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DUALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS

FEI REN AND KAY RÜLLING

Abstract. Given an effective Cartier divisor D with simple normal crossing support on
a smooth and proper scheme X over a perfect field of positive characteristic p, there is
a natural notion of de Rham-Witt sheaves on X with zeros along D. We show that these
sheaves correspond under Grothendieck duality for coherent sheaves to de Rham-Witt sheaves
on X with modulus (X,D), as defined in the theory of cube invariant modulus sheaves with
transfers developed by Kahn-Miyazaki-Saito-Yamazaki. From this we deduce refined versions
of Ekedahl - and Poincaré duality for crystalline cohomology generalizing results of Mokrane
and Nakkajima for reduced D, and a modulus version of Milne-Kato duality for étale motivic
cohomology with p-primary torsion coefficients, which refines a result of Jannsen-Saito-Zhao.
We furthermore get new integral models for rigid cohomology with compact supports on the
complement of D and a modulus version of Milne’s perfect Brauer group pairing for smooth
projective surfaces over finite fields.
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1. Introduction

Let k be a perfect field of positive characteristic p > 0. There is a wealth of duality results
for smooth and proper k-schemes with p-torsion - or p-adic coefficients, such as Serre duality
for differential forms, Poincaré duality for crystalline cohomology [Ber74], or Milne duality
[Mil76], see also [Kat86], [Kat87], which by [GL00] can be interpreted as a duality for étale
motivic cohomology with mod pn coefficients. For surfaces over a finite field the latter induces
a pairing for the Brauer group [Mil75]. These parings can all be understood via Grothendieck-
Ekedahl duality [Eke84], [Gro85] which is a duality statement for the de Rham-Witt complex
of Bloch-Deligne-Illusie [Blo77], [Ill79].
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2 FEI REN AND KAY RÜLLING

A generalization of these duality statements to open subschemes (say of a smooth and
proper k-scheme) requires the use of cohomology with compact support and relies on consider-
ing pairings between certain pro-groups (on the compact support side) and certain ind-groups.
For example there is the Deligne-Hartshorne duality for compactly supported cohomology of
coherent sheaves [Har72], Berthelot’s duality for rigid cohomology [Ber97], and the gener-
alization of Milne duality by Jannsen-Saito-Zhao [JSZ18] and Gupta-Krishna [GK], which
generalizes the p-primary torsion part of geometric global class field theory.

As the (compact supported) cohomology groups of an open in the above situations are very
often not finitely generated over the base ring at hand, e.g., k, Wn(k), W (k), or Z/pn, it is
desirable to have more precise pairings which hold before taking the colimit or the limit to
go all the way to compactly supported cohomology. This requires to have a sturdy notion of
poles and pole orders along the complement of an open immersion U →֒ X between smooth
k-schemes and also a dual notion of zeros and vanishing order along the same closed subset.
Candidates appear at various places in the literature: in [Bry83], [Kat89], [Mat97], Brylinski,
Kato, and Matsuda introduce pole order filtrations on Witt vectors which under the Artin-
Schreier-Witt sequence measure the ramification of Z/pn-Galois coverings of U alongX\U . In
[KS14] these filtrations are used to prove a Lefschetz-type result for the abelian fundamental
group with modulus. In [Tan22] Tanaka introduces Witt divisorial sheaves to obtain Witt
versions of classical vanishing theorems, similar sheaves appear also in [JSZ18], [GK], [KSY16].
Hodge-Witt sheaves with vanishing order along a (non-reduced) closed subscheme also play
an important role in the work [Mor19].

In all these cases we would like to have a precise duality pairing which matches Witt
differential forms with certain poles along X \ U with corresponding zeros along the same
closed subset. In this paper we are going to construct such pairings in the case X \ U is the
support of a simple normal crossing divisor.

Let X be a smooth k-scheme (not necessarily proper) of pure dimension N and let D be
an effective Cartier divisor such that the underlying reduced divisor Dred has simple normal
crossings and denote the complement by U = X \ D. The question is now how to define
appropriate notions of poles bounded by D and vanishing along D for the Hodge-Witt sheaves
WnΩ

q
X . One natural way is to consider the multiplicative lift Pic(X) → Pic(WnX). Then

D gives rise to an invertible WnOX-module WnO(D) and we can consider WnΩ
q
X ⊗WnOX

WnO(±D) for poles (+) and zeros (−). This approach is taken for example in [Tan22] and
at least for the pole side also in [JSZ18], [GK], [KSY16, Appendix]. The advantage of this
choice is that by Ekedahl duality multiplication induces immediately an isomorphism

WnΩ
q
X ⊗WnOX

WnO(D) ∼= RHomWnOX
(WnΩ

N−q
X ⊗WnOX

WnO(−D),WnΩ
N
X),

and this clearly works for any Cartier divisor D. The drawback of this choice is that the dif-
ferential d, the Verschiebung V , and the Frobenius F which are defined on the de Rham-Witt
complex do not extend to endomorphisms of the graded pro-object W•Ω

∗
X ⊗W•OX

W•O(D).
Hence we cannot extend this to a pairing for crystalline cohomology or to a Milne type pairing.
Furthermore, this makes it hard to understand the duality in the limit over n, see, e.g, [Lem22],
where the product

∏
rW•(O(p

rD)) is considered to accomplish this for q = 0. Also consid-
ering D as a (non-reduced) scheme the complex WnΩ

∗
D is defined and studying it requires to

consider Ker(WnΩ
∗
X → WnΩ

∗
D), which is not the same as W•Ω

∗
X ⊗W•OX

W•O(−D).1 In case
D is reduced the log de Rham-Witt complex [HK94], [Mat17] has all the desired properties.

1Though the pro-systems over n are isomorphic.
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Furthermore, [Mok93] constructed a de Rham-Witt complex with zeros along the reduced di-
visor D, which by [Hyo88] and [Nak05] is dual to the log de Rham-Witt. But at least for the
pole side it was not clear how to define a notion of poles bounded by a non-reduced divisor.

The notion of pole orders we choose in this paper relies on the theory of motives with mod-
ulus developed by Kahn-Miyazaki-Saito-Yamazaki in [KMSY21a], [KMSY21b], [KMSY22].
We will explain the relation more precisely a little later. For now we make the following a bit
more direct definition which comes from the work [RS] and is inspired by [AS11]: Let F be a
Nisnevich sheaf of abelian groups on all finite type and separated k-schemes. Let X and D
be as above. We denote by FX the Nisnevich sheaf on the small site XNis.

Poles along D. Denote by BlD(X × X) the blow-up in D diagonally embedded into

X × X and denote by P
(D)
X the complement of the union of the strict transforms of X × D

and D×X in BlD(X ×X). The open embedding U ×U →֒ X ×X extends to an embedding

U × U →֒ P
(D)
X . We set

F (X,D) := Equalizer


 F (U)

p∗1 //

p∗2

// F (U × U)/F (P
(D)
X )




and denote by F(X,D)
2 the Nisnevich sheaf (V → X) 7→ F (V,D|V ), see 5.3 for details.

Zeros along D. Let D =
∑

iDi with Di,red smooth. We set

F(X,−D) := Ker

(
FX →

⊕

i

FDi

)
.

Note that both definitions are functorial in F . One of the main results of this paper is now:

Theorem 1 (Theorem 9.3). Multiplication induces isomorphisms, for all q ≥ 1 and n,

WnΩ
q
(X,D)

≃
−→ RHomWnOX

(WnΩ
N−q
(X,−D),WnΩ

N
X)

and
WnΩ

N−q
(X,−D)

≃
−→ RHomWnOX

(WnΩ
q
(X,D),WnΩ

N
X).

