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CHARACTERIZATION OF GENUINE RAMIFICATION USING

FORMAL ORBIFOLDS

INDRANIL BISWAS, MANISH KUMAR, AND A. J. PARAMESWARAN

Abstract. We give a characterization of genuinely ramified maps of formal orbifolds in
the Tannakian framework. In particular we show that a morphism is genuinely ramified
if and only if the pullback of every stable bundle remains stable in the orbifold category.
We also give some other characterizations of genuine ramification. This generalizes the
results of [BKP1] and [BP1]. In fact, it is a positive characteristic analogue of results in
[BKP2].

1. Introduction

Let f : Y −→ X be a finite generically smooth morphism of smooth projective con-
nected curves over an algebraically closed field k. Then f is called genuinely ramified if
there is no intermediate nontrivial étale cover of X . This notion of genuine ramification
admits several equivalent formulations. For instance f is genuinely ramified if and only
if the maximal semistable subsheaf of f∗OY is OX , or if and only if the induced map of
the étale fundamental groups is surjective, or if and only if f ∗E is stable for every stable
vector bundle E on X , etcetera (see [BP1]).

This notion of genuine ramification extends to the more general context of orbifolds.
A formal orbifold curve is a pair (X, P ), where X is a smooth projective curve and P is
a “branch data” on X (the definition is recalled in Section 2; see [KP] for more details).
Since we will only be dealing with curves, for us a formal orbifold will mean a formal
orbifold curve. A morphism of formal orbifolds (Y, Q) −→ (X, P ) is a finite generically
smooth morphism of curves f : Y −→ X such that Q(y) ⊃ P (f(y)) for all closed points
y ∈ Y . This morphism of formal orbifolds is étale if the equality Q(y) = P (f(y)) holds
for all y ∈ Y . A morphism of formal orbifolds is called genuinely ramified if there is no
intermediate nontrivial étale cover (see Definition 3.1).

A “geometric” formal orbifold (X, P ) is one for which there exists a Galois étale cover
of formal orbifolds g : (W, O) −→ (X, P ), where O denotes the trivial branch data.
In [KP] a vector bundle on such a pair (X, P ) was defined to be a G-equivariant vector
bundle on W , where G is the Galois group for the map g. The notions of degree, slope,
semistability etcetera were also defined in [KP]. When the characteristic of the base field
k is zero, a branch data on X is the same as assigning integers greater than 1 at finitely
many closed points of X . This in turn is equivalent to giving X an orbifold structure.
When the characteristic of the base field k is zero, the equivariant bundles are also called
orbifold bundles and they are equivalent to (see [Bi]) the parabolic bundles introduced
by Mehta and Seshadri ([MS], see also [MY]). In positive characteristic this result was
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2 I. BISWAS, M. KUMAR, AND A.J. PARAMESWARAN

proved in [KM] where the notion of parabolic bundles is different and it is a slight variant
of Nori’s definition (given in [No]).

The following results were proved in [BKP2]. However their formulation in [BKP2]
involved the terminology of orbifolds.

Proposition 1.1. Let f : Y −→ X be a morphism of irreducible smooth curves over an
algebraically closed field of characteristic zero. Let X be equipped with a branch data P .
Then f∗OY is a semistable “parabolic bundle” of degree zero belonging to Vect(X, Bf) and
so it is semistable in Vect(X, PBf). Then the maximal subbundle of f∗OY belonging to
Vect(X, P ) is a sheaf of subalgebras in f∗OY under parabolic tensor product. Moreover the
corresponding spectrum defines the maximal cover g : Z −→ X such that (Z, g∗P ) −→
(X, P ) is étale and f dominates g.

Theorem 1.2. Let f : Y −→ X be a morphism of irreducible smooth curves over an
algebraically closed field of characteristic zero, and let P be a branch data on X. Then
the following statements are equivalent:

(1) The induced map π(f) : π1(Y, f
∗P ) −→ π1(X, P ) is surjective.

(2) Every stable parabolic bundle in Vect(X, P ) pulls back to a stable parabolic vector
bundle in Vect(Y, f ∗P ).

(3) The maximal subbundle of f∗OY of degree zero belonging to Vect(X, P ) is OX .

