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THE FUBINI-STUDY METRIC ON AN ‘ODD’ GRASSMANNIAN IS
RIGID

STUART JAMES HALL

ABSTRACT. Following the ideas of Gasqui and Goldschmidt, we give an explicit de-
scription of the infinitesimal Einstein deformations admitted by the Fubini-Study
metric on complex Grassmannians G, (C"*) with m,n > 2. The deformations were
first shown to exist by Koiso in the 1980s but it has remained an open question as
to whether they can be integrated to give genuine deformations of the Fubini—Study
metric. We show that when n + m is odd, the answer is no.

1. INTRODUCTION

1.1. The main theorem and method of proof. Given a fixed Einstein metric gy on a
closed manifold M, a natural question to ask is whether there are other non-isometric
Einstein metrics that are in some sense near to gy, in particular, whether gy can be
deformed through a one-parameter family of geometrically distinct Einstein metrics.
The foundational work on this problem was carried out in the 1980s by Koiso in [7],
[8], and [9], where such questions were considered for the canonical metrics on compact
irreducible symmetric spaces. Koiso was able to demonstrate that, for m,n > 2, the
canonical metric on the complex Grassmannians G,,(C"*™) (which we will refer to as
the Fubini-Study metric) admits deformations to first order, known as infinitesimal
Einstein deformations (EIDs). However, it was left as an open question as to whether
any of the EIDs could be integrated to produce a genuine curve of Einstein metrics
passing through the Fubini—Study metric; it is this problem that we take up in this
article and we are able to demonstate that for ‘half’ of the Grassmannians, the answer
is no.

Theorem A. Let m,n € N with m,n > 2 and n + m odd. The Fubini-Study metric
on G (C"™) is rigid.

In order to prove this result, we first describe the deformations of the Fubini—Study
metric in a concrete manner. Koiso’s original proof for the existence of these EIDs
was non-constructive and based upon the analysis of eigenspaces of the Lichnerowicz
Laplacian for symmetric spaces using tools coming from representation theory [7]. In
their monograph [4], Gasqui and Goldschmidt described a concrete construction of the
EIDs, focussing mainly upon the case when n = m (though the idea for the construc-

tion in other cases is certainly implicit in their work). Their method of proof was also
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representation theoretic in nature. In Section [3] we follow the idea of the construction
in [4] but use fairly elementary complex differential geometry to prove the construction
yields EIDs of the Fubini-Study metric (see Theorem [Blin Section [3]).

In [§], Koiso developed the second order obstruction theory for EIDs; in particular,
he showed that a certain integral quantity must vanish in order for the deformation
to be unobstructed at second order (see Equation 27 in Section [2)). Using the explicit
complex differential-geometric description of the deformations, we are able to adapt
a method of Adler and van Moerbeke [I] and compute the obstruction integral for a
particular deformation. We can then appeal to the method of [2] and argue that as the
integral does not vanish for the particular defomation, when n + m is odd, it does not
vanish for any deformation. Thus we conclude all that all the infinitesimal deformations
are obstructed and so the metric is rigid.

Our proof of Theorem ([A]) can be adapted to show that, apart from in the case when
n = m, most of the EIDs on Gr,,(C""™™) when n + m is even are obstructed at sec-
ond order. It seems likely that the remaining EIDs are also obstructed but at higher
orders. However, to the best of the author’s knowledge, the formulae for third order
variations of the Einstein equations, that would be needed to produce an obstruction
to integrability at this order, have not been calculated.

1.2. The recent work of Nagy, Semmelmann, and Schwahn. Theorem [A] has
recently been proved independently by Schwahn and Semmelmann [13]. Their method
builds on work by Nagy and Semmelmann [I2] who gave a proof for the special case
when m = 2 (here the Grassmannian is also a Quaternionic Kéhler manifold and this
extra structure was exploited). In [I2], the authors reformulate Koiso’s obstruction
and express it in a coordinate-free manner. They also study in detail the case of
(non-Kéhler) deformations of Kéahler-Einstein manifolds and give a new criterion for
integrability. It is this new criterion that is used in [I3] and the calculations are ac-
complished using Lie-theoretic methods which are totally different from the coordinate
based calculations we make in this paper. The authors actually accomplish a bit more
in [13] as they characterise the unobstructed infinitesimal deformations in the case that
n + m is even as well as deal with the more awkward case when n = m.

1.3. Revisiting Koiso’s original example of CP?" x CP'. In the paper [8], Koiso
was able to demonstrate that the product of Fubini-Study metrics on CP?*" x CP! ad-
mits EIDs but that none of the deformations is integrable. Koiso’s method of proof of
this fact is a blueprint for the proof of our Theorem [Al describe the space of deforma-
tions explicitly and then use the description to calculate Koiso’s obstruction integral.

As part of his computations, Koiso used several identities that were proved by using
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ingenious juggling of standard tricks in Riemannian geometry (e.g. repeated integra-
tion by parts then switching appropriate derivatives and manipulating any curvature
terms that are introduced). In Section [, we recover these identities using the meth-
ods of this paper thus providing a useful check that the somewhat complicated ‘local’
calculations we are making do indeed recover identities proved using a different method.

Acknowledgements: The author began work on this problem during a research stay
with Ruadhai Dervan at the University of Glasgow in November 2022. Some of the
final calculations were completed during a stay in February 2024 at the Isaac Newton
Institute as a participant in the programme ‘New Equivariant Methods in Algebraic and
Differential Geometry’. The author would like to thank these institutions for providing
excellent research environments and to thank Ruadhai for the invitations, his support,
and useful discussions about the project. The author would also like to thank Paul
Schwahn and Uwe Semmelmann for useful discussions and for the invitation to speak
about this project at a workshop on Einstein manifolds organised by them in Stuttgart
in October 2023.

2. BACKGROUND ON HERMITIAN VARIATIONS OF KAHLER-EINSTEIN METRICS
The material in this section is well explained in chapter 12 of [3].

2.1. First order variations. Given an Einstein manifold (M™,g), if there were a
smooth one-parameter family of Einstein metrics g(¢) with ¢g(0) = ¢, then we consider
what equations the derivative of the curve ¢(0) would have to satisfy. Of course we
can always produce such curves by homothetic scaling or by acting by a one-parameter
subgroup of diffeomorphisms so we further require that our curve is not generated by
these procedures. Koiso showed that if no such curve exists, then the metric g is isolated
in the moduli space of Einstein metrics and we call such a metric rigid.

