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Abstract. We investigate the full counting statistics (FCS) of a harmonically

confined 1d short-range Riesz gas consisting of N particles in equilibrium at finite

temperature. The particles interact with each other through a repulsive power-law

interaction with an exponent k > 1 which includes the Calogero-Moser model for

k = 2. We examine the probability distribution of the number of particles in a finite

domain [−W,W ] called number distribution, denoted by N (W,N). We analyze the

probability distribution ofN (W,N) and show that it exhibits a large deviation form for

largeN characterised by a speedN
3k+2
k+2 and by a large deviation function of the fraction

c = N (W,N)/N of the particles inside the domain and W . We show that the density

profiles that create the large deviations display interesting shape transitions as one

varies c and W . This is manifested by a third-order phase transition exhibited by the

large deviation function that has discontinuous third derivatives. Monte-Carlo (MC)

simulations show good agreement with our analytical expressions for the corresponding

density profiles. We find that the typical fluctuations of N (W,N), obtained from our

field theoretic calculations are Gaussian distributed with a variance that scales as Nνk ,

with νk = (2−k)/(2+k). We also present some numerical findings on the mean and the

variance. Furthermore, we adapt our formalism to study the index distribution (where

the domain is semi-infinite (−∞,W ]), linear statistics (the variance), thermodynamic

pressure and bulk modulus.
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1 Introduction

The study of many-particle low-dimensional quantum and classical systems have been a

subject of great theoretical and experimental interest. A very interesting observable that

unravels the equilibrium and non-equilibrium properties of low-dimensional systems is

the distribution of the number of particles in a given domain. This is often referred

to as the full counting statistics (FCS). Since FCS, the total number of particles in a

domain, is a global quantity it is experimentally more accessible [1, 2].

In the context of quantum systems, FCS has been studied in various physical

setups, including non-equilibrium Luttinger liquids [3], quantum transport [4–6], shot

noise [7–11], quantum dots [12, 13] as well as in quantum spin chains and fermionic

chains [14,15]. Furthermore, the entanglement entropy of a subsystem with its remaining

part, studied extensively in the context of the free Fermi gas, has been found to be

intricately connected to FCS [16–21]. This connection holds true, particularly in regimes

where the particle number fluctuations exhibit Gaussian behaviour. The study of FCS

for interacting systems has also gained considerable interest [22–25] as FCS can now be

measured in cold atom experiments [1,2]. This connection emphasizes the wide-ranging

applications of FCS, particularly in understanding the relationship between interactions

and correlations in the system.

In the context of classical systems, the FCS has also been widely investigated. For

instance, in many ecological settings, it has been observed that the distribution of the

number of species and the average number of species in a given domain exhibit universal

features [26–28]. The statistics of the number of particles in specific domains for different

point processes have also been investigated [29,30]. Such point processes can be classified

based on the system size dependence of the Fano factor V(D) = Var (N (D)) /⟨N (D)⟩
where N (D) is the number of particles in a given domain D. This ratio of the variance

and the mean measures the strength of the relative fluctuations of N (D). In the

large N limit, typical systems such as Poissonian point processes are characterized by

V(D) ∼ O(1). Interestingly there are some systems for which V(D) → 0, in the large N

limit and they are generically called hyperuniform [31,32].

While FCS is an interesting quantity both in classical and quantum systems the

role of interactions are not well understood. This article investigates FCS in a one-

dimensional system of classical particles interacting via a power-law potential known

as the Riesz gas [33, 34]. We consider a harmonically confined Riesz gas composed of

N particles in thermal equilibrium described by the Boltzmann distribution P ({xi}) =
exp[−βẼ({xi})]/ZN where β−1 is temperature and ZN is the partition function. The

energy function of the gas is given by

Ẽk({xi}) =
N∑
i

x2
i

2
+

J sgn(k)

2

N∑
i=1

N∑
j ̸=i

|xi − xj|−k, (1)

where xi is the position of ith particle with i = 1, 2, · · · , N and sgn(k) is the sign function.

The strength of the repulsive interaction is controlled by J > 0 and the exponent k of
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Figure 1. Schematic representation of the domain [−W,W ] (shaded region) studied

in this paper. The blue dots are the positions of the particles. The number of particles

in the region [−W,W ] is defined as N (W,N). The black solid line is indicative of the

harmonic confinement.

the power law determines the nature of interactions; in particular, for k > 1 the system

is short-ranged and for k < 1 it is long-ranged. Interaction with certain values of k

correspond to well known models. For instance, k = 2 corresponds to the Calogero-

Moser model [35–39] which represents an integrable many-particle interacting system.

The gas of hard rods corresponds to k → ∞ [40, 41], Dyson’s log-gas has k → 0 and

J → J0/k [42–45] and the 1d one component plasma (1dOCP) has k = −1 [46–55].

Additionally, some fractional values of k have also been experimentally realized [56,57].

The statistical properties of the Riesz gas model have gained considerable interest in

recent years [34,58–71]. In this paper we study FCS of the Riesz gas defined in Eq. (1)

and we restrict ourselves to the short-range interactions, i.e., k > 1 where the associated

field theory is local [58]. It is to be noted that for the Riesz gas, the exact results on

FCS are only known for k → 0 [72–77] and k = −1 [46,47], both of which are long-range

models.

The rest of the paper is organized as follows. In Section 2, we introduce the relevant

quantities and notations that we use throughout the paper. In Section 3, we summarize

our main results on FCS of the Riesz gas. In Section 4, we explain the derivation

of the large deviation function, which characterizes the probability distribution of

the number of particles in the domain [−W,W ]. The corresponding average density

profiles are also calculated. These profiles are used to study the variance along with

asymptotic behaviours, and non-analytic properties of the associated large deviation

function (LDF). Our formalism has been adapted to study the index distribution which

corresponds to the semi-infinite domain (−∞,W ] in Section 5. In Section 6, we study

the linear statistics of the Riesz gas. We conclude and provide some future directions

in Section 7.
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2 Relevant properties of Riesz gas and notations

In this section, we recap some results and properties of short-range Riesz gas, with

k > 1 which were first derived in Ref. [58]. These results form the foundation of our

present work. Since β ∼ O(1), entropy does not play a dominant role in competing with

the confining potential; instead, the repulsive interaction plays the dominant role. As

a result, the particles settle down over a finite support of length LN which scales for

large-N as [58,61]

LN ∼ O (Nαk) with αk =
k

k + 2
for k > 1 . (2)

It is convenient to scale the positions of the particles by this length scale Nαk i.e.

yi =
xi

Nαk
, (3)

with yi ∼ O(1). In terms of these new scaled variables, the energy function given in

Eq. (1) now reads

Ẽk({yiNαk}) = N1+2αkEk({yi}), where,

Ek({yi}) =
(

1

N

N∑
i

y2i
2

+
1

N1+k

J sgn(k)

2

N∑
i=1

N∑
j ̸=i

|yi − yj|−k

)
. (4)

Since, yi ∼ O(1), the rescaled energy Ek({yi}) is also of order O(1). As described in the

Ref. [58], one can express the energy function in Eq. (4) as a functional of the density

profile ρ(y) = 1
N

∑N
i=1 δ(y − yi). For the short-range Riesz gas, the energy functional

takes the following form [58]

Ek [ρ(y)] ≈
∫ ∞

−∞
dy

y2

2
ρ(y) + Jζ(k)

∫ ∞

−∞
dy ρ(y)k+1 +O(1/N), for k > 1. (5)

This field theory was subsequently used to compute the average density profile via a

saddle point approximation. The average density profile in terms of the scaled variables

y is explicitly given by [58,78]

ρ0(y) ≡ ρ∗k,uc(y) = Ak

(
l20 − y2

) 1
k , for |y| ≤ l0, (6)

with

l0 ≡ luck =

(
Ak B

(
1

2
,
1

k
+ 1

))−αk

along with Ak = (2J(k + 1)ζ(k))−
1
k , ∀ k > 1. (7)

In Eq. (7), luck represents the edge of the support of the unconstrained density profile

ρ∗k,uc(y) i.e., in the absence of any additional barriers. Note that the notations with

subscript/superscript was originally used in Ref. [61], where the superscript “uc” stood
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for “unconstrained”. Here B(x, y) is the Beta function and ζ(k) =
∑∞

n=1 1/n
k is the

Riemann Zeta function.