We extend Proposition 1.1 and Theorem 1.2 to the fields of positive characteristic. More
precisely, in Theorem 3.3 we show that the above (1) and (2) are equivalent. This improves
the main result of [BKP1]. In Theorem 5.2, (1) and (3) are shown to be equivalent under
the additional hypothesis that f is Galois. In Proposition 4.4, a characterization of
genuinely ramified morphisms is given in the Tannakian framework.

2. Vector bundles over orbifolds

Let X be a smooth projective connected curve defined over an algebraically closed field
k. We briefly recall some basic definitions from [KP, Section 2]. For a closed point x ∈ X ,

let KX,x denote the fraction field of ÔX,x. A branch data P on X assigns to each closed
point x ∈ X a finite Galois extension P (x) of KX,x, satisfying the condition that the
extension is trivial for all but finitely many points. The support Supp(P ) of the branch
data P is the finite subset of closed points where the field extension is actually nontrivial.

Given any two branch data P1 and P2 on X , we say that P1 ≤ P2 if P1(x) ⊂ P2(x)
for all closed points x ∈ X . We can define their intersection P1

⋂
P2 by (P1

⋂
P2)(x) :=

P1(x)
⋂
P2(x) for all closed points x ∈ X . Here the intersection is taken in a fixed

algebraic closure of KX,x. Note that

Supp(P1 ∩ P2) ⊆ Supp(P1) ∩ Supp(P2).

Similarly we also define their compositum P1P2 by

(P1P2)(x) := P1(x) · P2(x)

for all closed points x ∈ X . Note that Supp(P1P2) = Supp(P1) ∪ Supp(P2). Also we
have

P1 ∩ P2 ≤ Pi ≤ P1P2
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for i = 1, 2.

The trivial branch data is the one where all the field extensions are trivial; the trivial
branch data is denoted by O. Let f : Y −→ X be a finite generically smooth map and
P a branch data on X . Then there is a natural branch data f ∗P on Y constructed as
follows: For any closed point y ∈ Y , the field f ∗P (y) is the compositum P (f(y))KY,y.

Let f : Y −→ X be a finite generically smooth map. For a closed point x ∈ X , let
Bf(x) be the compositum of the Galois closures of the field extensions {KY,y}y∈f−1(x) of
KX,x. So we have a branch data Bf that assigns Bf (x) to any x ∈ X . The support of
Bf is evidently the subset over which f is ramified. Note that if f is also Galois, then
Bf(x) = KY,y for any y ∈ Y with f(y) = x.

A formal orbifold curve is a pair (X, P ), where X is a smooth projective curve with P
being a branch data on X . A morphism of orbifold curves

f : (Y, Q) −→ (X, P )

is a finite generically smooth morphism f : Y −→ X such that Q(y) ⊃ P (f(y)) for
every closed point y ∈ Y . The map f is said to be étale if Q(y) = P (f(y)) for all closed
points y ∈ Y .

For any finite generically smooth morphism f : Y −→ X ,

f : (Y, f ∗Bf ) −→ (X, Bf )

is an étale cover ([KP, Lemma 2.12]). We note that a Galois morphism f : (Y, O) −→
(X, P ) is étale if and only if P = Bf . Also, we have f ∗Bf = O for any Galois étale
morphism f .

A branch data P on X is said to be geometric if there exists an étale Galois covering
map f : (Y, O) −→ (X, P ) of formal orbifolds. If P is a geometric branch data on X ,
then (X, P ) is called a geometric formal orbifold.

Take a geometric formal orbifold (X, P ). Fix a Galois étale covering

f : (W, O) −→ (X, P ) ;

the Galois group of f will be denoted by G. An object V in the category Vect(X, P ) is a
G-equivariant vector bundle V on W , while morphisms in Vect(X, P ) are the equivariant
morphisms of G-equivariant vector bundles onW . It should be clarified that the category
Vect(X, P ) is actually independent of the choice of f (see [KP, Proposition 3.6]).

Let

deg(V) :=
deg(V )

deg(f)

be the degree of the object V of the category Vect(X, P ). Also define the slope

µ(V) :=
deg(V)

rank(V )
.

The object V is called stable (respectively, semistable) if µ(F) < µ(V) (respectively,
µ(F) ≤ µ(V)) for all nonzero subobjects F ⊂ V of smaller rank. A semistable vector
bundle V is called strongly semistable if V⊗j is semistable for all j ≥ 1.

