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Abstract

The field of numerical algebraic geometry consists of algorithms for numerically solving
systems of polynomial equations. When the system is exact, such as having rational
coefficients, the solution set is well-defined. However, for a member of a parameter-
ized family of polynomial systems where the parameter values may be measured with
imprecision or arise from prior numerical computations, uncertainty may arise in the
structure of the solution set, including the number of isolated solutions, the existence
of higher dimensional solution components, and the number of irreducible components
along with their multiplicities. The loci where these structures change form a stratifica-
tion of exceptional algebraic sets in the space of parameters. We describe methodologies
for making the interpretation of numerical results more robust by searching for nearby
parameter values on an exceptional set. We demonstrate these techniques on several
illustrative examples and then treat several more substantial problems arising from the
kinematics of mechanisms and robots.

1 Introduction

Numerical algebraic geometry concerns algorithms for numerically solving systems of polyno-
mial equations, primarily based on homotopy methods, often also referred to as polynomial
continuation. Reference texts for numerical algebraic geometry are [6, 44], and software
packages that implement its algorithms are available in [5, 9, 27, 48]. Built on a founda-
tion of methods for finding all isolated solutions, the field has grown to include algorithms
for computing the irreducible decomposition of algebraic sets along with operations such as
membership testing, intersection, and projection. The basic construct of the field is a witness
set, say W , in which a pure D-dimensional algebraic set, say X ⊂ Cn, is represented by a
structure having three members:

W = {f, L,W} (1)

where f : Cn → Ck is a polynomial system such that X is a D-dimensional component of
V (f) = {x ∈ Cn | f(x) = 0}, L : Cn → CD is a slicing system ofD generic linear polynomials,
and W = X ∩ V (L) is a witness point set for X. Given a witness set, one can sample the
set it represents by moving its slicing system in a homotopy. Given witness sets for two
components, one can compute their intersection, obtaining witness sets for the components
of the intersection [23]. A witness set can be decomposed into its irreducible components
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using monodromy [41] to group together points on the same irreducible component and
using a trace test [8, 10, 17, 28, 42] to verify when this process is complete. Algorithms built
on these and related techniques compute a numerical irreducible decomposition of V (f),
producing a collection of witness sets, one for each irreducible component. In a similar
fashion, one may construct pseudo-witness sets for projections of algebraic sets [19, 20],
which is the geometric equivalent of symbolic elimination. Altogether, using algorithms for
intersection, union, projection, and membership testing, one can represent and manipulate
constructible algebraic sets.

Applications of algebraic geometry often involve parameterized families of polynomial
systems of the form f(x; p) : Cn × Cm → Ck, where x is an array of variables and p is an
array of parameters. For example, in kinematic analysis, x may be variables describing the
relative displacement at joints between parts while p may describe the length of links or the
axis of a rotational joint. In kinematic synthesis, where one seeks to find a mechanism to
produce a desired motion, these roles may be interchanged. The long history of research
in kinematics and its applications to mechanisms and robotics is extensive; [38, 52] provide
useful overviews. In multi-view computer vision, the variables of a scene reconstruction
describe the location of objects and cameras in three-dimensional space while the parameters
are the coordinates of features observed in the camera images [1, 13, 24, 30]. In chemical
equilibrium, concentrations are variables and reaction rates are parameters [34, Chap. 9]
and [12, 37]. In short, in a single instance of the family, variables are the unknowns while
parameters are given, and the parameter space defines a family of problems having the
same polynomial structure. In the simplest case, the parameters are merely the coefficients
of polynomials with a fixed set of monomials while, in many applications, the coefficients
are often polynomial functions of the parameters. In general, one can consider a parameter
space that is an irreducible algebraic set or, with minor additional conditions, even a complex
analytic set [36]. However, for simplicity, we will assume here that the parameter space is
the complex Euclidean space Cm.

The algorithms of numerical algebraic geometry compute using floating point arithmetic,
so function evaluations and solution points are consequently inexact. Furthermore, in ap-
plications, parameters may be values measured with imprecision or they may be numerical
values produced in prior stages of computation. In light of these uncertainties, the results
reported by the algorithms may require interpretation. For example, a coordinate of a solu-
tion point computed as near zero may indicate that there is an exact solution nearby with
that coordinate exactly zero, but this is not assured. Moreover, if the polynomial system is
given with uncertain parameters or with coefficients presented as floating point values, there
is some uncertainty about which problem is being posed. The interpretation of the solution
set, such as classifying how many endpoints of a homotopy have converged to finite solution
points versus how many have diverged to infinity, is subject to judgements about round-off
errors from inexactly evaluating inexactly specified polynomials. Similar judgements must
be made when categorizing singular versus nonsingular solutions, sorting solutions versus
nonsolutions when utilizing randomization, concluding that a witness set is complete via
a trace test, or counting multiplicities according to how many homotopy paths converge
to (nearly) the same point. Our aim in this article is to lay out methodologies for making
these interpretations more robust yielding robust numerical algebraic geometry.

In a parameterized family, the irreducible decomposition has the same structure for
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generic parameters, that is, the sets of parameters where the structure changes lie on proper
algebraic subsets of the parameter space. By structure, we mean features over the complex
numbers described by integers, such as the number of irreducible components, their dimen-
sions and degrees, and the multiplicity of the witness points. Within any irreducible alge-
braic subset of parameter space, there may exist algebraic subsets of lower dimension where
these integer features change again, creating a stratification of algebraic sets of successively
greater specialization. In an early discussion of this phenomenon, Kahan [26] called such
sets pejorative manifolds, but we prefer the more neutral term exceptional sets. Typically,
an analyst would like to know that the problem they have posed is close to an exceptional
set. Moreover, since such sets have zero measure in their containing parameter space, the
fact that a posed problem falls quite close to an exceptional set may indicate that this is
not a coincidence, and in fact, the exceptional case is the true item of interest. Moreover,
constraining the problem to lie on an exceptional set can convert an ill-conditioned problem
into a well-conditioned one [26].

Factoring a single multivariate polynomial presents a special case of the phenomena we
presently address. Wu and Zeng [53] note that factorization of such a polynomial is ill-posed
when coefficient perturbations are considered since the factors change discontinuously as the
coefficients approach a factorization submanifold. Their answer to this problem is to define
a metric for the distance between polynomials and a partial ordering on the factorization
structures. This partial ordering corresponds to algebraic set inclusion in the stratification
of factorization structures, and in the parlance of Wu and Zeng, each such set is said to
be more singular than any set that contains it. (Roughly, a polynomial with more factors
is more singular than one with fewer, and for the same degree, a factor appearing with
multiplicity is more singular that a product of distinct factors.) Wu and Zeng regularize
the numerical factorization problem by requiring the user to provide an uncertainty ball
around the given polynomial. Among all the possible factorization manifolds that intersect
the uncertainty ball, they define the numerical factorization to be the nearest polynomial
on the exceptional set of highest singularity. As the radius of the uncertainty ball grows,
the numerical factorization may change to one of higher singularity. So, while the problem
remains ill-posed at critical radii, it has become well-posed everywhere else. In the case of a
single polynomial of moderate degree, the number of possible specializations is small enough
that one can enumerate them all. This gives the potential of finding the unique numerical
factorization for most uncertainty radii, and a finite list of alternatives for any range of radii,
functionalities provided by Wu and Zeng’s software package.

For parameterized systems of polynomials, enumeration of the possible irreducible de-
composition structures is a formidable task, and we do not attempt it here. However, in the
process of computing a decomposition, there typically will be only a few places where the
uncertainty in judging how to classify points warrants exploration of the alternatives. The
same can be said for more limited objectives, such as computing only the isolated solutions of
a system by homotopy, where one may question the number of solution paths deemed to have
landed at infinity or observe a cluster of path endpoints that might indicate a single solution
point of higher multiplicity. If the uncertainty is due solely to floating point round-off and
we have access to either a symbolic description or a refinable numerical description of the
parameter values, then the correct judgement can be made with high confidence by increas-
ing the precision of the computation. Such results might then be certified either by symbolic

3



computations or by verifiable numerics, such as Smale’s alpha theory [39] (see also [7, Ch. 8])
or by techniques from interval analysis [32]. Our concern in this article is for cases where
there is inherent uncertainty in the parameters. This may arise from empirical measure-
ments of the parameters or, perhaps, the parameters arise from prior computations in finite
precision. We assume that the questionable structural element has been identified and our
task is to find the nearest point in parameter space where the special structure occurs.

After describing some robustness scenarios in Section 2, Section 3 provides a framework
for robustness in numerical algebraic geometry. This framework is then applied to a variety
of structures: fewer finite solutions in Section 4, existence of higher-dimensional components
in Section 5, components that further decompose into irreducible components in Section 6,
and solution sets of higher multiplicity in Section 7. We formulate the algebraic conditions
implied by each type of structure and use local optimization techniques to find a nearby
set of parameters satisfying them. After treating each type of specialized structure and
illustrating on a small example, we show the effectiveness of the approach on three more
substantial problems coming from the kinematics of mechanisms and robots in Section 8.
A short conclusion is provided in Section 9. Files for the examples, which are all computed
using Bertini [5], are available at https://doi.org/10.7274/25328878.

2 Robustness scenarios

Before presenting our approach to robustifying numerical algebraic geometry, we discuss
scenarios where proximity to an exceptional set leads to ill-conditioning.

