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Abstract

We hereby present a full synthetic model, able to mimic the various constituents of the cerebral
vascular tree: the cerebral arteries, the bifurcations and the intracranial aneurysms. By building
this model, our goal was to provide a substantial dataset of brain arteries which could be used by
a 3D Convolutional Neural Network (CNN) to either segment or detect/recognize various vascular
diseases (such as artery dissection/thrombosis) or even some portions of the cerebral vasculature,
such as the bifurcations or aneurysms. In this study, we will particularly focus on Intra-Cranial
Aneurysm (ICA) detection and segmentation. The cerebral aneurysms most often occur on a
particular structure of the vascular tree named the Circle of Willis. Various studies have been
conducted to detect and monitor the ICAs and those based on Deep Learning (DL) achieve the
best performances. Specifically, in this work, we propose a full synthetic 3D model able to mimic the
brain vasculature as acquired by Magnetic Resonance Angiography (MRA), and more particularly
the Time Of Flight (TOF) principle. Among the various MRI modalities, the MRA-TOF allows
to have a relatively good rendering of the blood vessels and is non-invasive (no contrast liquid
injection). Our model has been designed to simultaneously mimic the arteries geometry, the
ICA shape and the background noise. The geometry of the vascular tree is modeled thanks to
an interpolation with 3D Spline functions, and the statistical properties of the background MRI
noise is collected from MRA acquisitions and reproduced within the model. In this work, we
thoroughly describe the synthetic vasculature model, we build up a neural network designed for
ICA segmentation and detection, and finally, we carry out an in-depth evaluation of the performance
gap gained thanks to the synthetic model data augmentation.
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1. Introduction

This work has been carried out in the context
of a wide medical research project in which
neuroradiologists intend to estimate the risk
of occurrence and/or rupture of Intra-Cranial
Aneurysms (Bourcier et al., 2017; L’Allinec
et al., 2020). The advent of ICA formation
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results from various factors, among which the
genetic risk seems predominant (Zhou et al.,
2018; Bourcier et al., 2018). However, it is
commonly accepted among physicians that the
geometric disposition of the cerebral vascular
tree might explain why a weakened vessel wall
(due to genetic or environmental factors) might
give rise to an aneurysm.

Untreated brain aneurysms pose a significant
risk of rupture, which can result in a hemorrhagic
stroke. In fact, this rupture can potentially
lead to the patient’s death in as much as
50% of all cases. The MRA-TOF modality is
frequently used for aneurysms detection (Sailer
et al., 2014). Unlike other methods like Digital
Subtraction Angiography (DSA) and Computed
Tomographic Angiography (CTA), MRA-TOF
is radiation-free and doesn’t require the
administration of a contrast agent (Summerlin
et al., 2022; Adams et al., 1999). Given the
mounting workload and the demanding nature of
the detection process undertaken by radiologists,
there is an increasing need for an automated
tool to detect and monitor aneurysms at an
early stage. Prior to the widespread adoption of
Deep Learning (DL), research studies employed
imaging filters or traditional machine learning
techniques to detect aneurysms (Lauric et al.,
2010; Zeng et al., 2020; Yang et al., 2011;
Arimura et al., 2006; Nemoto et al., 2017;
Hanaoka et al., 2019). Recent advances in
artificial intelligence, particularly those involving
deep Convolutional Neural Networks (CNNs),
have significantly enhanced the development
of automatic tools in the field of medical
imaging (Wang and Summers, 2012). To date,
several deep learning based approaches have
been proposed for ICA segmentation and/or
detection (Stember et al., 2019; Park et al., 2019;
Chen et al., 2020; Faron et al., 2020; Joo et al.,
2020; Timmins et al., 2021; Shi et al., 2020; Yang
et al., 2021; Ivantsits et al., 2022). Among these,
the ADAM Challenge, hosted in conjunction
with MICCAI 2020, compared 11 different DL
approaches for detecting or/and segmenting
aneurysms on MRA-TOFs. The algorithm

(Baumgartner et al., 2021) that secured the
top position achieved notable results, with an
average sensitivity of 0.67 and a false positive
rate of 0.13. It is important to note that
a majority of the existing methods have been
formulated using private clinical data that comes
with meticulously refined manual annotations.
Indeed, one of the obstacles in developing
deep learning methods for medical imaging
applications is the lack of large annotated
datasets, particularly for the segmentation task.
To mitigate this, Di Noto et al. (Di Noto et al.,
2023) proposed the use of “weak” annotations
and they obtained good results with an average
lesion sensitivity of 0.83 and a false positive rate
of 0.8.

The rationale behind our work is to try to
reduce as much as can be, or even possibly to
free oneself from any manual labeling. In other
words, we expect that using several hundreds or
even thousands of modeled bifurcation to train a
network might provide better performances than
using only a couple of hundreds actual MRA-
TOF segmentations. Unlike previous works, in
our approach, we investigate the brain aneurysm
detection task by exploiting synthetic data.
While data augmentation stands out as a well-
known technique for augmenting the number
of data samples, its application requires careful
consideration. In the context of medical images,
such image manipulations might tamper with
the geometrical or statistical properties in an
undesirable way, i.e. render the augmented
images too distant from their corresponding
ground truth.

Indeed, for a dataset augmentation, the first
thought that naturally comes to mind is to
simply use classical 3D geometrical deformations
(3D grid tweaking). However, among the pitfalls
encountered when using classical geometrical
distortions onto the 3D patches to train a
3D U-Net for vascular segmentation, we have
witnessed a deformation of the arteries, which
no longer resembled to actual cerebral vessels
as the elastic deformations could lead to a
flattening or exaggerate stretching of certain
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portions of the 3D tubes. Moreover, a geometric
deformation applied onto a 3D MRA-TOF
patch will inevitably distort the background
noise in an undesirable way, thus changing the
noise distribution and its statistical features.
Hence, applying classical elastic deformations
(Ronneberger et al., 2015; Çiçek et al., 2016)
might actually be counterproductive and reduce
the CNN performances.

