x1, x4, x7, x8 and x10) are se-

lected for re-ordering. From these results, we can con-

firm the effectiveness of the new encoding scheme based

on the importance score.

3.3 Compression of Quantum Machine Learning

Models

Another application where our proposal can be uti-

lized is the compression of quantum circuit models. The

model compression aims to reduce the size of machine

learning models, e.g., the number of parameters in neu-

ral networks [55]; as a result, resource efficiency, faster

inference and better generalization can be realized.

Especially, pruning is a powerful tool to reduce the

model size in classical machine learning. With the prun-

ing technique, one can construct a compressed model

that requires less resources to execute inference and is

comparable to the original model in the performance.
For example, parameters of neural networks are pruned

based on their magnitudes [56] (i.e., the parameters

with small values are removed). Indeed, the magnitude-

based pruning method has been explored in variational

quantum algorithms [57,58]. On the other hand, careful

consideration is needed when applying the magnitude-

based pruning to data re-uploading quantum circuits.

More concretely, this technique fails to prune the em-

bedding layer, suggesting its inability to reduce the

model width (i.e., the number of qubits). This also

means that the reduction in the depth might not be

huge as the embedding layers will never be removed.

With a focus on the problem, we propose a new

pruning method using the light-cone feature selection.

Here, we evaluate the magnitudes of parameters λ to

determine which part of quantum circuits are redun-

dant. Recall that λ are the weights for local terms and

thus their amplitudes tell the importance of each light-

cone. Consequently, this scheme can prune even the em-

bedding layers.
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without re-ordering with re-ordering

Fig. 4 Results on the breast-cancer dataset. (a) Histograms of the 12 features of the breast-cancer dataset used in this work
are illustrated. In each panel, δ denotes the L1 norm of the distributions computed with the fixed number of bins (100). (b)
Importance scores are calculated for the cases with (right) and without (left) re-ordering technique.

To see how the pruning scheme works, we consider

the parity(1,2) dataset. To be precise, we prune all the

light-cones of models except for the one with the largest

parameter λ and check the relationship to the perfor-

mance of the corresponding compressed model. Figure 5

depicts the quantum circuits constructed by removing

all but the light-cone associated with the largest λ for

the PQK and QFK, respectively. The light-cone chosen

by this scheme is reasonable as the important subspace

in this task is the part of the circuit where features x1

and x2 are included. Moreover, the performances of the

pruned models are comparable to the original models;

the KTA value of PQKs (QFKs) just decreases from

0.605 to 0.600 (0.987 to 0.983) by pruning. Thus, our

numerical experiment suggests the validity of our pro-

posal.

3.4 Subspace Feature Selection for Quantum Data

Lastly, we work on a task in which the goal is to find rel-

evant light-cones (i.e., subspaces) of quantum data. We

recall that conventional feature selection methods can-

not deal with the tasks because classical features do not

appear. The advantage of the approach would be that

one can construct an efficient and better-performing

QML model by removing irrelevant subspaces of quan-

tum states.

To see the effectiveness of our proposal, we consider

a toy binary classification task with a synthetic quan-

tum dataset {ρi, yi}. Here, the input quantum state

is represented as ρi = U(θ∗)ρ0,iU
†(θ∗), where ρ0,i =

ρ
(1)
0,i⊗ρ

(2)
0,i⊗. . .⊗ρ

(n)
0,i is the tensor product of single-qubit

Haar random states {ρ(l)0,i}l=1,...,n and U(θ∗) denotes

the unitary operator with certain fixed parameters θ∗.
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Fig. 5 Pruned quantum circuits. Here, we consider the light-
cone of the local term of (a) the PQK and (b) the QFK whose
parameter λ is largest for the parity(1,2) dataset.

Then, the label is determined by yi = sign(Tr[Zmρ0,i])

with the Pauli Z operator acting on the m-th qubit Zm;

see Figure 6 (a) for the details of this numerical ex-

periment. We construct the dataset inspired by actual

quantum data tasks; like the quantum phase recogni-

tion tasks in Ref. [59], we assume that there exist a uni-

tary operator that can transform input quantum state

ρi to another state in the form of ρ̃i,r⊗ρirr with a rele-

vant quantum state ρ̃i,r and an irrelevant state ρirr. By

a relevant quantum state, we mean that a simple mea-

surement on that state is enough to identify the label

or the property of the original state. In this work, we

focus on PQKs using alternating layered ansatzes [19]

with the number of qubit n = 8, 12 and the circuit

depth L = 1, 2, 3. Note that we do not take into ac-

count QFKs since the kernels are not defined via input

quantum states ρi, but via the unitary representation

of data U(xi,θ). Also, we set m = n/2 + 1.