From Ekedahl’s trace isomorphism

(1.0.1) π!nWn(k) ∼=WnΩ
N [N ],

where πn : Wn(X) → SpecWn(k) is the structure map, together with Grothendieck duality
we immediately get:

Corollary 1. Assume additionally that X is proper over k. Then there is a canoncial iso-
morphism of finite Wn(k)-modules

HN−i(X,WnΩ
N−q
(X,−D))

∼= H i(X,WnΩ
q
(X,D))

∨,

where (−)∨ denotes the dual Wn(k)-module.

We make some comments on the above result:

• It is not obvious from the definition given above that WnΩ
q
(X,D) is a WnOX-module.

And in fact this is not true for q = 0, which is shown in [RS]. Using a certain
conductor as defined in [RS21], we can also define the correct WnΩ

0
(X,D), so that the

isomorphisms in Theorem 1 hold for q = 0 as well.

2In the body of the text these sheaves will be denoted by FAS
(X,D), but we prefer to have this simpler notation

in the introduction.
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• We have Rj∗WnΩ
q
U = colimrWnΩ

q
(X,rD), where j : U →֒ X is the open immersion,

hence taking the limit over {rD}r in Corollary 1 yields

HN−i
c (U,WnΩ

N−q
U ) ∼= H i(U,WnΩ

q
U )

∨,

where the left hand side is the compactly supported cohomology from [Har72].
• By Ekedahl’s isomorphism (1.0.1) the WnOX -module WnΩ

N
X is a dualizing complex

in the sense of Grothendieck. Hence the two isomorphisms in Theorem 1 imply each
other.
• For D = ∅, Theorem 1 is due to Ekedahl. We have WnΩ

q
(X,Dred)

= WnΩ
q
X(logDred)

and hence forD reduced Theorem 1 recovers the duality from [Nak05, Theorem 5.3(1)],
[Hyo88, (3.3.1)].
• Part of the statement of Theorem 1 is also the vanishing

Exti(WnΩ
q
(X,±D),WnΩ

N
X) = 0 for i ≥ 1.

Note that this is not automatic as WnΩ
q
(X,±D) is not a locally free WnOX-module.

The idea to prove this vanishing is similar as in [Eke84] but the actual computations
are more involved, see Theorem 7 below.
• It is not hard to guess from the existing literature, e.g., [JSZ18], [Mor19], [GK],[RS],
that there is an isomorphism of pro-systems over {rD}r as in the second isomorphism
of Theorem 1, but that these two abstract notions of poles and zeros introduced above
for general sheaves correspond precisely under multiplication came as a surprise to the
authors and indicates that there might be some more abstract yet to discover duality
in the background. We want to stress however, that our proof essentially proceeds by
computing the pole and the zero side completely and then show by hand that they
match.

Before we give more applications we consider the pole part in greater detail. Recall the
notion of cube invariant sheaves with transfers CIτ,spNis from [KSY22], [Sai20], see also 5.1 and
7.1 for some more details and references. In particular we have a functor

ωCI : NST→ CIτ,spNis

from the category of Nisnevich sheaves with transfers to (certain) cube invariant sheaves with
transfers which in case X is proper is given by

ωCI(F )(X,D) = HomNST(h0(X,D), F ).

Here h0(X,D) is a certain Nisnevich sheaf with transfers which on a function field K/k is
equal to CH0(XK ,DK) the Chow group with modulus as introduced in [KS16], where the
index K indicates the base change over K. Moreover, if for each henselian discrete valuation
field L of geometric type over k, we are given an increasing filtration {FilrF (L)}r≥0 which
defines a conductor c = {cL : F (L) → N}L in the sense of [RS21], then there is a cube
invariant sheaf with transfers Fc which for X proper is given by

Fc(X,D) = {a ∈ F (U) | ρ∗(a) ∈ FilvL(ρ∗D)F (L) for all ρ : SpecOL → X},

see 3.2 for details and references. By [RS21, Theorem 4.15] and [RS, Theorem 2.6] we have

(1.0.2) Fc,(X,D) ⊂ ω
CIF(X,D) ⊂ F(X,D),

where the right hand side is poles along D as defined above. Furthermore by [RS, Theorem
2.10] the second inclusion is an equality in case X is projective and smooth.
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For L as above we define for r, q ≥ 0

filrWnΩ
q
L := fillogr−1Wn(L) · dlog(K

M
q (L)) + V n−m

(
fillogr Wn(L) · dlogK

M
q (OL)

)
,

where fillogr Wn(L) is the Brylinski-Kato filtration, m = min{n, vp(r)}, and K
M
q denotes the

qth Milnor K-theory, and

FilprWnΩ
q
L =

∑

s≥0

ps
(
filpsrWnΩ

q
L + d(filpsrWnΩ

q
L)
)
,

see section 2 for details. The second main result of this paper, which is also essential for the
proof of Theorem 1, is:

Theorem 2 (Theorem 3.3 and Theorem 5.4). The filtration {FilprWnΩ
q
L}r,L defines a con-

ductor c. Moreover, for q ≥ 1 and X smooth (not necessarily proper)

WnΩ
q
c,(X,D) = ωCIWnΩ

q
(X,D) =WnΩ

q
(X,D).

For q = 0, the correct definition for the pole side from the point of view of Theorem 1 is
given by WnΩ

0
c,(X,D). In view of the first part of this theorem the proof of the second part

is essentially by (1.0.2) reduced to show that the Nisnevich stalk (WnΩ
q
(X,D))

h
η in a generic

point η of D is contained in FilprWnΩ
q
L, where L = Frac(OhX,η). The proof of this result takes

the sections 2 - 5. It relies crucially on the construction of some ad hoc characteristic form
(see Lemma 4.1). We remark that for n = 1 the above result is proven in [RS, Theorem 6.6]
and our proof makes use of this result. Note that the p-saturation is not visible in the case
n = 1.

Though the definition of the filtration FilprWnΩ
q
L looks a bit unmotivated it has several

universal interpretations, e.g., Theorem 2 states (q ≥ 1)

FilprWnΩ
q
L = ωCIWnΩ

q(OL,m
−r
L ),

which also implies that it defines the motivic conductor in the sense of [RS21]. Furthermore
Theorem 1 gives the isomorphism (which also holds for q = 0)

(1.0.3) FilprWnΩ
q
L

≃
−→ HomWnOL

(WnΩ
N−q
(OL,m

r
L)
,WnΩ

N
L ),

where WnΩ
N−q(OL,m

r
L) = Ker(WnΩ

N−q
OL

→ WnΩ
N−q
OL/m

r
L
) and N = trdeg(L/k). If fn :

SpecWn(OL/m
r
L)→ SpecWn(k) is the structure map, then we get an isomorphism

f !nWn(k) ∼=
FilprWnΩ

N
L

WnΩNOL

[N − 1],

see Corollary 9.8. Also note that this filtration is related to Kato’s ramification filtration
for étale motivic cohomology with p-torsion coefficients from [Kat89], see Lemma 11.8 for a
precise statement. However we remark, that there are several ways to lift WnΩ

q to a cube
invariant sheaf with transfers (corresponding to different conductors), and that this particular
lift we are using here is the maximal one and turns out to be suitable for duality, but has the
disadvantage, as already remarked in [RS, 6.9] (there for n = 1), that the functor

(X,D) 7→ RΓ(X,ωCIWnΩ
q
(X,D))

does not factor through the triangulated category of motives with modulus MDMeff defined
in [KMSY22]. A sufficient criterion for a cube invariant sheaf to have this property is given

by Koizumi in [Koi]. There it is also shown that the filtration {fillogr Wn(L)}r gives rise to a
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structure of cube invariant Nisnevich sheaf with transfers on WnO which defines a realization
of Witt vector cohomology from MDMeff .