Recall from [No] that a vector bundle V is called finite if p(V ) = q(V ) for two distinct
polynomials p and q with nonnegative integer coefficients. For a and n nonnegative
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integers, aV n means
⊕a

i=1 V
⊗n. Any vector bundle of degree zero which is isomorphic to

a subbundle of a quotient bundle of degree zero of a finite bundle is called an essentially
finite bundle. Let Vectf(X, P ) (respectively, Vectss(X, P )) denote the full subcategory of
Vect(X, P ) consisting of essentially finite (respectively, strongly semistable of degree zero)
vector bundles. Also, Vectet(X, P ) denotes the full subcategory of Vect(X, P ) consisting
of étale trivial vector bundles.

Let x ∈ X be a closed point outside the support of P . Note that each of Vectss(X, P ),
Vectf(X, P ) and Vectet(X, P ), equipped with the natural fiber functor associated to x, is
a neutral Tannakian category; their Tannaka duals are denoted by πS(X, P ), πN(X, P )
and πet

1 (X, P ) respectively.

In [KP, Section 3.2], for an étale morphism f : (X1, P1) −→ (X2, P2) a pushforward
functor Vect(X1, P1) −→ Vect(X2, P2) was defined. To explain this construction, let
(Y2, O) −→ (X2, P2) be a Galois étale covering map; denote by Γ the Galois group of

this map. Let Y1 be the normalization of the fiber product ˜X1 ×X2
Y2 over X2. Then the

natural projection f : Y1 −→ Y2 is an étale cover. Also, f is a Γ-equivariant morphism.
Moreover, the natural map (Y1, O) −→ (X1, P1) is an étale Galois covering with Galois
group Γ. Hence an object V of Vect(X1, P1) is a Γ-equivariant vector bundle V on Y1.
The direct image f∗V is a Γ-equivariant vector bundle on Y2, and hence it is an object of
Vect(X2, P2). We define this object of Vect(X2, P2) as the direct image of V; this direct
image will be denoted by

f̂∗V. (2.1)

It should be mentioned that the object f̂∗V of Vect(X2, P2) is actually independent of the
choice of the Galois étale covering map (Y2, O) −→ (X2, P2).

Lemma 2.1. Let P1 ≤ P2 be two branch data. Then there is a natural fully faithful
functor Vect(X, P1) −→ Vect(X, P2). Moreover, a vector bundle V in Vect(X, P1) is
semistable if and only if it is semistable as a vector bundle in Vect(X, P2).

Proof. The first statement is proved in [KP, Theorem 3.7] (also see [BKP3, Theorem 2.5]).
The second statement follows from [KP, Lemma 3.10]. �

Definition 2.2. Let P1 and P2 be two geometric branch data on X . An object

E ∈ Vect(X, P1)

is said to be from Vect(X, P2) if there exists an object E ′ ∈ Vect(X, P2) such that the im-
ages of E and E ′ in Vect(X, P1P2) — under the functors Vect(X, P1) −→ Vect(X, P1P2)
and Vect(X, P2) −→ Vect(X, P1P2) in Lemma 2.1 — are isomorphic.

Lemma 2.3. Let f : Y −→ X be a finite generically smooth morphism of smooth

projective curves. Consider OY as an object of Vect(Y, f ∗Bf ). Then f̂∗OY (see (2.1)) is
a semistable vector bundle in Vect(X, Bf ) of degree zero.

Proof. When the characteristic of k is 0, this is proved in [Pa].

The morphism f is actually an étale morphism of orbifolds f : (Y, f ∗Bf) −→ (X, Bf).
Let

Xe −→ Y −→ X (2.2)
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be the morphism of smooth projective curves constructed by setting k(Xe) to be the
Galois closure of k(Y )/k(X). Both the maps in

(Xe, O) −→ (Y, f ∗Bf ) −→ (X, Bf )

are étale. Denote G = Gal(k(Xe)/k(X)). Note that OY is in Vect(Y, O) and hence it is
also in Vect(Y, f ∗Bf ).

