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Abstract: Accurate predictions of when a component will fail are crucial when planning maintenance, and
by modeling the distribution of these failure times, survival models have shown to be particularly useful
in this context. Due to the complex behavior of degradation, describing this distribution is often a complex
problem and data-driven methods are often preferred. In this paper, a methodology to develop data-driven
usage-specific survival models that predict the distribution of the remaining life of a component based
on its usage history is presented. The methodology is based on conventional neural network-based
survival models that are trained using data that is continuously gathered and stored at specific times,
called snapshots. An important property of this type of training data is that it can contain more than one
snapshot from a specific individual which results in that standard maximum likelihood training can not
be directly applied since the data is not independent. However, the papers show that if the data is in a
specific format where all snapshot times are the same for all individuals, called homogeneously sampled,
maximum likelihood training can be applied and produce desirable results. In many cases, the data is not
homogeneously sampled and in this case, it is proposed to resample the data to make it homogeneously
sampled. How densely the dataset is sampled turns out to be an important parameter; it should be chosen
large enough to produce good results, but this also increases the size of the dataset which makes training
slow. To reduce the number of samples needed during training, the paper also proposes a technique to,
instead of resampling the dataset once before the training starts, randomly resample the dataset at the start
of each epoch during the training. The proposed methodology is evaluated on both a simulated dataset
and an experimental dataset of starter battery failures. The results show that if the data is homogeneously
sampled the methodology works as intended and produces accurate survival models. The results also
show that randomly resampling the dataset on each epoch is an effective way to reduce the size of the

training data and at the same improve the performance of the resulting model.
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1. INTRODUCTION

In many applications, maintenance costs make up a significant
portion of a system’s total cost. To avoid unnecessary mainte-
nance it is therefore of interest to determine the remaining useful
life of the component so that maintenance can be planned as late
as possible. In many cases, the degradation is not a deterministic
process and predicting exactly when a component will fail is not
possible, making a statistical description more useful. Survival
models provide such a description by predicting the probability
that the component will survive longer than a specific time. Due
to the complex behavior of system degradation, such models
are often difficult to find, and therefore data-driven methods are
attractive.

While other methods like random survival forests (Ishwaran
et al., 2008) exist, neural network-based survival models have
been shown to perform particularly well, and multiple models
have been proposed for this, see for example Brown et al. (1997),
Biganzoli et al. (1998), Kvamme and Borgan (2021), and Ching
et al. (2018). However, these models are defined in a more
general setting, and to use them for predicting the remaining life
of a component is not always clear.

How a component is used often affects its useful life, and it
is therefore of interest to base the predictions on operational
data gathered as the component is used. Since degradation is
often accumulative, the period during which the operational
data is gathered can greatly affect the predictions. In Holmer
et al. (2023) this was solved by only considering operational
data up to a specific age of the component, which means that
the resulting model can only be used for predictions at this

specific age. Dhada et al. (2023) used a similar approach but
included usage data from gathered at multiple times during the
components’ lifetime; however, predictions were done based on
a specific time and therefore only one prediction per component
was made. In Li et al. (2022) the age of the component at the
time of prediction was included as input to the model making it
possible to use the model at any age. However, while the results
from this wroke are impressive, the data used to train the model
contains multiple data points from the same individuals and is
therefore not independent, making standard training techniques
not directly applicable, and it is not discussed why the method
works or if it will work in other applications.

In conclusion, a more general definition of a usage-specific
survival function that considers operational data gathered during
any time interval is missing; as well as a methodology to train
these types of models when there is more than one observation
from each individual. The aim of this paper is therefore to
address these two problems.

2. SURVIVAL MODELING

Survival models describe the distribution of the failure time 7,
often conditioned on an explanatory variable X . They are often
specified using the survival function, defined as

S(t;l‘)ZP(T>t|X:$)=/OOf(T;JJ)dT (1)

where f is the corresponding failure probability density. In
general, there are many density functions f such that (1) holds,
and the pair (S, f) is thus needed to specify a survival model;
however, in most cases, this is a more theoretical problem, and



we will in most cases only use the survival function S' to specify
a model.