To abbreviate the discussion, we use the phrase “with probability one” as shorthand for
the more precise, and stronger, condition that exceptions are a proper algebraic subset of
the relevant parameter space, where the parameter space in question should be clear from
context. Similarly, a point in parameter space is “generic” if it lies in the dense Zariski-open
set that is the complement of the set of exceptions. For example, the reference to “a system
of D generic linear polynomials,” L : Cn → CD, just after (1) means a system of the form
Ax+ b where matrix [A b ] has been chosen from the dense Zariski-open subset of CD×(n+1)

where V (L) intersects X transversely. In numerical work, we make the assumption that a
random number generator suffices for choosing generic points.

Our discussion utilizes the concept of a fiber product [45]. For algebraic sets A and B
with algebraic maps πA : A → Y and πB : B → Y , the fiber product of A with B over Y is

A×Y B = {(a, b) ∈ A×B |πA(a) = πB(b)}. (2)

One may similarly form fiber products between three or more algebraic sets. In this arti-
cle, the maps involved in forming fiber products will all be natural projections of the form
(x, p) 7→ p. Moreover, for polynomial systems f, g : Cn×Cm → Ck, if A and B in Cn×Cm are
irreducible components of V (f(x, p)) and V (g(x, p)), respectively, then the fiber product of
A with B over Cm is an algebraic set in V (f(x1, p1), g(x2, p2), p1−p2), a so-called reduction to
the diagonal which is isomorphic to an algebraic set in V (f(x1, p), g(x2, p)) ⊂ Cn × Cn × Cm.
In this situation, we refer to {f(x1, p), g(x2, p)} as a fiber product system. We note the con-
vention used throughout is that f(x, p) means that both x and p are considered as variables
which is in contrast to f(x; p) where x are variables and p are parameters.
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2.1 Multiplicity example

As a simple first example, consider solving V (f) for the single polynomial f = x2+2
√
2x+2,

which has the factorization (x +
√
2)2 and hence V (f) is the single point x = −

√
2 of

multiplicity 2. If instead of the exact symbolic form of f , we are given an eight-digit version
of it, say

f̃8 = x2 + 2.8284271x+ 2,

the Matlab roots command, operating in double precision, returns the two roots

x8 = −1.414213550000000± 0.000187073241389i

where i =
√
−1. Using these roots as initial guesses for Newton’s method, the solutions of

the sixteen-digit version of f ,

f̃16 = x2 + 2.828427124746190x+ 2,

are computed in double precision as

x16 = −1.414213553589213± 0.000000183520060i.

One may work the problem in increasingly higher precision by considering a sequence of
approximations aℓ of 2

√
2 rounded off to ℓ digits. For every ℓ, f̃ℓ = x2 + aℓx + 2 has a pair

of roots in the vicinity of −
√
2. A numerical package with adjustable precision can refine f̃ℓ

and a solution xℓ until |xℓ +
√
2| is smaller than any positive error tolerance one might set.

Whether a computer program using this refinement process reports two isolated roots or one
double root depends on settings for its precision and tolerance. If the same program is only
given f̃8 or f̃16, the roots stay distinct no matter what precision is used for Newton’s method.

We can stabilize this situation by asking if there exists a nearby polynomial with a double
root. That is, we ask if there is a polynomial near to f̃8 of the form f̂(x; p) = x2 + px + 2
with a root that also satisfies the derivative f̂ ′(x; p) = 2x + p. Solving V (f̂(x, p), f̂ ′(x, p))
in C2 with Newton’s method and an initial guess taking x = x8 and p = a8, returns

(x̂, p̂) = (−1.414213562373095, 2.828427124746190),

where the imaginary parts have converged to zero within machine epsilon. Moreover, the
Jacobian matrix for this structured system is clearly nonsingular:

J

[
f̂

f̂ ′

]
=

[
2x+ p x

2 1

]
≈

[
0 −1.414213562373095
2 1

]
.

The good conditioning of this double-root problem not only leads to a quickly convergent,
accurate answer, but also it could be used to certify the answer via alpha theory [39] or
interval analysis [32]. The acceptance of the double root as the “correct” answer depends on
whether p̂ is within the tolerance of the given data. After all, if the user really wants the roots
of f̃8 as given, then x8 is the better answer. However, if the coefficient on x is acknowledged
to be only known to eight digits, then the double root x̂ is the preferred answer.
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Suppose that we reformulate such that the parameter space has two entries, say

f̃(x; p) = x2 + p1x+ p2,

then we may search for the system with a double root nearest to f̃8 as

min ∥p− (2.8284271, 2)∥ subject to (f̃(x, p), f̃ ′(x, p)) = 0.

Using the Euclidean norm, the global optimum is attained at the nonsingular point

(x, p1, p2) = (−1.414213558248730, 2.828427116497461, 1.999999988334534),

which again shows that there is a polynomial f̃ near the given polynomial, f̃8, such that f̃
has a double root. This illustrates the flavor of the approach put forward in [53], although
they also treat multivariate polynomials, which have a richer set of factorization structures
than just multiplicity.

2.2 Divergent solutions

In numerical algebraic geometry, one of the most common objectives is to find the isolated
solutions of a “square” polynomial system, say f(x; p) : Cn×Cm → Cn, at a given parameter
point, say p = p∗. (Here, square means the number of equations equals the number of
variables.) A standard result of the field states that the number of isolated solutions is
constant for all p in a nonempty open Zariski set in Cm. In other words, the exceptions
are a proper algebraic subset of Cm, say P ∗. A key technique in the field uses this fact
to build homotopies for finding all isolated points. In particular, if we have all isolated
solutions, say S1 ⊂ Cn, of start system f(x; p1) for a generic set of parameters, p1, then
the homotopy f(x;ϕ(t)) = 0 for a general enough continuous path ϕ(t) : [0, 1] → Cm with
ϕ(1) = p1 and ϕ(0) = p0 defines #S1 continuous paths whose limits as t → 0 include all
isolated solutions of a target system f(x; p0), e.g., see [36] or [44, Thm. 7.1.1]. The conditions
for a “general enough” path are very mild; in fact, ϕ(t) = tp1 + (1 − t)p0 suffices with
probability one when p1 is chosen randomly, independent of p0. Many ab initio homotopies,
which solve a system from scratch, fit into this mold. For example, polyhedral homotopies
are formed by considering the family of systems having the same monomials as the target
system, so that the parameter space consists of the coefficients of the monomials [25, 29, 49].
After solving one f(x; p1) for generic p1 by such a technique, one may proceed to solve any
target system in the family by parameter homotopy. If the target parameters are special, i.e.,
if p0 ∈ P ∗, then f(x; p0) has fewer isolated solutions than f(x; p1) meaning that some solution
paths of the homotopy either diverge to infinity or some of the endpoints lie on a positive-
dimensional solution component. Diverging to infinity can be handled by homogenizing f
and working on a projective space [33]. Thus, paths that originally diverged to infinity are
transformed to converge to a point with homogeneous coordinate equal to zero.

When one executes a parameter homotopy using floating point arithmetic, the computed
homogeneous coordinate of a divergent path is typically not exactly zero but rather some
complex number near zero. This also occurs when p0 is slightly perturbed off of the special
set P ∗. Usually, one does not know the conditions that define the algebraic set P ∗, but even
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so, with a solution near infinity in hand, one may wonder how far p0 is from P ∗. Suppose
that due to round-off or measurement error, p0 is uncertain. Then it could be of high interest
to know whether the closest point of P ∗ is within the uncertainty ball centered on p0.

It often happens that more than one endpoint of a homotopy falls near infinity. In such
cases, it is of interest to find a nearby point in parameter space where all those points land
on infinity simultaneously. Let us assume that f(x; p) has been homogenized so that x has
homogeneous coordinates [x0, x1, . . . , xn] ∈ Pn, with x0 = 0 being the hyperplane at infinity.
To consider j > 1 points simultaneously, we must introduce a double subscript notation,
where point xi ∈ Pn has coordinates xi = [xi0, . . . , xin]. Point xi is a solution at infinity if
it satisfies the augmented system F (xi; p) = {f(xi; p), xi0} = 0, so sending j > 1 points to
infinity simultaneously requires

{F (x1; p), . . . , F (xj; p)} = 0, (3)

which is the jth fiber product system for the projection (x, p) 7→ p [45]. We note that the
isolated solutions to f(x; p) are not necessarily independent in the sense that imposing (3)
for j points may result in forcing more than j endpoints to lie at infinity.

2.3 Emergent solutions

When a parameterized system has more equations than unknowns, f(x; p) : Cn × Cm → Ck

with k > n, there may exist exceptional sets where the number of isolated solutions increases.
A familiar example is a linear system Ax = b where full-rank matrix A has more rows than
columns. For most choices of b in Euclidean space, the system is incompatible and has no
solutions, but for b lying in the column space of A, there will be a unique solution. In the
more general nonlinear case, one method for finding all isolated solutions is to replace f
with a “square” randomization Rnf : Cn × Cm → Cn wherein each of the n polynomials
of system Rnf is a random linear combination of the polynomials in f . Theorem 13.5.1
(item (2)) of [44] implies that, with probability one, the isolated points in V (Rnf) include
all the isolated points in V (f). After solving Rnf by homotopy, one sorts solutions vs.
nonsolutions by evaluating f at each solution of Rnf . If V (Rnf) contains nonsolutions for
generic parameters p ∈ Cm, then there may exist an exceptional set P ∗ ⊂ Cm where one
or more of these satisfy f to become solutions. Bertini’s Theorem [44, Thm A.8.7] tells us
that the nonsolutions will be nonsingular with probability one. However, if they emerge as
singular solutions of V (f) as p → P ∗, then they will be ill-conditioned near P ∗. Even if
the nonsolutions remain well-conditioned as solutions of Rnf , meaning that the Jacobian
matrix with respect to the variables J(Rnf) = Rn · Jf is far from singular, the problem of
solving f for parameters in the vicinity of P ∗ is ill-conditioned from the standpoint that the
number of solutions changes discontinuously as we approach P ∗. The numerical difficulty
arises in deciding whether or not f(x; p) = 0 when the floating point evaluation of f is near,
but not exactly, zero. For nonsingular emergent solutions, sensitivity analysis, e.g., singular
value decomposition, of the full Jacobian matrix with respect to both the variables and the
parameters can estimate the distance in parameter space from the given parameters to P ∗,
while alpha theory or interval analysis can provide provable bounds. In the case of singular
emergent solutions, multiplicity conditions will have to be imposed as well (see below). In
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any case, the simultaneous emergence of j solutions requires them to satisfy the jth fiber
product system {f(x1; p), . . . , f(xj; p)}.