In the following, we write WnΩ
q
(X,D) for WnΩ

q
c,(X,D) and allow also q = 0. In particular

we get that WnΩ
q
(X,D) is a WnOX-module, that colimrWnΩ

q
(X,rD) = j∗WnΩ

q
U , and that the

equality

WnΩ
q
(X,Dred)

=WnΩ
q
X(logDred)

holds. By Theorem 2 this sheaf has transfers, which gives a new proof of a result by Merici
[Mer], see Remark 5.5. We also recall the formula for n = 1, which was proven in [RS],

W1Ω
q
(X,D) = Ωq(X,D) = ΩqX(logD0)⊗OX

OX(D0 −D0,red + pD1),

where we write D = D0 + pD1 such that D0 and D1 have no irreducible components in
common and D0 has none of its multiplicities divisible by p.

Using the explicit description of the filtration we can check that multiplication induces the
map in (1.0.3) which also induces the natural maps in Theorem 1. To prove that the pairing is
perfect and that the higher ext-groups vanish requires some further analysis of the structure
of WnΩ

q
(X,±D), see Theorem 7 below. We first give some applications.

In Theorem 7.3 we use Theorem 7 plus a result from [BRS22] to show

HomMNST(K
M
r , ωCIWnΩ

q)(X,D)
∼=WnΩ

q−r
(X,D).

For D = ∅, this was proven in [BRS22]. Hence we can apply the results of [BRS22] to
obtain a projective bundle formula and a blow-up formula for WnΩ

q
(X,D), see 7.4, and we can

apply Theorem 1 to get these formulas as well for D replaced by −D, see Corollary 9.4. These
generalize results by Gros [Gro85] for the case D = ∅. We furthermore get a Gysin triangle (for
poles): Let Z →֒ X be a closed immersion of pure codimension r between smooth k-schemes,

which intersects D transversally (D may be non-reduced). Denote by ρ : X̃ → X the blow-up
of X in Z and by E the exceptional divisor. Then there is a canonical distinguished triangle
in D(WOX)

i∗WnΩ
q−r
(Z,D|Z)[−r]

g
−→WnΩ

q
(X,D)

ρ∗
−→ Rρ∗WnΩ

q

(X̃,ρ∗D+E)

∂
−→ i∗WnΩ

q−r
(Z,D|Z)[−r + 1].

As an application we obtain the following Lefschetz-type statement for the cohomology of the
top Hodge-Witt forms:

Theorem 3 (Theorem 7.5). Assume that X is additionally projective and let H ⊂ X be a
smooth hypersurface section which intersects D transversally and satisfies

Hj(X,ΩN(X,D) ⊗OX
OX(H)) = 0, for all j ≥ 1.

Then the Gysin map

g : Hj−1(H,WnΩ
N−1
(H,D|H)) −→ Hj(X,WnΩ

N
(X,D))

is an isomorphism for j ≥ 2 and is surjective for j = 1.

We will not spell it out in the following, but the reader should keep in mind that the
projective bundle formula, the blow-up formula and the Gysin triangle are compatible with
Frobenius, Verschiebung, differential, etc. and that these formulas continue to hold in a
suitably modified sense in the crystalline cohomology and étale motivic cohomology with
poles and zeros which we will discuss next.
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The two isomorphisms in Theorem 1 behave quite differently when taking the limit over n.
Indeed, by Proposition 10.6,

R lim
n
WnΩ

q
(X,D) =WΩqX(logDred).

Hence taking limits over n, the first isomorphism in Theorem 1 together with Ekedahl’s duality
formalism yields in case X is proper the Poincaré duality, see 10.12(2),

(1.0.4) RΓ(X,WΩ•
(X,−Dred)

) ∼= RHomW (RΓlog-crys((X,Dred)/W ),W )[−2N ],

where we use that the de Rham-Witt complex with log poles along Dred computes log-
crystalline cohomology of the smooth log-scheme (X,Dred). On finite level this statement
is also proven in [Hyo88, Proposition (3.3)] and [Nak05, Theorem 5.3]. From the above iso-
morphism (or rather a version before taking the total complex) and weight filtration arguments
[Mok93], [Nak05] we deduce that RΓ(X,WΩ∗

(X,±Dred)
) 3 are coherent complexes of modules

over the Cartier-Dieudonné-Raynaud ring R, in the sense of Illusie-Raynaud, Ekedahl. We
do not know if RΓ(X,WΩ∗

(X,−D)) is a coherent R-complex for D non-reduced, in fact we do

not know if it is a complete R-complex, see Remark 10.13. As the natural map

RΓ(X,WΩ∗
(X,−D))→ RΓ(X,WΩ∗

(X,−Dred)
)

is an isomorphism up to bounded p-primary torsion (see 10.12(3)) it follows from Shiho’s
comparison of log-crystalline cohomology with rigid cohomology, Berthelot’s Poincaré duality
for rigid cohomology, and the isomorphism (1.0.4) that RΓ(X,WΩ•

(X,−D)) is an integral model

for compactly supported rigid cohomology of U , for any D with U = X \Dred. There are now
several corollaries one can draw from this concerning the degeneration of the slope spectral
sequence and vanishing results and such, but which all work up to bounded torsion and hence
only require to work with Dred in which case they can be found at least implicitly in the
literature, see 10.12 for more details.

However the multiplicities of D remain visible when we take the limit in the second iso-
morphism of Theorem 1. To state the result set

W∞Ω∗
(X,D) := colimpWnΩ

q
(X,D) and WΩ∗

(X,−D) := Ker

(
WΩ∗

X →
⊕

i

WΩ∗
Di

)
,

where the colimit is over the map p which is ”lift and multiply by p” and D =
∑

iDi with
Di,red smooth. We define co-crystalline cohomology with modulus (X,D) by

RΓcrys((X,D)/W∞) := RΓ(X,W∞Ω•
(X,D)),

which has an operator V on it induced by pN−qV in degree q. We furthermore define crystalline
cohomology with zeros along D by

RΓcrys((X,−D)/W ) := RΓ(X,WΩ•
(X,−D)),

which has a Frobenius F on it induced by the absolute Frobenius on X. Theorem 1 together
with Ekedahl’s duality formalism yields the following version of Poincaré duality.

Theorem 4 (Corollary 10.9). Assume X is proper. There is a canonical isomorphism in
Db(W [F ])

RΓcrys((X,−D)/W ) ∼= RHomW (RΓcrys((X,D)/W∞),K/W )[−2N ],

where the action of F on the right hand side is induced by V∨.

3If C∗ is a dga of sheaves, we use RΓ(X,C∗) to denote the dga in complexes, and we use RΓ(X,C•) to
denote the total complex of the double complex RΓ(X,C∗).
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We have RΓcrys((X,Dred)/Wn) = RΓ(X,WΩ•
(X,Dred)

) ⊗LW Wn (cf. Corollary 10.11) and

from this one can deduce that the isomorphism in Theorem 4 for Dred is induced by (1.0.4).
This is not the case if D is not reduced, as the left hand side of the isomorphism in Theorem
4 depends on the multiplicities of D. See 10.12 for more comments and consequences such as
vanishing statements. Finally we remark that it is an intriguing problem to investigate the
relation of RΓcrys((X,−D)/W ) or RΓcrys((X,D)/W∞) with the edged crystalline cohomology
from [D’A].