Definition 2.1 (Infinitesimal Einstein Deformation). Let (M™, g) be an Einstein man-
ifold such that Ric(g) = Ag with A > 0. An infinitesimal Finstein deformation (EID)
is a section h € ['(s*(T*M)) satisfying the following conditions:

tr,(h) = 0, (2.1)
div(h) = 0, (2.2)
Ah + 2Rm(h) = 0, (2.3)

where A is the connection Laplacian and Rm is the curvature operator acting on sym-
metric 2-tensors. We denote the space of EIDs by ¢(g).

Equations (2.1)) and (2.2)) ensure that the deformations do not simply come from homo-
thetic scaling or from acting by a one-parameter subgroup of diffeomorphisms; tensors
that are both trace and divergence-free are known as transverse trace-free or ‘“TT’

tensors. Equation (2.3) is the linearised Einstein equation restricted to the set of TT
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tensors. As Equation (2.3) is elliptic, the space €(g) is finite-dimensional. If e(g) = {0},
then the metric ¢ is rigid.

If the manifold (M™, g) is Kéhler-Einstein and the EID A is also invariant with respect
to the complex structure J, then the equations definining an EID can be conveniently
expressed as conditions involving the two-form associated to h, o € Q4D (M):

A(o) =0, (2.4)
00 =0, (2.5)
Ago = Ao, (2.6)

where A is the adjoint of the Lefschetz operator, 0* is the usual adjoint of the Dolbeault
operator 0, and Az = 00* + 0*0. The translation of the ‘TT’ equations follows from
the fact that the complex structure is parallel; the translation of the linearised Einstein
condition follows from a Weitzenbock identity for two-forms.

We state here the following result of Koiso listing which compact irreducible symmetric
spaces admit EIDs.

Theorem 2.2 (Koiso, Theorem 1.1 in [7] - see also [4] Proposition 2.40). Let (M, g)
be a compact irreducible symmetric space. Then the space of EIDs e(g) = {0}, except
in the following cases:

(i) M = SU,, with n > 3, here £(g) = su,, ® su,,

(ii)) M = SU, /SO, with n > 3, here £(g) = su,,
(iii) M = SUs, /Sp, with n > 3 here £(g) = suy,,

(1) M = SUypym/S(Up x Uy) withn > m > 2, here e(g) = Uy,

(v) M = Eg/Fy, here £(g) = e.

The complex Grassmannians are spaces (iv) on this list and are the only spaces on the
list where the metric is Kéhler-Einstein (i.e. they are the only Hermitian symmetric
spaces on the list).

2.2. Second order variations. We denote by Met(M) C T['(s*(T*M)) the set of
Riemannian metrics on M™. One can consider Einstein metrics as zeros of the Einstein
operator £ : Met(M) — T'(s?(T*M)) given by
S ScalydV,
nVol(M) g
If h is an EID, then the curve g;(t) = g+ th solves the Einstein equations to first order
in the sense that £(g1(0)) = 0 and

d

@) =0
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Koiso investigated the conditions under which it is possible to find hy € T'(s*(T*M))

such that the curve
2

t

dk
solves the Einstein equations to second order in the sense that %5 (g2(t))| =0 for

k =0,1,2. If it is possible to find such an hs then we say that the EID h ist_i?ztegmble
to second order. If it is not possible to find such an hy, then we say h is obstructed at
second order; in particular, h cannot be tangent to a genuine non-trivial deformation
of g through Einstein metrics. If all of the EIDs in (g) are obstructed to second order,
then g is rigid.

Lemma 2.3 (Koiso, Lemma 4.7 in [8]). Let (M, g) be an Einstein manifold. Then an
EID h € e(g) is integrable to second order if and only if £"(h,h) € &(g)*. Here the
orthogonal complement is with respect to the L*-inner product on s*(T*M) induced by

qg.

Using this result, we see that a necessary condition for h to be integrable is the vanishing
of the quantity (£”(h,h),h)rz. This quantity was also computed by Koiso.

Lemma 2.4 (Koiso, Lemma 4.3 in [8]). Let (M, g) be an Einstein metric with Einstein
constant A > 0 and let h € €(g). Then an obstruction to the integrability of h to order
two is given by the nonvanishing of the quantity

I(h) = 2/\<hfhkj, hij>L2 + 3(Vithkl, hijhkl>L2 — 6<V2-V1hkj, hijhkl>L2, (2.7)

where each of the brackets denotes the L?-inner product induced by the metric g on the
appropriate bundle.

2.3. Koiso’s obstruction in complex coordinates. Pointwise, the terms in the
obstruction (27) are of the form

(hfhkj, hij) = hfhkjhij = g"pgqjhfhkjhpq = hfhihz = tr(H3),
(ViV ihat, hijhi) = (ViVihi) BRI = (Vi b)) hpghrsg 679" g™,
(ViVihg, hishi) = (Vi )W RE = (VV1hi ) hpghrs g g7 %% g%,

where H is the symmetric endomorphism associated to h given by H ; = g*hy;. Tt will
be convenient to compute these quantities in complex coordinates. The tangent space
at a point is an inner product space (V?", g) with an almost complex structure .J such
that g(J-, J-) = g(+,-). We complexify V' and extend the tensors g and h C-linearly in
both arguments to obtain a 2n-complex-dimensional space V¢ and tensors gc and hc.
The space V¢ splits into the £v/—1-eigenspaces for J and we write V¢ = V(C(I’O) &) V(éo’l).
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Given a g-orthonormal basis of V' of the form vy, Juy, v9, Jvs, ... v,, Ju,, we can form
the basis {e;}", of V(C(l’o) where

(Ui —V —1J’UZ) .
This is an orthogonal basis of (V(c(l’o), gc) with ||e;]] = 1/2. The set of conjugates
1
€e; = 5 (Uz' =+ —L]U,') ,

form a basis of V(C(O’l). As the tensors g and h are J-invariant, the only non-vanishing
terms of the extensions g¢ and hc¢ are those of the form

N~

€, =

9i = gc(ex €r) and hir = he(ex, @)
We consider Koiso’s quantities but in complex coordinates e.g.
(hphyr, hyg) = g™g" W hyiheg = HYHY HYY = tr(H?).
As the metric is Kéahler, the Chern connection is the same as the C-linear extension of
the Levi-Civita connection. We also note that

(V.VR)(IX, JY) = (V.Vh)(X,Y).
Lemma 2.5. Let h € s*(V*) be J-invariant and let T € (V*)®* satisfy
T(—,—-,X,Y)=T(-,-,Y, X) and T(—,—,JX,JY)=T(—-,—, X,Y),
for all XY € V. Then, with the notation defined previously,

(hiph s h) = 2(huphl, hyg), (2.8)

<Tklr8> hklhr8> = 4Re(<kar§> hkfhr§>)> (2'9)

(Tirst, hithes) = 2Re((Tirsr; highesr))- (2.10)

