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THE FUBINI–STUDY METRIC ON AN ‘ODD’ GRASSMANNIAN IS

RIGID

STUART JAMES HALL

Abstract. Following the ideas of Gasqui and Goldschmidt, we give an explicit de-
scription of the infinitesimal Einstein deformations admitted by the Fubini–Study
metric on complex Grassmannians Gm(Cn+m) with m,n ≥ 2. The deformations were
first shown to exist by Koiso in the 1980s but it has remained an open question as
to whether they can be integrated to give genuine deformations of the Fubini–Study
metric. We show that when n+m is odd, the answer is no.

1. Introduction

1.1. The main theorem and method of proof. Given a fixed Einstein metric g0 on a
closed manifold M, a natural question to ask is whether there are other non-isometric
Einstein metrics that are in some sense near to g0, in particular, whether g0 can be
deformed through a one-parameter family of geometrically distinct Einstein metrics.
The foundational work on this problem was carried out in the 1980s by Koiso in [7],
[8], and [9], where such questions were considered for the canonical metrics on compact
irreducible symmetric spaces. Koiso was able to demonstrate that, for m,n ≥ 2, the
canonical metric on the complex Grassmannians Gm(C

n+m) (which we will refer to as
the Fubini–Study metric) admits deformations to first order, known as infinitesimal
Einstein deformations (EIDs). However, it was left as an open question as to whether
any of the EIDs could be integrated to produce a genuine curve of Einstein metrics
passing through the Fubini–Study metric; it is this problem that we take up in this
article and we are able to demonstate that for ‘half’ of the Grassmannians, the answer
is no.

Theorem A. Let m,n ∈ N with m,n ≥ 2 and n +m odd. The Fubini–Study metric
on Gm(C

n+m) is rigid.

In order to prove this result, we first describe the deformations of the Fubini–Study
metric in a concrete manner. Koiso’s original proof for the existence of these EIDs
was non-constructive and based upon the analysis of eigenspaces of the Lichnerowicz
Laplacian for symmetric spaces using tools coming from representation theory [7]. In
their monograph [4], Gasqui and Goldschmidt described a concrete construction of the
EIDs, focussing mainly upon the case when n = m (though the idea for the construc-
tion in other cases is certainly implicit in their work). Their method of proof was also
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representation theoretic in nature. In Section 3 we follow the idea of the construction
in [4] but use fairly elementary complex differential geometry to prove the construction
yields EIDs of the Fubini–Study metric (see Theorem B in Section 3).

In [8], Koiso developed the second order obstruction theory for EIDs; in particular,
he showed that a certain integral quantity must vanish in order for the deformation
to be unobstructed at second order (see Equation 2.7 in Section 2). Using the explicit
complex differential-geometric description of the deformations, we are able to adapt
a method of Adler and van Moerbeke [1] and compute the obstruction integral for a
particular deformation. We can then appeal to the method of [2] and argue that as the
integral does not vanish for the particular defomation, when n+m is odd, it does not
vanish for any deformation. Thus we conclude all that all the infinitesimal deformations
are obstructed and so the metric is rigid.

Our proof of Theorem (A) can be adapted to show that, apart from in the case when
n = m, most of the EIDs on Grm(C

n+m) when n + m is even are obstructed at sec-
ond order. It seems likely that the remaining EIDs are also obstructed but at higher
orders. However, to the best of the author’s knowledge, the formulae for third order
variations of the Einstein equations, that would be needed to produce an obstruction
to integrability at this order, have not been calculated.

1.2. The recent work of Nagy, Semmelmann, and Schwahn. Theorem A has
recently been proved independently by Schwahn and Semmelmann [13]. Their method
builds on work by Nagy and Semmelmann [12] who gave a proof for the special case
when m = 2 (here the Grassmannian is also a Quaternionic Kähler manifold and this
extra structure was exploited). In [12], the authors reformulate Koiso’s obstruction
and express it in a coordinate-free manner. They also study in detail the case of
(non-Kähler) deformations of Kähler-Einstein manifolds and give a new criterion for
integrability. It is this new criterion that is used in [13] and the calculations are ac-
complished using Lie-theoretic methods which are totally different from the coordinate
based calculations we make in this paper. The authors actually accomplish a bit more
in [13] as they characterise the unobstructed infinitesimal deformations in the case that
n+m is even as well as deal with the more awkward case when n = m.

1.3. Revisiting Koiso’s original example of CP
2n × CP

1. In the paper [8], Koiso
was able to demonstrate that the product of Fubini-Study metrics on CP

2n × CP
1 ad-

mits EIDs but that none of the deformations is integrable. Koiso’s method of proof of
this fact is a blueprint for the proof of our Theorem A: describe the space of deforma-
tions explicitly and then use the description to calculate Koiso’s obstruction integral.
As part of his computations, Koiso used several identities that were proved by using
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ingenious juggling of standard tricks in Riemannian geometry (e.g. repeated integra-
tion by parts then switching appropriate derivatives and manipulating any curvature
terms that are introduced). In Section 5, we recover these identities using the meth-
ods of this paper thus providing a useful check that the somewhat complicated ‘local’
calculations we are making do indeed recover identities proved using a different method.

Acknowledgements: The author began work on this problem during a research stay
with Ruadháı Dervan at the University of Glasgow in November 2022. Some of the
final calculations were completed during a stay in February 2024 at the Isaac Newton
Institute as a participant in the programme ‘New Equivariant Methods in Algebraic and
Differential Geometry’. The author would like to thank these institutions for providing
excellent research environments and to thank Ruadháı for the invitations, his support,
and useful discussions about the project. The author would also like to thank Paul
Schwahn and Uwe Semmelmann for useful discussions and for the invitation to speak
about this project at a workshop on Einstein manifolds organised by them in Stuttgart
in October 2023.

2. Background on Hermitian variations of Kähler–Einstein metrics

The material in this section is well explained in chapter 12 of [3].

2.1. First order variations. Given an Einstein manifold (Mn, g), if there were a
smooth one-parameter family of Einstein metrics g(t) with g(0) = g, then we consider
what equations the derivative of the curve ġ(0) would have to satisfy. Of course we
can always produce such curves by homothetic scaling or by acting by a one-parameter
subgroup of diffeomorphisms so we further require that our curve is not generated by
these procedures. Koiso showed that if no such curve exists, then the metric g is isolated
in the moduli space of Einstein metrics and we call such a metric rigid.

Definition 2.1 (Infinitesimal Einstein Deformation). Let (Mn, g) be an Einstein man-
ifold such that Ric(g) = λg with λ > 0. An infinitesimal Einstein deformation (EID)
is a section h ∈ Γ(s2(T ∗M)) satisfying the following conditions:

trg(h) = 0, (2.1)

div(h) = 0, (2.2)

∆h+ 2Rm(h) = 0, (2.3)

where ∆ is the connection Laplacian and Rm is the curvature operator acting on sym-
metric 2-tensors. We denote the space of EIDs by ε(g).

Equations (2.1) and (2.2) ensure that the deformations do not simply come from homo-
thetic scaling or from acting by a one-parameter subgroup of diffeomorphisms; tensors
that are both trace and divergence-free are known as transverse trace-free or ‘TT’
tensors. Equation (2.3) is the linearised Einstein equation restricted to the set of TT
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tensors. As Equation (2.3) is elliptic, the space ε(g) is finite-dimensional. If ε(g) = {0},
then the metric g is rigid.

If the manifold (Mn, g) is Kähler–Einstein and the EID h is also invariant with respect
to the complex structure J , then the equations definining an EID can be conveniently
expressed as conditions involving the two-form associated to h, σ ∈ Ω(1,1)(M):

Λ(σ) = 0, (2.4)

∂̄∗σ = 0, (2.5)

∆∂̄σ = λσ, (2.6)

where Λ is the adjoint of the Lefschetz operator, ∂̄∗ is the usual adjoint of the Dolbeault
operator ∂̄, and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄. The translation of the ‘TT’ equations follows from
the fact that the complex structure is parallel; the translation of the linearised Einstein
condition follows from a Weitzenböck identity for two-forms.