Next we explain a modulus version of Milne duality which we get from Theorem 1. Consider
the following two complexes of abelian sheaves on Xét

Z/pn(q)(X,D) :=
(
ωCI(FWn+1Ω

q)
1−C
−−−→ ωCIWnΩ

q
)
(X,D)

[−q]

and

Z/pn(q)(X,−D) :=

(
WnΩ

q
(X,−D)

C−1−1
−−−−→

WnΩ
q
(X,−D)

dV n−1Ωq−1
X ∩WnΩ

q
(X,−D)

)
[−q].

Both complexes sit in degree [q, q+1] and are for D = ∅ quasi-isomorphic to the étale motivic
complex with Z/pn-coefficients by [GL00]. Complexes similar to Z/pn(q)(X,−D) are for exam-
ple considered in [JSZ18], [Mor19], and [GK]. A complex similar to Z/pn(0)(X,D) is considered
in [KS14]. We remark that Z/pn(q)(X,−D) is quasi-isomorphic to a sheaf concentrated in de-

gree q, which is denoted by WnΩ
q
(X,−D),log. In the pole-case this is also true if D is reduced

but not in general. The local sections of the étale sheaf Hq+1(Z/pn(q)(X,D)) only vanish after
a finite cover which ramifies along D, see Lemma 11.6 and Remark 11.7.

In order to obtain a version of Kato’s generalization of Milne’s duality we denote by
Z/pn(q)FRP

(X,±D) the extension to the flat relatively perfect site XFRP.

Theorem 5 (Theorem 11.15). There are isomorphisms

Z/pn(q)FRP
(X,D)[q]

≃
−→ Dn,X

(
Z/pn(N − q)FRP

(X,−D)[N − q]
)
,

Z/pn(N − q)FRP
(X,−D)[N − q]

≃
−→ Dn,X

(
Z/pn(q)FRP

(X,D)[q]
)
,

where DX,n(−) is Kato’s dualizing functor, see 11.10.

Corollary 2 (Corollary 11.16). Assume additionally that k is a finite field and X is proper
over k. Then there is an isomorphism in D(Z/pn)

RΓ(Xét,Z/p
n(q)(X,D)) ∼= RHomZ/pn

(
RΓ(Xét,Z/p

n(N − q)(X,−D)),Z/p
n
)
[−2N − 1].

In particular we obtain isomorphisms of finite groups for all i

H i+q(Xét,Z/p
n(q)(X,D)) ∼= HomZ/pn(H

2N−i−q+1(Xét,Z/p
n(N − q)(X,−D)),Z/p

n).

Taking the limit over {rD}r in the second isomorphism above yields [JSZ18, Theorem 2],
see Remark 11.17. Denote by π1(X,D)p the étale fundamental group which classifies abelian
p-covers of U with ramification bounded by D from [KS16]. Then the case q = 0 and i = 1
in the above corollary yields (assuming k finite and X proper)

πab1 (X,D)p = HN (Xét,WΩN(X,−D),log).

As last application we mention a refinement of Milne’s pairing for the Brauer group of a
smooth projective surface over a finite field to the ramified situation. The Brauer group of X
with ramification bounded by D, is defined by

Br(X,D) := H0(U,R2ǫ∗Q/Z(1)′U )⊕H
0(X,R2ǫ∗Qp/Zp(1)(X,D)),
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where ǫ : Xét → XNis is the change of sites map, and

Q/Z(1)′U = colimn′ µn′,U , Qp/Zp(1)(X,D) = colimp Z/pn(1)(X,D)

with the colimit on the left over all n′ which are prime to p. The Brauer group with zeros
along D is defined by

Br(X,−D) := H2(Xét,O
×
(X,−D)),

where O×
(X,−D) = Ker(O×

X → O
×
D). There are natural inclusions Br(X) ⊂ Br(X,D) ⊂ Br(U)

and colimr Br(X, rD) = Br(U). Furthermore there is an exact sequence

Pic(X)→ Pic(D)→ Br(X,−D)→ Br(X)→ Br(D),

where Br(Z) = H2(Zét,Gm). For D = ∅ the following duality statement is the p-part of
Milne’s duality [Mil75, Theorem 2.4].

Theorem 6 (Theorem 12.13). Assume k is a finite field and X is a smooth proper surface.
Then there is a canonical isomorphism of profinite groups

Br(X,−D)[p∞]

(Br(X,−D)[p∞])div

≃
−→ Hom

(
Br(X,D)[p∞]

(Br(X,D)[p∞])div
,Q/Z

)
,

where the index “div” refers to the divisible part and M [p∞] is the p-primary torsion in M .

For example, if A is an abelian surface over a finite field, it follows from the finiteness of
Br(A), proved by Tate and Milne, that Br(A,−D)[p∞] is finite as well and hence the above
duality yields that Br(A,D)[p∞] is the direct sum of a divisible group with a finite group, for
all effective Cartier divisors D on A with Dred a simple normal crossing divisor, see Remark
12.14.

Finally we state the key results which are needed to complete the proof of Theorem 1.

Theorem 7 (Theorem 6.4, Theorem 8.7). There are short exact sequences of Wn+1OX -
modules

0 −→ BnΩ
q+1
(X,D) −→

Wn+1Ω
q
(X,D)

pWnΩ
q
(X,D)

Fn

−−→ ZnΩ
q
(X,D) −→ 0,

and

0 −→ (Ω/B)qn,(X,−D)

V n

−−→ Ker
(
Wn+1Ω

q
(X,−D)

R
−→WnΩ

q
(X,−D)

)
−→ (Ω/Z)q−1

n,(X,−D) −→ 0,

where in both cases the outer terms are locally free OX -modules. Moreover, multiplication
induces OX-linear isomorphisms

(Ω/B)qn,(X,−D)

≃
−→ Hom(ZnΩ

N−q
(X,D),Ω

N
X), (Ω/Z)q−1

n,(X,−D)

≃
−→ Hom(BnΩ

N−q+1
(X,D) ,Ω

N
X).

Recall that using Theorem 2 we can show that there are well-defined maps as in Theorem
1. With Theorem 7 at hand it is direct to check that the same arguments from Ekedahl’s
proof of Theorem 1 for D = ∅ work in the general case as well.

The outer terms of the two exact sequences in Theorem 7 are defined in (6.4.1) and (8.6.3).
For D = ∅ the exact sequences were proven by Illusie and Ekedahl and the fact that the
outer terms are locally free OX -modules is proven by Cartier operator calculus. The strategy
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for D 6= ∅ is the same, but it turns out to be more involved. For example, by definition of
(Ω/B)qn,(X,−D) there is a cartesian diagram of Wn+1OX -modules

(Ω/B)qn,(X,−D)
//

��

Wn+1Ω
q
(X,−D)

��
Fn
X∗Ω

q
X

BnΩ
q
X

V n
// Wn+1Ω

q
X .

But in general (Ω/B)qn,(X,−D) is not a quotient of

Ωq(X,−D) = ΩqX(logD0,red)(−D),

where D = D0 + pD1 and D0 has none of its multiplicities divisible by p. It rather depends
on the whole p-divisibility decomposition of D up to length n+ 1. More precisely, write

D = D0 + pD1 + . . . + pn+1Dn+1,

where Di and Dj have no irreducible components in common for i 6= j, and p does not divide
any multiplicity of Di, for i = 0, . . . , n. Then there is a surjection

n−j⊕

j=0

Fn−jX∗

(
ΩqX(logDj,red)⊗OX

OX(−⌈Dj/p
j⌉ −Dn+1−j)

) ⊕jC−j

−−−−→ (Ω/B)qn,(X,−D),

where Dj = D0+ . . .+ p
jDj and D

n+1−j = pDj+1+ . . .+ p
n+1−jDn+1, see Remark 8.22. The

proof of Theorem 7 takes almost all of the sections 6 and 8.