2.4 Sets of exceptional dimension

Polynomial systems often have solution sets of positive dimension. This happens by force
if there are fewer equations than unknowns, but it can happen more generally as well.
Moreover, a polynomial system can have solution components at several different dimensions.
For x ∈ V (f), the local dimension at x, denoted dimx V (f), is the highest dimension of
all the solution components containing x. For a parameterized system with the natural
projection π(x, p) = p, the fiber above p∗ ∈ Cm is V (f(x; p∗)) and the fiber dimension
at point (x∗, p∗) ∈ V (f(x, p)) is dimx∗ V (f(x; p∗)). Define Dh as the closure of the set
{(x, p) ∈ CN × Cm | dimx V (f(x; p)) = h}, which is an algebraic set. A parameterized
polynomial system has a set of exceptional dimension wherever DH intersects Dh for H > h,
that is, exceptions occur at parameter values p∗ ∈ Cm where the fiber dimension increases.
The sets π(Dh) form a stratification of parameter space with each containment progressing
to higher and higher fiber dimension. Since the structure of the solution set changes every
time there is a change in dimension, each such change is another example of ill-conditioning.
As presented in [45] and discussed below in Section 5, fiber products provide a way of finding
exceptional sets.

In numerical algebraic geometry, sets of exceptional dimension can be understood as a
case of emergent solutions. Holding p constant, a witness point set for a pure D-dimensional
component of V (f(x; p)) is found by intersecting with a codimension D generic affine linear
space, LD(x). For D > n − k, this is accomplished by first computing the isolated solu-
tions of the randomized system {Rn−Df(x; p), LD(x)}, where Rℓf denotes ℓ generic linear
combinations of the polynomials in f and LD(x) is a system of D generic affine linear equa-
tions. When p∗ is on a set of exceptional dimension, nonsolutions emerge as solutions to f
as p → p∗. For a degree d irreducible component to emerge, d new witness points must
emerge simultaneously, which leads to a fiber product formulation of the same general form
as (3), with F now defined as F (x; p) = {Rn−Df(x; p), LD(x)}. While the d witness points
of a degree d component must satisfy the dth fiber product, it may happen that imposing
the jth fiber product for j < d suffices. In particular, a different bound based on counting
dimensions often comes into play first [45].

2.5 Exceptional decomposition

Once one finds a witness set W = {f, LD,W} for a pure D-dimensional component X
of V (f), it is often of interest to decompose X into its irreducible components, which are the
closure of the connected components of X after removing its singularities, X \Xsing. For a
single polynomial, irreducible components correspond exactly with factors, so irreducible de-
composition is the generalization of factorization to systems of polynomials. Ill-conditioning
occurs near a point in parameter space where a component decomposes into more irreducible
components than general points in the neighborhood. Again, we get a stratification of pa-
rameter space where components decompose more and more finely.
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Every pure-dimensional algebraic set satisfies a linear trace condition, and irreducible
components correspond with the smallest subsets of a witness point set W that satisfy the
trace test [8, 17, 28, 42]. Ill-conditioning occurs when a trace test for a proper subsetW1 ⊊ W
evaluates to approximately zero. We may then ask if there is a parameter point nearby where
that test is exactly zero, indicating that X decomposes, with W1 representing a lower degree
component. (The number of points in a witness set is equal to the degree of the algebraic
set it represents.) As presented in Section 6, since the trace test involves all the points W1

simultaneously, a kind of fiber product system ensues.

2.6 Exceptional multiplicity

Our opening example of a single polynomial with a double root generalizes to systems of
polynomials. As we approach a subset of parameter space where witness points merge, the
components they represent coincide, forming a component of higher multiplicity. When
we speak of the multiplicity of an irreducible component, we mean the multiplicity of its
witness points cut out by a generic slice. However, when randomization is used to find
witness points of V (f), f(x) : Cn → Ck at dimensions D > n − k, the multiplicity of
a witness point as a solution of {Rn−Df(x), LD(x)} may be greater than its multiplicity
as a solution of {f, LD(x)}, with equality only guaranteed for either multiplicity 1, that
is, for nonsingular points or when the multiplicity with respect to the randomized system
is 2 [44, Thm. 13.5.1]. Section 7 discusses in more detail how multiplicity is defined in terms
of Macaulay matrices and local Hilbert functions. For the moment, it suffices to say that the
Macaulay matrix evaluated at a generic point of an irreducible algebraic set reveals the set’s
local Hilbert function and multiplicity, and provides an algebraic condition for it. As such,
we again get a stratification of parameter space associated with changing the local Hilbert
function and increasing the multiplicity.

Since every generic point of an irreducible algebraic set has the same multiplicity, the
conditions necessary to set the multiplicity of a component may be asserted for several
witness points simultaneously. As in the previous cases, asserting an algebraic condition for
several points simultaneously is a form of fiber product.

2.7 Summary

Each case discussed above—divergent solutions, emergent solutions, exceptional dimen-
sion, exceptional decomposition, and exceptional multiplicity—can lead to a kind of ill-
conditioning wherein small changes in parameters result in a discrete change in an integer
property of the solution set. Given a parameterized polynomial system f(x; p) along with
parameters near such a discontinuity, one may consider variations in the parameters and pose
the question of finding the nearest point in parameter space where the exceptional condition
occurs. In each case, imposing the exceptional condition on several points simultaneously
results in a fiber product system. In particular, when the exceptional condition applies to an
irreducible component of degree d > 1, it automatically applies to a set of d witness points,
and consequently, fiber products are key to robustifying numerical irreducible decomposition.
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3 Robustness framework

As described in Section 2, the key tool for robust numerical algebraic geometry is fiber
products [45]. In order to motivate the notation, we first consider a simple example of
f(x; p) = p1x+p2. Of course, for general p ∈ C2, V (f(x; p)) consists of a single point, namely
x = −p2/p1. Suppose that one aims to compute a parameter point p so that V (f(x; p)) = C,
which we trivially know for this problem is simply p = 0. From the generic behavior of f ,
one knows that if V (f(x; p)) contains at least two distinct points, then it must contain all
of C. Thus, for generic c1, c2 ∈ C, this can be formulated as the fiber product system

F(x1, x2, p) =


p1x1 + p2
x1 − c1
p1x2 + p2
x2 − c2

 = 0. (4)

In F , the original parameters p are variables and the original variables are copied twice to
correspond with the two different solutions. For the projection map π(x1, x2, p) = p onto
the original parameters, π(V (F)) = {0}, which, substituting back into the original f shows
that V (f(x; 0)) = C as requested.

The basic idea is that each component system of the fiber product imposes a condition
on the parameters. In (4), the first component system cuts the original parameter space, a
plane, down to a line. The second component system then cuts the line down to a point.
Any additional component systems would not reduce the dimension further as the fiber
over p = 0 is C. The following formalizes this behavior. To allow flexibility, we allow for
auxiliary variables and constants arising from randomizations and slicing to be included in
each component system.

Theorem 3.1. Suppose that f(x; p) is a polynomial system and A ⊂ V (f(x, p)) ⊂ Cn×Cm is
an irreducible algebraic set. For auxiliary variables y and constants c used for randomization
and slicing, let Fc(x, y, p) be a polynomial system which imposes a condition on the parameter
space when (x, p) ∈ A. For a ≥ 0 and generic constants c1, . . . , ca, consider the fiber product
system Fa and projection map πa with

Fa(x1, . . . , xa, y1, . . . , ya, p) =

 Fc1(x1, y1, p)
...

Fca(xa, ya, p)

 and πa(x1, . . . , xa, y1, . . . , ya, p) = p.

(5)
Let ∆a ⊂ V (Fa) be an algebraic set of components to ignore such that there is a natural
inclusion of ∆a into ∆a′ for all a < a′. Let VA(Fa) denote the solution set upon the restriction
that (xj, p) ∈ A for j = 1, . . . , a. Then, exactly one of the following must hold:

1. dimπa(VA(Fa) \∆a) > dimπa+1(VA(Fa+1) \∆a+1) or

2. dimπa(VA(Fa) \∆a) = dim πj(VA(Fj) \∆j) for all j ≥ a.

Proof. Clearly, dimπk(VA(Fa) \∆a) ≥ dimπa+1(VA(Fa+1) \∆a+1) as the latter contains
the same conditions as the former. So, if Item 1 does not hold, then we must have that
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dimπa(VA(Fa) \∆a) = dim πa+1(VA(Fa+1) \∆a+1). Thus, the system Fca+1 did not cause
the parameter space to drop in dimension. By genericity, this must be true for any addi-
tional generic system and thus Item 2 holds.

Remark 3.2. A common example for A is to ignore base points as illustrated in Section 4.2.
A common example for ∆a to ignore are diagonal components, e.g.

{(x1, . . . , xa, y1, . . . , ya, p) | (xj, yj) = (xj′ , yj′) for j ̸= j′}.