We state here the following result of Koiso listing which compact irreducible symmetric
spaces admit EIDs.

Theorem 2.2 (Koiso, Theorem 1.1 in [7] - see also [4] Proposition 2.40). Let (M, g)
be a compact irreducible symmetric space. Then the space of EIDs ε(g) = {0}, except
in the following cases:

(i) M = SUn with n ≥ 3, here ε(g) ∼= sun ⊕ sun,
(ii) M = SUn/SOn with n ≥ 3, here ε(g) ∼= sun,
(iii) M = SU2n/Spn with n ≥ 3 here ε(g) ∼= su2n,
(iv) M = SUn+m/S(Um × Un) with n ≥ m ≥ 2, here ε(g) ∼= sun+m,
(v) M = E6/F4, here ε(g) ∼= e6.

The complex Grassmannians are spaces (iv) on this list and are the only spaces on the
list where the metric is Kähler–Einstein (i.e. they are the only Hermitian symmetric
spaces on the list).

2.2. Second order variations. We denote by Met(M) ⊂ Γ(s2(T ∗M)) the set of
Riemannian metrics on Mn. One can consider Einstein metrics as zeros of the Einstein
operator E : Met(M) → Γ(s2(T ∗M)) given by

E(g) = Ric(g)−
∫

M
ScalgdVg

nVol(M)
g.

If h is an EID, then the curve g1(t) = g+ th solves the Einstein equations to first order
in the sense that E(g1(0)) = 0 and

d

dt
E(g1(t))

∣
∣
∣
∣
t=0

= 0.
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Koiso investigated the conditions under which it is possible to find h2 ∈ Γ(s2(T ∗M))
such that the curve

g2(t) = g + th+
t2

2
h2

solves the Einstein equations to second order in the sense that
dk

dtk
E(g2(t))

∣
∣
∣
∣
t=0

= 0 for

k = 0, 1, 2. If it is possible to find such an h2 then we say that the EID h is integrable
to second order. If it is not possible to find such an h2, then we say h is obstructed at
second order ; in particular, h cannot be tangent to a genuine non-trivial deformation
of g through Einstein metrics. If all of the EIDs in ε(g) are obstructed to second order,
then g is rigid.

Lemma 2.3 (Koiso, Lemma 4.7 in [8]). Let (M, g) be an Einstein manifold. Then an
EID h ∈ ε(g) is integrable to second order if and only if E ′′(h, h) ∈ ε(g)⊥. Here the
orthogonal complement is with respect to the L2-inner product on s2(T ∗M) induced by
g.

Using this result, we see that a necessary condition for h to be integrable is the vanishing
of the quantity 〈E ′′(h, h), h〉L2. This quantity was also computed by Koiso.

Lemma 2.4 (Koiso, Lemma 4.3 in [8]). Let (M, g) be an Einstein metric with Einstein
constant λ > 0 and let h ∈ ε(g). Then an obstruction to the integrability of h to order
two is given by the nonvanishing of the quantity

I(h) := 2λ〈hki hkj, hij〉L2 + 3〈∇i∇jhkl, hijhkl〉L2 − 6〈∇i∇lhkj, hijhkl〉L2 , (2.7)

where each of the brackets denotes the L2-inner product induced by the metric g on the
appropriate bundle.

2.3. Koiso’s obstruction in complex coordinates. Pointwise, the terms in the
obstruction (2.7) are of the form

〈hki hkj, hij〉 = hki hkjh
ij = gipgqjhki hkjhpq = hki h

q
kh

i
q = tr(H3),

〈∇i∇jhkl, hijhkl〉 = (∇i∇jhkl)h
ijhkl = (∇i∇jhkl)hpqhrsg

ipgjqgkrgls,

〈∇i∇lhkj, hijhkl〉 = (∇i∇lhkj)h
ijhkl = (∇i∇lhkj)hpqhrsg

ipgjqgkrgls.

where H is the symmetric endomorphism associated to h given by H i
j = gikhkj. It will

be convenient to compute these quantities in complex coordinates. The tangent space
at a point is an inner product space (V 2n, g) with an almost complex structure J such
that g(J ·, J ·) = g(·, ·). We complexify V and extend the tensors g and h C-linearly in
both arguments to obtain a 2n-complex-dimensional space VC and tensors gC and hC.

The space VC splits into the ±
√
−1-eigenspaces for J and we write VC = V

(1,0)
C

⊕ V
(0,1)
C

.
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Given a g-orthonormal basis of V of the form v1, Jv1, v2, Jv2, . . . vn, Jvn, we can form

the basis {ei}ni=1 of V
(1,0)
C

where

ei =
1

2

(
vi −

√
−1Jvi

)
.

This is an orthogonal basis of (V
(1,0)
C

, gC) with ‖ei‖ = 1/2. The set of conjugates

ēi =
1

2

(
vi +

√
−1Jvi

)
,

form a basis of V
(0,1)
C

. As the tensors g and h are J-invariant, the only non-vanishing
terms of the extensions gC and hC are those of the form

gkl̄ := gC(ek, ēl) and hkl̄ = hC(ek, ēl).

We consider Koiso’s quantities but in complex coordinates e.g.

〈hpkhpl̄, hkl̄〉 = gkq̄grl̄hpkhpl̄hrq̄ = Hp
kH

r
pH

k
r = tr(H3).

As the metric is Kähler, the Chern connection is the same as the C-linear extension of
the Levi-Civita connection. We also note that

(∇·∇·h)(JX, JY ) = (∇·∇·h)(X, Y ).

Lemma 2.5. Let h ∈ s2(V ∗) be J-invariant and let T ∈ (V ∗)⊗4 satisfy

T (−,−, X, Y ) = T (−,−, Y,X) and T (−,−, JX, JY ) = T (−,−, X, Y ),
for all X, Y ∈ V . Then, with the notation defined previously,

〈hkphpl , hkl〉 = 2〈hkp̄hp̄l̄ , hkl̄〉, (2.8)

〈Tklrs, hklhrs〉 = 4Re(〈Tkl̄rs̄, hkl̄hrs̄〉), (2.9)

〈Tkrsl, hklhrs〉 = 2Re(〈Tkr̄sl̄, hkl̄hsr̄〉). (2.10)

Proof. We might as well assume that the basis v1, Jv1, v2, Jv2, . . . , vn, Jvn diagonalises
the symmetric tensor hkl. If

h(vk, vk) = h(Jvk, Jvk) = 2λk,

then
hC(ek, ēk) = hkk̄ = λk.

Equation (2.8) follows from

〈hkrhrl , hkl〉 = 16
n∑

k=1

λ3k and 〈hkr̄hr̄l̄ , hkl̄〉 = 8
n∑

k=1

λ3k.

For Equation (2.9), we note

〈Tklrs, hklhrs〉 = 8
∑

1≤k,r≤n

(T (vk, vk, vr, vr) + T (Jvk, Jvk, vr, vr))λkλr,
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and

〈Tkl̄rs̄, hkl̄hrs̄〉 = 16
∑

1≤k,r≤n

T (ek, ēk, er, ēr)λkλr.

Expanding

T (ek, ēk, er, ēr) =
1

16
T (vk −

√
−1Jvk, vk +

√
−1Jvk, vr −

√
−1Jvr, vr +

√
−1Jvr),

we see the real part is contributed to by taking 0, 2, or 4 terms with
√
−1. The terms

of the form T (−,−, vr, Jvr) = T (−,−, Jvr, vr) = 0 and so we obtain

〈Tkl̄rs̄, hkl̄hrs̄〉 = 2
∑

1≤k,r≤n

(T (vk, vk, vr, vr) + T (Jvk, Jvk, vr, vr))λkλr.