Proof. We might as well assume that the basis vy, Juy, v9, Jus, ..., vy, Ju, diagonalises

the symmetric tensor hy;. If
h(vg, vi) = h(Jok, Jug) = 2A,
then
he(er, er) = by, = Ak
Equation (2.8)) follows from

n

(hiohy, hr) =16 > AL and  (lughy, hyg) =8> A}
k=1 k=1

For Equation (2.9)), we note
(Tatrss hiahs) =8 > (T(0k, 0, v, 00) + T (Jvg, J0k, vp, 00)) AeAr,

1<k, r<n
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and

<kar§’ hkihT§> =16 Z T(eka éka €r, ér))\k)\r"

1<k, r<n
Expanding

1
T(ex, €k, €, &) = ET(UR —V=1Jvg, v + vV—=1Jvg, v, — V—=1Jv,, v, + V—1Jv,),

we see the real part is contributed to by taking 0,2, or 4 terms with v/—1. The terms
of the form T'(—, —, v, Jv,) = T(—, —, Ju.,v,) = 0 and so we obtain

(Thiirss hiihrs) = 2 Z (T'(vk, Vg, Ur, vy) + T (Jog, JUk, Uy U2)) ApAre.

1<k, r<n

For Equation (ZI0)
<Tkrsl7 hklhrs> =

4 Z (T (vg, vy Uy V) + T (JVgy Vs Oy Jg) + Tk, JUp, JUr, v) + T(JUk, JUpy JUR, JUK)) ApAr,

1<k, r<n

and

(st uhsr) = 16> T(ex, €, €r, Ex) AiAr.

1<k, r<n
Choosing 0,2, or 4 terms with /—1 from

1
T(ex, e, e, ) = ET(W —vV=1Jv, v, + vV—=1Jv., v, — V—=1Jv., v + V—1Jvy),

we pick up terms

T('Ukavmvravk)a T(Uka'UT’aJ,UT’aJ'Uk)? T(JUk,JUT,'UT»,Uk), T(J'Uka‘]UTaJ'UT’aJ'Uk)?

T(JUk,UT,'UT,J'Uk), _T(‘]Uka'UT’)JUT?'Uk)) T('Uk,JUT,JUT,Uk), _T('Uka‘]UT)'UT’aJ'Uk)-
Hence

<kasi ) hkihsf‘ > =

2 Z (T(Uky Uy, Up, Uk) + T(J’Uk, Uy, Up, J'Uk) + T(Uka J'Ura J'Ury Uk) + T(J'Uk, J'Ura J'Ury Jvk)) )\k)\ra

1<k, r<n

and the result follows. O



2.4. Strategy for demonstrating the rigidity of Grassmannians. We follow the
strategy outlined in [2] where the rigidity of M = SUs,,; was demonstrated by proving
none of the EIDs that the biinvariant metric admits is integrable to second order. (We
should say here that this strategy is implicit in Koiso’s original work on rigidity). For a
general symmetric space M = G/K, the projection of £”(h, h) to €(g) can been seen as
an element of Homg(s?(g), g) and when G is the special unitary group this Hom-space
is one-dimensional. Thus the obstruction map is a multiple of a particular generator
(see the discussion in Section 3 of [2]). In the case of G = SUy, 1, this generator does
not have any zeros, so, providing the multiple is non-zero, one can conclude all EIDs
are obstructed to second order. To show the multiple is non-zero, we choose carefully
a single element ~y € s, ,,, form the corresponding EID, D.,, and compute Z(D.,). We
show Z(D.,) # 0 which proves Theorem [Al

3. AN EXPLICIT DESCRIPTION OF THE VARIATIONS OF THE GRASSMANNIAN

3.1. Tautological bundles for the Grassmannian. We denote by G,,(C"*™) the
Grassmannian of m-planes in C"*. The generalised Euler sequence

0-U—-C"" =5 Q—0,

relates the the trivial C"*™-bundle over the Grassmannian to its subbundle ¢/, the tau-
tological m-plane bundle, and the quotient bundle Q. The holomorphic tangent bundle
TG, (C™™) is isomorphic to Home (U, Q). Fixing an Hermitian inner product on the
ambient copy of C"*™ induces a fixed Hermitian metric on C"*™ and gives a splitting
of the bundle C"*" = U &U* where Q = U as complex (but not holomorphic) vector
bundles. The metric on C"™™ restricts to a metric on the subbundles & and U+ and
therefore induces a Hermitian metric on U* @ U+ = TG, (C**™); this metric, as we
shall see, is a Kdhler—Einstein metric.

If, instead of a Hermitian metric on the trivial bundle C"™™, we endow it with a
general sesquilinear form, restriction also yields sesquilinear forms on the subbbundles
U and U~+. Using the Hermitian metric on U, we can induce a sesquilinear form on /*.

Finally, we note that a sesquilinear forms P, and P, on U* and 4 induce a sesquilinear
form P; - P, on TG,,(C"™).

3.2. Trivialising the tautological vector bundles. An m-plane in C"™™ is the
image of a injective linear map with domain C™ i.e. the image of an (n+m) x m rank
m matrix. We will consider the dense open set of planes that can be realised, after
multiplication by GL(m,C), by the image of the matrix



where W € Mat™™(C) and L, is the m X m identity matrix. The entries in W are
complex coordinates for the open set of planes. Accordingly, we will consider a generic
coordinate w; where I = (i,12), i1 € {1,2,...,n}, and iy € {1,2,...,m}.

The m columns of the matrix M can be thought of as sections that generate at each
point the tautological rank m bundle Y — G,,(C"*™). If we endow the ambient C**™
with the standard Euclidean Hermitian metric (-, -)gyc, then the induced metric on the
trivial bundle yields a splitting

U = span{cy, co, ..., ¢} and U+ = span{qi, qe, -, qn},

where
0 ~Un
. ~Wj2
0 @,
1 0
0
cj = . and ¢; = :
’ 0
wlj 1
Wa; 0
W, 0

where the ‘1’ is in the j™ row for ¢; and in the in the (m + j)™ row for g;.

3.3. Induced metrics on the canonical bundles and the Fubini—Study metric.
With respect to the local frames {c¢;} and {g;}, the induced Hermitian metrics are given
by by

Usij = <Ciacj>Euc and  Qjj = <Qi7Qj>Euc-
We denote by U~! and Q! the inverse matrices of U and @ so, for example, U iglU kj = 0ij.
We record here some useful identities regarding these Hermitian metrics, leaving the
proofs to the reader.

Lemma 3.1 (Zeroth-order identities). Let U and Q be defined as previously. Then the
following identities hold:

Uij = 0ij + wyWyj, (3.1)

Qij = 0ij + Wirwjr, (3.2)

Q' = 0 — (U Wiws, (3.3)
Qi )@ = (U )iy (3.4)
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We will also need to compute derivatives of the metric quantities in order to work with
objects such as connections.