The idea of Thm. 3.1 is to keep imposing the same condition until the dimension stabi-
lizes. However, one may want to impose various conditions, such as conditions on different
dimensions of the solution set. This can be accomplished by stacking such fiber product
systems. The only difference is that the number of component systems used to stabilize the
dimension from the generic parameter space may be smaller on proper algebraic subsets of
the parameter space. An example of this is presented in Section 8.3.

Corollary 3.3. With the basic setup from Thm. 3.1, suppose that one aims to impose r
conditions on the parameter space, where, for b = 1, . . . , r and a ≥ 0, each F b

a is as in (5).
Then, there exists a1, . . . , ar ≥ 0 such that the dimension of the closure of the image of the
solution set of

F =

 F1
a1
(x1, p)
...

F r
ar(xr, p)


after consistently removing components to ignore onto the original parameters p stabilizes.

Remark 3.4. In the multiplicity one case, Lemma 3 of [19] provides a local linear algebra
approach to compute the dimension of the image from a general point on the component.
From an approximation, one can utilize a numerical rank revealing method such as the sin-
gular value decomposition. When all else fails, one could use a guess and check method to
determine if the fiber product system described the proper parameter space.

Once one has a properly constructed fiber product system F , the next step is to recover
a parameter value p∗ nearby p̂, where p̂ is an approximation to an initial parameter value p̃,
such that p∗ and p̃ are exceptional parameter values lying in the projection of the solution
set V (F) onto the parameter space. Here, one must choose a notion of “nearby,” such as the
standard Euclidean distance or an alternative based on knowledge about uncertainty in p̂.
Over the complex numbers, one may utilize isotropic coordinates [50] so that the square of
the Euclidean distance corresponds with a bilinear polynomial. To keep notation simple, we
write this as the local optimization problem

p∗ = argmin ∥p− p̂∥ such that F(x, p) = 0. (6)

Although there are many local optimization methods and distance metrics, all examples be-
low use the square of the standard Euclidean distance with a gradient descent homotopy [14].
In such cases, F is constructed to be a well-constrained system and we aim to compute a
nearby critical point of (6) using a homogenized version of Lagrange multipliers:

G(x, p, λ) =
[

F(x, p)

λ0∇(∥p− p̂∥22) +
∑M

j=1 λj∇(Fj)

]
11



where ∇(q) is the gradient of q and λ ∈ PM . If x̂ such that F(x̂, p̂) ≈ 0, then the gradient
descent homotopy is simply

H(x, p, λ, t) =

[
F(x, p)− tF(x̂, p̂)

λ0∇(∥p− p̂∥22) +
∑M

j=1 λj∇(Fj)

]
(7)

where the starting point at t = 1 is (x̂, p̂, [1, 0 . . . , 0]). Note that such a gradient descent
homotopy is local in that it may not work in cases such as when the perturbation is too
large or a “nearby” component did not actually exist with the given formulation. In such
cases, one may need to consider alternative formulations, e.g., isotropic coordinates, as well
as consider alternative local optimization methods.

4 Projective space and solutions at infinity

The first structure to consider applying this robust framework to is to compute parameter
values which have fewer finite solutions.

4.1 Solutions at infinity

For a parameterized polynomial system f(x; p), one can consider solutions at infinity by con-
sidering a homogenization (or multihomogenization) of f with variables in projective space
(or product of projective spaces). Thus, solutions at infinity correspond with a homogenizing
variable being equal to 0. For simplicity, suppose that we have replaced f with a homoge-
nized version together with an affine linear patch to perform computations in affine space.
For a single condition in the spirit of Thm. 3.1, suppose that we are interested in reducing
the number of finite solutions by forcing solutions to be inside of the hyperplane at infinity
defined by x0 = 0. This yields the following.

Corollary 4.1. With the setup described above, Thm. 3.1 holds when applied to

F (x, p) =

[
f(x; p)
x0

]
.

In particular, this component system has no random constants nor auxiliary variables.

In the multiprojective setting, Cor. 3.3 would apply to having solutions in different hy-
perplanes at infinity, e.g., see Section 8.3.

For perturbed parameter values p̂, one is looking for solutions to f(x; p̂) = 0 for which
a homogenizing coordinate is close to 0. If there are s such points, then the number of
component systems forming the fiber product is at most s but could be strictly smaller
than s due to relations amongst the solutions.

4.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) =

[
x2
1 + p1x1 + p2

(x1 + p3)x2 + 2x1 − 3

]
. (8)
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For generic p ∈ C3, f(x; p) = 0 has two finite solutions. However, for the parameter values
p̃ = (−2.3716, 0.98608803,−0.5377), taken as exact, f has only one finite solution. The
reason for this reduction is that, for these parameter values, one of the two roots of the
first polynomial happens to be x1 = −p̃3, at which value the second polynomial evaluates to
0x2 + 2p̃3 − 3 ̸= 0. To demonstrate the robustness framework, we consider starting with a
perturbed parameter value p̂ obtained from adding to p̃ an error in each coordinate drawn
from a Gaussian distribution with mean 0 and standard deviation 0.01, denoted N (0, 0.012),
namely p̂ = (−2.3728, 0.9607,−0.5349) to 4 decimal places. If p̂ is treated as exact, then
f(x; p̂) = 0 has two finite solutions where one solution has large magnitude. So, we aim to
recover p∗ near p̂ with one finite solution by pushing the large magnitude solution to infinity.

The first step is to create a homogenization of f in (8) together with a generic affine
patch. Using a single homogenizing coordinate, say x0, this yields

f(x; p) =

 x2
1 + p1x0x1 + p2x

2
0

x1x2 + 2x0x1 + p3x0x2 − 3x2
0

c0x0 + c1x1 + c2x2 − 1

 (9)

where c ∈ C3 is chosen randomly. Note that, for every p ∈ C3, x = (0, 0, 1/c2) is a solution at
infinity so that we take A = V (f) \ ({(0, 0, 1/c2)} × C3) which is irreducible and consistent
with Thm. 3.1. For p̂, numerical approximations of the solutions are shown in Table 1 with
the first solution being the aforementioned point that is ignored. The second solution listed
has x0 near 0 and, thus, we aim to adjust the parameters so that it also lies on the hyperplane
at infinity defined by x0 = 0.

Table 1: Solutions to (9) for p̂ where i =
√
−1

Solution x0 x1 x2

1 0.0000 + 0.0000i 0.0000 + 0.0000i –0.2235 + 0.8253i
2 0.0020 – 0.0072i 0.0010 – 0.0037i –0.2263 + 0.8289i
3 –0.0368 + 2.7475i –0.0682 + 5.0964i 0.0198 – 1.4776i

Since there is only a single solution to push to infinity, Cor. 4.1 yields

F =


x2
1 + p1x0x1 + p2x

2
0

x1x2 + 2x0x1 + p3x0x2 − 3x2
0

c0x0 + c1x1 + c2x2 − 1
x0

 . (10)

Since there is only a single component system, there are no other components to ignore so
we take ∆ = ∅. For illustration purposes, one can easily verify that the closure of the image
of the projection onto p ∈ C3 of VA(F) is V (p23 − p1p3 + p2). Such a defining equation can
be determined using symbolic computation, e.g., via Grobner bases, or exactness recovery
methods from numerical values, e.g., [2].

13



The critical point system constructed using homogenized Lagrange multipliers yields

G =



x2
1 + p1x0x1 + p2x

2
0

x1x2 + 2x0x1 + p3x0x2 − 3x2
0

c0x0 + c1x1 + c2x2 − 1
x0

λ1(p1x1 + 2p2x0) + λ2(2x1 + p3x2 − 6x0) + λ3c0 + λ4

λ1(2x1 + p1x0) + λ2(x2 + 2x0) + λ3c1
λ2(x1 + p3x0) + λ3c2
λ0(p1 − p̂1) + λ1x0x1

λ0(p2 − p̂2) + λ1x
2
0

λ0(p3 − p̂3) + λ2x0x2


. (11)

Taking the second solution in Table 1 as x̂, a gradient descent homotopy (7) recovers a nearby
parameter value having the desired structure of only one finite solution, which is provided
in Table 2 to 8 decimal places. The exceptional set is two-dimensional, so we do not expect
to recover p̃ exactly, just a point nearby consistent with the variance of the distribution of p̂
around p̃.

Table 2: Initial (exact), perturbed (8 decimals), and recovered (8 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 –2.37160000 –2.37284227 –2.36891717
p2 0.98608803 0.96067280 0.96814820
p3 –0.53770000 –0.53492792 –0.52506952

Since the solution at infinity is singular, Remark 3.4 does not apply for computing dimen-
sions using linear algebra. However, if we instead utilize a 2-homogeneous formulation, there
are no base points. Moreover, Remark 3.4 applies due to the nonsingularity. In particular,
using two homogenizing coordinates, say x0 and x3, this yields

f(x; p) =


x2
1 + p1x1x0 + p2x

2
0

x1x2 + 2x1x3 + p3x0x2 − 3x0x3

□x0 +□x1 − 1
□x2 +□x3 − 1

 (12)

where □ represents a random complex number. Forming F = {f, x3}, the gradient descent
homotopy leads to the same results as in Table 2.

5 Witness points and randomization

The next structure to consider applying this robust framework to is to compute parameter
values which have solution components of various dimensions.

14



5.1 Witness points

As described in Section 2, pure-dimensional solution components can be described by wit-
ness sets. A key decision in numerical algebraic geometry, such as part of a dimension-by-
dimension algorithm for computing a numerical irreducible decomposition, e.g., [21, 40, 43],
is to determine if a solution to a randomized system Rf is actually a solution to the original
system f . For exact systems, this can be determined robustly by using the randomized sys-
tem to refine the point and evaluate the original system using higher precision. Moreover,
in the exact case, a nonsolution, i.e., a point satisfying Rf = 0 and f ̸= 0, can be certifiably
determined [22]. This becomes a precarious task for systems with error.