For Equation (2.10)

〈Tkrsl, hklhrs〉 =

4
∑

1≤k,r≤n

(T (vk, vr, vr, vk) + T (Jvk, vr, vr, Jvk) + T (vk, Jvr, Jvr, vk) + T (Jvk, Jvr, Jvr, Jvk))λkλr,

and

〈Tkr̄sl̄, hkl̄hsr̄〉 = 16
∑

1≤k,r≤n

T (ek, ēr, er, ēk)λkλr.

Choosing 0, 2, or 4 terms with
√
−1 from

T (ek, ēr, er, ēk) =
1

16
T (vk −

√
−1Jvk, vr +

√
−1Jvr, vr −

√
−1Jvr, vk +

√
−1Jvk),

we pick up terms

T (vk, vr, vr, vk), T (vk, vr, Jvr, Jvk), T (Jvk, Jvr, vr, vk), T (Jvk, Jvr, Jvr, Jvk),

T (Jvk, vr, vr, Jvk), −T (Jvk, vr, Jvr, vk), T (vk, Jvr, Jvr, vk), −T (vk, Jvr, vr, Jvk).
Hence

〈Tkr̄sl̄, hkl̄hsr̄〉 =

2
∑

1≤k,r≤n

(T (vk, vr, vr, vk) + T (Jvk, vr, vr, Jvk) + T (vk, Jvr, Jvr, vk) + T (Jvk, Jvr, Jvr, Jvk))λkλr,

and the result follows. �
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2.4. Strategy for demonstrating the rigidity of Grassmannians. We follow the
strategy outlined in [2] where the rigidity of M = SU2n+1 was demonstrated by proving
none of the EIDs that the biinvariant metric admits is integrable to second order. (We
should say here that this strategy is implicit in Koiso’s original work on rigidity). For a
general symmetric space M = G/K, the projection of E ′′(h, h) to ε(g) can been seen as
an element of HomG(s

2(g), g) and when G is the special unitary group this Hom-space
is one-dimensional. Thus the obstruction map is a multiple of a particular generator
(see the discussion in Section 3 of [2]). In the case of G = SU2n+1, this generator does
not have any zeros, so, providing the multiple is non-zero, one can conclude all EIDs
are obstructed to second order. To show the multiple is non-zero, we choose carefully
a single element γ ∈ sun+m, form the corresponding EID, Dγ, and compute I(Dγ). We
show I(Dγ) 6= 0 which proves Theorem A

3. An explicit description of the variations of the Grassmannian

3.1. Tautological bundles for the Grassmannian. We denote by Gm(C
n+m) the

Grassmannian of m-planes in Cn+m. The generalised Euler sequence

0 → U → C
n+m → Q → 0,

relates the the trivial Cn+m-bundle over the Grassmannian to its subbundle U , the tau-
tological m-plane bundle, and the quotient bundle Q. The holomorphic tangent bundle
T Gm(C

n+m) is isomorphic to HomC(U ,Q). Fixing an Hermitian inner product on the
ambient copy of Cn+m induces a fixed Hermitian metric on C

n+m and gives a splitting
of the bundle Cn+m = U ⊕U⊥ where Q ∼= U⊥ as complex (but not holomorphic) vector
bundles. The metric on C

n+m restricts to a metric on the subbundles U and U⊥ and
therefore induces a Hermitian metric on U∗ ⊗ U⊥ ∼= T Gm(C

n+m); this metric, as we
shall see, is a Kähler–Einstein metric.

If, instead of a Hermitian metric on the trivial bundle C
n+m, we endow it with a

general sesquilinear form, restriction also yields sesquilinear forms on the subbbundles
U and U⊥. Using the Hermitian metric on U , we can induce a sesquilinear form on U∗.

Finally, we note that a sesquilinear forms P1 and P2 on U∗ and U⊥ induce a sesquilinear
form P1 · P2 on T Gm(C

n+m).

3.2. Trivialising the tautological vector bundles. An m-plane in Cn+m is the
image of a injective linear map with domain Cm i.e. the image of an (n+m)×m rank
m matrix. We will consider the dense open set of planes that can be realised, after
multiplication by GL(m,C), by the image of the matrix

M =

(
Im

W

)

,
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where W ∈ Matn×m(C) and Im is the m × m identity matrix. The entries in W are
complex coordinates for the open set of planes. Accordingly, we will consider a generic
coordinate wI where I = (i1, i2), i1 ∈ {1, 2, . . . , n}, and i2 ∈ {1, 2, . . . , m}.

The m columns of the matrix M can be thought of as sections that generate at each
point the tautological rank m bundle U → Gm(C

n+m). If we endow the ambient Cn+m

with the standard Euclidean Hermitian metric 〈·, ·〉Euc, then the induced metric on the
trivial bundle yields a splitting

U = span{c1, c2, . . . , cm} and U⊥ = span{q1, q2, . . . , qn},
where

cj =




















0
...
0
1
0
...
w1j

w2j
...
wnj




















and qj =






















−w̄j1

−w̄j2
...

−w̄jm

0
...
0
1
0
...
0






















where the ‘1’ is in the jth row for cj and in the in the (m+ j)th row for qj .

3.3. Induced metrics on the canonical bundles and the Fubini–Study metric.

With respect to the local frames {cj} and {qj}, the induced Hermitian metrics are given
by by

Uij := 〈ci, cj〉Euc and Qij := 〈qi, qj〉Euc.
We denote by U−1 andQ−1 the inverse matrices of U andQ so, for example, U−1

ik Ukj = δij.
We record here some useful identities regarding these Hermitian metrics, leaving the
proofs to the reader.

Lemma 3.1 (Zeroth-order identities). Let U and Q be defined as previously. Then the
following identities hold:

Uij = δij + wriwrj, (3.1)

Qij = δij + wirwjr, (3.2)

Q−1
ij = δij − (U−1

rs )wirwjs, (3.3)

(Q−1
ir )wrj = (U−1

rj )wir. (3.4)
9



We will also need to compute derivatives of the metric quantities in order to work with
objects such as connections.

Lemma 3.2 (Derivatives of Hermitian metrics). Let U and Q be defined as previously.
Then the following identities hold:

∂U−1
jk

∂wI

= −(U−1
ji2

)(U−1
rk )wi1r = −(U−1

ji2
)(Q−1

i1r
)wrk, (3.5)

∂Q−1
jk

∂wI

= −(U−1
ri2

)(Q−1
i1k

)wjr, (3.6)

∂2U−1
kl

∂wI∂wJ

= (U−1
j2i2

)(U−1
sl )(U−1

kr )wi1swj1r − (U−1
ki2

)(U−1
j2l

)(Q−1
i1j1

), (3.7)

∂2U−1
kl

∂wI∂wJ

= (U−1
j2i2

)(Q−1
i1s
)(U−1

kr )wslwj1r − (U−1
ki2

)(U−1
j2l

)(Q−1
i1j1

), (3.8)

∂2Q−1
kl

∂wI∂wJ

= (U−1
j2r

)(U−1
si2

)(Q−1
i1j1

)wkswlr − (U−1
j2i2

)(Q−1
kj1

)(Q−1
i1l
). (3.9)

An immediate consequence of Equations (3.5) and (3.6) is that the complex coordinates
W are ‘normal’ coordinates for the Hermitian metrics (in the sense that atW = 0, both
matrices are the identity, and the first derivatives of the metric vanish at W = 0 too).
We will use the following standard fact.

Lemma 3.3 (Generalised Euler Sequence). The holomorphic tangent bundle of the
Grassmannian Gm(C

n+m) satisfies

TGm(C
n+m) ∼= HomC(U ,Q) ∼= U∗ ⊗Q.