In the past, about two decades ago, several
works have been devoted to the design of
computer models intended to mimic arterial
trees. At that time, the studies focused on
constrained constructive optimization (Karch
et al., 1999). Some models were particularly
designed to offer a high graphical fidelity through
a better understanding of the biophysical
properties (Szczerba and Székely, 2002). A
relatively nice rendering was obtained on liver
vascular trees for instance in (Kretowski et al.,
2003). Such models were mostly designed in
the aim to study angiogenesis (physiological
process leading to the formation of new blood
vessels.). More recently, the VascuSynth
model (Hamarneh and Jassi, 2010) was proposed
in the aim to produce vast amounts of volumetric
vasculature images. Here, the aim was different,
the authors intended to generate a synthetic
dataset for image segmentation. Indeed the
modeled images were generated along with their
underlying ground truth segmentation. All
these computer models achieved a quite accurate
modeling of the acquired medical images (mostly
trying to mimic liver or lung vasculatures).
However, modeling the cerebral vascular tree
might be a bit more challenging, as the arteries
are commonly longer, and may exhibit a stronger
tortuosity. Moreover, in our study, the goal
strongly differs. We intend to generate vast
amounts of images to train a neural network for
a pattern recognition task.

In previous works (Chater et al., 2021), we
have proposed a method aiming to “humanize”
some mice µ-CT acquisitions. In this work,
some 2D image patches were collected onto the
micro-scans of mice brains and noise was added

in the background to make the mice arteries
resemble as much as possible to human arteries
as acquired via MRA-TOF acquisitions. These
“humanized” acquisitions were utlimately used
to train a 2D CNN for vascular segmentation.

More recently, we have devoted a subsequent
work (Autrusseau et al., 2022) to a new
approach, where we no longer intended to exploit
an inter-species framework; our aim in this
study was to build a fully synthetic model of
3D bifurcations and Intra-Cranial Aneurysms.
Here, when creating the geometrical shape of
the bifurcation, we followed a 5 steps process:
i) Four different 3D coordinates points were
selected onto a 60 × 60 × 60 3D patch (the
bifurcation center, and its three extremities),
ii) linear segments were drawn to link those 4
points (forming a bifurcation), iii) a convolution
with a 3D spherical kernel was performed on
each and every branch, the sphere radius could
evidently vary in order to model the various
branches’ diameters, iv) a geometrical distortion
(elastic deformation (Ronneberger et al., 2015;
Simard et al., 2003)) was applied onto the
so-obtained thickened bifurcation, and finally,
v) a background noise was constituted and
added around the so-obtained 3D bifurcation
model. Moreover, in this work, we also proposed
an Intra-Cranial Aneurysm model that could
be superimposed onto the bifurcation. The
ICA could also be distorted (via the same
elastic deformation method), and annexed onto
the bifurcation model. A particular attention
was devoted to the generation of a plausible
background noise via the use of Gaussian
Mixture Models (GMM).

Although this initial model (Autrusseau
et al., 2022) proved to be able to mimic 3D
bifurcations, it showed some limitations, and
notably when it comes to recognize a given
bifurcations of interest within the Circle of
Willis (CoW). Moreover, the aneurysm location
tended to present some slight shifts away from
the bifurcation wall. Such small displacements
might be sufficient to slightly lessen the ICA
detection performances.
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In the current work, our model accuracy is
considerably increased, and we intend to propose
a set of much more realistic bifurcations and
aneurysms. Since our intended application
involves identifying an aneurysm within a
specific bifurcation or artery from an MRA-TOF
scan, it is crucial to accurately model various
essential arterial features: the shape, orientation,
diameters, and tortuosity. As for the aneurysms,
the model should allow to adjoin aneurysms of
various shapes and sizes onto different locations
of the bifurcation. Finally, the performances
in terms of image segmentation might depend
on the accuracy of the modeled surrounding
background noise, hence, it is important for the
model to faithfully duplicate the background
noise.
This paper is organized as follows: In

section 2, we thoroughly describe the synthetic
vasculature model. Its three main features are
presented, namely i) the arteries geometry, ii)
the surrounding MRA-TOF noise and iii) the
modeled aneurysm. Next, in section 3 we provide
an in-depth description of the generated dataset,
we describe the CNN architecture, evaluate
both the ICA segmentation and detection
performances. We try to assess the performance
gain brought by using the synthetic images
alongside the manually labeled ones. To do so,
we run two separate experiments involving either
the manually segmented images only or adjoining
the modeled patches. Finally, in section 4, we
discuss the benefit of using the synthetic model
for intracranial aneurysm detection and conclude
this work.

2. Material and Method

Unlike the previous model, proposed in
(Autrusseau et al., 2022), here we intend to
come up with a full synthetic model of 3D
cropped MRA-TOF portions, including not only
the one bifurcation of interest, but also its
whole neighborhood. In the framework of
a bifurcation recognition task, a given target
bifurcation could be recognized not only by its

shape or orientation, but also by the neighboring
information (adjacent arteries for instance).
Such a model would be rather difficult to derive
from previous existing models (Hamarneh and
Jassi, 2010; Chater et al., 2021; Autrusseau et al.,
2022). Hence, we propose a completely new
method here. Within a 3D cropped portion of
a MRI volume, we collect the 3D coordinates
of the arteries’ skeleton (centerline of the 3D
tubes), and we further fit those centerlines using
3D spline functions.

It is quite vastly admitted that there can
be a significant structural variability in the
vasculature of individuals (Bogunovic et al.,
2013; Robben et al., 2016). Indeed, one can find
relatively strong variations among the shape of
the CoW (some arteries and bifurcations may
be missing for some patients, or even some extra
bifurcations could be present for others), and the
anatomical properties of the cerebral arteries can
also strongly differ from one person to another.
The bifurcations’ angles, the arteries’ tortuosity,
their diameters or even their geodesic length can
significantly differ.

A schematic representation of the Circle of
Willis is given in Fig. 1. The letters within the
yellow discs (from A to O) depict the particular
bifurcations we are interested in for this study.
The percentages within the gray discs represent
the risk percentage of aneurysm formation.
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Figure 1: Schematic representation of the Circle of Willis
on a human vasculature.