Recall that, our aim in this paper is to study the statistical properties of N (W,N)

which represents the number of particles in domain [−W,W ]. As will be discussed

later, in the large-N limit, the problem of finding the distribution of N (W,N) at O(1)

temperature gets effectively converted to an optimization problem. This problem tries to

find the most probable density profile satisfying the constraint of fixed N (W,N). Note

that, under the transformation to the rescaled variables in Eq. (3), the wall position W

gets transformed to w = W/Nαk . It is evident that if w > l0 then the density profile

does not get affected by the presence of the hard walls and it remains the unconstrained

density profile given in Eq. (6). On the other hand for w < l0 the most probable

density profile will be drastically different from the one given in Eq. (6). This modified

density profile, as we will see later, is an important ingredient for the study of FCS. We

compute the constrained density profile and use it to study the probability distribution

(more precisely the associated LDF) of N (W,N). Before going into the details of the

computation, we summarize our main findings in the next section.

3 Summary of the main results

In this section, we present the main results related to the statistics of N (W,N), the

number of particles in a finite box [−W,W ] which is schematically shown in Fig. 1. It

is easy to show that the mean number of particles in the box increases linearly with the

system size (i.e., number of particles N) and is given by

⟨N (W,N)⟩ ≃ N c∗
(

W

Nαk

)
(8)

with c∗(w) =

∫ w

−w

dy ρ0(y), (9)

where the unconstrained density profile ρ0(y) is given in Eq. (6). We denote the

probability distribution of N (W,N) as

P (N = cN,W ) = Prob.[N (W,N) = cN,W ]. (10)

We find that in the large-N limit, the probability distribution takes the large deviation

form given by

P (N = c N,W ) ≍ exp
(
− βN1+2αkΦ(c,W/Nαk)

)
, (11)

valid when W → ∞, N → ∞ keeping the ratio w = W/Nαk fixed. Here we recall that

αk = k/(k + 2) as given in Eq. (2). To calculate the LDF Φ(c,W/Nαk), we use the

Coulomb gas method [79, 80]. A crucial ingredient in this method is the saddle point

density profiles that satisfy the constraint of having cN particles in the box [−W,W ].

We find that these constrained density profiles are also dome-shaped similar to the
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)
Figure 2. Phase diagram in the (w, c) plane showing three different regimes: (I)

low, (II) moderate and (III) high fraction of particles in the box [−W,W ], where the

saddle point density profiles given in Eq. (27) exhibit distinctly different shapes (see

inset). The critical fraction line c = c̄(w) [Eq. (29)] separates the phases (I) and (II).

Below this fraction, we observe a disjoint density profile in phase (I) and above this

concentration the two disjoint parts join and we observe a density profile as shown in

the inset of regime (II). Around this line, the LDF behaves non-analytically which leads

to a third-order phase transition [see Appendix. A]. On the other hand, the crossover

line c = c∗(w) [Eq. (8)] separates the phases (II) and (III) and the LDF shows analytic

behaviour around it [see Eq. (39)]. This plot is generated for k = 1.25, however, such

a plot is expected to be qualitatively the same for all k > 1. Note that the x-axis is in

the units of l0.

unconstrained density profiles. However, their support is parameterized by the box size

controlled by w = W/Nαk and the fraction of particles c inside it. As w and c are varied,

the shape of the constrained density profile undergoes interesting shape transitions in

the (w− c) plane, as indicated in Fig. 2 by shaded regions separated by the two curves

c = c̄(w) and c = c∗(w). The loci of these two curves are calculated analytically in

Eq. (29) and Eq (9) respectively. In Fig. 3 we compare our analytical results for the

saddle point density with the MC simulations and observe a very good agreement.

The LDF and its properties: Using these saddle point densities, we have obtained explicit

analytical expression of the LDF Φ(c, w) which is given in Eq. (36) and plotted in Fig. 4.

The behaviour of the LDF is similarly governed by two parameters c and w = W/Nαk .

We note that, for a fixed box [−W,W ], as the fraction of particles is increased from

below c̄(w) [regime (I)] to above it [regime (II)], the hole region in the density profile

vanishes (see Fig. 2). This gap closing transition at c = c̄(w) with a fixed w gives rise

to a non-analytic behaviour of the LDF characterized by a discontinuous third-order
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derivative of the LDF Φ(c, w) w.r.t. c for |c− c̄(w)| ≪ 1 as can be seen from

∂3Φ(c, w)

∂c3
=

 (1+2k)(1+k)
c̄(w)3k3

C̃+

(
c−c̄(w)
c̄(w)

) 1
k
−1

, for c > c̄(w)

6
c̄(w)3

C̃−, for c < c̄(w)
, (12)

where C̃± are constants [see Appendix A for details]. This discontinuity in the third

derivative implies a third-order phase transition according to Ehrenfest classification

[81]. By the same mechanism, a similar gap-closing transition occurs but now with

decreasing the box size for a fixed c (along an horizontal line in Fig. 2). Such third-order

phase transitions via gap-closing mechanisms has been found in numerous examples [82].

Similar non-analytic behaviour of the LDF associated to N (W,N) has also been

observed in long-range interacting models such as the Dyson’s log-gas [76, 77] and the

1dOCP [47]. Interestingly, the non-analyticity of LDF in our short-range case (k > 1)

of Riesz gas, appears at c = c̄(w) unlike these long-range models (k → 0 and k = −1)

for which it appears at c = c∗(w). For our short-range case, the LDF Φ(c, w) is analytic

at c = c∗(w) and shows quadratic behavior, i.e., Φ(c = c∗(w) + κ,w) ∼ O(κ2). This

quadratic behaviour of the LDF Φ(c, w) around c = c∗(w) suggests that the typical

fluctuations in the number of particles in the box are described by a Gaussian probability

distribution given by

P (N = cN,W ) ≍ exp

(
−N2(c− c∗(w))2

2Var(N )

)
, (13)

for |c− c∗(w)| ≲ O
(√

Var(N )
)
.

Here the variance is given by

Var(N ) =
N νk

β l20 αk

V
(

W

Nαk l0

)
with νk =

2− k

2 + k
, (14)

and the function V (h) is given in Eq. (41). The analytical result in Eq. (8) for the

mean and in Eq. (14) for the variance is verified with MC simulations in Fig 5a,b, re-

spectively for k = 1.5. We note that the variance scales with system size as Nνk with

νk = (2 − k)/(k + 2). This implies that for 1 < k < 2 the variance increases with

increasing system size. For k → 2 we see νk → 0 as a result N νk → log(N), hence one

generally expects that the variance grows logarithmically with N similar to the case of

the Dyson’s log-gas (k → 0). For k > 2, νk < 0 and the variance decreases with system

size which suggests that the system becomes very rigid in the thermodynamic limit and

possibly the typical fluctuations are dominated by microscopic fluctuations at the edges

of the box. This is not captured by the present scaling analysis.

Generalization to other quantities: Using the same approach, we also study a more

general quantity known as linear statistics defined as SN =
∑N

i=1 r(yi), where yi =

xi/N
αk and r(y) is an arbitrary function. The mean of this quantity scales linearly with
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system size as expected, whereas the variance scales as a power-law ∼ O(Nνk) with

νk = (2 − k)/(k + 2) as described in Section. 6. Note that the number distribution

N (W,N) is also a linear statistic with the choice r(y) = Θ(w− y)Θ(w+ y), where Θ(x)

is the Heavyside Theta function. Another interesting and well-studied quantity is the

index defined as the number of particles, denoted by I(W,N), in the semi-infinite box

(−∞,W ] which corresponds to the choice r(y) = Θ(w− y) in the linear statistics. This

quantity appears naturally in the study of the stability of complex systems [83,84]. It has

been well studied in the context of the random matrix theory [85, 86], the Dyson’s log-

gas [87] and the 1dOCP model [46,55]. We find that the properties of the saddle point

density profiles and the LDF corresponding to the index distributions are qualitatively

similar to the number statistics problem summarized above. It is important to note that,

in general, FCS behaves differently from the linear statistics with a smooth function

r(y) [47,48,76,77,88]. However, for the short-range case, this distinction does not seem

to occur at least for the variance.

4 Derivation of the number distribution

In this section, we outline the derivation of the distribution ofN (W,N), which quantifies

the number of particles in the box [−W,W ], as defined by

N (W,N) =
N∑
i=1

Θ(W − xi)Θ(W + xi). (15)

Here Θ(x) is the Heaviside theta function. We start by writing the Gibbs-Boltzmann

probability distribution of the position configuration in terms of the scaled variables

{yi = xi/N
αk} for i = 1, 2, · · · , N [see Eq. (3)]:

P
(
y1, y2, · · · , yN

)
=

1

Zk(N, β)
exp

(
− βN1+2αkEk

(
{yi}

))
, (16)

where Ek({yi}) is the energy function in Eq. (4) and Zk(N, β) is the partition function,

given by

Zk(N, β) =

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 . . .