Let Ye = ˜Y ×X Xe be the normalization of the fiber product Y ×X Xe over X . The
action of G on Xe and the trivial action of G on Y together produce an action of G on
Ye. The projection

h : (Ye, O) −→ (Y, f ∗Bf )

is an étale Galois covering with Galois group G. Clearly, OYe
= h∗OY is a G-equivariant

line bundle. Hence OY — as an object of Vect(Y, f ∗Bf) — is the G-equivariant bundle

OYe
. Let f : Ye = ˜Y ×X Xe −→ Xe be the natural projection. By [KP, Section 3.2],

the direct image f̂∗OY (see (2.1)) is the G-equivariant vector bundle f∗OYe
on Xe. Since

f is étale, the direct image f∗OYe
is semistable of degree zero [BP1, p. 12825, Lemma 2.3].

This proves the lemma. �

Lemma 2.4. Let P1 ≤ P2 be two branch data on X. Let V ∈ Vect(X, P2) be a semistable
vector bundle admitting a subbundle V ⊃ V ′ ∈ Vect(X, P1) (see Definition 2.2) such that
µ(V) = µ(V ′). Then there is a unique maximal semistable subbundle V1 ⊂ V such that

(1) µ(V1) = µ(V), and
(2) V1 ∈ Vect(X, P1).

Proof. Since V is semistable, and the slope of the above vector bundle V ′ coincides with
that of V, it follows that V ′ is also semistable. If V ′ and V ′′ are two subbundles of V
lying in Vect(X, P1) such that µ(V ′′) = µ(V) = µ(V ′), then their sum V ′ + V ′′ ⊂ V is
again a subbundle with µ(V ′ + V ′′) = µ(V). Indeed, V ′ + V ′′ is a quotient of V ′ ⊕ V ′′,
so µ(V ′ + V ′′) ≥ µ(V ′) = µ(V ′′), on the other hand, V ′ + V ′′ is a subsheaf of V, so
µ(V ′ +V ′′) ≤ µ(V). We also have V ′ +V ′′ ∈ Vect(X, P1). This proves the existence and
uniqueness of a maximal subbundle V1 ⊂ V as in the lemma. �

3. Pullback of stable bundles

Let f : Y −→ X be a finite generically smooth morphism between smooth connected
projective curves. Let P be a geometric branch data on X .

Definition 3.1. We say f : (Y, f ∗P ) −→ (X, P ) to be a genuinely ramified map of
formal orbifolds if there is no intermediate cover

(Y, f ∗P ) −→ (Z, Q) −→ (X, P )

where (Z, Q) −→ (X, P ) is a nontrivial étale cover of formal orbifold curves.

Lemma 3.2. Let f : (Y, f ∗P ) −→ (X, P ) be genuinely ramified. Let (W, O) −→
(X, P ) be an étale Galois cover with Galois group Γ. Let

g : Z := W̃ ×X Y −→ W
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be the normalization of the fiber product W ×X Y . Then g is a genuinely ramified mor-
phism. Also the morphism (Z, O) −→ (Y, f ∗P ) is a Galois étale cover with Galois group
Γ.

Proof. If L = k(W ) ∩ k(Y ) ! k(X), then the normalization

f ′ : Y ′ −→ X

of X in L is of degree at least two. Note that f ′ is an essentially étale cover of (X, P ) (see
[KP, Definition 2.6(3)]) because f ′ is dominated by W −→ X . Hence by [KP, Lemma
2.12]

f ′ : (Y ′, f ′∗P ) −→ (X, P )

is an étale cover, which contradicts the given condition that f : (Y, f ∗P ) −→ (X, P ) is
a genuinely ramified morphism. So k(W ) ∩ k(Y ) = k(X).

Moreover, since k(W )/k(X) is Galois, it follows that k(W ) and k(Y ) are linearly disjoint
over k(X). Hence the morphism g : Z −→ W in the statement of the lemma is a finite
generically smooth morphism of connected nonsingular curves, and Z −→ Y is a Galois
cover with Galois group Γ. Furthermore, since (W, O) −→ (X, P ) is étale, the pullback
(Z, O) −→ (Y, f ∗P ) is also étale by [KP, Proposition 2.14 and Proposition 2.16].