Lemma 3.2 (Derivatives of Hermitian metrics). Let U and Q be defined as previously.
Then the following identities hold:

U,

Ty = i U Jir = = (Ui, (@i )W (3:5)
an_kl -1 —1\—
T = —(UDQhw 36)
o*U! —1 S —1\(77—1\ (-1
m = (Uj2i2>(Usl )(Up, )wilswjlr - (Ukig)(Ujgl )(Qi1j1)7 (3.7)
O*Uy! 1 1\ (7 r—1\— —1\(77—1\ (-1
m = (sziz)(Qils)(Ukr )wslew - (Ukig)(Ujgl )(Qi1j1)7 (3.8)
aZlezl “1y\/77—1 1\ —1 -1 -1
m = (sz’r‘)(UsiQ)(Qi1j1>wkswlr - (szlz)(ijl)(Qlll) (39>

An immediate consequence of Equations (83]) and (B.0]) is that the complex coordinates
W are ‘normal’ coordinates for the Hermitian metrics (in the sense that at W = 0, both
matrices are the identity, and the first derivatives of the metric vanish at W = 0 too).
We will use the following standard fact.

Lemma 3.3 (Generalised Euler Sequence). The holomorphic tangent bundle of the
Grassmannian G,,(C"™) satisfies

TG (C™™) = Home (U, Q) = U* ® Q.

Furthermore, identifying Q = UL as complex vector bundles, in the local coordinates
W we have 5
% —1
Jw, G ® (Qi 1)
where {c}} denotes the frame of U* dual to {c;}.

Given a Hermitian vector bundle (E, hg), the Hermitian metric, hg induces a Hermitian
metric hp- on the dual bundle E*. The salient point of the construction is that if, in a
local frame {e;}, the metric hg is described by the Hermitian matrix (hg);;, then the
induced metric described in the dual frame {e}} satisfies

hp-(ef, €) = (hg);'.
The induced metrics on U* and U+ = Q (which we denote g; and g, respectively) yield
a metric g = g1 - go on the tensor product U* ® Q which, by Lemma [B.3] gives rise to a
Hermitian metric on the holomorphic tangent bundle; this metric is the Fubini-Study
metric and we now detail some of its interesting properties. Again, we leave the proofs

to the reader.
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Lemma 3.4 (Properties of Fubini-Study metric). In the local holomorphic cordinates
W, the metric induced on the holomorphic tangent bundle as given by

ar; = (Uj;;lz)(Q?:;l)
The inverse metric g'’ (in the sense that " g,z = 615 ) is given by

gIJ = (Uizjz)(leil)‘
The metric is Kahler as
991 _ 9k
Owg owy
The Christoffel symbols are given by
U5 = =(0,k1) Giaks) (Ui Wiy s — (i1 ) (0500) (Usg) V0 s
The metric is Kahler—Einstein and satisfies

RiCIj = (n + m)ng
The coordinates W are local normal holomorphic coordinates for the metric g.

3.4. Seqgsquilinear forms and the action of SU,,,,. Let v € v/—1su,,, (here we
really just mean v is a trace-free Hermitian matrix) and define the sesquilinear form P,
on the ambient vector space C"™™ by

Py(v1,03) 1= vyyvs,

where vy, v, € C"™. This induces a sesquilinear form on the trivial C"*"-bundle which
we also denote P,. There are a number of related objects that P, can be used to create.

Given a local orthonormal frame of the tautological subbundle U, {n;} say, we form the
(locally defined) function
@) = Pyni(a), m(@)). (3.10)
i=1

We shall see in the next subsection that f, is a actually a globally defined function on
the Grassmannian and is in fact an eigenfunction for the Laplacian.
The form P, induces forms on &* and U+ which we denote H;(f,) and Hy(f,) respec-
tively. We can then produce sesquilinear forms h; and hy on T'G,,(C*™) = U* @ U+
by

hl = Hl(f-y) * g2 and hg =43q1- Hg(ffy) (311)
There is a transitive action of SU,,, on Gr,,(C"*™) which lifts to an action on the
bundles & and U*+. The seqsquilinear forms h; and he are not invariant under this
action but transform under the action to the form associated with p~'yp. Hence, to
prove various identities, we need only demonstrate their validity at W = 0 for an

arbitrary +.
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3.5. Eigenfunctions of the Laplacian.

Lemma 3.5 (Properties of f.,). Let f, be the function defined by Equation (3.10). Then
fy has the following properties:

(1) The function f., is independent of the orthonormal frame {n;} and thus is a globally
defined function f, : G,,(C"*™) — R.
(ii) If we denote by MY the matriz of functions defined by ij’ = P,(c;,¢j), then

f'y = (UZ;:L)M‘%

(iii) If we denote by M2 the matriz of functions defined by MZ? = P,(q;, qj), then
f’y = _(QZI)MJ%

(w) The function f, is an eigenfunction of the Laplacian with eigenvalue 2(n + m)

Proof. Properties (i) and (ii) are easily established. For (iii) we note that 7 is trace-free
and

(U Mg+ (Qr )M = tx(7) = 0.
To show (vi), we compute at W = 0 and note f,(0) = > ;" , . We also have

17 Oty _ 7 (P e, 0" OM O(U") OM : )82M%
Owr0W; |y owow; " ow 0wy, T Owy; Owr 0w 0, ) |
MZ/{ m n
_Z <8w18w1 8w18k_kl>‘ :_nZ”Ykk+mZ”Y(m+k)(m+k).
k=1 k=1

The result follows from the fact v is trace-free and noting that for any function v on a
Kéhler manifold (M, ¢g) with local holomorphic coordinates z;,

N
kl_~ v - __
g 02,07 2A¢

O

3.6. The deformations. We compute various quantities associated to the two sesquilin-
ear forms given by Equation (3I)). This will allow us to find transverse trace-free
tensors. It is straightforward to see that in the local coordinates W, the tensor fields
are given by

(h'1>1j = (U];7,12>(Q7:}c>(Ql;11)Mle
and

(h2)1J = (U];}c)( 122 ) lQqu

We begin by proving a result due to Gasqui and Goldschmidt relating the tensors hy
and hy to the Hessian of the eigenfunction f,. The proof we give here is an elementary

calculation in local normal coordinates and is very different from the one given in [4].
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Lemma 3.6 (Gasqui-Goldschmidt, cf. Propsition 8.5 in [4]). Let f, be given by Equa-
tion (310) and let hy and hy be as in Fquation (311). Then

Hess(f,) = h1 — ho. (3.12)