General conventions. Throughout the whole paper, k is a perfect field of characteristic
p > 0. We denote by Sm the category of separated schemes which are smooth and of finite
type over k. If F is a Nisnevich sheaf on Sm and X ∈ Sm, then we denote by FX the
restriction of F to the small Nisnevich site XNis. If x ∈ X is a point, then we denote by F hX,x
the Nisnevich stalk at x.

2. The p-saturated filtration

We start by fixing some standard notation and recalling some results on the de Rham-Witt
complex. In 2.5 and Definition 2.6 we introduce a filtration which will play an essential role
throughout the rest of the paper.

2.1. Let X ∈ Sm. We denote by WnΩ
•
X the de Rham-Witt complex of Bloch-Deligne-Illusie

of length n on X (see [Ill79]). We denote by R : Wn+1Ω
•
X →WnΩ

•
X , V : WnΩ

•
X →Wn+1Ω

•
X ,

F : Wn+1Ω
•
X → WnΩ

•
X , the restriction, the Verschiebung, and the Frobenius morphism,

respectively, which are part of the structure of the de Rham-Witt complex. Furthemore, we
have the map

(2.1.1) p :WnΩ
•
X →Wn+1Ω

•
X

which is given by “lifting to level n + 1 and multiply by p”, it is well-defined and injective
by [Ill79, I, Proposition 3.4]. Recall that WnΩ

•
X is a differetial graded Wn(k)-algebra; we

denote by d : WnΩ
•
X → WnΩ

•+1
X the differential and by WnΩ

q
X its degree q part. Also

recall that WnΩ
0
X = WnOX is the sheaf of Witt vectors of length n on X and that we have

the multiplicative Teichmüller lift [−] = [−]n : OX → WnOX at our disposal. By [KSY22,
Corollary 3.2.5(3)] the functor

X 7→ H0(X,WnΩ
q
X)
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defines a Nisnevich sheaf with transfers for all q ≥ 0, which has SC-reciprocity; we also denote
it byWnΩ

q ∈ RSCNis. See also [CR12] for details on how to define the transfers structure and
see 5.1 for the definition of RSCNis. If f : X → Y is a morphism in Sm, then the morphism

Γ∗
f = f∗ : WnΩ

q(Y )→WnΩ
q(X)

induced by its graph Γf ∈ Cor(X,Y ), is the natural pullback morphism induced by the
functoriality of the de Rham-Witt complex. If f is finite and surjective, then the transpose
of the graph defines an element Γtf ∈ Cor(Y,X) and Γt∗f = f∗, where f∗ is the pushforward
defined using duality theory. We list some properties of the transfers structure which will be
used later, we refer to [RS21, Lemmas 7.7] for proofs of the first two and further references
to the literature:

(a) The restriction, Verschiebung, Frobenius, p, and the differential define morphisms in
RSCNis

R : Wn+1Ω
q →WnΩ

q, V : WnΩ
q →Wn+1Ω

q, F : Wn+1Ω
q →WnΩ

q,

p :WnΩ
q →Wn+1Ω

q+1, d :WnΩ
q →WnΩ

q+1.

(b) The Nisnevich sheaf with transfers WnΩ
0 = WnO coincides with the Nisnevich sheaf

with transfers defined by the algebraic group Wn in [SS03, Proof of Lemma 3.2].
(c) Denote byKM

q , q ≥ 0, the restriction of the improved Milnor K-theory from [Ker10] to

Sm. It is an A1-invariant Nisnevich sheaf with transfers, in particular KM
q ∈ RSCNis

and the map

dlog : KM
q →WnΩ

q, u = {u1, . . . , uq} 7→ dlog u := dlogn u :=
d[u1]n
[u1]

· · ·
d[uq]n
[uq]

, ui ∈ O
×,

defines a morphism in RSCNis, e.g. [BRS22, 11.1(4)]. In particular if f : Y → X is a
finite and surjective morphism in Sm, then

f∗ dlog u = dlog(Nm(u)) in WnΩ
1(X), u ∈ O×

Y (Y ),

where Nm : f∗O
×
Y → O

×
X denotes the usual norm.

Another property of the de Rham-Witt forms which will be important in the following is that
the natural map of Nisnevich sheaves (without transfers)

(2.1.2) (WnO ⊗Z K
M
q )⊕ (WnO ⊗Z K

M
q−1)→WnΩ

q, (a⊗ u, b⊗ v) 7→ adlog u+ dbdlog v,

is surjective. This follows easily by induction over n from the corresponding fact for Ωq, the
exact sequence of Nisnevich sheaves on Sm (see [Ill79, I, Proposition 3.2])

Ωq ⊕ Ωq−1 V n−1+dV n−1

−−−−−−−−−→WnΩ
q R
−→ Wn−1Ω

q → 0,

and the formulas V (adlog u) = V (a) dlog u and V d = pdV , cf. also [HK94, Proposition (4.6)].

The following notation will be used throughout.

Notation 2.2. A henselian discrete valuation field of geometric type over k is a field

L = Frac(OU,z)
h,

where U ∈ Sm, z ∈ U (1) is a point of codimension 1, and (OU,z)
h denotes the henselization

of the local ring OU,z. We denote the set of all such L by Φ. For L ∈ Φ we denote by OL,
vL, mL, κL the ring of integers, the normalized discrete valuation, the maximal ideal, and the
residue field, respectively. In case there is no ambiguity we also write m instead of mL and κ
instead of κL. For each L ∈ Φ, we pick a local parameter z = zL ∈ OL.
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2.3. Let L ∈ Φ (see 2.2) and pick a local parameter z ∈ mL. Recall that the Brylinski-Kato
filtration of Wn(L) is defined as follows (see [Bry83]):

fillogr Wn(L) := {(a0, . . . , an−1) | p
n−1−ivL(ai) ≥ −r}

= {a ∈Wn(L) | [z]
rF̄n−1(a) ∈WnOL}, r ≥ 0.

We have

fillog0 Wn(L) =WnOL, fillogr L = fillogr W1(L) = m
−r
L .

Furthermore, the maps V , R, F restrict to

(2.3.1) fillogr Wn(L)
V // fillogr Wn+1(L)

F

jj

R

ww

and more precisely,

(2.3.2) R(fillogr Wn+1(L)) ⊂ fillog⌊r/p⌋Wn(L) ⊂ fillogr Wn(L).

It follows from the formula V i([a]) · V j([b]) = V i+j([ap
j
][bp

i
]) that we have

(2.3.3) fillogr Wn(L) · fil
log
s Wn(L) ⊂ fillogr+sWn(L), r, s ≥ 0.

In particular, fillogr Wn(L) is a WnOL-submodule of Wn(L). Moreover the injective map p :
Wn(L)→Wn+1(L) induces an isomorphism

(2.3.4) p : fillogr Wn(L)
≃
−→ p · fillogrpWn+1(L).

Definition 2.4. Let L ∈ Φ. For q, r ≥ 0 we define

fillogr WnΩ
q
L := Im

(
fillogr Wn(L)⊗Z K

M
q (L)

id⊗ dlog
−−−−−→ WnΩ

q
L

)
,

fillog
′

r WnΩ
q
L := Im

(
fillogr Wn(L)⊗Z K

M
q (OL)

id⊗ dlog
−−−−−→WnΩ

q
L

)
,

and

filrWnΩ
q
L := fillogr−1(WnΩ

q
L) + V n−m(fillog

′

r WmΩ
q
L),

where m = min{vp(r), n} with vp the normalized p-adic valuation. We have fil0WnΩ
q
L =

fillog
′

0 WnΩ
q
L (by convention). Finally

FilrWnΩ
q
L := filrWnΩ

q
L + d(filrWnΩ

q−1
L ).