∫ ∞

−∞
dyN exp

(
−βN1+2αkEk({yi})

)
. (17)

The mean of the number of particles can be easily computed as ⟨N (W,N)⟩ =∑i⟨Θ(w−
yi)Θ(yi + w)⟩, where w = W/Nαk and yi = xi/N

αk . Simplifying further, we get

⟨N (W,N)⟩ ≃ c∗(w) N where c∗(w) is given in Eq. (9).

The distribution of N (W,N) can be obtained by integrating the microscopic

configurations with the constraint of having cN particles inside the box and it is given

by

P (N = c N,W ) =

∫ ∞

−∞
dy1 . . .

∫ ∞

−∞
dyN

exp (−βN1+2αkEk ({yi}))
Zk(N, β)

×

δ

(
c N −

N∑
i=1

Θ(w + yi)Θ(w − yi)

)
, (18)
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where recall that w = W/Nαk . For the sake of brevity W and N in the argument

of N (W,N) are suppressed. For finite N , the integrals over the microscopic positions

in Eqs. (17) and (18) are difficult to carry out for arbitrary k with the only notable

exceptions for k → 0 [44] and k = −1 [47, 48, 51]. However, in the large N limit

and for β ∼ O(1), the multiple integrals can be computed approximately using the

Laplace method in which one first rewrites the microscopic integral as a path integral

over density field configurations and then performs the saddle point calculation. Such a

method in the literature is known as the Coulomb gas method [79, 80], which has been

used recently in the context of Riesz gases [58]. To adopt this field-theoretic method,

we first rewrite the integral in Eq. (18) as a path integral over the empirical density field

ρ(y) = 1
N

∑N
i=1 δ(y − yi). More precisely, we compute the integral in Eq. (18) in two

steps: (i) we integrate over the microscopic positions corresponding to a density field

ρ(y) (which one could assume to be a smooth function in the large N limit) and (ii)

perform the integration over these density profiles. After the first step, one generates

an entropy term S[ρ(y)] in the exponential in addition to the energy functional Ek[ρ(y)]
to arrive at [58]

P (N = c N,W ) =

∫
D [ρ(y)]

exp (−βN1+2αkEk [ρ(y)] +NS [ρ(y)])

Zk(N, β)
×

δ

(
c N −N

∫ ∞

−∞
dy ρ(y)Θ(w + y)Θ(w − y)

)
δ

(∫ ∞

−∞
dy ρ(y)− 1

)
,

(19)

where the energy functional Ek [ρ(y)] is given in Eq. (5) and the entropy functional is

given by [79,80]

S[ρ(y)] =
(
−
∫ ∞

−∞
dy ρ(y) log ρ(y)

)
. (20)

Using the integral representation of the delta function on the complex plane, one can

express P (N ,W ) in Eq. (19) as

P (N = c N,W ) =

∫
dµ

∫
dµ̄

∫
D [ρ(y)]

exp (−β N1+2αkG[ρ(y)])

Zk(N, β)
, (21)

with the action given by

G[ρ(y)] = Ek [ρ(y)]−
T

N2αk
S [ρ(y)]

− µ

(∫ ∞

−∞
dy ρ(y)

(
1−Θ(w + y)Θ(w − y)

)
− 1 + c

)
− µ̄

(∫ ∞

−∞
dy ρ(y)Θ(w + y)Θ(w − y)− c

)
, (22)

where w = W/Nαk . The functional G[ρ(y)] in the above equation is essentially the free

energy required to create a particular density profile with the chemical potentials µ̄ and
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µ ensuring that the fraction of particles inside and outside of the box [−w,w] is c and

1− c respectively.

Note that the factor N1+2αk in the exponent of Eq. (21) diverges for N → ∞, since

1 + 2αk > 0 [see Eq. (2)]. Therefore, the integral can be evaluated by a saddle point

technique in which one needs to minimize the action in Eq. (22) w.r.t. the density field

ρ(y) as well as the chemical potentials µ̄ and µ. Moreover, for large N and T ∼ O(1)

one can neglect the contribution from the entropy term in the saddle point calculation.

We find the following equations

µ̄∗ =
y2

2
+ Jζ(k)(k + 1) (ϱ∗(y))k for |y| < w, (23)

µ∗ =
y2

2
+ Jζ(k)(k + 1) (ϱ∗(y))k for |y| > w, (24)

along with the normalization constraints∫ ∞

−∞
dy ϱ∗(y)Θ(w + y)Θ(w − y) = c, (25)∫ ∞

−∞
dy ϱ∗(y)

(
1−Θ(w + y)Θ(w − y)

)
= 1− c. (26)

Here the ∗ represents the saddle point values. Note that the saddle point equations in

Eqs. (23) and (24) are valid when the size (2w) of the box [−w,w] is much larger than

the (typical) mean inter-particle scaled distance i.e., w ≫ O(1/N).

Note that the chemical potentials µ̄∗ and µ∗ in Eqs. (23) and (24) are independent

of the position y. On the other hand, the right-hand sides of Eqs. (23) and (24) diverge

in the limit y → ∞. This suggests that the saddle point density has a finite support.

The density profile takes the form

ϱ∗(y) =


Ak

(
l̄2 − y2

) 1
k for |y| ≤ min(w, l̄)

Ak (l
2 − y2)

1
k for w ≤ |y| ≤ l

0 otherwise

, where l̄ =
√

2µ̄∗, l =
√

2µ∗, (27)

and the constant Ak is given in Eq. (7). The length scales l̄ ≡ l̄(c, w) and l ≡ l(c, w)

are functions of the two parameters c and w and are obtained from the normalization

conditions Eqs. (25) and (26), respectively. We find

l̄ =


cαk l0 for c ≤ c̄(w),

cαk l0I

((w
l̄

)2
, 1
2
, 1
k
+ 1

)−αk

for c ≥ c̄(w)
, (28)

where c̄(w) is the fraction for which l̄ = w which is given by

c̄(w) =

(
w

l0

) 1
αk

. (29)
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In Eq. (28) we have introduced the function I(h, a, b) which is defined as

I(h, a, b) =
B(h, a, b)

B(1, a, b)
with B(h, a, b) =

∫ h

0

ds sa−1(1− s)b−1. (30)

For the edge l of the density profile outside the box, we find

l = (1− c)αk l0

(
1− I

((w
l

)2
,
1

2
,
1

k
+ 1

))−αk

. (31)

We can now numerically compute the lengths l and l̄ for any c and w by solving the

transcendental Eqs. (28) and (31). Note that the edge of the support of the density

profile inside the box is min(w, l̄). The extent of this support depends on the fraction of

particles c in the box [−w,w]. For c less than a certain value c̄(w) we find l̄ < w while

for c > c̄(w) we get l̄ > w. As c is changed the shape of the density profile changes and

we obtain three distinct regimes (as depicted in Fig. 2) namely: (I) low (II) moderate

and (III) high fraction regimes. We further elaborate on these regimes below.
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Figure 3. Plots of the equilibrium density profiles for different fractions of particles

c confined inside the box [−w,w] with w = 0.75, k = 1.5 and J = 1. The boundaries

of the box at y = ±w are shown by the blue vertical dashed lines. We consider three

values of c, (a) 0.08 (b) 0.4 and (c) 0.8 which are representative of the three regimes:

(I) c < c̄(w), (II) c̄(w) < c < c∗(w) and (III) c∗(w) < c, respectively, where c∗(w) is

given in Eq. (9) and c̄(w) is given in Eq. (29). For w = 0.75 and k = 1.5 one finds that

c̄(w) = 0.136 and c∗(w) = 0.552. The symbols in all the plots are obtained using MC

simulation for N = 256 and N = 512 whereas the solid lines represent the theoretical

results given Eq. (27). The dotted line in each plot represents the density profiles

ρ0(y) [see Eq. (6)] in the unconstrained case i.e., without any wall, from which one

can compute the fraction c∗(w) of particles within the region [−w,w]. Here we have

taken an average of over 106 samples for all the plots.

(I) Low fraction [0 ≤ c < c̄(w)]: As shown in Fig. 3a, in this regime, due to the low

fraction of the particles c within the box, the density profile inside forms a small droplet

at the minimum of the harmonic trap. It does not spread over the full extent of the box

[−w,w] and is only supported over the region [−l̄, l̄]. This leads to the appearance of

two holes with no particles between the droplet and the edges of the box. Outside of

the box, the remaining particles form truncated domes on both sides. The support of

the left dome is [−l,−w] while for the right dome, it is [w, l]. As we further increase the
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fraction c, the edge of the support of the droplet l̄ increases and eventually touches the

edges of the box located at ±w when c = c̄(w). For the sake of brevity, we sometimes

suppress the w dependence in c̄(w).