Furthermore, identifying Q ∼= U⊥ as complex vector bundles, in the local coordinates
W we have

∂

∂wI

= c∗i2 ⊗ (Q−1
i1k

)qk,

where {c∗j} denotes the frame of U∗ dual to {cj}.
Given a Hermitian vector bundle (E, hE), the Hermitian metric, hE induces a Hermitian
metric hE∗ on the dual bundle E∗. The salient point of the construction is that if, in a
local frame {ei}, the metric hE is described by the Hermitian matrix (hE)ij, then the
induced metric described in the dual frame {e∗i } satisfies

hE∗(e∗i , e
∗
j) = (hE)

−1
ji .

The induced metrics on U∗ and U⊥ ∼= Q (which we denote g1 and g2 respectively) yield
a metric g = g1 · g2 on the tensor product U∗ ⊗Q which, by Lemma 3.3, gives rise to a
Hermitian metric on the holomorphic tangent bundle; this metric is the Fubini–Study
metric and we now detail some of its interesting properties. Again, we leave the proofs
to the reader.
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Lemma 3.4 (Properties of Fubini–Study metric). In the local holomorphic cordinates
W , the metric induced on the holomorphic tangent bundle as given by

gIJ̄ = (U−1
j2i2

)(Q−1
i1j1

).

The inverse metric gIJ̄ (in the sense that gIK̄gJK̄ = δIJ ) is given by

gIJ̄ = (Ui2j2)(Qj1i1).

The metric is Kähler as
∂gIJ̄
∂wK

=
∂gKJ̄

∂wI

.

The Christoffel symbols are given by

ΓK
IJ = −(δj1k1)(δi2k2)(U

−1
sj2

)wi1s − (δi1k1)(δj2k2)(U
−1
si2

)wj1s.

The metric is Kähler–Einstein and satisfies

RicIJ̄ = (n+m)gIJ̄ .

The coordinates W are local normal holomorphic coordinates for the metric g.

3.4. Seqsquilinear forms and the action of SUn+m. Let γ ∈
√
−1sun+m (here we

really just mean γ is a trace-free Hermitian matrix) and define the sesquilinear form Pγ

on the ambient vector space Cn+m by

Pγ(v1, v2) := v∗2γv1,

where v1, v2 ∈ Cn+m. This induces a sesquilinear form on the trivial Cn+m-bundle which
we also denote Pγ . There are a number of related objects that Pγ can be used to create.

Given a local orthonormal frame of the tautological subbundle U , {ηj} say, we form the
(locally defined) function

fγ(x) :=
m∑

i=1

Pγ(ηi(x), ηi(x)). (3.10)

We shall see in the next subsection that fγ is a actually a globally defined function on
the Grassmannian and is in fact an eigenfunction for the Laplacian.
The form Pγ induces forms on U∗ and U⊥ which we denote H1(fγ) and H2(fγ) respec-
tively. We can then produce sesquilinear forms h1 and h2 on TGm(C

n+m) ∼= U∗ ⊗ U⊥

by
h1 = H1(fγ) · g2 and h2 = g1 ·H2(fγ). (3.11)

There is a transitive action of SUn+m on Grm(C
n+m) which lifts to an action on the

bundles U and U⊥. The seqsquilinear forms h1 and h2 are not invariant under this
action but transform under the action to the form associated with p−1γp. Hence, to
prove various identities, we need only demonstrate their validity at W = 0 for an
arbitrary γ.
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3.5. Eigenfunctions of the Laplacian.

Lemma 3.5 (Properties of fγ). Let fγ be the function defined by Equation (3.10). Then
fγ has the following properties:

(i) The function fγ is independent of the orthonormal frame {ηj} and thus is a globally
defined function fγ : Gm(C

n+m) → R.
(ii) If we denote by MU the matrix of functions defined by MU

ij := Pγ(ci, cj), then

fγ = (U−1
ij )MU

ji .

(iii) If we denote by MQ the matrix of functions defined by MQ
ij := Pγ(qi, qj), then

fγ = −(Q−1
ij )MQ

ji .

(iv) The function fγ is an eigenfunction of the Laplacian with eigenvalue 2(n+m)

Proof. Properties (i) and (ii) are easily established. For (iii) we note that γ is trace-free
and

(U−1
lk )MU

kl + (Q−1
rs )M

Q
sr = tr(γ) = 0.

To show (vi), we compute at W = 0 and note fγ(0) =
∑m

k=1 γkk. We also have

gIJ̄
∂2fγ

∂wI∂wJ

∣
∣
∣
∣
W=0

= gIJ̄
(
∂2(U−1

kl )

∂wI∂wJ

MU
lk +

∂(U−1
kl )

∂wI

∂MU
lk

∂wJ

+
∂(U−1

kl )

∂wJ

∂MU
lk

∂wI

+ (U−1
kl )

∂2MU
lk

∂wI∂wJ

) ∣
∣
∣
∣
W=0

=
∑

I

(

∂2(U−1
kl )

∂wI∂wI

MU
lk +

m∑

k=1

∂2(MU
kk)

∂wI∂wI

) ∣
∣
∣
∣
W=0

= −n
m∑

k=1

γkk +m

n∑

k=1

γ(m+k)(m+k).

The result follows from the fact γ is trace-free and noting that for any function ψ on a
Kähler manifold (M, g) with local holomorphic coordinates zi,

gkl̄
∂2ψ

∂zk∂z̄l
= −1

2
∆ψ.

�

3.6. The deformations. We compute various quantities associated to the two sesquilin-
ear forms given by Equation (3.11). This will allow us to find transverse trace-free
tensors. It is straightforward to see that in the local coordinates W , the tensor fields
are given by

(h1)IJ̄ = (U−1
j2i2

)(Q−1
i1k

)(Q−1
lj1
)MQ

kl

and

(h2)IJ̄ = (U−1
j2k

)(U−1
li2

)MU
klQ

−1
i1j1
.

We begin by proving a result due to Gasqui and Goldschmidt relating the tensors h1
and h2 to the Hessian of the eigenfunction fγ . The proof we give here is an elementary
calculation in local normal coordinates and is very different from the one given in [4].
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Lemma 3.6 (Gasqui–Goldschmidt, cf. Propsition 8.5 in [4]). Let fγ be given by Equa-
tion (3.10) and let h1 and h2 be as in Equation (3.11). Then

Hess(fγ) = h1 − h2. (3.12)

Proof. As fγ is an eigenfunction with eigenvalue twice the Einstein constant, Mat-
sushima’s Theorem [11] means that J∇fγ is a holomorphic vector field. It follows that
the Hessian of fγ has no J-anti-invariant component and so we are done if we can
establish in local coordinates

∂2fγ
∂wI∂w̄J

= (h1)IJ̄ − (h2)IJ̄

We compute at W = 0 and we have already seen

∂2fγ
∂wI∂wJ

∣
∣
∣
∣
W=0

=

(
∂2(U−1

kl )

∂wI∂wJ

MU
lk + (U−1

kl )
∂2MU

lk

∂wI∂wJ

) ∣
∣
∣
∣
W=0

= −δi1j1γi2j2+δi2j2γ(j1+m)(i1+m).

Using the definition of h1 and h2, we calculate

(h1 − h2)IJ̄ = δi2j2M
Q
i1j1

− δi1j1M
U
j2i2

= −δi1j1γi2j2 + δi2j2γ(j1+m)(i1+m).

�

Lemma 3.7. Let fγ be given by Equation (3.10) and let h1 and h2 be as in Equation
(3.11). Then the traces are given by

gIJ̄(h1)IJ̄ = −mfγ and gIJ̄(h2)IJ̄ = nfγ .

If we denote by σ1 and σ2 the (1, 1)-forms associated to h1 and h2 respectively, then

∂
∗
σ1 = −n

√
−1∂fγ and ∂

∗
σ2 = m

√
−1∂fγ .

Proof. The statements about traces are straightforward. For the statement about the
codifferential ∂

∗
we compute in the coordinates at W = 0.