Figure 6 (b) shows the amplitudes of λ after opti-

mization of (θ,λ) for each setting. We clearly see that

PQKs for the depth L = 1, 2 can point out the relevant

quantum subspace. For L = 3, however, this method

selects the n/2-th qubit as the most important. This

would be attributed to how the parameters θ are op-

timized; the light-cone induced by the measurement of

n/2-th qubit also covers the key qubit and the optimiza-

tion in the light-cone is better than others. To see if the

understanding is correct, we compute the KTA values

of all the possible PQKs where only a single-qubit re-

duced density matrix is used. As shown in the insets of

Figure 6 (b), we found that the PQK with λn/2 = 1 and

0 otherwise outputs the best KTA for L = 3, indicating

the reduced density matrix ρ
(n/2)
i is the most relevant

subspace. In summary, we can numerically validate the

potential of our scheme using a toy quantum data task.

4 Conclusion & Discussion

In this work, we propose a QML-oriented feature selec-

tion method where important light-cone features (sub-

spaces) of quantum models are selected through train-

ing of local quantum kernels such as PQKs and QFKs.

Numerical simulations demonstrate that our scheme

works well in (1) classical feature selection, (2) circuit

architecture search for data embedding, (3) model com-

pression and (4) subspace feature selection for quantum

data. These results suggest its versatility and encourage

practitioners to use this technique for the application

of QML models to real-world tasks.

As described in Section 2, our framework relies on

the training of parameters (θ,λ) in quantum kernels;

this means that the classical computational cost for the

quantum kernel estimation scales at least quadratically

with respect to the number of training data points.

Hence, there is room for investigation in improving its

scalability. As the remedy to the similar issue in quan-

tum kernel methods, previous works used techniques

such as classical shadow and surrogate models based

on random Fourier features [23,60,61]. Thus, it would

be interesting to explore the improvement of its scala-

bility in this direction.

According to Ref. [37], the absence of trainability
issues such as barren plateaus and exponential concen-

trations is strongly tied with classical simulability. This

indicates that, for classical data tasks, our technique

might not work in the classically-hard regime; even if

it works, the compressed model obtained through our

method could be classically simulable. On the other

hand, this also means that our method can be used

as a practical test to see if the QML tasks really re-

quires quantumness. More significantly, our proposal is

also applicable to quantum data tasks such as quantum

phase recognition [62,59,63] and entanglement detec-

tion [64] (i.e, quantum physics-related learning tasks).

Therefore, our proposal could also be used for con-

structing efficient settings of such quantum tasks and

the investigation of practical quantum advantages.

Acknowledgements This work was supported by MEXT
Quantum Leap Flagship Program Grant Number JP-
MXS0118067285 and JPMXS0120319794. Y.S. was supported
by Grant-in-Aid for JSPS Fellows 22KJ2709.



Light-cone feature selection for quantum machine learning 9

Fig. 6 Results for a toy quantum data task. (a) The setting of the QML model with the PQC’s depth L = 3 and the quantum

data considered in this experiment are illustrated. The colored quantum state ρ
(l)
0,i with l = n/2 + 1 (in this case, l = 5) is

a key state used to assign its label yi. (b) Optimized parameters λ of the PQKs for quantum data tasks with n = 8, 12 are
shown. Here, quantum circuits with L = 1, 2, 3 are used. The insets of figures illustrate the averaged KTA of PQKs calculated

using a single reduced density matrix ρ
(l)
i (θ); that is, l in the horizontal axis denotes the PQK in Eq. (7) with λl = 1 and 0

otherwise.
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7. J. Jäger, R.V. Krems, Universal expressiveness of varia-
tional quantum classifiers and quantum kernels for sup-

port vector machines, Nature Communications 14(1),
576 (2023)

8. T. Muser, E. Zapusek, V. Belis, F. Reiter, Provable ad-
vantages of kernel-based quantum learners and quan-
tum preprocessing based on Grover’s algorithm, arXiv
preprint arXiv:2309.14406 (2023)

9. M. Schuld, I. Sinayskiy, F. Petruccione, The quest for a
quantum neural network, Quantum Information Process-
ing 13, 2567 (2014)
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