(II) Moderate fraction [c̄(w) < c ≤ c∗(w)]: As shown in Fig. 3b, as the fraction

c is increased above c̄(w), the droplet grows but its support does not expand. As a

consequence, the density at the walls just inside the box increases and this droplet

becomes a truncated dome. Outside the box, the support of the left and right truncated

domes shrink. The value of the density just outside the box decreases. Therefore the

density profile is discontinuous at the locations of the wall (±w) [see Fig. 3b and Fig. 2

(inset)]. As the fraction c inside the box is further increased, the jump in the value of

the density at the location of the wall is reduced. This jump eventually disappears when

the fraction inside the box becomes the same as the fraction c∗(w) [see Eq. (9)]. Hence

in this regime with c̄(w) < c < c∗(w), the density profile has three parts: two truncated

domes on either side of the box and another truncated dome inside the box.

(III) High fraction [c∗(w) < c < 1]: When c > c∗(w), we find that the density

at the wall just inside the box, increases further and becomes higher than that of the

density at the wall just outside the box [see Fig. 3c and Fig. 2 (inset)]. Therefore the

density profile in this regime, with c > c∗(w), comprises of three truncated domes.

In Fig. 3a,b,c, we plot the density profiles given in Eq. (27) for the three regimes

along with the same obtained from MC simulation and we observe an excellent

agreement. The above discussion was based on varying c with the wall position w

fixed. Similarly, one could obtain these three regimes by varying the wall position w by

keeping the fraction c fixed [see Fig. 2].

As a next step in computing the integral in Eq. (21), we substitute the saddle point

density profile from Eq. (27) in the expression of the action, G[ϱ∗(y)], in Eq. (22), we

find the following large deviation form for the probability distribution

P (N = c N,W ) ≍ exp
(
− βN1+2αkΦ(c, w)

)
, with w =

W

Nαk
(32)

where the large deviation function is given by

Φ(c, w) = G [ϱ∗(y)]−G0. (33)

Here the unconstrained action, G0, is given by the logarithm of the partition function

in Eq. (17). For large N it reads [64]

G0 ≈ − logZk(N, β)

βN1+2αk
=

l20(k + 2)

2(3k + 2)
, (34)

where l0 is the edge of the support of the unconstrained density profile ρ0(y) [see Eq. (7)].

By neglecting the contribution from the entropy term in Eq. (22), we approximate the

action by

G [ϱ∗(y)] = Ek[ϱ∗(y)] (35)
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where the energy functional is given in Eq. (5). After simplifying Eq. (33) we obtain

the LDF as

Φ(c, w) =


G0

(
(1− c)

3k+2
k+2 H

(
w
l

)
+ (c)

3k+2
k+2 − 1

)
, for c ≤ c̄(w),

G0

(
(1− c)

3k+2
k+2 H

(
w
l

)
+ (c)

3k+2
k+2 J

(w
l̄

)
− 1

)
, for c ≥ c̄(w).

(36)

The length scales l̄ and l are given in Eqs. (28) and (31). The functions H(h) and J(h)

in Eq. (36) are simple and given by

H(h) =

(
1− I

(
h2,

1

2
, 1 +

1

k

))− 2k
k+2

+
h(1− h2)

1
k
+1 (2k2)

(k + 1)(k + 2)B
(
1
2
, 1 + 1

k

) (1− I

(
h2,

1

2
, 1 +

1

k

))− 3k+2
k+2

, (37)

J(h) =

(
I

(
h2,

1

2
, 1 +

1

k

))− 2k
k+2

− h(1− h2)
1
k
+1 (2k2)

(k + 1)(k + 2)B
(
1
2
, 1 + 1

k

) (I (h2,
1

2
, 1 +

1

k

))− 3k+2
k+2

, (38)

where I(h, a, b) is given in Eq. (30). In Fig. 4a. we show the LDF Φ(c, w) given in

Eq. (36) as a function of w (for fixed c) and in Fig. 4b we show the variation of LDF

with c (for fixed w). The three types of saddle point density profiles corresponding to

the three regions I, II, and III, shown in Fig. 3, determine the form of the LDF as shown

in Fig. 4a,b. Next, we discuss the asymptotic behaviour of Φ(c, w) in different limits.

Behaviour around c∗(w): We start with the behaviour of Φ(c, w) near c∗(w)

which describes the probability of typical fluctuations of c around c∗(w). Recall

from Eq. (9) that c represents the mean fraction of particles inside a box of size

w. Setting c = c∗(w) + κ in Eq. (36) and expanding to leading order in κ we find

Φ(c∗(w) + κ,w) ∝ κ2. A slightly different derivation of this expansion is given in

Appendix. C. The quadratic behaviour of Φ(c∗(w) + κ,w) with κ in the leading order

implies a Gaussian distribution for the typical fluctuations given by

P (N = (c∗(w) + κ)N,W ) ≍ exp

(
− N2κ2

2 Var(N )

)
, (39)

with the variance of the number of particles given by

Var(N ) =
N νk

β l20 αk

V
(

W

Nαk l0

)
, with νk = 1− 2αk =

2− k

k + 2
, (40)

and V(h) = I

(
h2,

1

2
,
1

k

)(
1− I

(
h2,

1

2
,
1

k

))
, (41)
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Figure 4. The plot displays the large deviation function Φ(c, w), given in Eq. (36),

for k = 1.5 and J = 1. In (a) we show a plot of Φ(c, w) as a function of w for

c = 0.552 and in (b) we plot Φ(c, w) as a function of c for w = 0.75. In both plots, we

have demarcated three regions (I, II and III) based on the three types of saddle point

density profiles (as shown in Fig. 3) that create the large deviations in those three

different regions. Schematic plots of such density profiles are provided in the insets.

where the function I(h, a, b) is given in Eq. (30). For small h, the function V(h) ∝ h

whereas for h → 1, V(h) ∝ (1− h)1/k. In Fig. 5a,b, we compare our theoretical results

for the mean [see Eq. (9)] and variance [see Eq. (40)] of N with the same measured

in MC simulations and observe good agreement everywhere except the edges where it

matches better for large-N . This is due to finite-N corrections. Note that for k > 2 the

exponent νk, given in Eq. (40), is negative implying that the variance decreases with

increasing system size. This suggests that the contribution to the typical fluctuations

for large-N are primarily due to the microscopic fluctuation at the edges of the box.

Such fluctuations do not cause changes in the density profile and are thereby missed in

the field theory description. In the marginal case of k = 2, as mentioned earlier, the

exponent νk = 0 possibly suggests log(N) growth of the variance.

Non-analytic behaviour and phase transitions: We recall that c̄(w) given in Eq. (29)

represents the fraction at which the hole in the density profile inside the box vanishes.



Full counting statistics of 1d short-range Riesz gases in confinement 16

0 1
W/Nαk

0.00

0.25

0.50

0.75

1.00

〈N
(W
,N

)〉/
N

a)

l0
0 1

W/Nαk

0.00

0.05

0.10

0.15

0.20

β
V

ar
(N

)/
N
ν k

b)

l0

N = 128

N = 256

N = 512

FT

Figure 5. Numerical verification of the mean and variance of the number distribution

problem. The plot displays the W dependence of (a) the mean fraction of particles

and (b) the scaled variance of the number of particles in the box [−W,W ] for

N = 128, 256, 512 with parameters k = 1.5, T = 10 and J = 1. The vertical blue

dashed line represents the box with W = l0N
αk . The symbols indicate the results

obtained from the Monte Carlo simulations and they are compared with our theoretical

predictions (solid lines) given by Eqs. (8) and (40) for the mean and the variance,

respectively.

We find that this hole-closing phenomenon gives rise to non-analytic properties of

Φ(c, w) around c = c̄(w). Expanding the LDF Φ
(
c̄(w)(1 + ϵ), w

)
for small ϵ we find

[see Appendix A.1]:

Φ
(
c̄(w)(1 + ϵ), w

)
− Φ

(
c̄(w), w

)
=

{
Ã ϵ+ B̃ ϵ2 + C̃+ ϵ2+

1
k + o(ϵ2+

1
k ), for ϵ > 0

Ã ϵ+ B̃ ϵ2 + C̃− ϵ3 +O(ϵ4), for ϵ < 0
, (42)

where the constants Ã, B̃ etc. are given in the Eqs. (A.13)-(A.15) of the Appendix A.1.

Note that o(ϵ2+
1
k ) = O(min[ϵ2+

2
k , ϵ3]). For a fixed w, the third derivative of the LDF

Φ(c, w) w.r.t. c (i.e., ϵ) shows a discontinuity at c = c̄(w) [Eq. (29)] as demonstrated

in Fig. 6a. More precisely, the third derivative is finite for c → c̄−(w) and is diverging

for c → c̄+(w). Similar discontinuities in the third derivative of the LDF have been

observed previously in various other contexts and have been associated to third order

phase transition – such as linear statistics in 1d Coulomb gas [52] and in extreme

statistics of Riesz gas [64], of Coulomb gas [89] and random matrix theory [82, 90].