We note that (∂fγ)I = γi2(i1+m). The associated form σ2 is given by

σ2 =
√
−1(h2)IJ̄ dwI ∧ dwJ ,

and thus

(∂
∗
σ2)I =

√
−1gKJ̄∇K(h2)IJ̄ =

√
−1

∂(h2)IJ̄
∂wJ

=
√
−1δj2kδli2δkj2γl(j1+m)δi1j1

= m
√
−1γi2(i1+m).

With this in hand, we can appeal to the Gasqui–Goldschmidt Lemma 3.6. We have

−
√
−1∂∆∂f = ∂

∗√−1∂∂fγ = ∂
∗
σ1 − ∂

∗
σ2 = ∂

∗
σ1 −m

√
−1∂fγ .

Hence
−(n +m)

√
−1∂fγ = ∂

∗
σ1 −m

√
−1∂fγ ,

and the result follows. �
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The final quantity we need to compute is the ∂-Laplacian applied to the forms σ1 and
σ2.

Lemma 3.8. Let σ1 and σ2 be the (1, 1)-forms associated to the tensors h1 and h2
respectively. Then

∆∂ σ1 = (n+m)σ1 and ∆∂ σ2 = (n+m)σ2.

Proof. We begin by computing ∆∂̄σ2. Using Lemma 3.7, we have

∆∂̄ σ2 =
(
∂̄∂̄∗ + ∂̄∗∂̄

)
σ2 = −m

√
−1∂∂̄fγ + ∂̄∗∂̄σ2.

At W = 0,

(
√
−1∂∂̄fγ)IJ̄ =

√
−1
(
−δi1j1γi2j2 + δi2j2γ(j1+m)(i1+m)

)
.

To calculate ∂̄∗∂̄σ2, we begin by noting that for a general (1, 2)-form,

T = Tk̄il dz̄k ∧ dzi ∧ dz̄l,
we have, in holomorphic normal coordinates at z = 0,

(∂
∗
T )rs = −

(
∂Tk̄rs̄
∂zk

− ∂Ts̄rk̄
∂zk

)

.

Hence we have, at W = 0,

(
∂̄∗∂̄σ2

)

IJ̄
= −

√
−1

(
∂2(h2)IJ̄
∂wK∂w̄K

− ∂2(h2)IK̄
∂wK∂w̄J

) ∣
∣
∣
∣
W=0

Using the expression for h2 in local coordinates and the fact that from Lemma 3.2,
single derivatives of the quantities U−1

rs and Q−1
rs vanish at W = 0, we have

∂2(h2)IJ̄
∂wK∂w̄K

∣
∣
∣
∣
W=0

= −(2n+m)δi1j1γi2j2 + δi1j1δi2j2

n∑

r=1

γ(r+m)(r+m)

and

∂2(h2)IK̄
∂wK∂w̄J

∣
∣
∣
∣
W=0

= −(n +m)δi1j1γi2j2 − δi1j1δi2j2
∑

k

γkk +mδi2j2γ(j1+m)(i1+m)

Thus, at W = 0,
(
∂̄∗∂̄σ2

)

IJ̄
= nδi1j1γi2j2 +mδi2j2γ(j1+m)(i1+m).

So

(∆∂̄ σ2)IJ̄ = (n+m)δi1j1γi2j2 = (n+m)(σ2)IJ̄ .

The result for σ1 follows from the Gasqui–Goldschmidt Lemma 3.6. �
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Theorem B (Infinitesimal deformations of the Fubini–Study metric). Let h1 and h2
be as in Equation (3.11) and let h3 = fγg. Then, if m,n ≥ 2,

Dγ := n(1−m2)h1 +m(1 − n2)h2 + (n2 −m2)h3,

is an EID for the Fubini–Study metric on Gm(C
n+m).

Proof. It is easy to check that σ3 = fγω (the two-form associated to h3) satisfies

Λ(σ3) = mnfγ , ∂̄∗σ3 =
√
−1∂fγ , and ∆∂̄σ3 = (n +m)σ3

The result follows by combining these calculations with those in Lemma 3.7 and Lemma
3.8. �

In the case that m = 1, it is easy to see that h2 = fγg = h3 and so Dγ vanishes (as
expected as it was demonstrated in [7] that the Fubini–Study metric on CP

n does not
admit EIDs). When m = n, we also recover Proposition 8.6 from the book [4] which
says that h1 + h2 is an EID for the metric on Gn(C

2n).

4. Computing Koiso’s obstruction

4.1. The Theorem of Adler and van Moerbeke. As we shall see in subsequent
subsections, to compute the terms in the Koiso obstruction (2.7), we will need to
consider integrals of the form

∫

Cmn

tr(U−1)αdµ(W ) and

∫

Cmn

tr(U−β)dµ(W ),

where α, β ∈ {0, 1, 2, 3}, W are the coordinates on the dense copy of Cmn contained in
Gm(C

n+m) and dµ(W ) is shorthand for the (possibly rescaled) volume form defined by
the Fubini–Study metric. In the local coordinates W ,

tr(U−1) = tr((Im +W tW )−1) = tr((Im +W ∗W )−1).

In [1], Adler and van Moerbeke considered integrals of the form
∫

Cmn

extr((Im+W ∗W )−1)dµ(W ).

What they demonstrate is that one can use the Weyl integration formula to write the
previous integral as a multiple of what is known as a generalised Selberg-type integral.
Paraphrasing Theorem 1.1 in [1] we have

∫

Cmn

extr((Im+W ∗W )−1)dµ(W ) =

∫

[0,1]m
ex

∑
m

i=1
zi∆m(z)

2

m∏

1

(1− zi)
n−mdz1dz2 . . . dzm,
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where ∆m(z) is the Vandermonde determinant in the m variables z1, z2, . . . , zm. The
∑

i zi term corresponds directly to the sum of the eigenvalues of (Im+W ∗W )−1. Hence
we obtain directly

∫

Cmn

(tr(U−1))αdµ(W ) =

∫

[0,1]m

(
m∑

i=1

zi

)α

∆m(z)
2

m∏

1

(1− zi)
n−mdz1dz2 . . . dzm. (4.1)

Tracing through the proof of Theorem 1.1 in [1], one also obtains the easy generalisation

∫

Cmn

tr(U−β)dµ(W ) =

∫

[0,1]m

(
m∑

i=1

zβi

)

∆m(z)
2

m∏

1

(1− zi)
n−mdz1dz2 . . . dzm. (4.2)

The Selberg-type integrals on the right of Equations (4.1) and (4.2) have been widely
studied. We use the results of Kanecko [6] (essentially Equation (2.3.13) in [1]) which
says for a Schur function sλ(z) inm-variables corresponding to a partition λ = (λ1, λ2, . . . , λm),
and integers a, b > m− 1,
∫

[0,1]m
sλ(z)∆m(z)2

m∏

1

(1− zi)
a−mzb−m

i dz = sλ(1
m)

m∏

1

Γ(i+ 1)Γ(a+ 1− i)Γ(λi + b+ 1− i)

Γ(λi + a+ b+ (1− i))
,

where 1m = (1, 1, . . . , 1). Evaluating using a = n and b = m yields
∫

[0,1]m
sλ(z)∆m(z)2

m∏

1

(1− zi)
n−mdz1dz2 . . . dzm = sλ(1

m)

m∏

1

i!(n− i)!(m + λi − i)!

(n+m+ λi − i)!
. (4.3)

We fix the constant

Cn,m =

m∏

j=1

(n− j)!(m− j)!j!

(n +m− j)!
.

If we abuse notation by ignoring zeros at the end of partitions and write
∫

sλ =

∫

[0,1]m
sλ(z)∆m(z)

2

m∏

1

(1− zi)
n−mdz1dz2 . . . dzm,

we have

Cn,m

∫

s(0) = 1, Cn,m

∫

s(1) =
m2

n +m
,

Cn,m

∫

s(2,0) =
m2(m+ 1)2

2(n +m)(n+m+ 1)
, Cn,m

∫

s(1,1) =
m2(m− 1)2

2(n+m)(n +m− 1)
,

Cn,m

∫

s(3,0,0) =
(m(m+ 1)(m+ 2))2

6(n+m+ 2)(n+m+ 1)(n+m)
,

Cn,m

∫

s(2,1,0) =
((m− 1)m(m+ 1))2

3(n+m− 1)(n+m)(n+m+ 1)
,
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and

Cn,m

∫

s(1,1,1) =
((m− 2)(m− 1)m)2

6(n+m− 2)(n+m− 1)(n+m)
.