Since discussions about multiplicity are provided later in Section 7, consider here that one
is aiming for a pure D-dimensional component of degree d where each irreducible component
has multiplicity 1 with respect to f . This corresponds with a fiber product where the com-
ponent systems have d solutions along various linear spaces as summarized in the following.

Corollary 5.1. With the setup described above, Thm. 3.1 holds when applied to

Fc(x1, . . . , xd, p) =


f(x1; p)
Lc(x1)

...
f(xd; p)
Lc(xd)


where c contains the coefficients of Lc : Cn 7→ CD.

For perturbed parameter values p̂, one is looking for solutions to Rf(x; p̂) = 0 for
which f(x; p̂) evaluates to something close to 0. If one is considering witness points on
components of various dimensions, then Cor. 3.3 applies with stacking fiber product systems
resulting from Cor. 5.1 for each dimension under consideration.

5.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) =

[
x1x2 − 2x1 + p1x2 + p2
x2
1 − 2x1 + p1x1 + p2

]
. (13)

For generic p ∈ C3, f(x; p) = 0 consists of two isolated solutions. However, for p̃ = (1,−2),
the irreducible decomposition consists of the line V (x1 + 1) and the point (2, 2) as shown
in Fig. 1. Perturbing the parameters with N (0, 0.12) error yielded p̂ = (0.9876,−2.2542)
to 4 decimal places with the corresponding two isolated solutions also shown in Fig. 1.

When considering witness points on a one-dimensional component, the system under
consideration has the form

fR(x; p) =

[
Rf(x; p)
L(x)

]
=

[
x1x2 − 2x1 + p1x2 + p2 +□(x2

1 − 2x1 + p1x1 + p2)
□x1 +□x2 +□

]
(14)
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Figure 1: Solution sets for the initial and perturbed parameters

where each □ represents an independent random complex number with R = [1 □]. Solv-
ing fR(x; p̂), there is one solution for which f(x; p̂) is far from vanishing (called a nonsolution)
and one solution, call it x̂ with x̂1 in the vicinity of −1, for which f(x̂; p̂) is close to vanishing.
Thus, we aim to recover p∗ near p̂ for which this later point is an actual witness point for a
one-dimensional line. With this, the fiber product system becomes

F =

 x1x2 − 2x1 + p1x2 + p2
x2
1 − 2x1 + p1x1 + p2
c1x1 + c2x2 + c3

 (15)

and the critical point system using homogenized Lagrange multipliers yields

G =



x1x2 − 2x1 + p1x2 + p2
x2
1 − 2x1 + p1x1 + p2
c1x1 + c2x2 + c3

λ1(x2 − 2) + λ2(2x1 + p1 − 2) + λ3c1
λ1(x1 + p1) + λ3c2

λ0(p1 − p̂1) + λ1x2 + λ2x1

λ0(p2 − p̂2) + λ1 + λ2


. (16)

With (x̂, p̂), tracking a single path with a gradient descent homotopy (7) recovers a nearby
parameter p∗ listed in Table 3 to four decimal places. Recomputing a numerical irreducible
decomposition for f(x; p∗) yields a line and an isolated point as requested.

Table 3: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 0.9876 1.0992
p2 –2 –2.2542 –2.1984

We repeated this process by sampling 500 points from a bivariate Gaussian distribution
centered at the initial parameter values p̃ = (1,−2) with covariance matrix Σ = 0.12I2
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where each sample represents parameter values with error. In Fig. 2, the aforementioned p̃
is shown as a square, and p̂ and p∗ are triangles, while the additional sampled values and
recovered parameters are shown as circles. For this simple problem, it is easy to verify that
all recovered parameter values lie along the line V (2p1 + p2).

(a) (b)

Figure 2: (a) Illustration of recovering parameters for various perturbations including the
example summarized in Table 3; (b) Illustration using 500 samples

To visualize marginal histograms of the recovered parameter values from the 500 samples,
Fig. 3 shows the p1 and p2 coordinates along with an intrinsic coordinate parameterizing the
line with 0 corresponding to p̃ = (1,−2).

(a) (b) (c)

Figure 3: Histograms for (a) p1, (b) p2, and (c) intrinsic parameterizing coordinate for
recovered parameter values from 500 samples

For a standard multivariate Gaussian, all marginals are Gaussian. So, if we orthogo-
nally project a multivariate Gaussian centered at p̃ onto a linear space passing through p̃,
this will yield a Gaussian distribution in the linear space. In the case presented here, the
perturbations from the initial parameters are both generated as zero-mean with standard
deviation 0.1, so the recovered parameters along the line should be centered on the initial
parameters with that same standard deviation. Figure 3(c) is consistent with that expecta-
tion. Moreover, orthogonally projecting the distribution of the perturbed parameters onto
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the line perpendicular to V (2p1+p2) will also be distributed as Gaussian with standard devi-
ation 0.1. If one were given just the perturbed parameters and their accuracy, described as a
statistical distribution, one could calculate a confidence in the null hypothesis that the given
parameters are drawn from a distribution centered on an initial value for which V (f(x; p̃))
has one component that is a line. In this case of a single remaining degree of freedom in
parameter space, a Z-score for ||p̂− p∗|| would be informative.

We will not delve into statistical analyses for more general cases. Nevertheless, we remark
that if the exceptional set in parameter space is codimension s and the incoming parameters
are perturbed from the exceptional set with a normal distributionN (0, σ2I), then the squared
distance σ−2||p̂−p∗||2 is a chi-squared distribution with s degrees of freedom. (This assumes
that the exceptional set is locally smooth and σ is small enough that a local linearization of
the exceptional set is accurate on the scale of σ.) If the perturbations have a more general
normal distribution, say N (0,Σ), then it would be appropriate to change the norm used
in (6) to (p − p̂)TΣ−1(p − p̂) so that we are searching for a maximum likelihood estimate.
The same norm would then enter into a chi-square confidence estimate.

6 Traces and numerical irreducible decomposition

With Section 5 considering witness points, the next structure to consider applying this
robust framework to is computing parameter values which have solution components that
decompose into various irreducible components.

6.1 Reducibility

In a numerical irreducible decomposition, the collection of witness points is partitioned into
subsets corresponding with the irreducible components. One approach for performing this
decomposition is via the trace test [8, 17, 28, 42] and a key decision is to determine when
the linear trace vanishes. For exact systems, this can be determined robustly by computing
the linear trace to higher precision, but becomes an uncertain task for systems with error as
perturbations tend to destroy reducibility.

The form of the trace test that we will employ here is the second derivative trace test
from [8] as this can be employed locally. Suppose that {f, LD,W} is a witness set for a pure
D-dimensional component X of V (f). Since discussions about multiplicity are provided in
Section 7.1, suppose that each irreducible component of X has multiplicity 1 with respect
to f . Moreover, by replacing f with a randomization, we can assume that f : Cn → Cn−D.
Let Wr ⊂ W consist of r points. Then, there is a pure D-dimensional component X ′ ⊂ X
with X ′ ∩ V (LD) = Wr if and only if, for a general L′

D : Cn → CD and general α ∈ Cn,

α ·
r∑

j=1

ẅj = 0 (17)
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where {w1, . . . , wr} = X ′ ∩ V (L′
D), and ẇj and ẅj satisfy

[
Jf(wj)
JL′

D(wj)

]
· ẇj =

[
0
1

]
and

[
Jf(wj)
JL′

D(wj)

]
· ẅj = −


ẇT

j · Hessian(f1)(wj) · ẇj
...

ẇT
j · Hessian(fn−D)(wj) · ẇj

0

 .

Thus, for chosen slices and randomizing vectors, one can utilize fiber products to recover
reducibility of a component of degree r.

Corollary 6.1. With the setup described above, Thm. 3.1 holds when applied to

Fc(x1, ẋ1, ẍ1, . . . , xr, ẋr, ẍr, p) =



f(x1; p)
Lc(x1)[

Jf(x1; p)
JLc(x1)

]
· ẋ1 −

[
0
1

]
[
Jf(x1; p)
JLc(x1)

]
· ẍ1 +


ẋT
1 · Hessian(f1)(x1; p) · ẋ1

...
ẋT
1 · Hessian(fn−D)(x1; p) · ẋj

0


...

f(xr; p)
Lc(xr)[

Jf(xr; p)
JLc(xr)

]
· ẋr −

[
0
1

]
[
Jf(xr; p)
JLc(xr)

]
· ẍr +


ẋT
r · Hessian(f1)(xr; p) · ẋr

...
ẋT
r · Hessian(fn−D)(xr; p) · ẋr

0


αc · (ẍ1 + · · ·+ ẍr)


where c contains the coefficients of Lc : Cn → CD and αc ∈ Cn.

For perturbed parameter values p̂, one is looking for collections of points for which (17) is
close to 0. The situation in Cor. 6.1 covers the case when X has degree d and one is consider-
ing decomposing X into a degree r and degree d−r component (where 1 ≤ r ≤ d− r ≤ d). If
one is considering factorization into more than two components or the factorization of compo-
nents in different dimensions, then Cor. 3.3 applies with stacking fiber product systems result-
ing from Cor. 6.1. Moreover, in the multiplicity 1 case considered here, Remark 3.4 applies.