Suppose that g is not genuinely ramified. Let h : W ′ −→ W be the maximal étale
cover of W dominated by g. For γ ∈ Γ, the automorphism of W given by γ will also be
denoted by γ. The pullback of h : W ′ −→ W by γ is again étale. Since W ′ is maximal
étale, the pullback of h : W ′ −→ W is again h. Hence Γ acts onW ′. Let f ′′ : Y ′′ −→ X
be the normalization of X in k(W ′)Γ. Then Y ′′ −→ X is dominated by f : Y −→ X .
The following diagram summarizes the situation:

Z
Γ

//

��

g

��

Y

f

��

��

W ′

��

// Y ′′

��

W
Γ

// X

(3.1)

Also (W ′, O) −→ (X, P ) being the composition of two étale maps is also étale. Hence
Y ′′ −→ X is essentially étale for (X, P ). So again by [KP, Lemma 2.12]

f ′′ : (Y ′′, f ′′∗P ) −→ (X, P )

is étale, which gives a contradiction. Hence g is genuinely ramified. This completes the
proof. �

Theorem 3.3. Let f : (Y, f ∗P ) −→ (X, P ) be a morphism of formal orbifolds. Then
f is genuinely ramified if and only if the pullback of every stable object in Vect(X, P ) is
stable in Vect(Y, f ∗P ).

Proof. Let a : (W, O) −→ (X, P ) be a Galois étale covering with Galois group Γ. A
stable object of Vect(X, P ) is a Γ-stable vector bundle E on W . Let

g : Z := W̃ ×X Y −→ W
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be the normalized pullback of f (see Lemma 3.2). By Lemma 3.2, the morphism g :
Z −→ Y is genuinely ramified. Also note that g is a Γ-equivariant morphism. By
[BKP1, Proposition 4.2], the pullback g∗E is a Γ-stable vector bundle on Z. The morphism
g : (Z, O) −→ (Y, f ∗P ) is Galois étale with Galois group Γ. Hence g∗E is a stable object
in Vect(Y, f ∗P ).

If f is not genuinely ramified, there is a nontrivial étale cover of formal orbifold curves

h : (Z, Q) −→ (X, P )

such that f factors as

(Y, f ∗P )
φ

−→ (Z, Q)
h

−→ (X, P ).

Take any line bundle L on (Z, Q) of degree one. Then ĥ∗L is a stable vector bundle on

(X, P ). But h∗ĥ∗L is not stable because L is a quotient of it. Since h∗ĥ∗L is not stable,

we conclude that φ∗h∗ĥ∗L = f ∗ĥ∗L is not stable. �

4. Tannakian characterization

Let f : Y −→ X be a finite generically smooth morphism between smooth connected
projective curves. As before, the branch data on X given by f will be denoted by Bf . As
in (2.2), let b : Xe −→ X be the Galois closure of f with Galois group G. Consider the
normalization

f : Ye := ˜Y ×X Xe −→ Xe (4.1)

of the fiber product Y ×X Xe. Note that Ye is deg(f)-copies of Xe. As noted in the proof
of Lemma 2.3, the group G acts on Ye. The direct image

E := f∗OYe
, (4.2)

where f is the map in (4.1), is a G-equivariant vector bundle on Xe, because OYe
is a

G-equivariant vector bundle and the projection f is a G-equivariant morphism. We have
the diagram:

Ye

a
G

��
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

f

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Xe

''P
P

P
P

P
P

P
P

b
G

��
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶
✶

Y
f

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

X

(4.3)

We saw in the proof of Lemma 2.3 that E is f̂∗OY ∈ Vect(X, Bf).

Remark 4.1. If the map f is Galois, then Y = Xe. So Ye = G×Xe, where G = Gal(f).
Hence in that case we have

E = f∗OYe
= k[G]⊗k OXe

.
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Let C(f) be the neutral Tannakian subcategory of Vectss(X, Bf) defined by the full
subcategory generated by E in (4.2).

Note that OXe
∈ Vectss(X, Bf). Let C(b) denote the full neutral Tannakian subcate-

gory of Vectss(X, Bf ) generated by k[G]⊗k OXe
.

Proposition 4.2. The equality C(f) = C(b) holds. Hence the Tannaka dual of C(f) is
the Galois group G.

Proof. Let f̃ : Xe −→ Y be the map in (4.3). The normalization of the fiber product
Xe ×X Xe will be denoted by M . Let ϕ : M −→ Xe be the projection to the second
factor. The map

f̃ × Id : Xe ×X Xe −→ Y ×X Xe, (x1, x2) 7−→ (f̃(x1), x2)

produces a map g : M −→ Ye. This map g satisfies the equation

f ◦ g = ϕ ,

where f is the map in (4.1). This implies that

E ⊂ ϕ∗OM (4.4)

(see (4.2)). But ϕ∗OM = k[G] ⊗k OXe
because the map b in (4.3) is Galois with Galois

group G. So from (4.4) it follows that

f∗OYe
⊂ k[G]⊗k OXe

. (4.5)

From (4.5) it follows immediately that C(f) is a full subcategory of C(b).