Putting this together, we have the following result.

Lemma 4.1. Let F : Gm(C
n+m) → C and write
∫

F = Cn,m

∫

Cmn

F (W )dµ(W ),

In the notation of the previous section we have
∫

1 = 1,

∫

tr(U−1) =
m2

n+m
,

∫

tr(U−2) =

∫

s(2,0) − s(1,1) =
m2(m2 + 2nm− 1)

(n+m− 1)(n +m)(n+m+ 1)
,

∫
(
tr(U−1)

)2
=

∫

s(2,0) + s(1,1) =
m2(m3 + nm2 −m+ n)

(n+m− 1)(n +m)(n +m+ 1)
,

∫

tr(U−3) =

∫

s(3,0,0)−s(2,1,0)+s(1,1,1) =
m2(m4 + 4m3n+ 5m2n2 − 5m2 − 10mn+ n2 + 4)

(n+m− 2)(n +m− 1)(n +m)(n +m+ 1)(n +m+ 2)
,

∫

tr(U−2)tr(U−1) =

∫

s(3,0,0)−s(1,1,1) =
m2(m5 + 3m4n+ 2m3n2 − 5m3 − 5m2n+ 4mn2 + 4m− 4n)

(n+m− 2)(n +m− 1)(n+m)(n +m+ 1)(n +m+ 2)
,

and
∫
(
tr(U−1)

)3
=

∫

s(3,0,0)+2s(2,1,0)+s(1,1,1) =
m2(m6 + 2m5n+m4n2 − 5m4 + 3m2n2 + 4m2 − 8mn+ 2n2)

(n+m− 2)(n +m− 1)(n +m)(n +m+ 1)(n +m+ 2)
.

4.2. Calculating pointwise quantities. Henceforth, all the calculations we make will
be in complex coordinates unless specifically mentioned. We fix a choice of γ ∈

√
−1sun+m

to be
γ = Diag(−n,−n, . . . ,−n

︸ ︷︷ ︸

m terms

, m,m, . . . ,m
︸ ︷︷ ︸

n terms

). (4.4)

This means
MU

ij = −nδij +mwriw̄rj = −(n +m)δij +mUij ,

where we have used Equation (3.1). Similarly, using Equation (3.2)

MQ
ij = (n+m)δij − nQij .

In local coordinates wI we have

fγ = U−1
ij M

U
ji = m2 − (n+m)U−1

ii = m2 − (n+m)tr(U−1), (4.5)

(h1)IJ̄ = (U−1
j2i2

)(Q−1
i1k

)(Q−1
lj1
)MQ

kl = −ngIJ̄ + (n +m)gI(r,j2)Q
−1
rj1
, (4.6)

(h2)IJ̄ = (U−1
j2k

)(U−1
li2

)MU
klQ

−1
i1j1

= mgIJ̄ − (n +m)gI(j1,r)U
−1
j2r
. (4.7)
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In the expressions for h1 and h2 we can see a simplifying calculational principle: to
switch an h1 with an h2 in an expression, switch m and n, multiply by −1, switch U
with the conjugate expression in Q. The pointwise norms of various expressions also
involve tr(Q−1) terms. The following identities can be checked directly

tr(Q−α) = (n−m) + tr(U−α), (4.8)

where α ∈ {1, 2, 3}. We record here the following quadratic quantities

‖h1‖2 = m
(
n3 − 2n(n+m)tr(Q−1) + (n +m)2tr(Q−2)

)
, (4.9)

‖h2‖2 = n
(
m3 − 2m(n +m)tr(U−1) + (n+m)2tr(U−2)

)
, (4.10)

‖h3‖2 = mnf 2
γ , (4.11)

〈h1, h2〉 = −f 2
γ , (4.12)

〈h1, h3〉 = −mf 2
γ , (4.13)

〈h2, h3〉 = nf 2
γ . (4.14)

4.3. Integral of cubes of eigenfunctions. As mentioned in Section 2, whenG = SUn+m,
the space HomG(s

2(g), g) is one-dimensional. Thus the space of SUn+m-invariant cu-
bic polynomials on sun+m is also one-dimensional and we can pick any non-vanishing
invariant polynomial as a generator; we choose (as do the authors in [13]) the integral
of f 3

γ and express the obstruction (2.7) as a multiple of this integral. Using the special
choice γ given in Equation (4.4), we have
∫

f 3
γ =

∫
(
m6 − 3m4(n +m)tr(U−1) + 3m2(n +m)2(tr(U−1))2 − (n+m)3(tr(U−1))3

)
.

We calculate (using Matlab’s symbolic algebra toolbox)
∫

f 3
γ =

−2m2n2(n−m)2

(n+m− 2)(n+m− 1)(n+m+ 1)(n+m+ 2)
.

Note that this polynomial vanishes if m = n but this is not a problem for the ‘odd’
Grassmannians. This integral was calculated using different methods rooted in sym-
plectic geometry in [5]; a result of Kröncke [10] implies that if the integral does not
vanish, the Fubini–Study metric on Gm(C

n+m) is unstable as a fixed point of the Ricci
flow. We note, as a sanity check, we do indeed get the same value (compare Lemma
4.6 in [5]). Thus fact that the integral is non-zero for m 6= n provides an alternative
proof of the dynamic instability of the Fubini–Study metric.

4.4. The 〈hikhkj , hij〉 term. We collect calculations needed to compute 〈hikhkj , hij〉 = tr(H3).
The EIDs are constructed from combinations of the tensors h1, h2, and h3. We denote
by

Zijk := tr(HiHjHk) (4.15)
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where (Hi)
K
I = (hi)IK̄g

JK̄ . It is immediate that Zijk = Zjki = Zkij and the observation
regarding expressions in U and Q means that we can switch ‘1’ and ‘2’ in calculations
by exchanging n and m, U and Q, and changing a sign if needed. Hence we need only
compute

Z111, Z112, Z123, Z133, Z113, and Z333.

We have H3 = fγId; combining this with the calculation of the quadratic quantities in
Equations (4.9)-(4.14) yields

Lemma 4.2. Let γ be as in Equation 4.4 and let Dabc be defined by Equation (4.15).
Then

Z111 = m(−n4 + 3n2(n+m)tr(Q−1)− 3n(n +m)2tr(Q−2) + (n+m)3tr(Q−3)), (4.16)

Z112 = (m2 − (n+m)tr(U−1))(n3 − 2n(n+m)tr(Q−1) + (n+m)2tr(Q−2)), (4.17)

Z333 = mnf3
γ , (4.18)

Z123 = fγtr(H1H2) = −f3
γ , (4.19)

Z133 = fγtr(H1) = −mf3
γ , (4.20)

Z113 = fγ‖h1‖2. (4.21)

We now integrate using Lemma 4.1 and multiply by a factor of 2 to convert complex
to Riemannian coordinates as in Lemma 2.5 to compute the first integral in Koiso’s
obstruction (2.7). We mention again that these calculations are carried out using the
symbolic toolbox in Matlab.

Lemma 4.3. Let γ be as in Equation (4.4) and let Dγ be the associated EID as described
in Theorem B. Then, in Riemannian coordinates,
〈(Dγ)ik(Dγ)

k
j , (Dγ)ij〉 =

−
[

(m2 − 1)(n2 − 1)(n +m)3
(m3n3 − 4m3n− 4mn3 + 2m2n2 +m2 + n2 + 7mn− 4)

(n −m)

] ∫

f3
γ .