Such an important variability can make
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the task quite difficult for Neural Networks
to properly recognize and/or segment the
bifurcations/ arteries of interest. That is why
our aim here is to produce a model being able
to generate a vast amount of relatively similar
arteries, and be in a position to adjust at will, the
geometric features and the grey level amplitude
of the vasculature, or even the statistical
properties of the surrounding noise. Similar to
our previous project (Chater et al., 2021), not
only does our model consider the geometry of the
blood vessels, but, it also provides an accurate
background noise replication. However, both
aspects are much more advanced in this new
approach. The full process of the vasculature
model is represented in Fig. 2. The blue
rectangles represent the different steps needed to
produce one bifurcation model, the green ellipses
show the various parameters we can modulate to
distort the bifurcation or its background.
Let us first focus on the shaping of the

geometrics of the bifurcation. The goal being to
come up with similar shapes that can be slightly
modified, but with the strong requirement to
still best represent actual human arteries, the
mimicking of true MRA-TOF components is
crucial.

2.1. Modeling the arteries’ geometry

As a very first step, we use our previous
works (Nouri et al., 2018, 2020) to extract
a 3D graph from the segmented MRA-TOF
volume. Such a graph is simply composed of
3D curves (branches) and nodes. A node is
a representation of all extremities of a branch,
may they be connected to other branches (a
bifurcation) or not (an end point of a given
branch). From a binary segmented vasculature,
a 3D graph is thus collected, this latter allows to
locate a given bifurcation among the ones worthy
of interest (along the CoW) and to extract a
whole 3D crop around the 3D coordinates of the
bifurcation’s node. The bifurcations of interest
are automatically located thanks to the works
from (Nader et al., 2023). Within this cropped
portion of the segmented MRA-TOF, the set of

all coordinates along the branches are collected
and curve fitting is used to represent the points
using 3D splines functions (Dierckx, 1982, 1993).

Spline functions can be represented by three
different characteristics: i) the knot-points,
defining the intervals of the chunks on which
the polynomials are defined, ii) the B-Splines’
(or polynomials’) coefficients, and iii) the order
of the spline, (i.e. the degree to which the fit
was performed). Once these parameters have
been collected for each 3D branch composing the
bifurcation, it is thus relatively easy to slightly
alter them in order to distort the position of
the centerline coordinates. Specifically, in this
model, we only alter the polynomials coefficients.

Once the vessels centerlines have been tweaked
via the spline function alteration, we shall collect
the diameters of all arteries being accounted
for within the 3D crop. This can easily be
handled by using our previous vascular tree
characterization tool (Nouri et al., 2020). Each
centerline (morphological skeleton) being first
tweaked by the spline alteration, can thus go
through a convolution with a spherical kernel
which size is adapted to the corresponding
observed diameter. We then thicken each
artery according to its anatomical property.
Not only does such an approach allow to
approximately control the artery’s shape, but
also to regulate its thickness and maintain
a good balance between the various branches
of a given bifurcation. Typically, as can be
observed on Fig. 1, the (mirror) bifurcations
labeled as ’K’ or ’L’ are composed of two
rather thick arteries and one much thinner
pointing upward, whereas bifurcations ’C’ or
’D’ are composed of three branches exhibiting
approximately the same diameters. As we
will see within the experimental results section,
our model is able model bifurcations exhibiting
unbalanced thicknesses.

We show on Fig. 3 some examples of 3D Spline
models. The plots show, for a given bifurcation,
three different 3D representation. The solid
gray lines represent the actual bifurcation
coordinates, as collected within the MRA-TOF
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3D Spline interpolation
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Segmentation, skeletonization 
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Figure 2: Schematic representation of the whole bifurcation model

(a) Spline model with weak
weights

(b) Spline model with larger
modifications

Figure 3: Examples of modified bifurcation centerlines.
The solid lines represent the actual coordinates of the
bifurcations’ branches, the dashed lines stand for the best
spline fit functions, and the dotted lines show the effect
of modified spline coefficients.

acquisition, the black dashed lines stand for
the spline functions that best fit the arteries,
and finally, the black dotted curves show the
altered spline function (the new centerline of the
bifurcation to be).

It is important to note here that, although
the modification of the Spline functions does not

relocate too significantly the end points of the
arteries, it may happen that the extremity of
the branch located onto the bifurcation may be
slightly shifted away from the other two arteries;
in other words, at the bifurcation node, any of
the three arteries might not connect any longer
with the others, we deal with this issue by simply
locating the new extremity coordinates and by
shifting the whole set of curve coordinates back
toward the center of the 3D crop.

Besides the convolution with a spherical
kernel, that is needed to set the artery’s
thickness, our method allows to set a target
grey level amplitude. We simply multiply
the binary envelope of the modeled vasculature
by the desired target grey level. Moreover,
for the thickened artery to have a realistic
shape, it is important that the convolution
kernel is not perfectly spherical. Indeed, if
a sphere was being applied, the so-obtained
modeled artery would take the form of a perfect
tube, which hardly happens on real-life arteries.
Hence, we apply a geometric distortion (elastic
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deformation) to the 3D kernel before applying
the convolution. Furthermore, it is also possible
to make the modeled artery inhomogeneous
by applying various kernels (or more precisely
various elastic deformations to the same kernel)
along the vessel’s centerline.

2.2. Modeling the surrounding brain matters

Now that we have been through the details
of the shape modeling, let us next present the
second part of the synthetic model: the brain,
composed of fluids and white/gray matters,
all these, being affected by a reconstruction
background noise.

2.2.1. Collecting the target statistics

As can be observed on Fig. 2, for the
background generation (brain and noise), the
cropped MRA-TOF patch first goes through
a separation of the various brain components.
In fact, based on the same rationale that
was previously used (section 2.1) to model the
arteries, we can easily imagine to include the
various brain matters within the model. Indeed,
the cerebral arteries are surrounded by various
matters, each one having a particular radio-
opacity, i.e. a different gray level. The
white/gray matter, when acquired through MRA
appears with relatively high gray levels, the
Cerebro-Spinal Fluids (CSF), the ventricle or
the Corpus Callosum are commonly displayed
with much lower luminances. However, unlike
our previous study (Autrusseau et al., 2022),
the areas of darker matters of the brain are
no more randomly determined; we believe
that those local low contrast shapes may
be of paramount importance while modeling
the 3D crops of our arteries and bifurcation,
and hence we intend to include a faithful
representation of the fluids areas within the
synthetic model. The separation between
the darker and brighter matters (vasculature
excluded) can either be performed via a
simple multi-threshold segmentation (Liao et al.,
2001) or by using Gaussian Mixture Models
(actually, our synthetic model allows both

approaches). Once located, each matter can then
be geometrically distorted, before replicating it’s
overlaying noise.