6.2 Illustrative example

Consider the parameterized family of polynomial systems

f(x; p) = p1+ p2x1+ p3x
2
1+ p4x

3
1+ p5x1x2+ p6x

2
1x2+ p7x

3
1x2+ p8x

2
2+ p9x

2
1x

2
2+ p10x1x

3
2 (18)
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from [53]. For generic p ∈ C10, f(x; p) = 0 defines a quartic plane curve. The problem
described in [53, Ex. 2] considers the parameters p̃ = (−30, 20, 18,−12, 12,−8, 0,−5, 3, 2)
with perturbation p̂ = (−30, 20, 18,−12, 12.000007,−8, 0.0000003,−5, 3, 2) so that

f(x; p̃) = (3x2
1+2x1x2−5)(x2

2−4x1+6) and f(x; p̂) = f(x; p̃)+0.0000003x3
1x2+0.000007x1x2

with the corresponding quartic plane curves illustrated in Fig. 4.

(a) (b)

Figure 4: Solution sets corresponding to the (a) initial and recovered parameters, and (b) per-
turbed parameters

For illustration, Table 4 considers the result of intersecting f(x; p̂) = 0 with the linear
space defined by 2x1 − 3x2 = 1. Clearly, we see that both ẅ1 + ẅ2 and ẅ3 + ẅ4 are close to
zero indicating that we should consider computing parameters p∗ near p̂ for which f(x; p∗)
factors into two quadratics via the second derivative trace test, i.e., apply Cor 6.1 with r = 2.

Table 4: Summary of solutions (8 decimals) satisfying f(x; p̂) = 2x1 − 3x2 − 1 = 0

j wj ẇj ẅj

1
1.15384590
0.43589727

0.08241763
−0.27838824

0.00546655
0.00364437

2
−0.99999993
−0.99999995

0.07142858
−0.28571428

−0.00546648
−0.00364432

3
1.64589862
0.76393241

−0.17082057
−0.44721371

0.13416408
0.08944272

4
8.35410056
5.23606704

1.17082044
0.44721363

−0.13416415
−0.08944277

Utilizing Remark 3.4, Table 5 shows the corresponding dimension of parameter space
based on the number of component systems utilized. In this case, one sees a stabilization of
the dimension of the parameter space to 6 using 4 component systems. That is, we expect to
recover parameters p∗ contained in a 6-dimensional parameter space. The resulting gradient
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descent homotopy (7) with homogenized Lagrange multipliers is a square system consisting
of the same number of variables and equations which is also listed in Table 5. Finally,
Table 5 also records the numerical irreducible decomposition of f(x; p∗) for the corresponding
recovered p∗. This column also indicates that 4 component systems are needed with the
recovered parameters (to 7 decimal places) provided in Table 6. For comparison, written
using double precision, the recovered factorization from [53] and p∗ is provided in Table 7.
The key difference is that [53] enforced p7 = 0 so that the third factor maintained the same
monomial structure as the exact system while the second derivative trace test only enforced
factorability. Hence, with the additional constraint, the recovered factorization in [53] is
further away (3.76 · 10−6) from p∗ than p̂ (3.15 · 10−6). Of course, one could impose the
additional parameter space condition, namely, p7 = 0, with the second derivative trace test
approach and recover the same factorization as [53].

Table 5: Summary for different component systems

Component Systems Dimension System Size Recovered Components

1 9 35 One component of degree 4
2 8 60 One component of degree 4
3 7 85 One component of degree 4
4 6 110 Two components of degree 2
5 6 135 Two components of degree 2

Table 6: Initial (exact), perturbed (exact), and recovered (7 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 –30 –30.0000000 –30.0000003
p2 20 20.0000000 19.9999994
p3 18 18.0000000 18.0000003
p4 –12 –12.0000000 –11.9999997
p5 12 12.0000070 12.0000057
p6 –8 –8.0000000 –8.0000019
p7 0 0.0000003 –0.0000014
p8 –5 –5.0000000 –5.0000002
p9 3 3.0000000 2.9999992
p10 2 2.0000000 2.0000006

7 Multiplicity and local Hilbert function

The final structure we consider for applying this robust framework to is to compute parameter
values which have solutions with specified multiplicity and local Hilbert function.
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Table 7: Comparison of factors (double precision)

Factors from [53]
−30.0000005908641

1− 0.600000000000000x2
1 − 0.400000158490569x1x2

1− 0.666666625730982x1 + 0.166666656432746x2
2

Factors from p∗
−30.0000003490653

1− 0.600000003568289x2
1 − 0.400000104966183x1x2

1− 0.666666639555509x1 + 0.166666672330951x2
2 − 7.87997843076905 · 10−8x1x2

7.1 Macaulay matrix

For a univariate polynomial u(x), a number x∗ is said to have multiplicity µ ≥ 0 if and
only if u(x∗) = u′(x∗) = u′′(x∗) = · · · = u(µ−1)(x∗) = 0 and u(µ)(x∗) ̸= 0. For a multivari-
ate polynomial system, derivatives are replaced with partial derivatives leading to different
ways of having a solution with multiplicity µ. One approach for computing multiplicity in
multivariate systems is via Macaulay matrices first introduced in [31] and utilized in various
methods such as [3, 11, 15, 16, 46, 51, 54] to name a few.

For α ∈ Zn
≥0, define

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, and ∂α =
1

α!

∂|α|

∂xα
.

For x∗ ∈ Cn, consider the linear functional ∂α[x
∗] from polynomials in x to C defined by

∂α[x
∗](g) = (∂αg)(x

∗)

which is simply the coefficient of (x−x∗)α in an expansion of g(x) about x∗. For a polynomial
system f : Cn → Ck and d ∈ Z≥0, the dth Macaulay matrix of f at x∗ is

Md(f, x
∗) =

[
∂α[x

∗]
(
(x− x∗)βfj

)
such that |α| ≤ d, |β| ≤ max{0, d− 1}, j = 1, . . . , k

]
where the rows are indexed by (β, j) while the columns are indexed by α. Define β ≤ α if
βa ≤ αa for all a = 1, . . . , n. By Leibniz rule,

∂α[x
∗]
(
(x− x∗)βfj

)
=

{
∂α−β[x

∗](fj) if β ≤ α,
0 otherwise.

For example, M0(f, x
∗) = f(x∗) and M1(f, x

∗) = [f(x∗) Jf(x∗)]. Moreover, there are
matrices Ad(f, x

∗) and Bd(f, x
∗) such that

Md+1(f, x
∗) =

[
Md(f, x

∗) Ad(f, x
∗)

0 Bd(f, x
∗)

]
. (19)

The local Hilbert function of f at x∗ is

hf,x∗(d) = dimnull Md(f, x
∗)− dimnull Md−1(f, x

∗)

where one defines dimnull M−1(f, x
∗) = 0. In particular, x∗ ∈ V (f) if and only if h(0) = 1.

Moreover, if x∗ ∈ V (f), then x∗ is isolated in V (f) if and only if there exists d∗ ≥ 0 such
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that hf,x∗(d) = 0 for all d > d∗ with multiplicity µ = dimnull Md∗(f, x
∗) =

∑d∗

d=0 hf,x∗(d).
Such a statement was used in [3, 51] to construct a local approach to decide if x∗ ∈ V (f)
was isolated or not.

The following shows how to impose a local Hilbert function condition.

Corollary 7.1. With the setup described above, let d ∈ Z≥0 and x∗ ∈ Cn. If hf,x∗(0) = 1
and hf,x∗(j) ∈ Z≥1 for j = 1, . . . , d, then f(x∗) = 0 and, for generic square unitary matrices
R1, . . . , Rd of appropriate sizes, the following collection of linear systems defined in terms of
matrices Σj and Λj has a unique solution for all j = 1, . . . , d:

[
Mj−1(f, x

∗) Aj−1(f, x
∗)

0 Bj−1(f, x
∗)

]
·

 Σj

Rj

[
Λj

Ih(j)

]  = 0 (20)

where h(j) = hf,x∗(j) and Ia is the a× a identity matrix.

Proof. The result follows immediately from (19), the definition of the local Hilbert function,

and [4, Thm. 2]. In particular, the matrix Rj

[
Λj

Ih(j)

]
has rank h(j) = hf,x∗(j) and thus (20)

yields h(j) independent null vectors that are not contained in the null space of Mj−1(f, x
∗)

as required. Uniqueness follows from [4, Thm. 2] where the total number of unknowns in Σj

and Λj is precisely the dimension of the corresponding Grassmannian.

In order to enforce various local Hilbert functions separately at several points, Cor. 7.1
can be applied individually for each point and then all such systems can be collected together.
To enforce multiplicity of a component, one applies a local Hilbert function condition at each
of the witness points separately with respect to the polynomial system and slicing system
together. Then, one simply takes fiber products resulting from the component systems in
Cor. 7.1 stacked together via Thm. 3.1 and Cor. 3.3. Additionally, if one aims to enforce a
Hilbert function of a zero-scheme, this approach can naturally be generalized following [15].

For perturbed parameter values p̂, one is looking for solutions to f(x; p̂) = 0 for which the
corresponding Macaulay matrices are nearly rank deficient. This can be determined using
numerical rank revealing methods such as the singular value decomposition to determine
appropriate null space conditions to apply.