2.1 Survival Data and Censoring

In general, not all individuals are monitored up to the time they
fail since, for example, the experiment ends or because of some
other unconsidered failure in the system. This means that the
data contains right-censoring and the data from N individuals is
on the form

D = {(7i, 05, 2:1) iy (2)
where 7; is the recorded time, d; is the indicator (§; = 1 for

a failure, and §; = 0 for a censoring), and x; is the covariate
vector of individual 7.

2.2 Likelihood

A likelihood function is defined based on a statistical model
describing the distribution of the data. Since the model in our
case only describes the distribution of a single observation it can
not be used directly to define a likelihood function. However, by
assuming that the observations are independent the model for
the complete dataset factors into a product of the model for each
observation. A consequence of this is that the likelihood function
itself can be written as a product of the likelihood of each
observation. This means that in this case defining a likelihood
function based on independent observations is straightforward,
as long as the likelihood of a single observation is known.

Given a survival model parameterized by 6, with survival
function Sy and density fy, the likelihood of the observation
(7,0, x) can be defined as

L0 (r,6,2) = {éi((;’,?): gz (1) | 5

Assuming that the observations from each individual are inde-
pendent, the likelihood of the dataset (2) factors into
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In practice, the product above is numerically difficult to work
with and instead the log-likelihood is used, defined as
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2.3 Neural Network-Based Survival Models and Maximum
Likelihood Training

The dependencies on the explanatory variables are often complex
making data-driven methods for predicting the survival function
attractive, and in particular Neural network-based approaches
have been shown to perform well. From (5) it follows that if a
network parameterized by # can provide the density fy and the
survival function Sy (along with their gradients), gradient-based
learning can be applied to maximize the log-likelihood. In this
context, for each sample (7;, d;, ;) the pair (7;, d;) can be seen
as the target and z; the features.

An important part of neural network-based survival modeling
is to ensure that the pair (Sy, fy) defines a proper survival
model; that is, the relation between Sy and fy in (1) holds,
and fy(t,z) > 0. There are several ways to do this, see for
example Brown et al. (1997), Biganzoli et al. (1998) Kvamme
and Borgan (2021), Voronov et al. (2020), Ching et al. (2018),
or Li et al. (2022).

In this work, the energy-based approach in Holmer et al. (2023)
is used. In this approach, a continuous survival function is
defined by specifying the density function of T’ as

f(t ) e—Ee(t;x) Z( ) /oo By (tim) it ©
) = ——, T) = e i

Z(x) 0
where the energy Fy(t; ) is taken as the output from a neural
network, parameterized by €; and the normalization constant
Z(x) is evaluated numerically, for details on this see Holmer
et al. (2023). The survival function is then calculated as
t o—Ep(T5z)

Se(t;m):1_/of(T;m)dT:1_/o W(ﬁ' @)

where, again, the integral is evaluated numerically. Since the
energy Ejp(t; x) is specified by a neural network, this model can
essentially become as expressive as desired; however, this comes
at the cost of the two numerical integrations.

3. USAGE-SPECIFIC SURVIVAL MODELING BASED ON
OPERATIONAL DATA

We will now consider the problem of predicting the distribution
of the failure time given the available operational data up to
a specific age. The main difference compared with Section 2
is that the explanatory variables now are based on aggregated
system usage, which varies over time, and the main topic of
the section is to define the usage-specific survival function and
develop and train these type of models.

3.1 Operational Data and Snapshots

In many cases, how a system is used greatly affects the lifetime
of the system, and information about this is useful for predicting
when the system will fail. In this work, we assume that a
snapshot z(ty) with information about how the system has
been used up to age ¢ is available. The snapshot z(¢y) could
essentially contain any information about how the system has
been used, and the only requirement is that it can be used as
an input to a neural network. In practice, however, a trade-off
between the amount of information stored in z(ty) and the
amount of storage needed to store it must be done. For this
reason, we in this work mainly consider snapshots on the form

2(to) = / () dt ®)

where y(t) denote the available measurements and control
signals at time ¢, and ¢ is a function specifying how y(¢) is
aggregated.

A simple example of a function g is g(y) = y which can
be interpreted as accumulated usage; for example, if y is the
velocity of a truck then x(tp) would in this case be the total
mileage up to age ty. Another example is

Y < Ythres (9)

W) =1y
9% = Oa Y > Ythres

where Y¢pres 15 a threshold. In this case, x(¢o) is the time spent
with y(t) > yinres Which, for example, can be used to measure
the amount of time the power produced by an engine has been
above a specific threshold. By using more than one threshold
a histogram of how the component has been used can also be
created; most of the features in the dataset in Section 6 are
created in this way.