4.5. The 〈∇i∇jhkl, hijhkl〉 term. We return to making calculations in complex coor-
dinates and note that as the EID Dγ is divergence-free, integration by parts yields

〈∇I∇J̄(Dγ)KL̄, (Dγ)IJ̄(Dγ)KL̄〉L2 = −〈∇J̄ (Dγ)KL̄, (Dγ)IJ̄∇I(Dγ)KL̄〉L2.

Thus it will be necessary to compute terms of the form

∇J̄(hr)KL̄∇I(hs)
KL̄,
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where r, s ∈ {1, 2, 3}. The formulae for h1 and h2 in Equations (4.6) and (4.7) yield the
following

∇J(h1)KL̄ = (n +m)gK(r,l2)

∂Q−1
rl1

∂wJ

= −(n+m)gJ(l1,α2)gK(α1,l2)wα,

∇J(h2)KL̄ = −(n +m)gK(l1,r)

∂U−1
l2r

∂wJ

= (n+m)gJ(α1,l2)gK(l1,α2)wα,

∇J(h3)KL̄ = (n +m)gJᾱgKL̄wα.

The nine possible combinations of r and s in

∇J̄(hr)KL̄∇I(hs)
KL̄

actually yield a very limited set of expressions.

Lemma 4.4. Let γ be as in Equation (4.4) and let h1, h2, and h3 be as in Theorem B.
Then

(∇J̄(h1)KL̄)
(

∇Ī(h1)
KL̄
)

= m(n+m)2δi1j1
(
U−1
j2i2

− U−1
j2β
U−1
βi2

)
,

(∇J̄(h1)KL̄)
(

∇Ī(h2)
KL̄
)

= −(n +m)2gKJ̄wKwI ,

(∇J̄(h1)KL̄)
(

∇Ī(h3)
KL̄
)

= −m(n +m)2gKJ̄wKwI ,

(∇J̄(h2)KL̄)
(

∇Ī(h1)
KL̄
)

= −(n +m)2gKJ̄wKwI ,

(∇J̄(h2)KL̄)
(

∇Ī(h2)
KL̄
)

= n(n +m)2δi2j2
(
Q−1

i1j1
−Q−1

i1α
Q−1

αj1

)
,

(∇J̄(h2)KL̄)
(

∇Ī(h3)
KL̄
)

= n(n+m)2gKJ̄wKwI ,

(∇J̄(h3)KL̄)
(

∇Ī(h1)
KL̄
)

= −m(n +m)2gKJ̄wKwI ,

(∇J̄(h3)KL̄)
(

∇Ī(h2)
KL̄
)

= n(n+m)2gKJ̄wKwI ,

(∇J̄(h3)KL̄)
(

∇Ī(h3)
KL̄
)

= (n+m)2mngKJ̄wKwĪ .

We now consider the pairing of each of these terms with the endomorphisms (Hi).
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Lemma 4.5. Let γ be as in Equation (4.4) and, for a ∈ {1, 2, 3}, let Ha be the endo-
morphisms associated to the ha. Then

δi1j1

(

U−1
j2i2

− U1
j2β

U−1
βi2

)

(H1)
J̄
Ī
= −fγ

(
tr(U−1)− tr(U−2)

)
,

δi1j1

(

U−1
j2i2

− U1
j2β

U−1
βi2

)

(H2)
J̄
Ī
= n

(
m
(
tr(U−1)− tr(U−2)

)
− (n+m)

(
tr(U−2)− tr(U−3)

))
,

δi1j1

(

U−1
j2i2

− U1
j2β

U−1
βi2

)

(H3)
J̄
Ī
= nfγ

(
tr(U−1)− tr(U−2)

)
,

δi2j2

(

Q−1
i1j1

−Q−1
i1α

Q−1
αj1

)

(H1)
J̄
Ī
= fγ

(
tr(Q−1)− tr(Q−2)

)
,

δi2j2

(

Q−1
i1j1

−Q−1
i1α

Q−1
αj1

)

(H2)
J̄
Ī
= −m

(
n
(
tr(Q−1)− tr(Q−2)

)
− (n+m)

(
tr(Q−2)− tr(Q−3)

))
,

δi2j2

(

Q−1
i1j1

−Q−1
i1α

Q−1
αj1

)

(H3)
J̄
Ī
= mfγ

(
tr(Q−1)− tr(Q−2)

)
,

gKJ̄wKwI(H1)
J̄
Ī
= −ntr(Q−1) + ntr(Q−2) + (n +m)tr(Q−2)− (n+m)tr(Q−3),

gKJ̄wKwI(H2)
J̄
Ī
= mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n+m)tr(U−3),

gKJ̄wKwI(H3)
J̄
Ī
= fγ

(
tr(U−1)− tr(U−2)

)
.

Let

Dabc := 〈(∇J̄ha)KL̄, (Hb)
Ī
J̄(∇Īhc)KL̄〉, (4.22)

where a, b, c,∈ {1, 2, 3}. Then, putting together the results of Lemma 4.4 and Lemma
4.5, we have the expressions we need.
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Lemma 4.6. Let γ be as in Equation 4.4 and let Dabc be defined by Equation (4.22).
Then

D111 = −m(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

D121 = nm(n+m)2
(
mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n+m)tr(U−3)

)
,

D131 = mn(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

D112 = −(n+m)2
(
−ntr(Q−1) + ntr(Q−2) + (n +m)tr(Q−2)− (n+m)tr(Q−3)

)
,

D122 = −(n+m)2
(
mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n+m)tr(U−3)

)
,

D132 = −(n +m)2fγ
(
tr(U−1)− tr(U−2)

)

D1i3 = mD1i2 for i ∈ {1, 2, 3},

D2i1 = D1i2 for i ∈ {1, 2, 3},

D212 = −nm(n +m)2
(
ntr(Q−1)− ntr(Q−2)− (n+m)tr(Q−2) + (n+m)tr(Q−3)

)
,

D222 = n(n +m)2fγ
(
tr(Q−1)− tr(Q−2)

)
,

D232 = mn(n +m)2fγ
(
tr(Q−1)− tr(Q−2)

)
,

D2i3 = −nD1i2 for i ∈ {1, 2, 3},

D3i1 = D1i3 for i ∈ {1, 2, 3},

D3i2 = D2i3 for i ∈ {1, 2, 3},

D3i3 = −mnD1i2 for i ∈ {1, 2, 3}.

Finally in this subsection we again can use Lemma 4.1 to compute the L2-inner product.
Note that there is a factor of 4 in switching from complex to Riemannian coordinates
(Equation 2.9).

Lemma 4.7. Let Dγ be the EID as described in Theorem B. Then, in Riemannian
coordinates,

22



〈∇i∇j(Dγ)kl, (Dγ)ij(Dγ)kl〉 =

[
2mn(m2 − 1)(n2 − 1)(m + n)2(m4n2 +m2n4 − 2m4 − 2n4 − 4m2n2 + 5m2 + 5n2 − 4)

n−m

] ∫

f3
γ .

4.6. The 〈∇i∇jhkl, hilhkj〉 term. As with the previous term, we return to calculating
in complex coordinates and we integrate by parts

〈∇I∇J̄(Dγ)KL̄, (Dγ)IL̄(Dγ)KJ̄〉L2 = −〈∇J̄ (Dγ)KL̄, (Dγ)IL̄∇I(Dγ)KJ̄〉L2.

Thus we will need to compute terms of the form (∇J̄(hr)KL̄)(∇Ī(hs)
KJ̄), where r, s ∈ {1, 2, 3}.