2.2.2. Noise generation

When going through Gaussian blur, the input
image I(x, y) is filtered as shown below in eq. 1.

O(x, y) =

∞∑
i=−∞

∞∑
j=−∞

1

2πσ2
G

e
− i2+j2

2σ2
G I(x+ i, y+j)

(1)
The Bienaymé’s identity states that

V ar (
∑n

i=1 Xi) =∑n
i=1 V ar(Xi) +

∑n
i,j=1,i̸=j Cov(Xi, Xj)

(2)

Thus, the variance of a linear combination is:

V ar (
∑n

i=1 ciXi) =∑n
i=1 c

2
iV ar(Xi) + 2×

∑n
i,j=1,i̸=j cicjCov(Xi, Xj)

(3)
However, if Xi, ..., Xn are pairwise

independent integrable random variables
(Cov(Xi, Xj) = 0, ∀(i ̸= j)), which we assume
in the following, then:

V ar

(∑
i

ciXi

)
=
∑
i

c2iV ar(Xi) (4)

where ci are constants.
We consider that the variance of the input

image is V ar [I(x+ i, y + i)] = σ2
0 , our goal here

is to estimate the variance of the output (filtered)
image V ar [O(x, y)] = σ2

f . Thus,

σ2
f = σ2

0

∞∑
j=−∞

∞∑
i=−∞

(
1

2πσ2
G

e
− i2+j2

2σ2
G

)2

(5)

For large σG, the squared Gaussian is smooth
and the sum can be approximated as:

σ2
f ≈ σ2

0

∫∞
−∞

∫∞
−∞

(
1

2πσ2
G
e
− i2+j2

2σ2
G

)2

di.dj

=
σ2
0

4πσ2
G

(6)
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and thus,

σf ≈ σ0

2σG
√
π

(7)

In summary, when an image composed of
Gaussian noise of standard deviation σ0 is being
filtered by a Gaussian filter of standard deviation
σG, the so-obtained filtered image has a standard
deviation of σf according to the eq. 7.
However, for our particular purpose, we intend

to determine which Gaussian filter (of standard
deviation σG) shall be used on the input image so
as to obtain a filtered image with a given target
statistics (σf ), and hence σG ≈ σ0/(2σf

√
π).

The process starts thus with the generation of
a high frequency Gaussian Noise of average set
to our target 3D crop. This noise will then be
smoothed out using a Gaussian filter of standard
deviation σG. The resulting image (of standard
deviation σf ) will thus present strong similarities
with the target portion of the MRA-TOF being
modeled.
The performances evaluation could be

conducted in several ways. The generated
noise could be considered as a texture,
and the Haralick features (Haralick,
1979) might be exploited to measure the
correspondence between the modeled patch
and its corresponding ground truth. Similarly,
concerning the noise’s spatial frequencies,
the Variance of Laplacian, or the Tenengrad
coefficient could help assessing a blur factor (Ali
and Mahmood, 2018). Interested reader may
refer to (Autrusseau et al., 2022) for details.
In this study, we do not make any attempt to
evaluate the modeled texture, we expect that
an accurate modeling will inevitably lead to
high aneurysm detection performances. Hence,
the model accuracy will inevitably be strongly
linked to the CNNs accuracy (in terms of both
ICA segmentation and detection).

2.3. Modeling and adjoining the aneurysm

Once the bifurcation has properly been
modeled, a synthetic aneurysm can finally be
incorporated.

A simple 3D sphere is first created and then
distorted using elastic deformations. Further,
the ICA center is aligned onto the bisector
between the two daughter arteries. The distance
from the aneurysm center to the bifurcation node
has been computed as shown in eq. 8.

D = r × γ +

√(
R

tan(Θ/2)

)2

+R2 (8)

where r is the aneurysm radius, R is the average
radius of the branches forming the bifurcation,
and Θ stands for the angle formed by the
two daughter arteries. Thanks to a growth
parameter (γ), we can automatically adjust the
shift from the aneurysm center and the vessel
wall where the daughter arteries split. Hence,
we can model various states of growth for a given
aneurysm.

2.4. Model examples

Concerning the bifurcation model, Fig. 4
shows, for four different extracted bifurcation
patches, a comparison between the Ground
Truth (GT) crop and the modeled patch. Images
on the left panel shows a 2D slice of the gray
level voxels for both the Ground Truth and the
Model, whereas the rightmost images represent
the 3D layouts of the arteries. We can notice
that both the geometrical configuration of the
bifurcations and the gray level distribution seem
to be rather nicely modeled and mimic very
accurately the TOF patch. Indeed, a very
wide variety of bifurcations (no matter how
complex the shapes are) can easily be modeled.
We can notice that some subtle diameter or
tortuosity modifications are faithfully brought on
the modeled bifurcations.

Besides the bifurcations themselves, it is
crucial for the aneurysm to be accurately
modeled and most importantly well positioned
onto the bifurcation artery wall. We present
three different examples on Fig. 5. Again we can
observe how the slice gray levels are faithfully
represented in the model. On the rightmost
images, the aneurysms are represented in blue,
whereas the mother artery is depicted in green.
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3D Geometry
ModelGT

Noise
GT vs. Model

Figure 4: Comparison between the modeled bifurcations
and the Ground Truth crop from a MRA-TOF. We show
the comparison on terms of both gray level voxels patches
(leftmost panels) and 3D bifurcation layout (rightmost
panels).

3D Geometry
ModelGT

Noise

Figure 5: Comparison between the modeled bifurcations
(bearing an aneurysm). In the upper sub-figures (3D
representations), the aneurysm is represented in blue, the
mother artery in green.