The non-analyticity of the LDF, described above, stems from the structural change of

the saddle point density profile from (I) Low to (II) Moderate fraction regime.

By the same mechanism, a similar third-order phase transition is expected to occur

when we cross the line c = c̄(w) horizontally in Fig. (2) i.e., by varying w while keeping

c fixed as demonstrated in Fig. 6b. This phase transition can be shown by analyzing the

behaviour of Φ(c, w) near the special box size W̄ = w̄(c)Nαk with w̄(c) = l0 c
αk . While

reducing the box size starting from a larger value, the hole in the density profile inside

the box (containing c N particles) decreases and at a special value w̄(c) of the box size,
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Figure 6. The plot displays the derivatives of the LDF Φ(c, w) [Eq. (36)]. Specifically,

it shows the first (red dashed line), second (green dotted line) and third (blue dash-

dotted line) derivatives: (a) w.r.t. c for w = 0.75 and (b) w.r.t. w for c = 0.552.

Notably, we observe a pronounced discontinuity in the third derivative of Φ(c, w) in

(a) at c = c̄(w) [see Eq. (29)] and in (b) at w = w̄(c) = l0c
αk , establishing the presence

of third order phase transitions.

the droplet touches the boundaries of the box. In Appendix A.2 we show that the LDF

Φ(c, w) around w̄(c) also exhibits non-analytic behaviour. More elaborately it behaves

as

Φ(c, w̄(c)(1 + ϵ))− Φ(c, w̄(c)) =

{
D̃ ϵ+ Ẽ ϵ2 + F̃+ ϵ3 +O(ϵ4), for ϵ > 0

D̃ ϵ+ Ẽ ϵ2 + F̃− |ϵ|2+ 1
k + o(ϵ2+

1
k ), for ϵ < 0

, (43)

where the constants D̃, Ẽ etc. are given in the Eqs. (A.17)-(A.18) of the Appendix A.2.

We find that the third derivative is discontinuous at w = w̄(c). More precisely, Φ(c, w)

is finite for w → w̄(c)+ and is diverging for w → w̄(c)−.

Behaviour of Φ(c, w) near c = 0 and c = 1: In these limits we find the following

approximations for a given w,

Φ(c, w) ≈ Φ(0, w)− µ∗c, for c → 0, (44)

Φ(c, w) ≈ Φ(1, w)− µ̄∗(1− c) for c → 1. (45)

Here, µ̄∗ and µ∗ represent the chemical potentials [see Eqs. (23) and (24)] of the gas

outside and inside the box for c = 0 and c = 1, respectively. Here the LDFs Φ(0, w) and

Φ(1, w) describe the probability of having no particle and all the particles in the box.

The linear dependence on c in Eq. (44) represents the energy cost for depositing fraction

c of particles into the initially empty box. On the other hand, −µ̄∗(1− c) represents the

energy cost for taking out (1− c) of particles out of an initially filled box.

Hole formation LDF Φ(0, w): Taking c = 0 in Eq. (36), we find that the hole formation
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LDF Φ(0, w) is given by

Φ(0, w) = G0 ×
(
H
(w
l

)
− 1
)
, (46)

where G0 is given in Eq. (34), H(h) is given by Eq. (37), and l is the edge of the support

of the (scaled) density profile when the box [−W,W ] is empty. Numerically, l can be

calculated using Eq. (31) for c = 0.

Complete confinement LDF Φ(1, w): Taking c = 1 in Eq. (36), we find the LDF

associated to the probability of containing all the particles in the box. This LDF is

given by

Φ(1, w) = G0 ×
(
J
(w
l̄

)
− 1
)
, (47)

where G0 is given in Eq. (34), J(h) is given by Eq. (38), and l̄ represents the edge of the

support of the density profile when the box contains N particles. Numerically, l̄ can be

calculated using Eq. (28) for c = 1.

5 Index distribution

Another interesting observable is the index for which our calculation presented in

Section 4 for studying the number distribution can be straightforwardly extended. The

index denoted by I(W,N), counts the number of particles below a certain position W

and it is defined as

I(W,N) =
N∑
i

Θ(W − xi), (48)

where xi is the position of the ith particle for any i ∈ 1, 2, . . . , N and Θ(x) = 1 for x ≥ 0

and zero otherwise. Here we focus on W > 0. The case with W < 0 can be obtained

from the distribution with W > 0 using the relation

Prob. [I(W,N) = Id] = Prob.
[
N[W,∞)(N) = N − Id

]
= Prob. [I(−W,N) = N − Id] ,

(49)

where N[W,∞)(N) =
∑N

i=1Θ(xi −W ) represents the number of particles to the right of

W . To obtain the second equality we have used the inversion symmetry of the energy

function Ẽk({xi}) = Ẽk({−xi}). To find the probability distribution of I(W,N), we

follow the same procedure as done in the previous section. We find that for large N this

probability distribution has the following large deviation form

P (I = c N,W ) ≍ exp

(
− βN1+2αkΨ(c,W/Nαk)

)
, (50)
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where Ψ(c, w) is the LDF and αk = k/(k + 2). We find that the LDF is given by

Ψ(c, w) =


G0

2

(
(2c)2αk+1 + (2(1− c))2αk+1H

(
w
l

)
− 2
)
, for c ≤ c̄(w)

G0

2

(
(2c)2αk+1J

(w
l̄

)
+ (2(1− c))2αk+1H

(
w
l

)
− 2
)
, for c > c̄(w)

, (51)

where G0 is given in Eq. (34), w = W/Nαk , c̄(w) =
(

w
l0

) 1
αk and the functions J(h) and

H(h) are

J(h) =

(
1 + I

(
h2,

1

2
,
1

k
+ 1

))−2αk

− h (1− h2)
1
k
+1

B
(
1
2
, 1 + 1

k

) 2k2

(k + 1)(k + 2)

(
1 + I

(
h2,

1

2
,
1

k
+ 1

))−2αk−1

, (52)

H(h) =

(
1− I

(
h2,

1

2
,
1

k
+ 1

))−2αk

− h (1− h2)
1
k
+1

B
(
1
2
, 1 + 1

k

) 2k2

(k + 1)(k + 2)

(
1− I

(
h2,

1

2
,
1

k
+ 1

))−2αk−1

. (53)

The length scales l̄ ≡ l̄(c, w) and l ≡ l(c, w) in Eq. (51) are functions of c and w. These

can be obtained by numerically solving the following transcendental equations

l̄ =


cαk l0 for c ≤ c̄(w),

(2c)αk l0

(
1 + I

((w
l̄

)2
, 1
2
, 1
k
+ 1

))−αk

for c ≥ c̄(w)
, (54)

l = (2(1− c))αk l0

(
1− I

((w
l

)2
,
1

2
,
1

k
+ 1

))−αk

, (55)

where the function I(h, a, b) is defined in Eq. (30). We analyze the behaviour of the

LDF Ψ(c, w) at c = c̄(w) for a fixed w. We find that it shows a third-order phase

transition, similar to the ‘number’ problem. In this case also, the distribution of the

typical fluctuations of I(W,N) is Gaussian distribution and the variance scales as Nνk

with νk = (2− k)/(k + 2).

Pressure and Bulk modulus: Using the LDF for Index distribution, we can compute the

thermodynamic pressure and the bulk modulus [see Appendix B].

6 Linear statistics

In this section, we study the linear statistics which is defined as

SN =
N∑
i=1

r(yi), (56)
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where the function r(y) is arbitrary and recall, from Eq. (3), that yi = xi/N
αk denote the

scaled variables. Linear statistics generalizes FCS, for example, by choosing the function

r(y) appropriately we can obtain both the number and index distribution problems:

r(y) =

{
Θ(y + w)Θ(w − y) Number statistics

Θ(w − y) Index distribution
(57)

where Θ(y) is the Heaviside theta function. Linear statistics can be used to study the

ground state properties of the system in arbitrary traps. It has been widely studied in

both mathematics and physics [5, 6, 9–11, 13, 88, 90–108]. Interestingly, in the context

of quantum transport [5, 8–11, 13, 88, 91, 92, 99–102, 104, 105] using the random matrix

theory approach the conductance (r(y) = y [8]), Wigner time delay (r(y) = y [13]) and

shot noise (r(y) = y(1− y) [9]) have also been computed.

In this section, we generalize the results to any arbitrary functions of r(y). Clearly,

the average value of ⟨s⟩ = ⟨SN⟩/N , in the large N limit, is given by

⟨s⟩ =
∫ l0

−l0

r(y) ρ0(y) dy , (58)

with ρ0(y) given explicitly in Eq. (6). Here, we would like to go beyond the mean

⟨s⟩ and compute the variance of s for all k > 1, which were recently computed for

1dOCP, k = −1 (jellium model) in Ref. [48] (see also Ref. [109]) and then extended to

all long-ranged cases k < 1 in Ref. [110].