Lemma 4.8. Let γ be as in Lemma 4.3 and let h1, h2, and h3 be as in Theorem B.
Then

(∇J̄(h1)KL̄)(∇Ī(h1)
KJ̄) = (n+m)2gKL̄wKwI ,

(∇J̄(h1)KL̄)(∇Ī(h2)
KJ̄) = −n(n +m)2δi2l2

(
Q−1

i1l1
−Q−1

i1α
Q−1

αl1

)
,

(∇J̄(h1)KL̄)(∇Ī(h3)
KJ̄) = −n(n +m)2gKL̄wKwI ,

(∇J̄(h2)KL̄)(∇Ī(h1)
KJ̄) = −m(n +m)2δi1l1

(
U−1
l2i2

− U−1
l2α
U−1
αi2

)
,

(∇J̄(h2)KL̄)(∇Ī(h2)
KJ̄) = (n+m)2gKL̄wKwI ,

(∇J̄(h2)KL̄)(∇Ī(h3)
KJ̄) = m(n +m)2gKL̄wKwI ,

(∇J̄(h3)KL̄)(∇Ī(h1)
KJ̄) = −(n +m)2δi1l1

(
U−1
l2i2

− U−1
l2α
U−1
αi2

)
,

(∇J̄(h3)KL̄)(∇Ī(h2)
KJ̄) = (n+m)2δi2l2

(
Q−1

i1l1
−Q−1

i1α
Q−1

αl1

)
,

(∇J̄(h3)KL̄)(∇Ī(h3)
KJ̄) = (n +m)2gKL̄wKwI .

We can then use Lemma 4.5 to complete the calculation. Let

Sabc = 〈(∇J̄ha)KL̄, (Hb)
Ī
L̄(∇Īhc)KJ̄〉, (4.23)

where a, b, c,∈ {1, 2, 3}.
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Lemma 4.9. Let γ be as in Equation 4.4 and let Sabc be as in Equation 4.23. Then

S111 = (n+m)2
(
−ntr(Q−1) + ntr(Q−2) + (n+m)tr(Q−2)− (n+m)tr(Q−3)

)
,

S121 = (n+m)2
(
mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n +m)tr(U−3)

)
,

S131 = (n+m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S112 = −mn(n +m)2
(
−ntr(Q−1) + ntr(Q−2) + (n+m)tr(Q−2)− (n+m)tr(Q−3)

)
,

S122 = −n(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S132 = −mn(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S1i3 = −nS1i1 for i ∈ {1, 2, 3},

S211 = m(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S221 = −mn(n +m)2
(
mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n +m)tr(U−3)

)
,

S231 = −mn(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S2i2 = S1i1 for i ∈ {1, 2, 3},

S2i3 = mS2i2 for i ∈ {1, 2, 3},

S311 = (n+m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S321 = −n(n +m)2
(
mtr(U−1)−mtr(U−2)− (n+m)tr(U−2) + (n +m)tr(U−3)

)
,

S331 =,−n(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S312 = m(n+m)2
(
−ntr(Q−1) + ntr(Q−2) + (n+m)tr(Q−2)− (n+m)tr(Q−3)

)
,

S322 = (n+m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S332 = m(n +m)2fγ
(
tr(U−1)− tr(U−2)

)
,

S3i3 = S1i1 for i ∈ {1, 2, 3}.
Again, we use Lemma 4.1 to compute the L2-inner product.Note that there is a factor
of 2 in switching from complex to Riemannian coordinates (Equation 2.10).

Lemma 4.10. Let Dγ be the EID as described in Theorem B. Then, in Riemannian
coordinates,
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〈∇i∇j(Dγ)kl, (Dγ)il(Dγ)kj〉 =

−
[
(m2 − 1)(n2 − 1)(m + n)2(2m4n4 − 4m4n2 − 4m2n4 + 8m2n2 +m4 + n4 − 2m2 − 2n2)

n−m

] ∫

f3
γ .

4.7. Proof of Theorem A.

Proof. For the special choice of γ in Equation (4.4), let Dγ be the EID constructed in
Theorem B. Koiso’s obstruction integral 2.7 is
I(Dγ) =

2(n+m)〈(Dγ)
k
i (Dγ)kj, (Dγ)ij〉L2+3〈∇i∇j(Dγ)kl, (Dγ)ij(Dγ)kl〉L2−6〈∇i∇l(Dγ)kj , (Dγ)ij(Dγ)kl〉L2 ,

where we have used the fact that in our construction, the Einstein constant λ = (n+m).
Using Lemmas 4.3, 4.4, and 4.8, we compute

I(Dγ) =
4(m2 − 1)2(n2 − 1)2(m+ n)4(mn− 1)

n−m

∫

f 3
γ .

Thus we see that when n 6= m, the obstruction integral is, for any choice of γ ∈ sun+m,
a non-zero multiple of

∫

f 3
γ

which, as discussed, does not vanish when m 6= n. Thus when n + m is odd, the
associated obstruction map in HomG(s

2(g), g) does not vanish and so all the EIDs are
obstructed to second order. �

5. Koiso’s original example revisited

In [8], Koiso constructed EIDs for the product metric g ⊕ g̃ on CP
2n × CP

1. In our
normalisation, given an eigenfunction fγ with eigenvalue 2(n+ 1), the tensor

h = ∇2fγ + (2n+ 1)fγg + (2n + 1)(1− n)fγ g̃.

is an EID. To compute I(h), Koiso proves the following identities which we state for the
Fubini–Study metric on CP

n with an arbitrary normalisation of its Einstein constant.

Lemma 5.1 (Koiso, Lemma 6.8 and Lemma 6.9 in [8]). Let g be the Fubini–Study
metric on CP

n with Einstein constant λ and let f satisfy ∆f = 2λf . Furthermore,
denote by c the holomorphic sectional curvature of g so that

Rm j l
i k = c(δji δ

l
k + δliδ

j
k),
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then the following identities hold

〈(∇i∇jf)(∇j∇kf), (∇i∇kf)〉L2 = λ3
∫

f 3, (5.1)

〈(∇i∇j∇k∇lf), (∇i∇jf)(∇k∇lf)〉L2 = −2cλ3
∫

f 3, (5.2)

〈(∇i∇k∇j∇lf), (∇i∇jf)(∇k∇lf)〉L2 = −cλ3
∫

f 3. (5.3)

We now consider these identities with respect to our construction of the Fubini–Study
metric on CP

n (which has λ = (n + 1)) and for the eigenfunction fγ with γ given by
Equation (4.4). Using the Gasqui–Goldschmidt Lemma 3.6, we have

∇2fγ = h1 − h2.

To compute the quantity in Equation (5.1) we consider, recalling Zabc defined by Equa-
tion (4.15), we need to calculate

∫

((Z111 − Z222) + (Z221 − Z112) + (Z212 − Z121) + (Z122 − Z211)) .

The results of Lemma 4.2 yield
∫

((Z111 − Z222) + (Z221 − Z112) + (Z212 − Z121) + (Z122 − Z211)) =
(n+m)3

2

∫

f 3
γ ,

and so we see we recover the identity (5.1) on setting m = 1 and using the complex to
Riemannian coordinate scaling in Equation (2.8).

The identities (5.2) and (5.3) are similar; we consider Dabc defined by (4.22) and Sabc

defined by (4.23), and consider the quantities

−
∫

((D111 −D222) + (D221 −D112) + (D212 −D121) + (D122 −D211))

and

−
∫

((S111 − S222) + (S221 − S112) + (S212 − S121) + (S122 − S211)) .

The first of these, calculated with the formulae from Lemmas 4.1 and 4.6, yields

−
∫

((D111 −D222) + (D221 −D112) + (D212 −D121) + (D122 −D211)) =

−(n +m)2(mn + 1)

2

∫

f 3
γ .

The second, calculated with the formula from Lemmas 4.1 and 4.9, yields

−
∫

((S111 − S222) + (S221 − S112) + (S212 − S121) + (S122 − S211))

26



= −(n+m)2(mn + 1)

2

∫

f 3
γ .

In our normalisation, the holomorphic sectional curvature for CPn is c = 1 and so we
recover Koiso’s identities (5.2) and (5.3) after setting m = 1 and applying the complex
to Riemannian coordinate scalings in Equations (2.9) and (2.10).
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