2.5. We make some comments and list some easy properties of the above defined filtrations:

(1) The filtration {FilrWnΩ
0
L}r≥0 = {filrWn(L)}r≥0 coincides with the Kato-Matsuda

filtration [Mat97] (with the notational conventions from [KS16, 2.1]).
(2) The family {FilrWnΩ

q
L} defines an increasing and exhaustive filtration of WnΩ

q
L

Fil0WnΩ
q
L ⊂ Fil1WnΩ

q
L ⊂ . . . ⊂ FilrWnΩ

q
L ⊂ . . . ⊂WnΩ

q
L.

(The filtration is exhaustive by the surjectivity of (2.1.2).)
(3) The surjectivity of (2.1.2) yields

Fil0WnΩ
q
L =WnΩ

q
OL
, Fil1WnΩ

q
L =WnΩ

q
OL

(log),

where

WnΩ
q
OL

(log) =WnΩ
q
OL

+WnΩ
q−1
OL

dlog z ⊂WnΩ
q
L,
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which is also equal to the qth de Rham-Witt forms of the log ring (OL, λ) over k
with trivial log structure, where λ is the logarithmic structure associated to N→ OL,
1 7→ z, see e.g. [Mat17].

(4) We have

filrWnΩ
q
L =

{
fillogr−1WnΩ

q
L if vp(r) = 0

fillogr−1WnΩ
q
L + fillog

′

r WnΩ
q
L if vp(r) ≥ n.

(5) For j ≥ 0 we have a natural map

FilrWnΩ
j
L ⊗Z K

M
q−j(OL)→ FilrWnΩ

q
L, a⊗ u 7→ adlog u,

which is surjective for j ≥ 1. (Use the formulas V (adlog u) = V (a) dlog u and
ddlog u = 0 and the surjectivity of L× ⊗Z K

M
q−1(OL) ։ KM

q (L), x⊗ u 7→ {x, u}.)

Definition 2.6. Let {Gr}r≥0 be a family of subgroups of WnΩ
q
L with Gr ⊂ Gr+1. The

p-saturation of Gr is then defined by

Gpr :=
n−1∑

s=0

psGrps ⊂WnΩ
q
L.

In particular we have

FilprWnΩ
q
L =

∑

s≥0

psFilrpsWnΩ
q
L = filprWnΩ

q
L + d(filprWnΩ

q−1
L ).

We immediately get from 2.5 that {FilprWnΩ
q
L}r≥0 is an increasing and exhaustive filtration

of WnΩ
q
L, which comes with a natural map

(2.6.1) FilprWnΩ
j
L ⊗Z K

M
q−j(OL)→ FilprWnΩ

q
L,

which is surjective for j ≥ 1.

Lemma 2.7. For all 0 ≤ s ≤ n− 1 and all r ≥ 1 we have

psfillog(r−1)psWnΩ
q
L = psfillogrps−1WnΩ

q
L, and psfillog

′

(r−1)psWnΩ
q
L = psfillog

′

rps−1WnΩ
q
L.

Proof. Clearly we have this ⊂ inclusion in both cases. For the other direction it suffices to
consider q = 0. Let y ∈ L with pn−j−1vL(y) ≥ −rp

s + 1. If s ≥ n − j, then psV j([y]) = 0; if
s ≤ n− j − 1, then pn−j−s−1vL(y) is an integer ≥ −r + 1/ps and hence it is ≥ −r + 1. This
yields this ⊃ inclusion in both cases. �

Lemma 2.8. We have

Filp0WnΩ
q
L =WnΩ

q
OL
, Filp1WnΩ

q
L =WnΩ

q
OL

(log).

Proof. By 2.5(3) it remains to show the inclusion psfilpsWnΩ
q
L ⊂WnΩ

q
OL

(log), for s ∈ [1, n−1].

Since psV n−s(WsΩ
q
L) = 0, it suffices to show

psfillogps−1WnΩ
q
L ⊂WnΩ

q
OL

(log),

which follows from Lemma 2.7. �

Lemma 2.9. Set wn := WnΩ
q
L. We have

(2.9.1) V (fillogr wn) ⊂ fillogr wn+1, V (fillog
′

r wn) ⊂ fillog
′

r wn+1, V (filrwn) ⊂ filrwn+1,

(2.9.2) p(fillogr wn) = p · fillogrp wn+1, p(fillog
′

r wn) = p · fillog
′

rp wn+1, p(filrwn) = p · filrpwn+1,
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and for ϕ ∈ {R,F}

(2.9.3) ϕ(fillogr wn+1) ⊂ fillogr wn, ϕ(fillog
′

r wn+1) ⊂ fillog
′

r wn, ϕ(filrwn+1) ⊂ filrwn.

Furthermore,

(2.9.4) Fd(fillogr Wn+1Ω
q−1
L ) ⊂ fillogr WnΩ

q
L + d(fillogr WnΩ

q−1
L )

and if vp(r) ≥ n+ 1, then

(2.9.5) Fd(fillog
′

r Wn+1Ω
q−1
L ) ⊂ p · fillogr WnΩ

q
L + FilrWnΩ

q
L.

Proof. The inclusions (2.9.1) and (2.9.3) follow immediately from (2.3.1) and the formula
ϕ(adlog x) = ϕ(a) dlog x, for ϕ ∈ {F,R, V }, the first two equalities in (2.9.2) follow from

(2.3.4), the last equality from this and Lemma 2.7. Note that any element in fillogr Wn+1Ω
q−1
L

is a sum of elements ω = adlog x, with a ∈ fillogr Wn+1(L) and x ∈ KM
q−1(L). Write a =

[a0] + V (b), so that [a0] ∈ fillogr Wn+1(L) and b ∈ fillogr Wn(L). Thus (2.9.4) follows from

Fd(ω) = F ([a0]) dlog{a0, x}+ d(bdlog x) ∈ fillogr WnΩ
q
L + d(fillogr WnΩ

q−1
L ).

Finally, (2.9.5). We assume vp(r) ≥ n + 1. Let ω be as above but this time x ∈ KM
q−1(OL),

and write a0 = zeu, with u ∈ O×
L and epn ≥ −r. We get

Fd(ω) = eF ([a0]) dlog{z, x}︸ ︷︷ ︸
=ω1

+F ([a0]) dlog{u, x} + d(bdlog x)︸ ︷︷ ︸
∈FilrWnΩ

q
L

.

If epn > −r, then [a0] ∈ fillogr−1Wn+1(L) and hence ω1 ∈ fillogr−1WnΩ
q
L. If epn = −r, then p|e

and hence ω1 ∈ p · fil
log
r WnΩ

q
L. This yields the statement. �

Corollary 2.10. The maps F , R, V , p, d on W•Ω
∗
L induce well-defined maps

FilprWnΩ
q
L

V, p
//
FilprWn+1Ω

q
L

F,R
oo , d : FilprWnΩ

q
L → FilprWnΩ

q+1
L .

Furthermore,
p(FilprWn−1Ω

q
L) = pFilpprWnΩ

q
L.

Proof. This holds for d by definition. The well-definedness of p and the final statement follow
directly from (2.9.2). For V and R the statement follows from (2.9.1) and (2.9.3) and the
formulas V d = pdV and Rd = dR. For F it follows from (2.9.3) - (2.9.5) and the observation

fillogrpsWnΩ
q
L ⊂ fillog

rps+1−1
WnΩ

q
L ⊂ filrps+1WnΩ

q
L.