Often data is continuously gathered and stored during the
systems’ lifetime, and consequently the available data from

each individual is a sequence of snapshots (m(tfs))f\il where
9% < t5° < --- < t3} are the M times when data was stored.

However, when making a prediction, only one snapshot is used.
It is of course likely that using by using a sequence of snapshots



would result in better predictions; however, with the notation
used in this work x(tfsg should then be that sequence.

3.2 Usage-Specific Survival Function

A snapshot z(tg) describes how a specific individual has been
used up age to. By interpreting z(¢o) as an observation of a
random variable X (t(), describing the distribution of the usage

in a population, the usage-specific survival function can be
defined as

S (t;to,2) = P(T > t | X(to) = ), (10)
i.e., the probability of the failure happening after ¢ time units,
given the operational data = (= x(¢¢)) at age to.

Operational data often contain direct measurements from the
considered component and, consequently, there is an implicit
implication that 7" > t;, since otherwise measurements from age
to would not be possible. If this is the case, it is more appropriate
to consider the usage-specific survival function describing the
remaining life of the component

Sr(t;to,l‘):P(T>t+t0|T>t0,X(t0):l‘). (1
However, to make the notation simpler, we will focus on
presenting a methodology for predicting total life, and later

in Section 4.5 show how to extend it to predicting remaining
life.

3.3 Survival Data Including Operational Data

As in the conventional case in Section 2.1, the data from a
specific individual contain a recorded time 7 and an indicator §
indicating if it was a failure or censoring. However, instead of a
single covariate vector x, we now have a sequence of samples
(;v(tfs))ﬁl from times t7° < t5° < < t47. The data from
individual 7 is therefore on the form

Di= (700 {(a23),65) 120,

where M is the number of snapshots from individual ¢, and for
a population of IV individuals the data is on the form

D= {(7’“5“{( (t55) 7tf§)}] 1>}N

An important difference compared to the conventional case is
that the data contains M; snapshots from subject ¢, and therefore
M; different predictions can be made, one for each time ¢77.

This is especially important when it comes to determining the
likelihood.

12)

13)

3.4 Likelihood

In the case of a single snapshot (7;,d;, (z(¢{°),1:°)) from
individual ¢, the likelihood can be defined similarly as before as
Y S\ £8S\) _ fG(Ti;tfsvxi)7 =1
L(e‘Tzaézv(«f(ti )7ti ))_ {SG(Ti;th7mi)7 §=0

Based on this, it is tempting to assume that the likelihood in the
case when there is more than one snapshot from an individual
can be defined as the product of the likelihood based on a single
snapshot as

L(01 7o {(alt3) ,tfz)}jﬂ)

- HL (017,85, (2(5),85)) - (19

. (14)

and would be motivated if the data in each factor were indepen-
dent. However, this is clearly not the case since all contain 7;
and ¢;, and in most cases, there are also dependencies between

the different snapshots. This means that the usual motivation
for the likelihood to factor does not hold, and can not be used

to show that L is a proper likelihood. In fact, there is nothing

that suggests that L is a proper likelihood, and as will be seen in
Section 3, it is easy to find cases where it is not. At the same time,
by assuming that it can be used as a proper likelihood it is, as
will be shown later, possible to extend the maximum-likelihood
training described in Section 2.3 to this case in a straightforward

way. We therefore call La quasi-likelihood and in Section 4 we

will investigate under what circumstances it can substitute as a
likelihood.

Since observations from two different individuals are assumed
independent, together with the assumption that the quasi-
likelihood behaves like a proper likelihood, it follows naturally
that the quasi-likelihood considering the complete dataset (18)
of N individuals factors into

L012) = T2 (017t () 5015

(16)

4. MAXIMUM QUASI-LIKELIHOOD TRAINING

By comparing the likelihood of a single snapshot (14) with the
likelihood in the conventional case (5), it can be seen that they
are essentially the same if we in the snapshot case consider
the pair (z;(t; ;),t; ;) as the covariate z in the conventional
case. This means that, by considering each snapshot from all
individuals as a single observation, corresponds to the dataset

D= U, { (1.0 ((855),155)) 10T
(71, o1, (ﬂfl(tfl)atiqi))

(71,01, (21 (8%07,), 100s,)) - 10 {17

(72, d2, (392(755?1)7 tii))

(783 0N (2 (B g ) BN 0w )

maximizing the quasi-likelihood (16) for the dataset D is the
same as maximizing the conventional likelihood (4) for the

dataset D. Consequently, a usage-specific survival model can
be trained using maximum-likelihood training described in

Section 2.3 by simply using the dataset D.