7.2 Illustrative example

Similar to Section 5.2, computing a numerical irreducible decomposition of

f(x; p) =

[
f1
f2

]
=

[
x3
1 − 2p1x

2
1 − 2x2

1 + p21x1 + 4p1x1 − p21 − p2
x2
1x2 − 2x2

1 − 2p1x1x2 + 4p1x1 + p21x2 − p21 − p2

]
, (21)

with p̃ = (1, 1), has a line and an isolated point in the solution space. However, for this
system, the line has multiplicity two. When these parameters are perturbed, say with
N (0, 0.12) error yielding p̂ = (1.2346, 1.0089) to 4 decimal places, the point and line structure
breaks into three isolated points. In this case, we want to recover nearby parameters giving
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the special structure of a one-dimensional line with multiplicity two and an isolated point.
As in Section 5.2, we randomize to a single equation and add a slice. After solving

fR(x; p) =

[
Rf(x; p)
L(x)

]
=

[
f1 +□f2

□x1 +□x2 +□

]
= 0, (22)

we choose one of the two solutions near the one-dimensional line. To recover the multiplicity
at this component, we add the condition outlined in Cor. 7.1. In particular, as mentioned in
Section 2.6, since the randomized system having multiplicity 2 implies the original system
has multiplicity 2, we simply work with the randomized system with (20) corresponding to

JfR(x; p) ·R1 ·
[
λ
1

]
= 0. (23)

Hence, F consists of the polynomials in (22) and (23). Using a gradient descent homotopy (7)
with homogenized Lagrange multipliers yields the recovered parameters listed in Table 8 and
pictorially represented in Fig. 5.

Similar to Section 5.2, we repeated this process with 500 samples from a bivariate Gaus-
sian distribution centered at the initial parameter values p̃ = (1, 1) with covariance matrix
Σ = 0.12I2. The results of this experiment are summarized in Fig. 5. For this simple prob-
lem, it is easy to verify that all recovered parameter values lie along the parabola V (p21−p2).
Figure 6 shows histograms of the marginal distributions for p1, p2, and along an intrinsic
parameterization of the tangent line to the parabola at p̃.

Table 8: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 1.2346 1.0479
p2 1 1.0089 1.0980

8 Kinematic examples

The examples in Sections 4–7 were designed for illustrative purposes. The following considers
three examples derived from the field of kinematics.

8.1 Decomposable 4-bar coupler curve

Consider the 4-bar linkage given by the parameterized family of polynomial systems

f(x; p) =

 x2
1 + x2

2 − p21
(x3 − p2)

2 + x2
4 − p23

(x1 − x3)
2 + (x2 − x4)

2 − p24

 . (24)

For generic p ∈ C4, V (f(x; p)) is an irreducible sextic (d = 6) curve. It is known that p1 = p3
and p2 = p4 yields a parallelogram linkage and the solution set factors into a quadratic
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(a) (b)

Figure 5: (a) Illustration of recovering parameters for various perturbations including the
example summarized in Table 8; (b) Illustration using 500 samples

(a) (b) (c)

Figure 6: Histograms for (a) p1, (b) p2, and (c) intrinsic parameterizing coordinate along
tangent line for recovered parameter values from 500 samples

and quartic curve. Considering initial parameter values p̃ = (1, 2, 1, 2), we perturbed the
parameters with N (0, 0.012) error yielding p̂ = (1.0025, 2.0101, 1.0098, 2.0014) rounded to
four decimals. For illustration, Fig. 7 shows the solution set projected into (x1, x4) space.

For the perturbed parameter values p̂, the sextic curve does not factor, following Sec-
tion 6.2, linear traces are close to zero for collections of r = 2 and d−r = 4 points. Thus, we
aim to apply Cor. 6.1 to recover parameters p∗ near p̂ such that the solution set V (f(x; p∗))
factors into a quadratic curve and a quartic curve using the second derivative trace test.
Table 9 summarizes the results of applying Remark 3.4 to determine the number of compo-
nent systems needed, namely the dimension stabilizes with two systems. The corresponding
system sizes are also reported in Table 9, where the systems are square via homogenized La-
grange multipliers. Using a gradient descent homotopy (7) with two component systems, the
recovered parameters p∗ are reported in Table 10 to 4 decimals and one clearly sees the paral-
lelogram linkage structure is recovered. The resulting decomposable solution set V (f(x; p∗))
is illustrated in Fig. 7(a).
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(a) (b)

Figure 7: Projections of the 4-bar coupler curve in (x1, x4) space corresponding to (a) initial
and recovered parameters, and (b) perturbed parameters

Table 9: Dimensions and system size for different number of component systems

Component Systems Dimension System Size

1 3 53
2 2 102
3 2 151
4 2 200

8.2 Stewart-Gough platform

A Stewart-Gough platform consists of two bodies, a base and an end-plate, connected by six
legs as illustrated in Fig. 8. For j = 1, . . . , 6, the jth leg imposes a square distance dj between
point aj ∈ R3 of the base and point bj ∈ R3 of the end-plate. Letting “∗” denote quaternion
multiplication and letting v′ denote the quaternion conjugate of v, the leg constraints may
be written as follows, for j = 1, . . . , 6,

fj(e, g; a, b, d) = (aj ∗ a′j + bj ∗ b′j − dj)e ∗ e′ − e ∗ bj ∗ e′ ∗ a′j ∗ aj ∗ e ∗ b′j ∗ e′

+ g ∗ b′j ∗ e′ + e ∗ bj ∗ g′ − g ∗ e′ ∗ a′j − aj ∗ e ∗ g′ + g ∗ g′ = 0 (25)

Table 10: Initial (exact), perturbed (4 decimals), and recovered (4 decimals) parameter
values

Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

p1 1 1.0025 1.0062
p2 2 2.0101 2.0057
p3 1 1.0098 1.0062
p4 2 2.0014 2.0057
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where e, g are quaternions in a Study coordinate representation of the position and orienta-
tion of the end-plate. Hence, e, g must satisfy the Study quadric

Q(e, g) = g0e0 + g1e1 + g2e2 + g3e3 = 0. (26)

In this example, we set e0 = 1 to dehomogenize the system. For generic parameters
p = (a, b, d), this platform can be assembled in 40 rigid configurations over the complex
numbers. That is, the solution set of the parameterized polynomial system resulting from
the 6 leg constraints in (25) and Study quadratic in (26) consists of 40 isolated points. How-
ever, for p̃ reported in Table 12 in Appendix A derived from [18, Ex. 2.2], this platform moves
in a circular motion as illustrated in Fig. 8. In particular, this circular motion corresponds
to the solution set containing a quadratic curve. To apply the robustness framework, we
consider a slight perturbation using N (0, (10−9)2) error yielding p̂ in Table 12 for which the
platform becomes rigid.

Figure 8: A Stewart-Gough platform. The z = 0 plane (gray) contains the circular path (red)
corresponding to one point of the end-plate

Following Section 5.2, we aim to find p∗ near p̂ for which the solution set contains a
quadratic curve. First, we consider a randomization of the 6 leg constraints down to 5
conditions, the Study quadric, and a linear slice, namely

fR(e, g; p) =



f1 +□f6
f2 +□f6
f3 +□f6
f4 +□f6
f5 +□f6

Q
□e1 +□e2 +□e3 +□g0 +□g1 +□g2 +□g3 +□


. (27)
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For fR(e, g; p̂), there are two solutions for which the leg constraints in (25) are close to van-
ishing, consistent with a degree 2 component having 2 witness points, and 38 solutions which
are not close to vanishing. Using Cor. 5.1 with d = 2 to construct the fiber product system,
we apply Remark 3.4 which indicates 4 component systems are needed. The dimensions and
corresponding square system sizes via homogenized Lagrange multipliers are reported in Ta-
ble 11. Tracking the corresponding gradient descent homotopy (7), the recovered parameter
values p∗ are reported in Table 12 in Appendix A for which the corresponding Stewart-Gough
platform has regained its motion.

Table 11: Dimension and system size for different number of component systems

Component Systems Dimension System Size

1 40 72
2 38 102
3 36 132
4 35 162
5 35 192

8.3 Family containing the 6R inverse kinematics problem

The inverse kinematics problem for six-revolute (6R) mechanisms seeks to determine all
ways to assemble a loop of six rigid links connected serially by revolute joints. One formu-
lation [35, 47] sets the problem as a member of the following parameterized system of eight
quadratics using a 2-homogeneous construction:

f(x; a) =



f0(x; a)
f1(x; a)
f2(x; a)
f3(x; a)

x2
1 + x2

2 − x2
0

x2
5 + x2

6 − x2
0

x2
3 + x2

4 − x2
9

x2
7 + x2

8 − x2
9


, (28)

where fj has the form

fj(x; a) = aj0x1x3 + aj1x1x4 + aj2x2x3 + aj3x2x4 + aj4x5x7 + aj5x5x8

+ aj6x6x7 + aj7x6x8 + aj8x1x9 + aj9x2x9 + aj10x3x0 + aj11x4x0

+ aj12x5x9 + aj13x6x9 + aj14x7x0 + aj15x8x0 + aj16x0x9, (29)

with x0 and x9 as the homogenizing coordinates. In particular, this system is defined
on P4 × P4 with corresponding variable sets {x0, x1, x2, x5, x6} × {x3, x4, x7, x8, x9}. We de-
homogenize the system by solving on the affine patches defined by x1 = 1 and x3 = 1.
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Figure 9: Logarithmic plot of absolute values of homogenizing coordinates for the 64 solutions

With a consisting of 68 values, we take the parameters as the 32 values in a associated
with monomials that do not vanish at infinity, i.e., V (x0) ∪ V (x9), namely aj0, . . . , aj7 for
j = 0, . . . , 3. We fix as constants the 36 values in a associated with monomials that vanish
at infinity, namely aj8, . . . , aj16 for j = 0, . . . , 3. Table 13 in Appendix A contains the values
of these constants used in the computations. For generic parameters, the resulting system
has 64 finite solutions. However, for parameters that correspond with a 6R problem, the
system should only have 32 finite solutions. Thus, to utilize the robustness framework, we
truncated a ∈ C68 corresponding to an actual 6R problem using single precision. Hence,
the constants in Table 13 are listed in single precision and the parameter values in Table 14
are listed in both single precision (corresponding to the perturbed parameters) and double
precision (corresponding to the initial parameters).1 Solving the system with the perturbed
parameter values results in 64 points corresponding to finite solutions that are clustered
into three groups: 16 having |x0| close to zero, 16 having |x9| close to zero, and 32 having
both |x0| and |x9| far from zero as illustrated in Fig. 9.