�

It will be useful to have a different presentation of FilprWnΩ
q
L which is provided in the

following lemma.

Lemma 2.11. Let r ≥ 1 and let z ∈ OL be a local parameter.

(1) For 0 ≤ j ≤ n− 1, i ∈ Z, α ∈Wn−jΩ
q
OL

, and β ∈Wn−jΩ
q−1
OL

we have

(2.11.1) V j([z]iα) ∈ fillogr−1WnΩ
q
L + d(fillog

′

r−1WnΩ
q−1
L ), if ipn−1−j ≥ −r + 1,

(2.11.2) V j([z]i dlog z · β) ∈ fillogr−1WnΩ
q
L + d(fillogr−1WnΩ

q−1
L ), if ipn−1−j ≥ −r + 1,

Furthermore, if n−m ≤ j ≤ n− 1, where m = min{vp(r), n} ≥ 1, then

(2.11.3) V j([z]i ·α) ∈ p ·V n−m(fillogr WmΩ
q
L)+dV

n−m(fillog
′

r WmΩ
q−1
L ), if ipn−j−1 = −r.
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(2) Let Hq
r ⊂WnΩ

q
L be the subgroup generated by the elements (2.11.1) - (2.11.3). Then

filrWnΩ
q
L ⊂ H

q
r ⊂ FilrWnΩ

q
L + p · FilrpWnΩ

q
L.

In particular

FilprWnΩ
q
L =

n−1∑

s=0

ps(Hq
rps + d(Hq−1

rps )).

Proof. (1). If α (resp. β) is equal to adlog u with a ∈ Wn−j(OL) and u ∈ KM
q (OL) (resp.

u ∈ KM
q−1(OL)), then (2.11.1) - (2.11.3) follow directly from 2.3 and Definition 2.4. By the

surjectivity of (2.1.2) and 2.5(5) it remains to consider the case where α (resp. β) is equal to
db with b ∈Wn−j(OL) and q = 1 (resp. q = 2). We compute

V j([z]idb) = pjdV j(b[z]i)− V j(ib[z]i) dlog z,

where the equality follows from the Leibniz rule and the formula V d = pdV . This yields
(2.11.1). Observe that in the situation of (2.11.3) the integer i is divisible by p, which yields
(2.11.3). Similarly we get

V j([z]i dlog(z)db) = −pjdV j(b[z]i) dlog z,

whence (2.11.2). Concerning the chain of inclusions in (2) observe that the left inclusion
holds by definition and that the right inclusion follows from (1), where for the elements of
type (2.11.3) we observe that

p · fillogr WnΩ
q
L ⊂ p · filr+1WnΩ

q
L ⊂ p · filrpWnΩ

q
L.

This completes the proof. �

Corollary 2.12. The group FilprWnΩ
q
L is a finitely generated WnOL-submodule of WnΩ

q
L, for

all r, q ≥ 0 and n ≥ 0. Moreover we have inclusions of WnOL-modules

(2.12.1) WnΩ
q
OL
⊂ FilprWnΩ

q
L ⊂WnΩ

q
OL
·

1

[z]rpn−1 ,

where z ∈ OL denotes a local parameter.

Proof. Let Hq
r be as in Lemma 2.11. It is a WnOL-submodule of WnΩ

q
L, by the formula

aV j(x) = V j(F j(a)x). Using additionally the Leibniz rule we find for γ ∈ Wn−jΩ
q−1
L and

a ∈WnOL
adV j([z]iγ) = dV j([z]iF j(a)γ)− V j([z]iF j(da)γ).

Hence Hq
r + d(Hq

r ) is a WnOL-submodule of WnΩ
q
L, for all r ≥ 0, and hence so is FilprWnΩ

q
L,

by Lemma 2.11. The first inclusion in (2.12.1) holds by Lemma 2.8, the second inclusion

follows from [z]t · fillogt Wn(L) ⊂ WnOL, for all t ≥ 0. Since WnOL is noetherian (e.g. [LZ04,
Prop A.4]) and WnΩ

q
OL

is a finite WnOL-module (where we use that L is of geometric type),

we obtain that FilprWnΩ
q
L is a finite WnOL-module as well. �

3. The p-saturated filtration defines a conductor

In this section we show that the p-saturated filtration from section 2 defines a conductor
in the sense of [RS21].

3.1. Following [KMSY21a] we call a pair (X,D) a modulus pair, if X is separated and of
finite type over k and D is an effective Cartier divisor on X, such that X \ D is smooth.
The modulus pair (X,D) is called proper if X is a proper k-scheme. A compactification of
a modulus pair (X,D) is a proper modulus pair (X,D′ +X∞) such that X \X∞ = X and
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D′
|X = D. All compactifications of a fixed modulus pair form a cofiltered set, see [KMSY21a,

Lemma 1.8.2].

3.2. Recall from [RS21, Definition 4.3] that a conductor on a presheaf with transfers F on
Sm is a collection of set maps

c = {cL : F (L)→ N0}L∈Φ,

where Φ denotes the set of henselian discrete valuation fields of geometric type over k, see
Notation 2.2, satisfying the following properties for all L ∈ Φ and all X ∈ Sm:

(c1) cL(a) = 0 ⇒ a ∈ Im(F (OL)→ F (L)).
(c2) cL(a+ b) ≤ max{cL(a), cL(b)}.
(c3) For any finite extension L′/L of ramification degree e and any a ∈ F (L′) we have

cL(TrL′/L a) ≤

⌈
cL′(a)

e

⌉
,

where TrL′/L is the trace which is given by the pullback along the transpose of the

graph of SpecL′ → SpecL (viewed as a finite correspondence) and ⌈−⌉ is the round
up.

(c4) Let a ∈ F (A1
X). Then

ck(x)(t)∞(ρ∗xa) ≤ 1, ∀x ∈ X =⇒ a ∈ F (X),

where k(x)(t)∞ := Frac(OhP1
x,∞

), ρx : Speck(x)(t)∞ → A1
X is the natural map, and we

identify F (X) with its image in F (A1
X) under the pullback along A1

X → X.

(c5) For any a ∈ F (X) there exists a proper modulus pair (X,D) with X = X \D, such
that for all k-morphisms ρ : SpecL→ X we have

cL(ρ
∗a) ≤ vL(DL),

where DL denotes the pullback of D under the unique extension SpecOL → X of ρ
and vL(DL) denotes its multiplicity.

We say a conductor has level n if in (c4) it suffices to consider points

x ∈ X(≤n−1) = {points of dimension ≤ n− 1}.4

We say c is semi-continuous if it satisfies the following condition:

(c6) Let X ∈ Sm and let Z ⊂ X be a smooth prime divisor with generic point z and
K = Frac(OhX,z). Then for any a ∈ F (X \ Z) with cK(aK) ≤ r there exists a

Nisnevich neighborhood u : U → X of z and a compactification (Y,E) of the modulus
pair (U, r · u∗Z) such that

cL(ρ
∗aU ) ≤ vL(EL), for all L ∈ Φ and all ρ : SpecL→ U,

where aU (resp. aK) denotes the restriction of a to U (resp. K).

Theorem 3.3. The collection c = {cL : WnΩ
q
L → N0}L∈Φ with

(3.3.1) cL(a) = min
{
r ≥ 0 | a ∈ FilprWnΩ

q
L

}

defines a semi-continuous conductor of level q + 1. (See Definition 2.6 for FilprWnΩ
q
L.)