So far, the synthetic aneurysm model can
only reproduce the unruptured and untreated
aneurysm. Indeed, ruptured or treated

aneurysm presents significant differences,
treated aneurysms are radiolucent (darker
voxels), and can easily be mistaken by
surrounding fluids, whereas ruptured aneurysms
present very different shapes (higher order
spherical aberrations, larger elongation, etc.)
within the MRA-TOF images. Of course,
we could imagine modulating the ICA gray
level amplitude and shape so as to model
ruptured/treated aneurysms. Such a study
might be the topic of a future research project.

3. Experimental Results

The sole purpose of this synthetic model
is actually to be able to effortlessly build up
significant images datasets in order to efficiently
train Convolutional Neural Networks for pattern
recognition tasks.

This section is devoted to the experimental
results related to the effectiveness of our
synthetic model for the development of a
fully automated Deep Learning (DL) network
aiming to detect intracranial aneurysms
(ICAs). Specifically, synthetic aneurysms
are incorporated into Magnetic Resonance
Angiography (MRA) Time-Of-Flight (TOF)
scans that are originally aneurysms-free.
Embedding such synthetic aneurysms, along
with their corresponding labels, enables a much
faster generation of training data compared to
the time-consuming process of annotating real
aneurysms.

Fig. 6 shows an overview of the entire
aneurysm detection process. The U-Net is
trained on both the synthetically generated
images and some actual MRA-TOF acquired
from patients with aneurysm. The trained U-
Net model is then applied onto some extracted
bifurcations during the inference phase.

We will first introduce the Deep Learning
based method being used, along with the
corresponding dataset, the training strategy
and the evaluation approach. Finally, we
will evaluate the efficiency of our approach,
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Figure 6: Overview of the global procedure, encompassing the training step using the synthetic images and the
inference step.

and estimate the benefit of adjoining synthetic
images for the CNN training step.

3.1. DL based detection of intracranial
aneurysms

In this work, we use a 3D Convolutional
Neural Network (CNN) segmentation model as
the deep-learning algorithm for the automated
detection of intracranial aneurysms on MRA-
TOFs.

3.1.1. Dataset

For this study, a total of 190 MRA-TOFs
scans of unruptured intracranial aneurysms
were collected from more than thirty different

French institutions (some DICOM headers did
not contain the institution name, marked as
unknown). These images were randomly divided
into two datasets: a training set comprising
108 images, used for training and validation,
and a separate test set containing 82 images.
Furthermore, 14 additional TOF images not
containing any aneurysm were included in the
test set to evaluate the performances of the
developed model. These aneurysm-free images
were selected to assess the model’s ability to
accurately distinguish between aneurysm and
no-aneurysm cases. Out of these 190 subjects, 58
had more than one aneurysm. Therefore, overall
254 aneurysms are included in this study. Tables
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1 and 2 show their respective sizes and locations.
From now on, when evaluating the detection

performances per bifurcation labels, we will
group various labels altogether. Indeed, we have
grouped the three bifurcations along the basilar
artery together (M, N and O), as overall, few
aneurysms pop out along the anterior portion
of the Circle of Willis. Moreover, due to the
anatomical configuration of the CoW on humans,
both the PCoA and MCA arteries commonly
reach the Internal Carotid Artery in the same
vicinity, and hence, the bifurcations E (resp. F)
are very close to the bifurcations I (resp. J),
and thus, the aneurysms emerge in a very close
neighborhood (possibly within the same cropped
area encompassing two bifurcations of interest).

Table 1: Aneurysms radii in the training and test data
sets.

Aneurysm radius Train Test
≤ 2 mm 19 47
2-3 mm 64 69
> 3 mm 44 11

Table 2: Number of aneurysms based on their location
within the CoW.

Bifurcation label Training set Testing set
A-B 11 17
C-D 1 6

E-F-I-J 12 18
G-H 54 44
K-L 48 37

M-N-O 1 5
Total 127 127

A trained operator performed the annotations
to build up the dataset. Subsequently, a
neuroradiologist with 10 years of experience,
carefully reviewed the cases to ensure the
exclusion of any potential false positives or false
negatives that might have been initially reported

in the original annotation.

3.1.2. Real patches selection and Neural network

In our study, we have used a patch-based
approach for the aneurysm detection process.
Instead of using entire volumes, we feed the
neural network with 3D patches of size 64×64×
64.

To select the 3D training patches, we employed
a random extraction strategy. Specifically,
for each aneurysm, we randomly extract 10
patches centered around the vicinity of the
aneurysm (random shifts along the x, y and
z directions). However, for each extracted
patch, we ensure that the entirety of the ICA is
included within the cropped area. This approach
ensures that the training dataset contains diverse
samples representing different locations of the
aneurysm within the extracted patches. For
negative samples, we simply extract some 3D
patches encompassing some cerebral arteries, but
without any aneurysm. For each MRA-TOF
volume, we have extracted 20 such patches. This
selection strategy allows for a comprehensive
representation of both positive (presence of an
aneurysm) and negative (aneurysm-free artery)
samples, and hence, ensures the generation
of a training dataset capturing the necessary
characteristics for an effective model learning.

We have opted for a segmentation network
for the dual tasks of i) ICA mask segmentation
and ii) the subsequent ICA detection. The
segmentation process uses a 3D U-Net
architecture (Çiçek et al., 2016). The U-
Net architecture follows an encoder/decoder
structure. Each level of the encoder consists of
convolution layers, and max pooling layers. We
used upsampling layers in the decoding branch
instead of transpose convolutions. The ReLU
activation function was applied to all layers,
except for the final layer, which was followed
by a sigmoid function. To train the model, we
applied the Adam optimization algorithm with
a learning rate of 0.0001 and a batch size of
16. The Combo loss function (Taghanaki et al.,
2019) which combines both the Dice coefficient
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and the binary Cross-entropy loss was used in
conjunction with this optimization algorithm.

3.1.3. Data Augmentation

Overall, 134 MRA-TOFs free of any aneurysm
were collected from the previous work described
in (Nader et al., 2023). These scans were utilized
for constructing 3D synthetic cropped portions
mimicking the characteristics of an original
MRA-TOF, as explained in the previous section.
For this purpose, a total of 998 synthetic patches
were modeled. Each patch was specifically
centered on the bifurcations of interest within
the CoW. Once the bifurcation has been
accurately modeled, a synthetic aneurysm is
incorporated thanks to the 3D model. This
is achieved by varying the radius parameter
and by applying degrees of elastic deformations
to simulate the diverse characteristics observed
in actual aneurysms. Tables 3 and 4 show
the distribution of the modeled aneurysms with
respect to their locations and sizes.