First, suppose that we aim to recover parameters by forcing the 16 solutions with |x0|
close to zero to be at infinity, i.e., actually satisfy x0 = 0. The fiber product system is
constructed following Cor. 4.1. Since the solutions are not necessarily independent of each
other, we utilized Remark 3.4 applied to the system with 16 component systems and observed
that there were actually 4 unnecessary conditions, i.e., only 12 component systems in the
fiber product are necessary, which was confirmed by a gradient descent homotopy (7).

It is the same story if one aims to recover parameters by forcing the 16 solutions with |x9|
close to zero to be at infinity. So, now suppose that we aim to recover parameters by forcing
both sets of 16 solutions with either |x0| or |x9| close to zero to be at infinity. Then, applying
Remark 3.4, we see that these are not independent and only need 23 fiber products. Thus,
when pushing these 32 solutions to infinity, we take 12 for one of the infinities and only 11 for
the other. After adding homogenized Lagrange multipliers, this results in a square system
of size 423. Tracking the gradient descent homotopy (7) yields the recovered parameters
reported in Table 14 of Appendix A. Solving with the recovered parameters shows that
all 32 of these solutions are pushed back to infinity as illustrated in Fig. 10.

1See https://bertini.nd.edu/BertiniExamples/inputIPP_1024 for values in 1024-bit precision.
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(a) (b)

Figure 10: Absolute values of the homogenizing coordinates for (a) 16 solutions associated
with x0 = 0 and (b) 16 solutions associated with x9 = 0

9 Conclusion

After proposing a framework for robustness in numerical algebraic geometry based on fiber
products, this framework was applied to a collection of scenarios including fewer finite so-
lutions, existence of higher-dimensional components, components that further decompose
into irreducible components, and solution sets of higher multiplicity. For the cases consid-
ered here, with information about the questionable structural element already identified,
local optimization techniques applied to fiber products produced nearby points in param-
eter space where the special structure exists. Moreover, in all of the examples presented
here, we aimed to recover real parameter values using a gradient descent homotopy based
on homogenized Lagrange multipliers associated with the Euclidean distance. For nonreal
parameter values, one can utilize isotropic coordinates. Also, there are many other optimiza-
tion approaches one may use to recover parameter values on exceptional sets and these other
approaches could expand the size of the local convergence zone possibly allowing to recover
parameters from larger perturbations. Finally, one can adjust the distance metric used such
as one based on knowledge about the relative size of the parameters and their uncertainties.

Figures 3 and 6 provide histograms of the recovered parameters arising from perturba-
tions centered at a parameter value on an exceptional set. As described in Section 5.2,
perturbations using a Gaussian distribution will yield a Gaussian distribution when project-
ing onto a linear space. When projecting onto a nonlinear space, such as in Section 7.2,
this yields approximately a Gaussian distribution on the tangent space. Further statistical
analysis regarding recovered parameters is warranted.

Finally, we note that the codimension of an exceptional set in parameter space may be
less than the number of conditions one seeks to impose on the solution set. For example, in
the 6R problem of Section 8.3, one might naively expect the exceptional set for sending 32
points to infinity to be codimension 32, but in fact, it is codimension 23. While we have
found this result numerically, it raises the more general question of how such results can be
understood using the tools of algebraic geometry.
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A Appendix

The following provides tables associated with Sections 8.2 and 8.3.

Table 12: Initial (exact), perturbed (12 decimals), and recovered (12 decimals) parameters
Parameter Initial (p̃) Perturbed (p̂) Recovered (p∗)

a1x 0.0000 0.000000000251 0.000000000320
a1y 0.0000 0.000000001013 0.000000000982
a1z 0.0000 0.000000000980 0.000000000477
b1x 0.0000 –0.000000000200 –0.000000000269
b1y 0.0000 –0.000000000637 –0.000000000606
b1z 1.5000 1.499999998979 1.499999999482
d1 3.2500 3.249999999891 3.249999999724
a2x 1.0000 1.000000000136 1.000000000272
a2y 0.0000 –0.000000000753 –0.000000001236
a2z 0.2500 0.249999998300 0.249999998434
b2x 1.0000 1.000000001806 1.000000001671
b2y 0.0000 –0.000000000886 –0.000000000402
b2z 1.0000 0.999999999658 0.999999999525
d2 1.5625 1.562499999151 1.562499999240
a3x 1.0000 0.999999999712 0.999999999839
a3y 1.0000 0.999999999733 0.999999999918
a3z 0.0000 0.000000000109 –0.000000000010
b3x 1.0000 0.999999998769 0.999999998641
b3y 1.0000 0.999999999125 0.999999998940
b3z 1.5000 1.499999999413 1.499999999531
d3 3.2500 3.250000000389 3.250000000350
a4x –0.5000 –0.500000000115 –0.499999999750
a4y 0.5000 0.500000000098 0.500000000171
a4z 0.0000 0.000000000167 0.000000000893
b4x –0.5000 –0.499999998762 –0.499999999127
b4y 0.5000 0.499999999424 0.499999999351
b4z 1.0000 1.000000000799 1.000000000073
d4 2.0000 2.000000000415 2.000000000779
a5x 0.5000 0.500000000717 0.499999999761
a5y 1.5000 1.500000000939 1.500000000405
a5z 0.0000 0.000000000105 0.000000000622
b5x 0.5000 0.499999998819 0.499999999776
b5y 1.5000 1.499999999660 1.500000000194
b5z 1.0000 0.999999999603 0.999999999086
d5 2.0000 1.999999998435 1.999999998693
a6x –0.2500 –0.250000000190 –0.249999999931
a6y 1.2500 1.249999999364 1.250000000155
a6z 0.2500 0.250000002270 0.250000001515
b6x –0.2500 –0.249999999033 –0.249999999292
b6y 1.2500 1.250000001020 1.250000000228
b6z 1.0000 0.999999999682 1.000000000437
d6 1.5625 1.562500000179 1.562499999676
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Table 13: Constant values truncated to single precision

Constant Single Precision Constant Single Precision

a08 7.4052387·10−2 a28 1.9594662·10−1

a09 –8.3050031·10−2 a29 –1.2280341·100
a010 –3.8615960·10−1 a210 0.0000000·100
a011 –7.5526603·10−1 a211 –7.9034219·10−2

a012 5.0420168·10−1 a212 2.6387877·10−2

a013 –1.0916286·100 a213 –5.7131429·10−2

a014 0.0000000·100 a214 –1.1628081·100
a015 4.0026384·10−1 a215 1.2587767·100
a016 4.9207289·10−2 a216 2.1625749·100
a18 –3.7157270·10−2 a38 –2.0816985·10−1

a19 3.5436895·10−2 a39 2.6868319·100
a110 8.5383480·10−2 a310 –6.9910317·10−1

a111 0.0000000·100 a311 3.5744412·10−1

a112 –3.9251967·10−2 a312 1.2499117·100
a113 0.0000000·100 a313 1.4677360·100
a114 –4.3241927·10−1 a314 1.1651719·100
a115 0.0000000·100 a315 1.0763397·100
a116 1.3873009·10−2 a316 –6.9686807·10−1

36



Table 14: Initial (double precision), perturbed (truncated single precision), and recovered
(double precision) parameters

Parameter Single|Double Precision Recovered

a00 –2.4915068|11232596·10−1 –2.491506848757833·10−1

a01 1.6091353|78745045·100 1.609135324728055·100
a02 2.7942342|61384628·10−1 2.794234123846178·10−1

a03 1.4348015|88307759·100 1.434801543598025·100
a04 0.0000000|00000000·100 2.329107073061927·10−8

a05 4.0026384|20852447·10−1 4.002638399151275·10−1

a06 –8.0052768|41704895·10−1 –8.005276506597172·10−1

a07 0.0000000|00000000·100 1.339330350134300·10−8

a10 1.2501635|03697273·10−1 1.250163518996785·10−1

a11 –6.8660735|90276054·10−1 –6.866073304900900·10−1

a12 –1.1922811|66678474·10−1 –1.192281095708419·10−1

a13 –7.1994046|84195284·10−1 –7.199404481832083·10−1

a14 –4.3241927|30334479·10−1 –4.324192773933984·10−1

a15 0.0000000|00000000·100 1.358542627603532·10−8

a16 0.0000000|00000000·100 –1.039184803095887·10−9

a17 –8.6483854|60668959·10−1 –8.648385383114613·10−1

a20 –6.3555007|06536143·10−1 –6.355500280163283·10−1

a21 –1.1571992|24063992·10−1 –1.157199361445811·10−1

a22 –6.6640447|34656436·10−1 –6.664044436579097·10−1

a23 1.1036211|15850889·10−1 1.103620867759053·10−1

a24 2.9070203|22913935·10−1 2.907020211729024·10−1

a25 1.2587767|24480555·100 1.258776710166779·100
a26 –6.2938836|22402776·10−1 –6.293883708977084·10−1

a27 5.8140406|45827871·10−1 5.814040462810132·10−1

a30 1.4894773|41316300·100 1.489477303748473·100
a31 2.3062341|36720304·10−1 2.306233954795566·10−1

a32 1.3281073|07376312·100 1.328107268535429·100
a33 –2.5864502|59957599·10−1 –2.586450384436285·10−1

a34 1.1651719|51133394·100 1.165171916593329·100
a35 –2.6908493|58556267·10−1 –2.690849292497942·10−1

a36 5.3816987|17112534·10−1 5.381698714725988·10−1

a37 5.8258597|55666972·10−1 5.825859575485448·10−1
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