Proof. As f., is an eigenfunction with eigenvalue twice the Einstein constant, Mat-
sushima’s Theorem [I1] means that JV £, is a holomorphic vector field. It follows that
the Hessian of f, has no J-anti-invariant component and so we are done if we can
establish in local coordinates

2*f,

8’(1][8117]

= (h1)15 — (h2)1s
We compute at W = 0 and we have already seen

a2f’Y — 02(U&1)MZ/{ (U—l) aleZ;f{
Qwrow s W=0 tk i OwrO0w

Using the definition of hy; and hs, we calculate

) ' = —0iyjy Vinja T 0injo V(jr +m) (i1 +m)-
W=0

(hl - h2)lj = 5i2j2Mi?j1 - 5i1j1M]Z'/2{i2 = _52'1]'172'2]'2 + 5i2j2’7(j1+m)(i1+771)'
]

Lemma 3.7. Let f, be given by Equation (310) and let hy and hy be as in Equation
(311). Then the traces are given by

Qlj(hl)fj = —mf, and glj(hz)lj =nfy.
If we denote by o1 and oy the (1,1)-forms associated to hy and hy respectively, then
9o = —nv—10f, and 0 0y = myv —10f,.

Proof. The statements about traces are straightforward. For the statement about the
codifferential & we compute in the coordinates at W = 0.
We note that (0f,)r = Vi, 4+m)- The associated form oy is given by

oy =V —1(ha)r; dw; A dwy,
and thus

— - O(ho) 77
(0702)1 = V=19" Vi (ha)1y = V=1 (82)U = V= 18,101, O Yi(j1 +m) Oi

w g

=mv _172'2(2'1-‘:-771)'
With this in hand, we can appeal to the Gasqui—Goldschmidt Lemma We have

—V=1005f =9 V—100f, =0 01 — D 093 = D 71 — m\/—19f,.

Hence _
—(n+m)vV—-10f, =0 o1 — mv/—10f,,
and the result follows. O
13



The final quantity we need to compute is the d-Laplacian applied to the forms oy and
9.

Lemma 3.8. Let 01 and o9 be the (1,1)-forms associated to the tensors hy and hy
respectively. Then

Ay o1 = (n+m)oy and Ay 03 = (n+ m)os.

Proof. We begin by computing Azo,. Using Lemma [3.7] we have
s 03 = (90" + 50 03 = —m/=103f, + 5" 9o,

At W =0,

(V=1001,)17 = V=1 (=0i1ji Viajs Ot Vjs+m)(ia +m) ) -
To calculate 0*Joy, we begin by noting that for a general (1,2)-form,

T =Ty; dzpy Ndz; N\ dZ,

we have, in holomorphic normal coordinates at z = 0,

a%* 8TET§ 8T§r1§
T)ys = — - .
(a )TS ( 8zk 8Zk )

Hence we have, at W =0,

(5°00s),, = —v T ( P(ha)rs 82(h2)1f<) ‘WZO

0wK8wK awK&IJJ

Using the expression for hy in local coordinates and the fact that from Lemma B.2]
single derivatives of the quantities U_! and Q! vanish at W = 0, we have

O (ha)rz -
8wK8u7K . ( n_l_m) 171 Viago + 1J1 %252 ;7( +m)(r+m)
and
9?(ha) &
m . = _(n + m)5i1j1%2j2 - 6i1j1 6i2j2 ; Yk + mdizjz’y(jl-i-m)(il‘i'm)
Thus, at W =0,
(07002) 17 = iy Viaga + MBiag Vst (i +m) -
So

(Aé U2)Ij = (TL + m)5i1j1%2j2 = (TL + m)(02)1j'

The result for o; follows from the Gasqui-Goldschmidt Lemma 3.6l O
14



Theorem B (Infinitesimal deformations of the Fubini-Study metric). Let hy and hs
be as in Equation (311) and let hy = f,g. Then, if m,n > 2,

D, :=n(l —m*)hy +m(1 —n*)hy + (n* — m?)hs,
is an EID for the Fubini-Study metric on G,,(C"*™).

Proof. 1t is easy to check that o3 = f,w (the two-form associated to hj) satisfies
A(o3) = mnf,, o3 = V—10f,, and Agoz = (n+m)os

The result follows by combining these calculations with those in Lemma [3.7and Lemma

3.8 O

In the case that m = 1, it is easy to see that hy = f,g = hs and so D, vanishes (as
expected as it was demonstrated in [7] that the Fubini-Study metric on CP" does not
admit EIDs). When m = n, we also recover Proposition 8.6 from the book [4] which
says that hy + hy is an EID for the metric on G, (C*").

4. COMPUTING KO0OI1S0’S OBSTRUCTION

4.1. The Theorem of Adler and van Moerbeke. As we shall see in subsequent
subsections, to compute the terms in the Koiso obstruction (2.7)), we will need to
consider integrals of the form

/ mn tr(UHdu(W)  and / mn tr(U2)du(W),

where «, 8 € {0,1,2,3}, W are the coordinates on the dense copy of C"™" contained in
G (C™™) and du(W) is shorthand for the (possibly rescaled) volume form defined by
the Fubini-Study metric. In the local coordinates W,

tr(U™) = tr((L,, + W)™ = tr((L, + W*W)™).

In [1], Adler and van Moerbeke considered integrals of the form

/ e:ctr((]lm-i-W*W)*l)du(W)‘

What they demonstrate is that one can use the Weyl integration formula to write the
previous integral as a multiple of what is known as a generalised Selberg-type integral.
Paraphrasing Theorem 1.1 in [I] we have

m

/ e (In W W)™ g (W) = / Pt E N, (2)? H(l —2) "M dzdzy . . dzy,
mn [0’1]m 1
15



where A,,(z) is the Vandermonde determinant in the m variables 21, 2, ..., z,. The
>, zi term corresponds directly to the sum of the eigenvalues of (I, + W*WW)~!. Hence
we obtain directly

/ mn(tr(U‘l))o‘du(W): /[0 . <Z ) 21‘[ Mdzdzs .. dzy,. (4.1)

1=1

Tracing through the proof of Theorem 1.1 in [1], one also obtains the easy generalisation

/mn tr(U)du(W) = /[o,l}m (Z ) 2)? H (1 —z)"""dzdzy ... dzy. (4.2)

i=1 1
The Selberg-type integrals on the right of Equations (A1) and (£2]) have been widely
studied. We use the results of Kanecko [6] (essentially Equation (2.3.13) in [1]) which

says for a Schur function sy(z) in m-variables corresponding to a partition A = (A1, Aa, ..., Am),
and integers a,b > m — 1,