This means that in principle any method for training conven-
tional survival models can be used for training usage-specific
survival models. However, it remains to show under what
circumstances maximizing the quasi-likelihood gives the desired
result.

4.1 An Example Where the Quasi-Likelihood is Inappropriate

We will here give an illustrative example when maximizing the
quasi-likelihood fails to give a desirable result.

In Fig. 1 an illustrative example of data from three individuals
is shown. As can be seen, the accumulative usage is quite
similar which indicates that the individuals are used similarly,
and therefore predictions about their failure times should be
similar. For example, when considering predictions based on
usage up to age ¢ = 1, the accumulative usage is around 1 for
all individuals, and since the failure times are 2, 2.5, and 3 a
reasonable conclusion would be that a failure sometime between
2 and 3 time-units is likely for an individual that is used in this
way.

However, when looking at the snapshots, it can be seen that
the blue individual has 5 snapshots around age ¢ = 1, while



the others only have 1. This means that if a model is trained
using this data, the failure time of the blue individual will be
overrepresented and most likely the resulting model will predict
failure times closer to 2 time units.

3 >
) -

— 2 b
=
53

14

(U T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

Fig. 1. An illustrative example showing the accumulative usage
z(t) for three individual. Included are also their respective
failure times marked by crosses, and times from which
snapshots are available marked with circles.

Since all individuals have the same number of snapshots in total,
it can also be concluded that the problem in this example is how
the snapshot times are distributed and not how many there are
from each individual.

4.2 Homogeneously Sampled Datasets

A conclusion that can be made from the previous example is that
for any time ¢p > O the number of snapshots from a time close
to tg, say between tg — At and tg + At for some At, should
be similar for all individuals, otherwise the predictions will be
biased towards individuals with more snapshots around ¢.

By taking the argument above to the extreme, and saying that
for any ty > 0 and At > 0 the number of snapshots between
to — At and ty + At should be the same from all individuals
we get the following requirement: if individual 7 has a snapshot
from time ¢ then so must individual j, since otherwise, subject ¢
would have more snapshots around time ¢ for some At > 0. It
follows that the data from any individual must contain a snapshot
from time ¢ and that the data must be on the form

D= {<Ti’ 0i, { (i (877), £7°) ﬁl) }11

M
k=1"

(18)

for some sequence of snapshot times (¢7°)

As discussed in Section 3.2, it is often not possible or desirable
to have snapshots from times after the individual has failed, and
therefore it might be necessary to relax the condition slightly
and say that the number of snapshots from all individuals that
have not failed before time ¢q + At should have the same number
of snapshots between tg — At and tg + At. This results in that
all individuals do not need to have a snapshot from all ¢; for
k=1,2,..., M, butitis enough that they have snapshots from
all times smaller than their failure time, i.e. for all ¢7° < 7.

Based on the discussions above we define the following.

Definition 1. (homogeneously sampled). A dataset (18) is ho-
mogeneously sampled if there is a sequence t7° < 15° < -+ <
t37 of snapshot times such that

D= {(T“ 0i, {(mi(tis)vtzs)}i\ﬁl) }N

1=

19)

where either all M; are the same (and equal to M) or M; =
max{k e {1,2,... M}t <7}

This definition aims to specify when a dataset is suitable for
maximum quasi-likelihood training; with the motivation that if
it is not, the problems discussed in Section 4.1 might arise.

4.3 Homogeneous Resampling of a Dataset

If a dataset is not homogeneously sampled it is natural to try to
transform it into a homogeneously sampled dataset, and one way
to do this is to simply resample the dataset as described below.