Consider the neutral Tannakian category Rep(G) defined by all algebraic representa-
tions of G in finite dimensional k–vector spaces. Consider the subgroup

H := Gal(a) ⊂ G

which is the Galois group of the morphism a : Ye −→ Y in (4.3). The left-translation
action of G on G/H makes k[G/H ] ∈ Rep(G). Let C(G/H) be the full neutral Tannakian
subcategory of Rep(G) generated by k[G/H ]. Since b : Xe −→ X is the Galois closure
of f , it follows that

C(G/H) = Rep(G) .

From this it follows that the subcategory C(f) of C(b) actually coincides with C(b). �

In the set-up of Proposition 4.2, let P be a geometric branch data on X . Let CP (f)
be the full neutral Tannakian subcategory of C(f) consisting of objects which are from
Vect(X, P ) (in the sense of (2.2)). Let A be the Tannaka dual of CP (f). Proposition 4.2
says that the Tannaka dual of C(f) is G. So we have a natural epimorphism

α : G −→ A. (4.6)

Lemma 4.3. Let H ′ ⊂ G be the kernel of the homomorphism α in (4.6). Let φ : Y ′ −→
X be the normalization of X in k(Xe)

H′

, so Y ′ = Xe/H
′. Then φ : (Y ′, φ∗P ) −→

(X, P ) is the unique maximal étale cover of (X, P ) dominated by Xe.

Proof. Let Q denote the branch data on Y ′ given by the quotient map

Xe −→ Xe/H
′ = Y ′.
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The category C(b) in Proposition 4.2 contains only étale trivial bundles, and hence from
Proposition 4.2 it follows that C(f) contains only étale trivial bundles. Therefore, CP (f)
contains only étale trivial bundles. In other words, CP (f) is a full subcategory of the
neutral Tannakian category Vectet(X, P ). Consequently, there is a natural surjection
between their Tannaka duals

πet
1 (X, P ) −→ A −→ e,

where A is as in (4.6). Hence the induced A-cover (Y ′, Q) −→ (X, P ) is étale, where Q
is defined above.

Let ψ : (Z, P ′) −→ (X, P ) be any étale cover which is dominated by Xe. Let C(ψ)
denote the neutral Tannakian subcategory of Vectss(X, Bf) defined by the full subcate-
gory generated by ψ∗OZ . Then C(ψ) is a subcategory of CP (f). Hence Z is dominated
by Y ′ establishing that φ : (Y ′, φ∗P ) −→ (X, P ) is the maximal étale cover of (X, P )
dominated by Xe. �

Proposition 4.4. Let f : Y −→ X be a finite generically smooth morphism, and let P
be a geometric branch data on X. Let CP (f) be the full Tannakian subcategory of C(f)
consisting of objects which are from Vect(X, P ) (in the sense of (2.2)). Let A be the
Tannaka dual of CP (f), and let α : G −→ A be the natural epimorphism. Then the
following five statements are equivalent:

(1) The morphism (Y, f ∗P ) −→ (X, P ) is genuinely ramified.
(2) α(Gal(k(Xe)/Y )) = A.
(3) π1(f) : πS

1 (Y, f
∗P ) −→ πS

1 (X, P ) is surjective.
(4) π1(f) : πN

1 (Y, f ∗P ) −→ πN
1 (X, P ) is surjective.

(5) π1(f) : πet
1 (Y, f

∗P ) −→ πet
1 (X, P ) is surjective.

Proof. The equivalence of (1) and (5) is trivial. Also note that (3) implies (4) and (4)
implies (5).

Let H ′ = kernel(α), and let φ : Y ′ −→ X be the normalization of X in k(Xe)
H′

. By
Lemma 4.3,

φ : (Y ′, φ∗P ) −→ (X, P )

is the maximal étale cover of (X, P ) dominated by Xe. Hence (1) is equivalent to the
statement that k(Y ′) ∩ k(Y ) = k(X). But this is equivalent to the subgroup H ′ ⊂
Gal(k(Xe)/k(Y )) being the whole group G, which in turn is equivalent to (2).