L4+ 1D)0(a+1 -\ +b+1—1)
s Z 2 a m b My — g 1m : ,
/[01]m 3 H 3 1:[ FNi+a+b+(1—1)
where 1™ = (1,1,...,1). Evaluating using a = n and b = m yields

m

u“ illn—)l(m + X —9)!
Ay, 1—2)""Mdz1dzy ... dzpy = s, (1) . (4.3
/[0 , $x(2)An(2)? 1:[( %) 21dzy . . dzy = s)( 1:[ CETTE (4.3)

We fix the constant

If we abuse notation by ignoring zeros at the end of partitions and write

/SA :/ () An(2)? [ = 2" " dz1dzs . dz,
[0,1]™ 1

2
m
Cn,m/s((]) = 17 Cn,m/S(l) = n+m7

o [y = 2 1 Con [+ m?(m — 1)?
i (2’0)_2(n+m(n+m+1) e 2(n+m)(n+m—1)°

(m(m +1)(m + 2))?
C’nm/ 5(3,0,0) 6(n+m+2)(n+m+1)(n+m)’
)

Cn,m/S(z,l,O) _ ((m — Dm(m + 1))*

3n+m—1)(n+m)(n+m+1)
16
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and
((m = 2)(m — 1)m)?

Chm = .
’ /8(1’1’1) 6(n+m—2)(n+m—1)(n+m)
Putting this together, we have the following result.

Lemma 4.1. Let F': G,,,(C"™) — C and write

/ F=C,, / EW)du(W),

In the notation of the previous section we have

/1=L

/ -ty =

n+m’

20,2
o B B m*(m* + 2nm — 1)
/tr(U ) = /8(2,0) DT rm—Dm+m)ntm+1)

2013 2
iz B m*(m?® + nm* —m+n)
/&MY))—/%wﬂﬂwﬂ_m+m—nm+mm+m+0’

/t (U = / B N  m*(m* +4mPn 4+ 5m2n? — 5m? — 10mn + n® + 4)
g = [ PBo0TIRLOTILY) = m+m—-=2)(n+m—-1)n+m)(n+m+1)(n+m+2)’
20,05 4 3,2 3 2 2
9 1y _ _m(m + 3m*n 4 2m°n® — 5m° — bm n + 4mn* 4+ 4m — 4n)
/tr(U Jir(U )_/8(3’0’0) L) = m+m=2)(n+m—-1n+m)n+m+1)(n+m+2) ’
and

(tr(U‘l))s _ /S iy Iy _ m?(mS + 2m°n + min? — 5m* + 3m?n? + 4m? — 8mn + 2n?)
B (30074210 T(1LL1) m+m-—-2)(n+m—1)(n+m)(n+m+1)(n+m+2)

4.2. Calculating pointwise quantities. Henceforth, all the calculations we make will
be in complex coordinates unless specifically mentioned. We fix a choice of v € v/—1su,,,
to be

v = Diag(—n,—n,...,—n,m,m,...,m). (4.4)
m ;;“ms n tgms
This means
MZ = —néij + mwriu}j = —(n —+ m)ém + mUZ-j,

where we have used Equation (B.1]). Similarly, using Equation (3.2])
Mg = (n+m)d;; — nQ;.
In local coordinates w; we have
[y = UZ-;IMJZ{- =m? — (n+m)U,;' =m? — (n+m)tr(U™ 1), (4.5)
(7)1 = (Ui, Q) (@i ) Mg = —ngry + (n+m)gr(ri Qrjy

(h2)ry = (U ) (U MEQ; S = mgry — (n+m)gigyn U,
17



In the expressions for h; and hs we can see a simplifying calculational principle: to
switch an h; with an hy in an expression, switch m and n, multiply by —1, switch U
with the conjugate expression in (). The pointwise norms of various expressions also
involve tr(Q~') terms. The following identities can be checked directly

tr(Q™) = (n—m) +tr(U9), (4.8)
where v € {1,2,3}. We record here the following quadratic quantities
[ha]]? = m (n® = 2n(n + m)tr(Q ") + (n+ m)*tx(Q™?)), (4.9

)

sl = n (m3 —2m(n +m)tr(U™) + (n + m)ztr(U_2)) , ( )
|hs]|* = mnf2, (4.11)

(h1,ho) = —f2, (4.12)

(4.13)

(4.14)

<h'1> h3> = _mf»$>
<h2, h3> = nf$

4.3. Integral of cubes of eigenfunctions. As mentioned in Section[2 when G = SU,, 4,
the space Homg(s%(g), g) is one-dimensional. Thus the space of SU,,,-invariant cu-
bic polynomials on s, ,, is also one-dimensional and we can pick any non-vanishing
invariant polynomial as a generator; we choose (as do the authors in [I3]) the integral

of ff;’ and express the obstruction (Z7) as a multiple of this integral. Using the special
choice v given in Equation (d.4]), we have

/ 3= / (m® = 3m*(n +m)te(U™) + 3m>(n +m)>(tr(U™))2 = (n+m)*(tr(U))%) .

We calculate (using Matlab’s symbolic algebra toolbox)

/ f = —2m?n®(n — m)?
m+m—=2)n+m—-1n+m+1(n+m+2)

Note that this polynomial vanishes if m = n but this is not a problem for the ‘odd’
Grassmannians. This integral was calculated using different methods rooted in sym-
plectic geometry in [5]; a result of Kroncke [10] implies that if the integral does not
vanish, the Fubini-Study metric on G,,(C"*™) is unstable as a fixed point of the Ricci
flow. We note, as a sanity check, we do indeed get the same value (compare Lemma
4.6 in [5]). Thus fact that the integral is non-zero for m # n provides an alternative
proof of the dynamic instability of the Fubini—-Study metric.

4.4. The (hyh¥, hi;) term. We collect calculations needed to compute (hgh?, hi;) = tr(H?).
The EIDs are constructed from combinations of the tensors hq, hy, and hs. We denote
by
Zijk = tl"(HiHij) (415)
18



where (H;)¥ = (h;) g’ Tt is immediate that Z;;; = Zj = Zr;; and the observation
regarding expressions in U and () means that we can switch ‘1’ and ‘2’ in calculations
by exchanging n and m, U and @), and changing a sign if needed. Hence we need only
compute

Zin,  Zuz,  Zies,  Ziss,  Ziis, and  Zs33.

We have H3 = f,Id; combining this with the calculation of the quadratic quantities in

Equations (4.9)-(4.14) yields

Lemma 4.2. Let v be as in Equation and let Doy be defined by Equation ({.17).
Then

Zi11 = m(—n* + 30 (n + m)tr(QY) — 3n(n 4+ m)%tr(Q™2) + (n + m)>tr(Q3)),  (4.16)
Zi1o = (m? — (n +m)tr(U™)) (03 = 2n(n 4+ m)tr(Q™Y) + (n + m)*tr(Q™2)), (4.17)
Zsz3 =mnf>, (4.18)

Zig3 = fytr(HiHa) = —f3,  (4.19)

Z133 = fytr(Hy) = _mf’?? (4.20)

Zus = fy|h?  (4.21)

We now integrate using Lemma [4.1] and multiply by a factor of 2 to convert complex
to Riemannian coordinates as in Lemma to compute the first integral in Koiso’s
obstruction (7). We mention again that these calculations are carried out using the
symbolic toolbox in Matlab.