When the snapshots are based on the accumulative data (8),
x(t) is a continuous function and by interpolating the snapshots
from individual 7 an estimate &;(t) of x;(t) is obtained for all
times ¢ between the first and last snapshot. While the type of
interpolation scheme to use probably depends on the situation,
we have in this work used linear interpolation.

By defining a sampling grid G = {g¢1,92,...,9m}, and
resampling each individual on G, a dataset that is by design
homogeneously sampled is obtained. However, it is not always
possible to resample all individuals on each point in G since
interpolation can only be done between the first and last snapshot,
and G might contain points outside this interval. Instead, by
letting ; be the index of all sampling points g € G on which
individual 7 can be resampled on, the resampled dataset can be
written
N

D(G) = { (73, 00, {(#i(98): 98) Yrer,) } oy - (20)
By comparing with (19) we see that if, for all individuals, I; =

{1,2,..., M;} with M; as in (19), then D(G) is homogeneously
sampled.

The condition that I; = {1,2,..., M;} has two implications:
The first is that all individuals must have a snapshot from a time
before the first sampling point in G, so that 1 € I;. The second is
that all individuals have a snapshot from a time later than either
the last sampling point in GG (corresponding to all M; the same
and equal to M), or the last sampling point in G that is smaller
than the failure time of the individual (corresponding to when
M; depends on the failure time in (19)). In practice, however,
we have found that it is often enough that most individuals can
be sampled uniformly on the selected grid.

4.4 Epochwise Random Resampling

Consider a grid G of size M points. If M is small, it is likely
that the resulting model will only be accurate for predictions
based on snapshots from times around the points in GG, which
can be interpreted as a type of overfitting to the points in G.
On the other hand, if M is large, the dataset will become large
making the training slow. A compromise must therefore be made
when choosing G.

A way to circumvent this compromise is to use a smaller grid,
but in each epoch change the grid. That is, in epoch n use the

grid
G = {98, 0P} @

In this way, by using different GG,, in each epoch, the resulting
model will not be overfitted for a particular grid; at the same
time, the size of the dataset will be kept small.

Generating G, can of course be done in many ways. To train a
model that can be used for predictions based on snapshots from
times between ¢5°. and t>° ., we propose to generate the grid

points as " e
T — {38,
g](c”) — tf?fin + mamM min u](;l) (22)
where ufcn) are independent and uniformly distributed between

zero and one.
4.5 Training for Remaining-Life Predictions

So far we have only discussed how to train a model to predict the
total life of the component, and not to predict the remaining life.



However, this is simply done by realizing that when considering
the model S™ in (11) for the remaining life, the likelihood 14 for
a single snapshot becomes

o (Ti — tisti, mi),
L (9 | Tia(sia (x(tl)atl)) = {g%((:—l _ t“tz,iz))7

0=1
0=0"

(23)
where 7; — t; is the remaining life at the time of the snapshot.
This means that by simply exchanging 7; for 7; — ¢; ; when cre-
ating the dataset (17) and applying maximum quasi-likelihood
training, a model for the remaining life is trained.

5. A SIMULATED EXAMPLE

In this section, a simulated dataset is used as an example
where the properties of maximum quasi-likelihood training are
investigated.

We consider a system whose usage U is constant over time,
but varies among individuals as U ~ Uniform(1,5). For a
specific usage U = u, the failure times are modeled using a
Weibull distribution with shape parameter k£ = 2 and u as scale
parameter, giving the survival function

Stiu) = P(T >t | U =u)=e )’ (24)
To model the operational data for a given usage u, the accumu-
lative usage

¢
z(t) = / wdr = ut (25)
0

is used. This means that the operational data of the population is
described by

X (t) = Ut ~ Uniform(t, 5¢). (26)

5.1 Dataset Generation

To simulate a population of IV individuals, for each ¢ a usage
u; is generated from Uniform(1,5) and a failure time is then
generated from the distribution in (24). Right-censoring is
introduced by generating a censoring time from a Uniform(0, 3)
distribution, and if the failure time is larger than the censoring
time the individual is censored. Since x;(t) is linear in ¢ for all
individuals, only one snapshot from the time of failure is needed
since x;(t) can be reconstructed from this when the dataset is
resampled.