To prove that (5) implies (3) we need to show that

(i) the functor f ∗ : Vectss(X, P ) −→ Vectss(Y, f ∗P ) is fully faithful, and
(ii) subobjects of f ∗E are pullback bundles.

(See [DM, p. 139, Proposition 2.21(a)].)

Since f : (Y, f ∗P ) −→ (X, P ) is genuinely ramified, the map g : Z −→ W in (3.1)
is genuinely ramified by Lemma 3.2. Hence the natural homomorphism

H0(W, Hom(V1, V2)) −→ H0(Z, Hom(g∗V1, g
∗V2))

is an isomorphism by [BP1, Lemma 4.3]. When V1 and V2 are Γ-equivariant, the above
natural map is Γ-equivariant; consequently, we have

H0(W, Hom(V1, V2))
Γ ∼= H0(Z, Hom(g∗V1, g

∗V2))
Γ.
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We will now show that all subobjects of f ∗E are of the form f ∗V, where V ⊂ E is a
subobject. Let E be the Γ–bundle on W representing E . First assume that E is stable.
Then f ∗E is stable by Theorem 3.3. Therefore, any subobject of f ∗E is either f ∗E or 0.
Hence all subobjects of f ∗E are of the form f ∗V, where V ⊂ E . Next assume that E is
polystable. So

E =
n⊕

i=1

Ei ⊗ Ti ,

where E1, · · · , En are stable Γ–bundles such that Ei 6= Ej if i 6= j, and T1, · · · , Tn are
trivial Γ–bundles on W . In fact Ti is the trivial Γ–bundle on W with fiber

H0(W, Hom(Ei, E))
Γ.

Let ri be the rank of Ti. Consider the pullback

g∗E =

n⊕

i=1

g∗Ei ⊗Ori
Z .

From Theorem 3.3 it follows that each g∗Ei is a stable Γ–bundle. For 1 ≤ i, j ≤ n, we
again have (by [BP1, Lemma 4.3]),

H0(W, Hom(Ei, Ej)) ∼= H0(Z, Hom(g∗Ei, g
∗Ej)),

and hence

H0(Z, Hom(g∗Ei, g
∗Ej))

Γ = H0(W, Hom(Ei, Ej))
Γ = 0,

because E1, · · · , En are pairwise non-isomorphic stable Γ–bundles. Hence any subob-
ject of g∗E is of the form

⊕n

i=1 g
∗Ei ⊗ T ′

i , where T ′

i ⊂ Ori
Z is a trivial Γ-subbundle.

Consequently, all subobjects of f ∗E are of the form f ∗V, where V ⊂ E .

Finally, for a general subobject of E , let

0 ⊂ F1 ⊂ · · · ⊂ Fℓ−1 ⊂ Fℓ = E (4.7)

be the Jordan–Hölder filtration of the Γ–bundle E; so for any 1 ≤ i ≤ ℓ, the quotient
bundle Fi/Fi−1 is the unique maximal polystable subbundle of E/Fi−1 [HL, p. 24, Lemma
1.5.5]. This uniqueness ensures that each Fi is preserved by the action of Γ on E. Let

V ⊂ g∗E

be a semistable Γ-subbundle over Z of degree zero. Let

V ′ ⊂ g∗V

be the maximal semistable subsheaf (the first nonzero term in the Harder–Narasimhan
filtration). Then using the above observations if follows that degree(V ′) = 0 and
rank(V ′) = rank(V ) (see [BP2]). Moreover, the natural homomorphism g∗g∗V −→ V
has the property that its restriction to g∗V ′ is an isomorphism. This completes the
proof. �

Note that the category Vect(X, O) is the same as Vect(X), the category of vector
bundles on X .

Proposition 4.4 has the following immediate consequence:
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Corollary 4.5. Let C0(f) be the full Tannakian subcategory of C(f) consisting of objects
from Vect(X). Then C0(f) is a Tannakian category. Let A be its Tannaka dual and
a : G −→ A the natural epimorphism. Let H = Gal(k(Xe)/k(Y )) and let B be the
image of H in A. Then the following are equivalent:

(1) f : Y −→ X is genuinely ramified.
(2) B = A.