We follow the method used in Ref. [48]. We first compute the full distribution of s

in the large N limit. This is done by adding an extra term µr(s)
(∫∞

−∞ dy r(y)ρr(y)− s
)

in the energy function and then minimizing the energy by the saddle point method. Here

µr(s) is the new Lagrange multiplier that enforces the value s of the linear statistics

and hence µr(s) depends implicitly on s. The subscript ‘r’ represents the fact that the

density and the corresponding chemical potential should depend on the choice of the

function r(y). Consequently, the new saddle point density ρ∗r(y) satisfies the saddle

point condition

y2

2
+ µ∗

r(s) r(y) + Jζ(k)(k + 1)
(
ρ∗r(y)

)k
= µk(s) (59)

where µ∗
k(s) is the s-dependent Lagrange multiplier that enforces the normalization. For

the sake of brevity, we omit the s dependence of µ∗
r and µ∗

k. Thus, the modified density

is given by

ρ∗r(y) = Ak

(
µ∗
k −

y2

2
− µ∗

r r(y)

) 1
k

. (60)

Consequently, the edges of the support, −l1(s) and l2(s), where the density vanishes,

are determined by the two real roots of

l2

2
+ µ∗

r r(l)− µ∗
k = 0 . (61)
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The two Lagrange multipliers µ∗
r and µ∗

k are then fixed by the two conditions∫ l2(s)

−l1(s)

dy ρ∗r(y) = 1,

∫ l2(s)

−l1(s)

dy r(y) ρ∗r(y) = s. (62)

Clearly, when s → ⟨s⟩, we have µ∗
r → 0 and µ∗

k(s) → µ∗
k(⟨s⟩) = µ0 = l20/2 and the

density ρ∗r(y) → ρ0(y). We expect the distribution P(SN = sN,N) in the large N limit

to have a large deviation form

P(SN = sN,N) ≍ exp[−N1+2αk Λ(s)] , (63)

with the large deviation function given by

Λ(s) = Gr[ρ
∗
r(y)]−G0, (64)

where G0 is given in Eq. (34) and the action Gr[ρ
∗
r(y)] = Ek[ρ∗r(y)] with Ek[ρ∗r(y)] given

in Eq. (5). The s dependence of ρ∗r(y) is implicit and comes from the second constraint

in Eq. (62).

To compute the explicit expression for the LDF Λ(s) [in Eq. (64)], we need to

specify the function r(y). However, we can compute an approximate expression for Λ(s)

for a general function r(y), when s is around its mean value ⟨s⟩ [Eq. (58)]. When we

expand Λ(s) [Eq. (64)] for s = ⟨s⟩+ κ with small κ, we find that

Λ(⟨s⟩+ κ) ≈ κ2

2σ2
r

with σ2
r =

I2I0 − I21
I0

, (65)

where the constants are

I0 = 2
Ak

k

∫ l0

−l0

dy
(
l20 − y2

) 1
k
−1

, I1 = 2
Ak

k

∫ l0

−l0

dy r(y)
(
l20 − y2

) 1
k
−1

(66)

I2 = 2
Ak

k

∫ l0

−l0

dy r(y)2
(
l20 − y2

) 1
k
−1

. (67)

The quadratic behaviour of the LDF in Eq. (65) suggests that the typical fluctuations

of SN around its mean value follows a Gaussian distribution given by [see Appendix C]

P(SN = (⟨s⟩+ κ)N,N) ≍ exp

(
− N2κ2

2 VarS

)
. (68)

where the variance is given by

VarS =
Nνkσ2

r

β
, with νk =

2− k

k + 2
. (69)

Note that the N dependence of the variance of the linear statistics is universal for any

function r(y). As mentioned previously, by construction, the linear statistic captures

the behaviour of number and index distribution. Using r(y) = Θ(y + w)Θ(w − y) in

Eq. (65), one can reproduce the variance of the ‘number’ problem as given in Eq. (40).

Interestingly, unlike the short-range case, for the long-range case of the Dyson’s log-gas

(k → 0) and the 1dOCP (k = −1), the behaviour of the linear statistics for the smooth

and non-smooth function r(y) differ [47,48,76,77,88].
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7 Conclusions

In summary, this study provides a detailed analysis of FCS of a confined short-range

Riesz gas (k > 1) in equilibrium at temperatures T ∼ O(1) (where the entropy may be

neglected). We focused on the number and the index distribution, which characterize

the fluctuations of the number of particles N (W,N) and I(W,N), respectively, in two

distinct domains, namely [−W,W ] and (−∞,W ]. We found that the variance of the

number of particles in a given domain scales with the system size as ∼ N νk with

νk = (2 − k)/(k + 2). Our study is a major step forward in generalizing results of

the Dyson’s log-gas and the 1dOCP to broader class of interacting particles i.e., Riesz

gas systems with k > 1. We also found that the distribution of the typical fluctuations

of both quantities N (W,N) and I(W,N) around their mean values are Gaussian. These

results are obtained by computing the large deviation function (LDF) associated with

the distribution of these quantities.

We have employed a field theory method similar to the Coulomb gas method to

compute the LDFs for two quantities N (W,N) and I(W,N). The method involves

determining the saddle point density profiles conditioned on a given fraction of particles

inside the specified domain. We found that for both cases (‘number’ and ‘index’), the

saddle point density profiles possess discontinuities at the location of the boundary of

the specified domain and exhibit three different kinds of profiles as either c or w is

changed, such that it crosses the transition lines indicated in Fig. 2. These three types

of configurations display interesting features – such as discontinuities and emergence

of void regions. Our analytical results for the density profiles are in perfect agreement

with numerical computations.

These density profiles are then utilized to calculate the LDFs Φ(c, w) and Ψ(c, w)

analytically for the number and index distributions, respectively. The density profiles

determine the values of the LDFs in the respective parameter ranges. In particular, one

finds that there exists an interesting regime of the parameter (c ≤ c̄(w) for fixed w or

w > w̄(c) for fixed c) in which the saddle point density profile contains a hole (devoid

of particles) at the place of the discontinuity. The LDF corresponding to such density

profiles undergoes a discontinuous change in the third-order derivative leading to a third-

order phase transition. This transition is similar to the third-order transition observed

in random matrix theory [82] and the 1dOCP [52]. Apart from exploring the non-

analytic properties of the LDFs we have also discussed its various asymptotic forms of

the LDF which allowed us to study well-known problems like hole formation probability

or complete confinement probability. Additionally, the index problem provided a natural

setting for studying the physical properties like the thermodynamic pressure and bulk

modulus.

Our analysis can be easily adapted to other traps of the form U(x) = |x|δ
δ
. The

results obtained for these generic traps closely resemble those obtained for the harmonic

trap with δ = 2. Specifically, it is observed that the fluctuations of the number of

particles in the domain [−W,W ] or (−∞,W ] are Gaussian and the variance again
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scales with N as ∼ N νk . However, now the exponent gets interestingly modified to

νk = 1 − αkδ = (δ + k − kδ)/(k + δ). Moreover, we found that for any δ > 0 the non-

analytic properties of the LDF remain the same, still displaying the third-order phase

transition.

Our investigation raises several interesting questions that can be addressed in the

future. One immediate question would be to ask how the results on FCS get modified

for the long-range interacting case of the Riesz gas i.e., for k < 1. Another interesting

direction would be to investigate FCS for the gas at high temperatures where the entropy

and the energy are comparable. This takes place for T ∼ O(N2αk) where αk = 1/(k+2)

for −2 < k < 1 and αk = k/(k + 2) for k > 1 [58].
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A Non-analytic properties of LDF Φ(c, w)

In this appendix, we investigate the non-analytic properties of the LDFs Φ(c, w) as

given in Eqs. (42) and (43). We study the series expansions of the LDF Φ(c, w) around

c = c̄(w) for a fixed value of w, where c̄(w) = (w/l0)
1
αk and around w = w̄(c) for a fixed

value of c, where w̄(c) = cαk l0. For this analysis, we take advantage of the separable

nature of the LDF i.e. Φ(c, w) = Ein+Eout−G0 for the number distribution problem [see

Eq. (36)]. The energy Ein and Eout for the particles inside and outside the box [−w,w]

is given by

Ein =

G0 × c2αk+1 for c ≤ c̄(w)

G0 × c2αk+1J
(w
l̄

)
for c > c̄(w)

and, (A.1)

Eout = G0 × (1− c)2αk+1H
(w
l

)
, (A.2)
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where the constant G0 is given in Eq. (34) and, the functions J(h) and H(h) are given in

Eq. (38) and Eq. (37), respectively. Here the length scales l and l̄ are given in Eqs. (28)

and (31).