5.2 True Usage-Specific Survival Function

A benefit of this example is that the true usage-specific survival
function can be determined. For ¢y > 0 it becomes

S(tyx,to) =P (T >t | X(tg) =) =P (T >t]|teU =x)

:P(T>t|U:x>:5<t;m):e(tﬁ'ﬂ)
tO to

(27)
and
S(t + to; z, to)
S(tor.ta)
For ¢, = 0, on the other hand, x;(ty) = 0 and no information
about the individual is provided, instead, we have
St;x=0,tg=0)=P(T >t| X(0)=0)
[ et U=y ®
1 5—-1

i.e. the population average (which does not have a convenient
expression). This also means that there is a discontinuity in
S t;l‘,to) attg = 0.

S”(tx,t) = ~(ti5) +o® (28)

5.3 Resampling the Dataset

The fact that there is a discontinuity in S(¢;x, ) at to =
0 makes it difficult to train a network to produce accurate
predictions around t; = 0. For this reason, a lower limit
t3s., = 0.1 is put on the prediction time t;. Since most
individuals tend to fail before one time unit an upper limit
t3.c = 11s also used. This means that only snapshot times

between these two limits need to be considered.

Both fixed resampling and epochwise resampling were used to
train models. For fixed resampling an equidistant grid between
tss. and t7° . was used and for epochwise random resampling

min ‘mazx . T
the sampling 1n (22) was used with ¢7°. and ¢;7 = as the limits.

max

5.4 Training and Network Architecture

During training, the dataset was first split into two separate
datasets, one for training and one for validation; 85 % of the
individuals were used for training and the rest for validation, note
that the split was done based on individuals so that snapshots
from the same individual is not present in both the training and
validation data. Each model was trained for 200 epochs using the
Adam optimizer; however, the state of the model on the epoch
with the lowest validation loss was used in the end.

It was found that a small network with only two layers of 32
neurons each is sufficiently expressible for this type of data.
Dropout was also evaluated, but it was found that it did not
improve the result. 15 different learning rates between 10~2
and 0.25 following a geometric progression were evaluated.
Since there are stochastic elements in the training 40 different
randomly generated representations of each dataset were evalu-
ated and the learning rate that performed best on average was
selected.

To evaluate the models a separate dataset for testing of 500
individuals was utilized. All 40 models for each representation
of the dataset were evaluated and the mean of the loss was noted.

5.5 Results

Fig. 2 the result from training models on datasets with a varying
number of individuals, different numbers of samples in the
resampling, and for both fixed sampling and epochwise random
resampling. Here it can be seen that increasing the number of
samples (reducing the sampling time) improves the result, at
least until some point. This holds both for fixed resampling and
epochwise resampling; however, epochwise resampling is less
sensitive to the number of samples and always performs better
than fixed resampling for the same amount of data. It can also
be seen that increasing the number of individuals improves the
result which indicates consistency.

In Fig. 2 all data is homogeneously sampled and, as discussed
above, the results are as expected. In Fig. 3 an example of
models trained on data that is not homogeneously sampled
is shown. The green line in this figure comes from models
trained on a dataset consisting of the union of two datasets
both of size 500 individuals and equidistantly sampled, but
one of them has been sampled 10 times more densely. As can
be seen, the performance of the models trained on the mixed
datasets is closer to the performance of the models trained on the
homogeneously sampled data from 500 individuals, even though
the total number of individuals in this data is 1000 individuals.
A logical explanation for this is that since the 500 individuals
that are sampled with higher frequency are over-represented in
the data, the predictions from the resulting model will be similar
to a model trained on the data from these 500 individuals.
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2. Results from models trained on datasets of three
different sizes, for different numbers of samples in the
resampling, and for both fixed sampling and epochwise
random resampling. The results are shown both as a
function of the sampling time (distance between two
samples in the sampling grid), and total size of the training
data; since for epochwise resampling, the grid varies the
mean is used in both cases. The test loss is the mean loss
for the 40 models evaluated on the test set as described in
Section 5.4

6. STARTER BATTERY FAILURE DATA

Fig.

In this section, an experimental dataset consisting of starter
battery failure times, from a fleet of around 25,000 vehicles, is
used to evaluate the methodology on experimental data.