5. Pushforward of the structure sheaf

Consider the diagram in (4.3). Since OXe
= b∗OX , it follows that OXe

has a natural
G-equivariant structure. Note that OXe

is a subbundle of E (defined in (4.2)) preserved by
the action ofG. SinceOXe

is in Vect(X, O), by Lemma 2.1 it is also in Vect(X, P∩Bf ) and
its degree is 0. So by Lemma 2.4 there exists a unique maximal semistable G-equivariant
subbundle

F ⊂ E (5.1)

of degree 0 such that F ∈ Vect(X, P ∩Bf ).

Let U be the normalized fiber product of b : Xe −→ X and α : W −→ X . Let
a : U −→ W and β : U −→ Xe be the natural projections. So we have the following
diagram:

Ye

G

��

f

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

U
β

//

a

��

Xe

  
❇

❇
❇

❇

b G

��

Y
f

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

W
α

// X

(5.2)

Lemma 5.1. Let FW be the maximal degree zero Γ-subbundle of (a∗β
∗E)G. The Γ× G-

equivariant bundles β∗F (see (5.1)) and a∗FW are isomorphic.

Proof. Note that FW is a slope zero subbundle of a∗β
∗E. Since F is the maximal subbundle

of E of slope zero, and E/F is a semistable bundle of negative slope, the image of FW in
a∗β

∗E lies in a∗β
∗F . By adjointness we get a natural map of bundles

a∗FW −→ β∗F (5.3)

over U .

It can be shown that away from the preimage of Bf ∪ P the homomorphism in (5.3) is
an isomorphism. Indeed, this follows immediately from the following two facts:

(1) For any generically smooth surjective map ϕ : Z1 −→ Z2 of smooth projective
curves, and any vector bundle E on Z2, the Harder–Narasimhan filtration of ϕ∗E is
the pullback of the Harder–Narasimhan filtration of E (see [BP1, p. 12823–12824,
Remark 2.1]).
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(2) If ϕ : Z1 −→ Z2 is an étale Galois covering map of smooth curves with Galois
group G, and E is a G-equivariant vector bundle on Z1, then the natural map

ϕ∗((ϕ∗E)
G) −→ E

is an isomorphism.

Since both a∗FW and β∗F are degree zero bundles, the generically isomorphic homo-
morphism in (5.3) is actually an isomorphism. Indeed, the cokernel of this map is a torsion
sheaf and its degree is degree(β∗F ) − degree(a∗FW ) = 0, and hence the cokernel is the
zero sheaf. Consequently, the homomorphism in (5.3) is an isomorphism. �

The goal is to prove the following:

Theorem 5.2. Let f : (Y, f ∗P ) −→ (X, P ) be a morphism of formal orbifolds. Assume
f is also a Galois cover. Then the following are equivalent:

(1) f : (Y, f ∗P ) −→ (X, P ) is genuinely ramified.
(2) F = OXe

.
(3) FW = OW .

Proof. The equivalence of (2) and (3) is a consequence of Lemma 5.1.

Since f is Galois Y = Xe and E = OXe
× k[G]. Note that

a∗β
∗E = a∗β

∗OXe
⊗k k[G] = a∗OU ⊗k k[G]

(see (5.2)). Hence [a∗β
∗E]G = a∗OU .

Since f is genuinely ramified by Lemma 3.2, the map a : U −→ W is genuinely
ramified. Therefore the degree zero part of the Harder–Narasimhan filtration of a∗OU is
actually OW (by [BP1]). So FW , which is the degree zero part of the Harder–Narasimhan
filtration of [a∗β

∗E]G, is also OW . This proves that (1) implies (3).

Suppose that f : (Y, f ∗P ) −→ (X, P ) is not genuinely ramified. Let

g : Y ′ −→ X

be the maximal intermediate cover such that g : (Y ′, g∗P ) −→ (X, P ) is étale. Let Z ′ be
the normalized fiber product of Y ′ and W over X , and let h : Z ′ −→ W be the natural
projection. Then h is étale and it is dominated by a. Hence h∗OZ′ is a subbundle of a∗OU

of degree zero, and its rank is the same as the degree of h. But FW is the maximal degree
zero subsheaf of [a∗β

∗E]G = a∗OU . This contradicts (3). Hence (3) implies (1). �
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