Table 3: Number of modeled patches for each bifurcation
label.

Bifurcation label # of ICAs
A-B 165
C-D 158
E-F 156
G-H 175
I-J 102
K-L 111

M-N-O 131

Table 4: Number of modeled aneurysms per radius range.

Radius Count
≤ 2 mm 292
2-3 mm 596
> 3mm 110

3.1.4. Evaluation approach

To validate the possible improvements brought
by the use of the synthetic model, we have
conducted two separate experiments. In the
first experiment (Exp.#1 ), we have trained a
baseline model using actual MRA-TOFs patches.
To assess the performance of our model, we
employed a four fold cross-validation approach.
The dataset was split into four folds with each
fold containing 27 samples. During each cross-
validation split, three folds (81 samples) were
used to train the model, while the remaining
fold (27 samples) was reserved for validation
purposes and for hyperparameter optimization.
This process was repeated four times, to ensure
that all 108 TOFs were ultimately used for
evaluation. In the second experiment (Exp.#2 ),
we trained another segmentation network but
augmenting the training dataset with 998
synthetic patches. Similarly, we evaluated the
performance of the model using the same cross-
validation split. Following the training phase,
the model evaluation employs the holdout test
set using the four-fold models. Subsequently, the
resulting predictions from these four models were
averaged to derive the final predictions.

In the inference phase, for both experiments,
we adopt a prior anatomical selection of patches.
We only retain the patches being centered onto
some bifurcations of the cerebral vasculature. By
focusing on patches centered around the cerebral
artery bifurcations, the inference process aims
to target the regions being most susceptible
to witness an aneurysm development. This
approach is based on the anatomical knowledge
of aneurysm occurrence, enhancing the accuracy
of the results. Hence, as previously explained, to
select the corresponding patches, an automated
vessel segmentation step was performed using a
pre-trained U-Net segmentation algorithm. The
details of the specific pre-trained network can
be found in (Nader et al., 2023). Then, a 3D
undirected graph (Nouri et al., 2018, 2020) is
generated from the extracted skeleton to extract
the corresponding bifurcations.

For both experiments, we have analyzed
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the patient-level sensitivity, the lesion-level
sensitivity and the false positive rate (number
of false positive per TOF). The sensitivity
quantifies the proportion of true aneurysms
correctly identified by our method, thereby
measuring its ability to capture actual
aneurysms while the false positive count
per TOF provides insights about the method
possibly producing an excessive number
of false identifications, which could lead to an
unnecessary burden for the neuroradiologists. To
compute the detection performance evaluation
metrics, we consider each segmented connected
component issued from the binary output of the
U-Net as a potentially detected object. Each
connected component whose center of mass falls
no farther away from the maximum radius of a
true aneurysm mask, is thus considered as a true
positive detection. Otherwise, it is regarded as
a false positive detection.
In addition, we applied the evaluation protocol

for assessing the segmentation performance of
true (ICAs) as described in the ADAM challenge
(Timmins et al., 2021). This protocol focuses on
evaluating the segmentation metrics only for the
true detected ICAs, excluding any false positives,
to simulate how the tool could be practically
used by neuroradiologists.

3.2. Performance analysis

Let us now examine the performances of our
proposed method on the test set, in terms
of global detection rate as well as on a per-
bifurcation scenario. We will provide an
evaluation of both the detection ability and the
segmentation accuracy.

3.2.1. Overall detection performance

As previously mentioned, the study compares
the performances of two CNN training
approaches. In Exp.#1, the CNN is exclusively
trained onto real data. In contrast, Exp.#2
involves training the same CNN using a
combination of real data patches and synthetic
data patches. The overall detection performance
is shown in Fig. 7.
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Figure 7: Detection performance of the CNN using real
data vs real and synthetic data

During Exp.#1, the CNN successfully
identified a total of 96 aneurysms within
a dataset containing 127 instances, which
corresponds to a lesion-level sensitivity of
75.60%. Notably, this sensitivity further
improved to 88.97% for Exp.#2 with 113
detected aneurysms. In Exp.#1, the patient-
level sensitivity reached 79.65%, indicating the
ability to correctly identify aneurysms at the
patient level. Meanwhile, Exp.#2 attained a
higher patient-level sensitivity of 91.36%.

3.2.2. False detections

These results show a high diagnosis
performance, with lesion-wise sensitivity notably
improving by incorporating synthetic patches,
reaching 89% on the test set. The synthetic data
proved useful as a complementary tool to reduce
the missed aneurysms rate. However, obtaining
a high sensitivity may unfortunately lead to
a slightly higher false-positive detection rate.
Overall, the network exhibits an average false
positive rate of 0.22 in Exp.#1, whereas when
incorporating synthetic patches, a marginal
increase in this false positive rate is observed
(reaching 0.40). The slight increase in the
false positive rate upon integrating synthetic
patches, along with the significant sensitivity
gain, emphasizes the importance of adopting
Exp.#2. This illustrates the trade-off between
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sensitivity and false positive rate and highlights
the added value of the data augmentation.

Based on a thorough visual inspection of
the false-positive detections, we have identified
various reasons for these FP, including 1) The
complex anatomy of the internal carotid artery,
with sometimes rather strong variations in vessel
diameter, a high tortuosity, and a very significant
bending, right below the ophthalmic artery that
can be confused with a large aneurysm ; 2) Brain
arteries are susceptible to flow-related changes
due to factors such as atherosclerosis (calcified
plaque) or stenosis. These conditions can
alter blood flow patterns and vessel appearance,
potentially leading aneurysm-like vessels shapes,
and hence, to false-positives. 3) At the
emergence of a daughter artery on a bifurcation,
at the very basis of the artery, an outpouching
can be formed. In other words, the artery stars
with a conic shape, exhibiting a broad base
located at the bifurcation. This is clinically
referred to as an infundibulum. Sometimes, such
uncommon shapes can be mistakenly detected
as being an aneurysm. 4) Our vascular model
has been designed in such a way to model a
thrombosis effect within the aneurysms. Indeed,
we have noticed that for the larger circular
aneurysms, a thrombosis often appears nearby
the ICA center; the blood flow may circulate
along the aneurysm walls, forming some sort of
vortex, and hence, leading to a slower blood
displacement toward the center (inducing a
more radio-opaque area). Unfortunately, such a
phenomenon can also occur along the Internal
Carotid Artery, thus leading to false positive
detections.