A.1 Φ(c, w) for c ∼ c̄(w) for a fixed w

We first present the series expansion of the Ein and Eout separately as follows:

Energy within the box (Ein): When the fraction of particles c within the box [−w,w] is

slightly greater than the c̄(w), i.e., c = (1 + ϵ)c̄(w) with 0 < ϵ ≪ 1, we can find the free

energy of particles inside the box by expanding the expression in Eq. (A.1) in terms of

ϵ. This expansion yields the following series:

Ein = G0

(
c̄(w)

)1+2αk

[
1 + Ain ϵ+ Bin ϵ2 + Cin+ (ϵ)2+

1
k + o(ϵ2+

1
k )
]
, where, (A.3)

Ain = 1 + 2αk, Bin =
(1 + 2αk)2αk

2
, Cin+ =

k2(1 + 2αk) (2αk)
2+ 1

k

(k + 1)(2k + 1) B
(
1
2
, 1
k
+ 1
) . (A.4)

To obtain Eq. (A.3) we use the expressions of l̄ and l which are functions of c and w

and are given in Eqs. (28) and (31). The notation small ‘o’ specifically o(ϵa) indicates

corrections smaller than ϵa as ϵ → 0.

Conversely, when the fraction of particles within the box is smaller than c̄(w) and

satisfies c = (1+ ϵ)c̄(w), with ϵ < 0 and |ϵ| ≪ 1, we find that the energy of the particles

inside the box is given by:

Ein = G0

(
c̄(w)

)1+2αk

[
1 + Ain ϵ+ Bin ϵ2 + Cin− ϵ3 +O(ϵ4)

]
, (A.5)

where the constants Ain and Bin are given in Eq. (A.4), and

Cin− =
(1− 4α2

k)2αk

6
. (A.6)

Energy outside the box (Eout): Similarly, we examine the energy of particles outside the

box given in Eq. (A.2). We find the following expansion in powers of ϵ

Eout = G0

(
1− c̄(w)

)1+2αk

[
H(0)(h̃) + Aout ϵ+ Bout ϵ

2 + Cout ϵ
3 +O(ϵ4)

]
, (A.7)

Aout = h̃ γout H(1)(h̃)− c̄(w)(1 + 2αk)

1− c̄(w)
, (A.8)

Bout =

(
c̄(w)

)2
2αk(1 + 2αk)

2
(
1− c̄(w)

)2 +
h̃2γ2

out

2
H(2)(h̃)− c̄(w) h γout H(1)(h̃)(1 + 2αk)

1− c̄(w)
, (A.9)

Cout = −
(
c̄(w)

)3
2αk(4α

2
k − 1)

6
(
1− c̄(w)

)3 +

(
c̄(w)

)2
h̃ γout H(1)(h̃)2αk(1 + 2αk)

2 (1− c̄(w))2
+

h3 γ3
out

6
H(3)(h̃)

− c̄(w) h̃2 γ2
out H(2)(h̃)(1 + 2αk)

2
(
1− c̄(w)

) , (A.10)
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where h̃ = w/l(c̄(w), w) and H(n)(h̃) is the nth derivative of H(h̃) given in Eq. (37). The

constant γout is given by

γout =
c̄(w)αk

1− c̄(w)

[
1− I

(
h̃2, 1

2
, 1 + 1

k

)
1− I

(
h̃2, 1

2
, 1 + 1

k

)
+ 2αk

h̃(1−h̃2)
1
k

B( 1
2
, 1
k
+1)

]
, (A.11)

where the function I(g, a, b) is given in Eq. (30).

We can now calculate the LDF Φ(c̄(w)(1 + ϵ), w) for small |ϵ| ≪ 1 by substituting

the expressions of the energies from Eqs. (A.3), (A.5) and (A.7) in the expression of the

LDF Φ(c, w) given in Eq. (33). This yields:

Φ(c̄(w)(1 + ϵ), w)− Φ(c̄(w), w) =

{
Ã ϵ+ B̃ ϵ2 + C̃+ ϵ2+

1
k + o(ϵ2+

1
k ), for ϵ > 0

Ã ϵ+ B̃ ϵ2 + C̃− ϵ3 +O(ϵ4), for ϵ < 0
,

(A.12)

where the constants are given by

Ã = G0

((
c̄(w)

)1+2αkAin +
(
1− c̄(w)

)1+2αkAout

)
, (A.13)

B̃ = G0

((
c̄(w)

)1+2αkBin +
(
1− c̄(w)

)1+2αkBout

)
, (A.14)

C̃+ = G0

(
c̄(w)

)1+2αkCin+, C̃− = G0

((
c̄(w)

)1+2αkCin− +
(
1− c̄(w)

)1+2αkCout

)
.

(A.15)

The values of Ain, Bin, Cin, Aout, Bout and Cout are provided in Eqs. (A.4), (A.8), (A.9)

and (A.10). From Eq. (A.12), we find that the third derivative of the LDF Φ(c, w)

w.r.t. c shows a discontinuity at c = c̄(w), which is a signature of a third order phase

transition.

A.2 Φ(c, w) for w ∼ w̄(c) for a fixed c

By following the same procedure as in the previous subsection A.1, we can expand the

LDFs Φ(c, (1 + ϵ)w̄(c)) in powers of ϵ, for small |ϵ| ≪ 1 at a fixed c. We find:

Φ(c, w̄(c)(1 + ϵ))− Φ(c, w̄(c)) =

{
D̃ ϵ+ Ẽ ϵ2 + F̃+ ϵ3 +O(ϵ4), for ϵ > 0

D̃ ϵ+ Ẽ ϵ2 + F̃− |ϵ|2+ 1
k + o(|ϵ|2+ 1

k ), for ϵ < 0
,

(A.16)

where the constants are given by

D̃ = G0

(
1− c̄(w)

)1+2αk h̃ ΓoutH(1)(h̃), Ẽ = G0

(
1− c̄(w)

)1+2αk Γ
2
outh̃

2

2
H(2)(h̃), (A.17)

F̃+ = G0

(
1− c̄(w)

)1+2αk Γ
3
outh̃

3

6
H(3)(h̃), F̃− = G0

(
c̄(w)

)1+2αkk2(1 + 2αk) (2)
2+ 1

k

(k + 1)(2k + 1) B
(
1
2
, 1
k
+ 1
) ,

(A.18)
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where in this case h̃ = w̄(c)/l(c, w̄(c)) and the function H(n)(h) is the nth derivative of

H(h) given in Eq. (37). The constant Γout is given by

Γout =

[
1− I

(
h̃2, 1

2
, 1 + 1

k

)
1− I

(
h̃2, 1

2
, 1 + 1

k

)
+ 2αk

h̃(1−h̃2)
1
k

B( 1
2
, 1
k
+1)

]
. (A.19)

Here the function I(g, a, b) is given in Eq. (30). From Eq. (A.16), we find that the third

derivative of the LDF Φ(c, w) w.r.t. w shows a discontinuity at w = w̄(c) which is a

signature of a third order phase transition.

B Pressure and Bulk modulus

For the short-range Riesz gas, we find that the index problem provides a natural setup

to compute the pressure in the bulk of the gas. Consider the unconstrained Riesz gas

in thermal equilibrium characterised by the density profile ρ0(y) from Eq. (6). The

thermodynamic pressure of this gas at a location W can be thought of as the free

energy change of the particles to the left of W when they are pushed by moving a wall

from W by an infinitesimal amount ϵN . Using the separable (additive) nature of free

energy in Eq. (51), one can easily identify the free energy of the left partition which is

given by

Ψ(L)(c∗(w), w) = N1+2αk
G0

2

((
2c∗(w)

) 3k+2
k+2 J

(w
l̄

))
, (B.1)

where w = W/Nαk , l̄ is given in the Eq. (54) and c∗(w) =
∫ w

−l0
dy ρ0(y), represents the

fraction of particles below W when the gas is at equilibrium (without any constraint).

Also, the function J(h) in Eq. (B.1) is given in Eq. (52). When the particles on the left

are pushed by moving a wall from W to W − ϵN the free energy on the left changes

to Ψ(L)(c∗(w), w − ϵ) where ϵ = ϵN/N
αk . Note the fraction of particle on the left of

W − ϵN remains the same. The pressure is then obtained by taking a derivative of the

free energy of the left partition and can be written as

P(W,N) = N1+αk
d

dϵ
Ψ(L)(c∗(w), w − ϵ)

∣∣∣
ϵ=0

= N
2(k+1)
k+2 P

(
W

Nαk

)
, (B.2)

where the scaling function P(w) is given by

P(w) = Jζ(k)k (ρ0(w))
k+1 . (B.3)

One can also define a mechanical pressure PM(W,N) locally at W as the average force

exerted by the particles above W on the particles below W and can be expressed as

PM(W,N) =

〈
s∑

i=1

N∑
j=s+1

1

|xj − xi|k+1

〉
, (B.4)
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where xs ≤ W < xs+1 and xi’s are the unscaled positions of the particles. We

remark that the definition of the local mechanical pressure does not involve the external

potential explicitly, but only implicitly through the average over the equilibrium measure

in Eq. (B.4).