6.1 Description of the Dataset

The dataset has a censoring rate of 74 %, meaning that a failure
was only observed for 26 % of the vehicles. The snapshots in this
data set consist of operational data that is aggregated over time
in the vehicles’ control units and stored during specific times
during the vehicles’ lifetime, for example when the vehicle
visits a workshop. The frequency of which data is stored for a
specific vehicle is fairly constant over time, but varies greatly
from vehicle to vehicle; from a few snapshots per year to one
snapshot per week.

The information in each snapshot is based on various signals
available in the vehicles’ control system selected by experts to be
informative for predicting battery failures; for example, mileage,
engine load, and number of engine starts. Most of the signals
are stored as histograms indicating the amount of time the signal
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Fig. 3. Results from models trained using homogeneously

sampled datasets as well as the mixed dataset containing
two different sampling densities.

has spent in different intervals. For more information about the
dataset see Holmer et al. (2023); Voronov (2020).

6.2 Training

The dataset was first split into three parts in the conventional
way: 70 % for training, 15 % for validation, and 15 % for testing.
To make sure that data from a specific vehicle only ends up in
one of the datasets the split was done based on the number of
vehicles in the datasets.

The same training as described in Section 5.4 was used for this
dataset as well, but with a hyperparameter search over learning
rate, number of nodes per layer, and amount of dropout, based
on the search spaces in Table 1.

Parameter [ Search space

70.001, 0.00215, 0.00464, 0.01, 0.0215, 0.0464, 0.1}
{64,128,256}
{0 %,10 %, 25 %, 50 %}

Learning rate
Nodes per layer
Dropout

Table 1. Search spaces used in the hyperparameter
search.

In total 7 different models were trained. The first two models are
models trained for a specific prediction time of one respective
two years, which are trained using a single snapshot from that
time from each vehicle; this means that the training data for
these models are independent and the conventional maximum
likelihood training can be used. The next three models are all
based on resampled versions of the dataset with varying numbers
of samples in the resampling; all were equidistantly sampled
between 0.5 and 2.5 years, and the number of samples was 4,
5, and 12. The last model was trained using the original dataset
without any resampling, but only using snapshots from times
between 0.5 and 2.5 years.

6.3 Evaluation

To evaluate the models three different resampled versions of the
test set were evaluated using two different metrics.

Two of the test sets were created by resampling the original
test set to only include data from one year and two years,
respectively; and a third dataset was created by resampling the
dataset using 15 random samples based on (22).

As an evaluation metric the quasi-log-likelihood was used, which
for the test sets resampled on a single time becomes a proper



likelihood. As an additional evaluation metric, the Brier score
was used, which is defined for the dataset (17) as

XN:% (>t} (1= (5255 2 (65)))?
M, G(t)
Lz >t50=13 565855 i (152))2

1 4=1 j=1
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where G is the Kapplan-Meier estimate of the censoring distri-
bution. Since the Brier score is a function of time, the results are
presented in terms of the integrated Brier score defined as

1 max; T;
J t
max; 7; A fBS( )
which is evaluated numerically.
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6.4 Results

This section contains possibly sensitive data and will be made
available in the final version.

7. CONCLUSION

This paper proposes a methodology for defining and training
data-driven usage-specific survival models based on continu-
ously gathered operational data. The models can be used to
predict the remaining life of a component based on its usage
history and as such fit well into many predictive maintenance
applications.

The methodology is based on conventional neural network-based
survival models that are trained using data that is continuously
gathered and stored at specific times, called snapshots. The
fact that the data can contain more than one snapshot from a
specific individual means that the standard maximum likelihood
training can not be directly applied since the data is not
independent. However, the papers show that if the data is in a
specific format where all snapshot times are from the same time
for all individuals, called homogeneously sampled, maximum
likelihood training can be applied and produce desirable results.

In many cases, the data is not homogeneously sampled and
in this case, it is proposed to resample the data to make it
homogeneously sampled. The results from applying this to a
dataset of starter battery failures indicate that this is a promising
approach. However, the results also show that the number of
samples that the dataset is resampled with is an important
parameter; it should be chosen large enough to produce good
results, but this also increases the size of the dataset which
makes training slow. To reduce the number of samples needed
to produce good results it is also proposed that, instead of
resampling the dataset once before the training starts, randomly
resample the dataset at the start of each epoch during the training.
Randomly resampling the dataset on each epoch is shown to
greatly reduce the number of samples needed to produce the
same results as that obtained from only resampling the dataset
once.
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