3.2.3. Impact of aneurysms size and locations

The performance variability when considering
aneurysm size, is depicted in Table 5. Exp.#1
yielded a detection rate of 0.5106 for very small
aneurysms (less than 2 mm), while Exp.#2
achieved an improved rate of 0.7659. The
CNN was able to detect a greater proportion
of aneurysms falling within the size range of
2 mm to 3 mm. This trend was observed

in both experiments, with a notable increase
observed for Exp.#2 (0.8840 versus 0.9565).
Both methodologies, however, demonstrated a
detection rate of 1 for aneurysms with a radius
exceeding 3 mm.

Table 5: Lesion-level sensitivity according to the
aneurysm size for the test set

Radius Exp.#1 Exp.#2
≤ 2 mm 51.06 % 76.59 %
2-3 mm 88.40 % 95.65 %
> 3 mm 100 % 100 %

Regarding the impact of aneurysm location,
Fig. 8 depicts the number of missed aneurysms
per bifurcation of interest across the test
dataset. Specifically, in Exp.#1, the CNN
missed a higher number of aneurysms located
along the Middle Cerebral Artery (MCA) (G-
H bifurcations), as well as along the Internal
Carotid Artery, with a significant concentration
in the bifurcation segment separating this
artery into the smaller Ophthalmic Artery
(OA) (labels K & L). Additionally, missed
aneurysms are observed within the branches
of the Anterior Cerebral Artery (ACA) and
the Posterior Communicating Artery (PCOM),
which corresponds to bifurcations (E, F, I & J).
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Figure 8: Missed detections with respect to the
aneurysms positions in the test dataset

In contrast, for Exp.#2, there is a substantial
decrease in the number of missed aneurysms
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within the three locations cited below. The
impact of the aneurysm location on the detection
rates for both experiments is presented in
Table 6. One can notice on this Table
that for each bifurcation label, the amount of
collected aneurysms matches remarkably well
the percentages of occurrences as previously
described on Fig. 1. Hence anatomically, we
are able to collect fewer aneurysms onto certain
bifurcations. Moreover, it is important to
highlight that fewer synthetic aneurysms can be
modeled onto the bifurcations labeled C, D, N
and O (c.f., Table 3) as, quite often, during
the angiography exam, these bifurcations (at
the farther ends of the MRA 3D stack) may be
cropped out of the acquisition area.

Table 6: The detection rates with respect to aneurysms
location

Label Count Detection Rate (%)
Exp.#1 Exp.#2

A-B 17 82.35 88.23

C-D 6 100.00 100.00

E-F-I-J 18 50.00 77.77

G-H 44 76.19 90.90

K-L 37 83.78 89.18

M-N-O 5 80.00 100.00

3.2.4. Segmentation performance of true ICA

Fig. 9 displays the distribution of Dice
score for the detected aneurysms within both
experiments #1 and #2. The average Dice score
for Exp.#1 is 0.7585 (±0.13) which indicates a
fairly good similarity with the actual aneurysms
masks. Exp.#2, achieves a comparable Dice
score of 0.7613 (±0.12). It is important to note
that a direct comparison between the two Dice
coefficients is to be considered carefully, as the
number of detected aneurysms differs between
the two experiments.
However, the visual analysis of the bar plots

representing the segmentation performance
for Exp.#1 and Exp.#2 reveals similarities
in their overall appearance. A closer
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Figure 9: Dice similarity coefficient of true ICAs

examination identifies specific outliers in
Exp.#2, characterized by notably lower Dice
scores. These outliers can be attributed to the
detection of small aneurysms, a distinction not
present in Exp.#1.

4. Discussion and Conclusion

In this section, we analyze the contribution
brought by the synthetic vasculature model,
being able to faithfully replicate (while cleverly
altering) portions of MRA-TOF images. Indeed,
the synthetic model is composed of various
processes, including a meticulous modeling of
the cerebral arteries and bifurcations geometry,
alongside the introduction of surrounding noise
and finally, embedding aneurysms of various
sizes and shapes. Our goal is to provide
a substantial dataset that may improve the
performances of several deep learning tasks
including the segmentation or detection of the
cerebral aneurysms. A salient highlight of our
work is the successful generation of synthetic
aneurysms with varying sizes, shapes, and
locations. These artificial aneurysmal sacs
have been integrated into modeled MRA scans
originally lacking any aneurysm, thus resulting
in an augmented dataset that aligns more closely
with real-world scenarios. The important focal
point of this approach is the strategic positioning
of cerebral aneurysms within the Circle of Willis,
enhancing the fidelity of the simulated model.

15



Table 7: Studies applying deep learning models on MRA for the automatic detection/segmentation of cerebral
aneurysms

Study #Subjects / #aneurysms
Lesion-wise

FP/case
sensitivity (%)

(Nakao et al., 2018) 100 subj. / 104 ICAs (2D MIP patches) 94.2 2.9

(Ueda et al., 2019)
521 subj. / 649 ICAs (Internal test set) 91 −−−
67 subj. / 80 ICAs ( External test set) 93 5

(Stember et al., 2019) 86 subj. (2D MIP patches) 98.8 −−−
(Sichtermann et al., 2019) 85 subj. / 115 ICAs 90 6.1

(Joo et al., 2020)
170 subj. / 147 ICAs (Internal test set) 87.1 0.005
106 subj. / 63 ICAs (External test set) 85.7 0.004