We observe that in our model the mechanical pressure PM(W,N) [see Eq. (B.4)]

and the thermodynamic pressure P(W,N) [see Eq. (B.2)] yield the same result as shown

in Fig. B1a. Since the gas is confined to a harmonic trap the pressure is not uniform as

expected. It is maximum at the centre of the trap and decreases as we go further from

the centre of the trap and becomes zero at the edge of the support of the scaled density

profile at y = l0 because the value of the density decreases to zero.

Bulk modulus: As usually done in statistical mechanics, to define the bulk modulus we

here consider the change of the mean position ⟨xm⟩ of a particle inside the bulk (say

the mth) due to an external force F applied only on that particle. The bulk modulus is

defined as

1

Km

= − 1

β

∂⟨xm⟩
∂F

∣∣∣
F=0

=
1

β2
∂2
F lnZ(β, F )|F=0, (B.5)

where Z(β, F ) is the partition function of the system in the presence of an external force

F on the mth particle i.e. with the energy function ẼF ({xi}) = Ẽk({xi}) + Fxm that

appears in the Gibbs-Boltzmann distribution. A straightforward calculation shows the

following fluctuation-response relation

1

Km

= ⟨x2
m⟩ − ⟨xm⟩2 = N2αk(⟨y2m⟩ − ⟨ym⟩2), (B.6)

where we have used the scaled position ym = xm/N
αk .

To obtain the bulk modulus at position W , denoted by K(W,N), we need to

compute the variance of the position ym of the mth particle such that m = c∗(w)N

with w = W/Nαk and c∗(w) =
∫ w

−l0
dy ρ0(y). In other words

K(W,N) = Km=c∗(w)N with w =
W

Nαk
. (B.7)

To proceed, we first note that

Prob.[ym ≤ w] = P (I = m,N) , (B.8)

where from Section 5 we have

P (I = m,N) ≍ exp
(
−βN1+2αkΨ

(m
N
,w
))

. (B.9)

From this probability distribution, it is straightforward to see that

⟨y2m⟩ − ⟨ym⟩2 =
(
βN1+2αk

d2

dϵ2
Ψ(c∗(w), w − ϵ)

∣∣∣
ϵ=0

)−1

. (B.10)
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Figure B1. In (a) we plot the scaling function of the thermodynamic pressure

[Eq. (B.3)], P(w), as depicted by the dashed line and the scaled average mechanical

pressure [Eq. (B.4)], PM(wNαk , N)/N
2(k+1)
k+2 , as indicated by symbols. The average in

Eq. (B.4) is computed using the MC simulations. In plot (b), the scaling function of

the bulk modulus [Eq. (B.12)], K(w), as depicted by the dashed line is compared with

Km/N [Eq. (B.6)] where m = c∗(w)N and is shown by symbols. In Eq. (B.6), the

variance of the position of the mth particle is computed using the MC simulations. We

use k = 1.5, T = 1 and J = 1 for performing the MC simulations of the unconstrained

gas consisting of N = 128, 256 and 512 particles and the averages are computed using

106 samples.

Inserting Eq. (B.10) in Eq. (B.6), we get

K(W,N) = NK

(
W

Nαk

)
, where, (B.11)

K(w) =
k

(k + 2)

 l20 (ρ0(w))
2(

c∗(w)− k
k+2

wρ0(w)

)(
1−

(
c∗(w)− k

k+2
wρ0(w)

))
 . (B.12)

In Fig. B1b, K(w) given in Eq. (B.12) is plotted and compared with Km , obtained from

MC simulations. We observe a good agreement as stated in Eq. (B.7) which improves

as N is increased. In this figure, we observe that the bulk modulus monotonically

decreases starting from a finite value at the centre of the trap and approaches zero at

the edge of support of the scaled density profile ρ0(y) at l0. Near the edge of the scaled

density profile, l0, the bulk modulus K(w → l0) ∼ (l0−w)
1
k and its derivative exhibits a

discontinuity. This reflects a third-order phase transition, interpreting the bulk modulus

as an order parameter.
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C Variance of linear statistics

In this section, we study the variance of linear statistics SN =
∑N

i=1 r(yi) [Eq. (56)] for

arbitrary function r(y). Note that r(y) = Θ(w − y)Θ(w + y) and r(y) = Θ(w − y)

correspond the number problem and index problem, respectively. To compute the

variance we adapt the method of the field theory described in Ref. [63]. We are

computing the typical fluctuations of SN around its mean ⟨SN⟩ = ⟨s⟩N where ⟨s⟩
is given in Eq. (58). We express SN as SN = N(⟨s⟩+κ) where Nκ is the fluctuation. To

compute the variance, we consider the small deviations, ∆ρr ≪ 1, of the density profile

from the unconstrained density profile as

ρr(y) = ρ0(y) + ∆ρr(y). (C.1)

Note that the deviation in density profile satisfies the constraints in Eq. (62), which

becomes ∫ l0

−l0

dy ∆ρr(y) = 0,

∫ l0

−l0

dy r(y)∆ρr(y) = κ, (C.2)

where the limits of the integrals have been approximated to leading order. Using the

Eq. (C.1) in the saddle point equation Eq. (59) and assuming the contribution due to

the higher order terms O((∆ρ∗r)
3) are negligible, gives

∆ρ∗r(y) =
∆µ∗

k + r(y)∆µ∗
r

Jζ(k)(k + 1)(k)
(ρ0(y))

1−k , (C.3)

where ‘∗’ represents the saddle point value. Here ∆µ∗
k = µ∗

k−µ0 and ∆µ∗
r = µ∗

r. Inserting

the expression of the perturbed density from Eq. (C.3) in the constraints in Eq. (C.2)

we get

∆µ∗
kI0 +∆µ∗

rI1 = 0, ∆µ∗
kI1 +∆µ∗

rI2 = κ, (C.4)

with the constants I0, I1, I2 given explicitly in Eq. (66) and (67) which we recall to be

I0 = 2
Ak

k

∫ l0

−l0

dy
(
l20 − y2

) 1
k
−1

, I1 = 2
Ak

k

∫ l0

−l0

dy r(y)
(
l20 − y2

) 1
k
−1

, (C.5)

I2 = 2
Ak

k

∫ l0

−l0

dy r(y)2
(
l20 − y2

) 1
k
−1

. (C.6)

Solving for ∆µ∗
k and ∆µ∗

r in Eq. (C.4) one finds

µ∗
k = µ0 −

κI1
I2I0 − I21

, µ∗
r =

κI0
I2I0 − I21

. (C.7)

Inserting the expression for the perturbed density ρ∗r(y) = ρ0(y) + ∆ρr(y) with ∆ρr(y)

from Eq. (C.3) and the perturbed chemical potentials from Eq. (C.7), in the expression
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of the LDF given in Eq. (64), we find that Λ(s = ⟨s⟩ + κ) (upto quadratic order in κ)

is given by

Λ(s = ⟨s⟩+ κ) =
κ2

2σ2
r

where σ2
r =

I2I0 − I21
I0

. (C.8)

Here the constants I0, I1 and I2 are given in Eqs. (C.5) and (C.6). By substituting

this LDF [Eq. (C.8)] in large deviation form given in Eq. (63), we find that the typical

fluctuations of SN are Gaussian distributed [see Eq. (68)] with the variance given by

[Eq. (69)]

Varr =
N1−2αkσ2

r

β
. (C.9)

Here σ2
r is given in Eq. (C.8) and it depends on the function r(y). By choosing the

function r(y) = Θ(y+w)Θ(w− y) in Eq. (C.9), we recover the variance for the number

problem as given in Eq. (14). Similarly, for the index case, when we choose the function

r(y) = Θ(w − y), the variance is given by

Var(I) = N νk

β l20 αk

U
(

W

Nαk l0

)
, (C.10)

where l0 is given in Eq. (7) and the exponent νk = 1− 2αk = (2− k)/(2 + k). Here the

function U(h) is given by

U(h) =
(
1− I

(
h2, 1

2
, 1
k

)) (
1 + I

(
h2, 1

2
, 1
k

))
4

, (C.11)

where the function I(h, a, b) is defined in Eq. (30).
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