Lemma 4.3. Lety be as in Equation (4.4) and let D., be the associated EID as described
in Theorem[B. Then, in Riemannian coordinates,

((Dy)ik(Dy)} (Dy)ig) =

2 =) — 1)+ mp ™

3n3 — 4m3n — 4mn3 + 2m2n? + m? +n? + Tmn — 4) /f3
(n —m) "

4.5. The (V;V,hy, hijhy) term. We return to making calculations in complex coor-
dinates and note that as the EID D, is divergence-free, integration by parts yields

(ViV3(Dy)kir (D) 17(Dy) i)z = —(Vi(Dy) kis (Dy) 17V (Dy) k) re-

Thus it will be necessary to compute terms of the form

vj(hr)KEvI(h's)KLv
19



where r; s € {1,2,3}. The formulae for h; and hs in Equations (£.6]) and (4.7)) yield the
following

9Q;,!

81;, = —(n+m)G10,,00) 9K (a1,12) Was

Vi(h1)kr = (0 +m)gk i)
VJ(h2)KZ = —(TL + m)gK(h,r)Wi = (TL + m)gJ(a1,lz)gK(l1,a2)wa>

Vi(hs)gr = (n+m)gragrWa-
The nine possible combinations of r and s in
V (k) k2 V' (he)

actually yield a very limited set of expressions.

Lemma 4.4. Let v be as in Equation (4.4) and let hy, ha, and hg be as in Theorem [B.
Then

(Vs(ha) i) (V) () F) = mln +m)61,, (Ul = U U5

Jai2

L
(V(h2)ce) (VT (h) ) = nln +m)*,,5 (Q5), — QibQah)

(Vsha)ier) (V' ()*E) = =mn + m)2gyc s,

(Vsha)cz) (V' (ha)<F) = nin+m) gpe s,

(Vs(hs)icr) (V7 (hs)<F) = (0 -+ m)Pmngy wscwy.
We now consider the pairing of each of these terms with the endomorphisms (H;).

20



Lemma 4.5. Let v be as in Equation ({{.4]) and, for a € {1,2,3}, let H, be the endo-
morphisms associated to the h,. Then

i (Uphy = UhsUgib ) (H)] = = f (6(U™) = tx(U™2)),
iin (Uinhy = UhsUsit) (H2){ = n (m (6x(U™") = tx(U?)
5i1j1 (U];ilg - UjlzﬁUB_i;>

-1 -1 -1
5i2j2 (Qiljl - QilaQajl

~—— —~ ~—
—~

=
N—
NI

Il
3&
—~

-+

=
—
Q

—

N~—

|

-

=
—~ —~
S

[N}

Let

(vfhc)KE>7 (422>

i

Dabc = <(tha)KE7 (Hb)

where a,b, ¢, € {1,2,3}. Then, putting together the results of Lemma [£4] and Lemma
4.5, we have the expressions we need.
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Lemma 4.6. Let v be as in Equation and let Doy be defined by Equation ({.23).
Then

Dy = —m(n + m)zfv (tr(U‘l) - tr(U‘z)) )
Disi = nm(n+m)* (mtr(U™") — mtr(U™?) — (n+ m)tr(U~) + (n+ m)tx(U?)) ,
Dis1 = mn(n +m)*f, (tr(U™) — tr(U?)) ,

Diis = —(n+m)* (—ntr(Q™") + ntr(Q™%) + (n+ m)tr(Q~%) — (n + m)tr(Q™?))
Digy = —(n+m)* (mtr(U™") = mtr(U™?) — (n + m)tx(U~?) + (n + m)tx(U?)) ,
D132 = —(n + m)zf«{ (tr(U‘l) — tI‘(U_2>)

Dlig = mD1i2 for 7€ {]_, 2, 3},

Dgﬂ = Dlig for 1 c {1, 2, 3},

Dyiz = —nm(n +m)* (ntr(Q™") — ntr(Q™?) — (n +m)tr(Q™?) + (n +m)tr(Q %)),
Doy =n(n+m)*f, (tr(Q™") — tr(Q7?)),
D232 = mn(n -+ m)2f7 (tI‘(Q_l) — tI‘(Q_z)) s

Dyjs = —nDyyy  for i€ {1,2,3},
D3y = Dz for i€ {1,2,3},
Dgig = D2i3 for 1 c {1, 2, 3},

D3i3 = —man for 1 c {1, 2, 3}

Finally in this subsection we again can use Lemma &I to compute the L?-inner product.
Note that there is a factor of 4 in switching from complex to Riemannian coordinates

(Equation [29]).

Lemma 4.7. Let D., be the EID as described in Theorem [B. Then, in Riemannian
coordinates,
22



(ViVi(Dy)uis (Dy)ij(Dy)) =

2mn(m? — 1)(n? — 1)(m + n)?(m*n? + m?n* — 2m* — 2n* — 4m?n? + 5m? + 5n? — 4)} /f3
n—m v

4.6. The (V,;V,hi, hihy;) term. As with the previous term, we return to calculating
in complex coordinates and we integrate by parts

(VIVi(Dy)kr, (P)rp(Dy) ki) = —(Vi(Dy)kr, (Do) iV (Dy) k)12

Thus we will need to compute terms of the form (V 7(h,) ) (V7 (hs)X7), where r, s € {1,2,3}.

Lemma 4.8. Let 7y be as in Lemma [{.3 and let hy, ha, and hs be as in Theorem [B.
Then

(V5(h1) ) (VI (b)) = (n +m)?gre pwicy,
(Vi(h) ) (V! (h2) ) = —n(n +m)*6:,1, (Qr], — Qin@Qult)
(V5(h) k) (VI (hs)T) = —n(n + m) gy pwiTr,
(Vi(h2)w2) (V! (1)) = =m(n +m)*6;,1, (U, = UpaUst)
(V5(ha) ) (V! (he)*7) = (n + m)? g wictmy,
(Vj(h2)Ki)(Vj(h3)Kj) = m(n +m)*gg WKWy,
(Vi(hs)wr) (VI (7)) = —(n + m)?6i, (U}, — UpaUsit)
(Vi(hs) ) (V! (h2) ) = (n +m)*6i, (Q11, — QirbQutt) -
(V5(hs) k) (V! (h3)7) = (n +m)2 gy pwr.