(Chen et al., 2020) 35 subj. / 35 ICAs 82.9 0.86

(Timmins et al., 2021) 141 subj. 67 0.13

(Di Noto et al., 2023) 284 subj. / 198 ICAs 83 0.80

(Ham et al., 2023) 15 subj. 88.2 0.305

OURS- Exp.#1 96 subj. / 127 ICAs 75.6 0.22

OURS- Exp.#2 96 subj. / 127 ICAs 89 0.40

OURS- Exp.#3 96 subj. / 127 ICAs 82 2.3

As the main finding of this study, the CNN
trained using a combination of both genuine and
synthetic patches led to a significantly improved
sensitivity in detecting intracranial aneurysms
compared to a CNN trained solely on MRA-
TOF data. While the latter missed 24.4% of the
lesions on the test data, including the synthetic
patches during the training step significantly
improved the ICA detection performances of the
CNN. Indeed, the CNN missed a smaller portion
of aneurysms with only 11% on the test set. Only
14 aneurysms were missed in Exp.#2 : eleven
were tiny aneurysms, two exhibited uncommon
shapes (high order spherical aberrations), and
finally, one was presenting a shape strongly
similar to an infundibulum (no clearly delineated
aneurysm neck).

This research has successfully achieved a high
level of detection sensitivity, showcasing
its potential as supplementary tool for
neuroradiologists to address the issue of
overlooked aneurysms. Nevertheless, it is
important to note that the integration of
synthetic patches, while effective in boosting
sensitivity, can potentially contribute to a

slightly increased false-positive rate. This issue
might arise if the synthetic patches actually
introduce irregular aneurysms shapes that do
not very faithfully reflect the genuine aneurysm
sacs as acquired on MRA-TOFs. However, the
training methodology, employed alongside with
a judicious selection of the synthetic model
parameters has yielded an improved detection
performance while maintaining a low rate
of false-positive detections. Specifically, the
false-positive detection rate stood at 0.40 within
Exp.#2, in contrast to 0.22 in Exp.#1. The
ability to maintain a minimal count of false-
positive detection rate can also be explained
by 2 factors: To begin with, the use of a
prior selection of patches (3D undirected graph
generated from the skeleton, as explained in
section 3.1.4) during the inference phase by
extracting patches around vascular bifurcations.
Consequently, this approach minimizes the
susceptibility of the algorithm to confuse non-
vessel structures and reduces the likelihood
of incorrect predictions. Furthermore, the
final prediction on the test set is derived by
aggregating the probabilities obtained from
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4 cross validation models. This strategy
enhances the overall robustness of the model’s
predictions. Moreover, the mean Dice score
index of true ICAs is 0.76 which is relatively
high. This suggests that this automatic
segmentation method performs at a similar
level to manual segmentation once the true ICA
has been correctly identified. The automatic
segmentation could save time and effort in
the analysis of medical imaging data and
potentially improve the efficiency in diagnosing
and analyzing intracranial aneurysms.

Regarding the aneurysm size, our analysis
demonstrated that there were no significant
discrepancy in sensitivity for large aneurysms.
Indeed, the sensitivity reached 100% for
aneurysms having a radius larger than 3 mm for
both experiments. The CNN achieved an overall
sensitivity of 51.06% for detecting aneurysms
being smaller than 2 mm in Exp.#1, which
complies with common findings in state-of-the-
art aneurysm detection studies. For such small
aneurysms, the sensitivity may increase with
the number of training cases involved. Notably,
in Exp.#2, the sensitivity value increased to
76.59% by training the model with small sizes
synthetic aneurysms. Nevertheless, enhancing
the diagnostic performance of the model in
detecting small aneurysms may necessitate
further exploration and training with a larger set
of synthetic cases representing small aneurysms.

With regard to the sensitivity at different
locations, the Exp.#2 achieved better
performances than Exp.#1 for aneurysms
situated onto the bifurcations G-H, E-F-I-J and
K-L. It is important to note that this sensitivity
increase appears to be more strongly linked to
the size of aneurysms in these specific locations
rather than solely on the location itself. In
fact, the detection rates stratified according to
aneurysm location and size were compared using
Fishers’ exact test. No significant difference
was found between different locations (p-
value=0.69). However, the statistical analysis
revealed a significant difference in aneurysm
detection rates when stratified by different sizes

(p-value=0.005).

Indeed, it is important to interpret the
sensitivity values for the categories C-D and M-
N-O with careful consideration. Particularly so,
as the dataset comprises only few aneurysms
in those locations compared to other locations.
For future investigations, it could be valuable
to explore the CNN efficiency with a larger
population, i.e., incorporating more aneurysms
located in regions such M-N-O, and C-D.

In addition to the retrospective study, it
would be interesting to analyze the performances
of a CNN being exclusively trained onto the
synthetic patches. To this aim, a separate
experiment was conducted. In this experiment
(Exp.#3 ), the CNN was trained using only 998
patches generated from the synthetic model.
The resulting outcome was then evaluated
on the same test dataset. The findings
demonstrated sensitivity results higher than
those from Exp.#1. Specifically, the sensitivity
was recorded at 82% for the test set (104
aneurysms detected). However, it is noteworthy
that this increase in sensitivity was accompanied
by a relatively elevated false positive rate,
measuring 2.3 per case. Therefore, at the current
stage, a deep learning segmentation network
trained only onto the synthetic data cannot be
clinically applied. Further improvements need
to be brought to the vascular model to be
exploitable as a standalone source of training
images.

Table 7 gives an idea of the overall
performances of our method, as compared to
various methods from the literature. Obviously,
a direct comparison between the different
methods is quite delicate, as the composition
and size of the training/test image datasets
can strongly differ. Moreover, a comparison
should jointly consider the gaps in terms of
sensitivity and false positive rate. The purpose
of this Table is thus only to validate the
performances of our proposed method, and
demonstrate it can compete with various state-
of-the-art approaches.

This study has been conducted on MRA-TOF
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acquisitions only, however, the model is, in its
very nature, quite flexible and its adaptation to
other modalities, such as CTA or DSA, should be
relatively straightforward. The operating mode
remains the same, only the background noise
modeling might need some slight adjustments.

Source code availability

The source code for the synthetic Vascular
Models (VaMos) has been made available on a
GitLab repository1.
This source code has been initially developed

with Python (version 3.9) on Mac OS X, and
has been tested with Python versions 3.7 to 3.11
on both Mac OS and Linux (Mint and Ubuntu
distributions).
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