We can then use Lemma to complete the calculation. Let
Sabe = ((Vha) iz, (H) (Vo) 7). (4.23)

where a, b, c, € {1,2,3}.
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Lemma 4.9. Let v be as in Equation and let Sape be as in Equation[{.23. Then
Sin = (n+m)* (=ntr(Q ") + ntr(Q7%) + (n+ m)tr(Q %) — (n+m)tr(Q ")),

Siar = (n+m)* (mtr(U™") = mtr(U?) = (n+m)te(U~2) + (n + m)u(U™?)),

Sisi = (n+mPf, (r(U™) = 6r(U))

Stz = —mn(n +m)? (—ntr(Q ™) + ntr(Q72) + (n + m)tr(Q~%) — (n + m)tr(Q™%)) |
Sia2 = —n(n + m)zfV (tr(U_l) — tr(U_z)) ,
Siz2 = —mn(n + m)2f7 (tr(U_l) - tr(U_2)) )

5123 = —nSm for i€ {1, 2,3},

5211 = m(n + m)2f7 (tl"(U_l) — tI‘(U_2)> s
Saa1 = —mn(n +m)? (mtr(U™") — mtr(U™?) — (n+m)te(U™?) + (n + m)te(U?)) ,
Saz1 = —mn(n + m)2fV (tr(U_l) — tr(U_2)) ,

Sgig = Slil for 1€ {1, 2,3},
SQZ'g = mSQiQ for i€ {1, 2,3},

5311 = (n + m)2f7 (tI‘(U_l) — tl"(U_2)> y
Sso1 = —n(n +m)? (mtr(U‘l) —mtr(U™?) — (n+m)tr(U™2) + (n + m)tr(U_3)) ,
Sz =, —n(n +m)*f, (tr(U™") = tr(U™?)),

Ss12 = m(n +m)* (—ntr(Q™") + ntr(Q™?) + (n+ m)tr(Q ™) — (n+ m)tr(Q~?)) ,
5322 = (n + m)2f7 (tI‘(U_l) — tl"(U_2)) y
5332 = m(n + m)2f7 (tl"(U_l) — tI‘(U_2)> s

S3;3 = Sy for ¢ € {1, 2,3}

Again, we use Lemma .1l to compute the L2-inner product.Note that there is a factor
of 2 in switching from complex to Riemannian coordinates (Equation 2.10).

Lemma 4.10. Let D, be the EID as described in Theorem [B. Then, in Riemannian
coordinates,
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(ViVi(Dy)wts (Dy)i(Dy)rg) =

(m? —1)(n? — 1) (m +n)?(2m*n* — 4m*n? — 4m2n* + 8m?n? + m* + n* — 2m? — 2n2)} /f3
_ 3,

n—m

4.7. Proof of Theorem [Al

Proof. For the special choice of v in Equation (4.4), let D, be the EID constructed in
Theorem [Bl Koiso’s obstruction integral 2.7 is

I(Dv) =

2(n+m) (D) (D)kj» (D)) 124+3(ViV5(Dy )kt (Dr)ig (D )it) £2—6(Vi V(D4 ks (Do)i (D ) L2

where we have used the fact that in our construction, the Einstein constant A = (n+m).
Using Lemmas [£3] 4] and [£8] we compute

(D, A(m? — 1)2(n? — 1)2(m + n)*(mn — 1) /Jf’

n—m

Thus we see that when n # m, the obstruction integral is, for any choice of v € su, ,,
a non-zero multiple of
Ik

which, as discussed, does not vanish when m # n. Thus when n + m is odd, the
associated obstruction map in Homg(s%(g), g) does not vanish and so all the EIDs are
obstructed to second order. 0

5. KOISO’S ORIGINAL EXAMPLE REVISITED
In [§], Koiso constructed EIDs for the product metric g @ § on CP?" x CP*. In our
normalisation, given an eigenfunction f., with eigenvalue 2(n + 1), the tensor

h=V2f +©2n+1)fg+ (2n+1)(1—n)fg.

is an EID. To compute Z(h), Koiso proves the following identities which we state for the
Fubini—Study metric on CP" with an arbitrary normalisation of its Einstein constant.

Lemma 5.1 (Koiso, Lemma 6.8 and Lemma 6.9 in [8]). Let g be the Fubini—Study
metric on CP" with Finstein constant A and let [ satisfy Af = 2\f. Furthermore,
denote by c the holomorphic sectional curvature of g so that

Ry = c(3]0, + 6,7,
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then the following identities hold

(VT (VT =¥ [ £, (5.1
(Vi VeVif), (Vi ) (VWi f)) e = —2eX3 / P (5.2)
(VVRVV ), (Vi) (VeVif)) 1 = —eX? / ) (5.3)

We now consider these identities with respect to our construction of the Fubini—-Study
metric on CP" (which has A = (n + 1)) and for the eigenfunction f, with v given by
Equation (4.4]). Using the Gasqui-Goldschmidt Lemma [3.6] we have

sz,y == hl - hg.

To compute the quantity in Equation (5.1) we consider, recalling Z,,. defined by Equa-
tion (AIH), we need to calculate

/((lel — Z299) + (Zaon — Znia) + (Zora — Zi21) + (Z122 — Zon1)) -
The results of Lemma [£2 yield
n + m
/((lel — Z92) + (Zaor — Z12) + (Zora — Z191) + (Zi22 — Zon1)) /f'f:7

and so we see we recover the identity (5.I]) on setting m = 1 and using the complex to
Riemannian coordinate scaling in Equation (2.8]).

The identities (5.2)) and (5.3) are similar; we consider D, defined by (£22]) and Sy
defined by (4.23)), and consider the quantities

- / (D111 — Dag2) + (Dao1 — D112) + (Dara — Di21) + (D122 — Dai1))

and
- / ((S111 — Sa22) + (Sa21 — S112) + (S212 — S121) + (S122 — So11)) -
The first of these, calculated with the formulae from Lemmas [4.1] and [4.6] yields

- / (D111 — Dag2) 4 (Dag1 — D112) + (Da12 — Di21) + (D122 — Da11)) =

(n+m)*(mn+1) 5
enpn e [,

The second, calculated with the formula from Lemmas Bl and [£9] yields

- / ((S111 — Sa22) + (S221 — S112) + (S212 — S121) + (S122 — S211))
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 (n+m)*(mn+1) 5
_ . /f»y-

In our normalisation, the holomorphic sectional curvature for CP" is ¢ = 1 and so we
recover Koiso’s identities (5.2) and (5.3)) after setting m = 1 and applying the complex
to Riemannian coordinate scalings in Equations (Z.9)) and (2.10).
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