4In fact in [RS21] a conductor of level n is only required to be defined for L ∈ Φ of transcendence degree
over k at most n. The restriction of conductor of level n in the above sense to those L is a conductor of level
n in the sense of [RS21].
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Proof. (c1) holds by Lemma 2.8 and (c2) is clear. The proof of (c3) requires some more lemmas
and will be given at the end of the next subsection. (c4) Let X ∈ Sm and a ∈ WnΩ

q(A1
X).

For x ∈ X let ρx : Speck(x)(t)∞ → A1
X be as in (c4). Assume ck(x)(t)∞(ρ∗xa) ≤ 1, for all

points x ∈ X(≤q). Since WnΩ
q
P1
x
(log∞) is a Nisnevich sheaf we find by Lemma 2.8

a|A1
x
∈ Ker

(
WnΩ

q(A1
x)→

WnΩ
q
k(x)(t)∞

(log∞)

(WnΩ
q
P1
x,∞

(log∞))h

)
=WnΩ

q(log∞)(P1
x).

We have an exact sequence

0→WnΩ
q(P1

x)→WnΩ
q(log∞)(P1

x)
Res
−−→ WnΩ

q−1(x)
δ
−→ H1(P1

x,WnΩ
q
P1
x
),

see [Mat17, p. 68]. By the projective bundle formula (see [Gro85, I, Corollaire 4.2.13]) the
map δ is a split injection and we find

a|A1
x
∈WnΩ

q(log∞)(P1
x) =WnΩ

q(P1
x) =WnΩ

q(x),

i.e., a|A1
x
is pulled-back from WnΩ

q(x). Let s : X →֒ A1
X be a section of the projection

π : A1
X → X and consider b := a− π∗s∗a ∈WnΩ

q(A1
X). By the above,

(3.3.2) b|A1
x
= 0, for all x ∈ X(≤q).

We claim that (3.3.2) implies b = 0. To prove this latter claim we may assume X = SpecA,
with A a smooth integral k-algebra and b ∈ WnΩ

q
A[t]. By [HM04, Theorem B] (for p odd)

and [Cos08, Theorem 4.3] (for p = 2) the abelian group WnΩ
q
A[t] is isomorphic to a direct sum

of the groups WmΩ
q
A and WmΩ

q−1
A , for various m ∈ [0, n]. Furthermore this isomorphism is

natural in A. The claim thus follows from Lemma 3.4 below.
(c5). LetX ∈ Sm and a ∈WnΩ

q(X). Let (X,D) be a proper modulus pair withX = X\D.
By the surjectivity of (2.1.2) we find an open coverX = ∪iVi inducing an open coverX = ∪iUi,
with Ui = Vi \D, and finitely many elements ai,j ∈WnO(Ui), bi,j ∈WnO(Ui), ui,j ∈ K

M
q (Ui),

and vi,j ∈ K
M
q−1(Ui) such that

aUi =
∑

j

ai,j dlog ui,j +
∑

j

dbi,j dlog vi,j,

where aUi denotes the restriction of a to Ui. For N ≥ 1 big enough we have

ai,j, bi,j ∈ H
0(Vi,WnOVi(N ·D|Vi)), for all i, j.

Here for a divisor E on a finite type k-scheme Y , we denote by WnOY (E) the invertible
WnOY -modulue, which on an open V ⊂ Y with E|V = Div(e) is equal to WnOV ·

1
[e] . By the

proof of [RS21, Claim 7.5.1] we obtain for r > pn−1N

ρ∗(ai,j), ρ
∗(bi,j) ∈ fillogrmi,L−1Wn(L), for all ρ : SpecOL → Vi,with L ∈ Φ, all i, j,

where mi,L = vL(ρ
∗D|Vi). By definition of Filpr we find for all ρ : SpecOL → Vi

(3.3.3) cL(ρ
∗aUi) ≤ vL(rD|Vi).

This yields (c5) as any SpecL→ X extends uniquely to SpecOL → X and factors via some
Vi →֒ X .

Finally (c6). Let Z ⊂ X, z ∈ Z and K = Frac(OhX,z) be as in (c6). Let a ∈ WnΩ
q(X \ Z)

with cK(aK) ≤ r. By Definition 2.6 and (2.9.2)

aK =

n−1∑

s=0

ps(αs + dβs)
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with αs ∈ filrWn−sΩ
q
K and βs ∈ filrWn−sΩ

q−1
K . Replacing X by a Nisnevich neighborhood of

z, we can assume that αs and βs are the restriction to K of de Rham Witt forms on X \ Z.
As the set of compcatifications of (U, rZ) is cofiltered, for U a Nisnevich neighborhood of z,
see 3.1, it suffices to prove the following, for all q ≥ 0 and n ≥ 1: Assume a as above satisfies
aK ∈ filrWnΩ

q
K . Then there exists a Nisnevich neighborhood U → X and a compactification

(Y,E) of (U, rZU ) such that

(3.3.4) ρ∗a ∈ filvL(EL)WnΩ
q
L, for all ρ : SpecL→ U.

Let m = min{vp(r), n}. We find an open neighborhood U ⊂ X of z such that

aU =
∑

j

aj dlog(λj) + V n−m(bj dlog(uj)),

with aj ∈Wn(U \ ZU ), bj ∈Wm(U \ ZU ), λj ∈ K
M
q (U \ ZU ), and uj ∈ K

M
q (U), and

aj,K ∈ fillogr−1Wn(K), and bj,K ∈ fillogr Wm(K), all j.

If r = 0, then we can take aj = 0 = λj. Let (Y,Z
′+Y∞) be a compactification of (U,ZU ) with

Y normal. By the proof of (c6) in [RS21, Proof of Proposition 7.5] we have for any N ≫ 0
with pn|N , and for any map ρ : SpecL→ U , with L ∈ Φ,

ρ∗(aj) ∈ fillogvL((r−1)Z′+(N−1)Y∞)Wn(L) ⊂ fillogvL(rZ′+NY∞)−1Wn(L)

and
V n−m(ρ∗bj) ∈ V

n−m0(fillogvL(rZ′+NY∞)Wm0(L)),

where m0 = min{vp(vL(rZ
′ +NY∞)), n}. Hence condition (3.3.4) is satisfied for (Y,E) with

E = rZ ′ +NY∞, N as above, which is a modulus compactification of (U, rZU ).
It remains to prove (c3), which is done at the end of the next subsection. �

Lemma 3.4. Let X be a smooth k-scheme and a ∈ WnΩ
q(X), for some n ≥ 1 and q ≥ 0.

If a is nonzero, then there exists a point x ∈ X(≤q), such that the image of a in WnΩ
q(x) is

nonzero.

Proof. First note that the restrictionWnΩ
q(X)→ WnΩ

q(U) along a dense open subset U ⊂ X
is injective, which follows from the fact that WnΩ

q
X is a successive extension of locally free

OX-modules, see [Ill79, I, Corollaire 3.9]. Since WnΩ
q
X is moreover an étale sheaf we may

assume k is algebraically closed and X = SpecA with A smooth and étale over k[t1, . . . , te]
with e = dimX > q.

For n = 1, the differential forms dti1 · · · dtiq , 1 ≤ i1 < . . . < iq ≤ e, form a basis of the
A-module ΩqA. Assume for a ∈ ΩqA we have b := (dti1 · · · dtiq)

∨(a) 6= 0 for some sequence
(i1, . . . , iq) as above. As k is algebraically closed we find elements λj ∈ k such that b 6= 0 in
B := A/(tj − λj|j ∈ {1, . . . , e} \ {i1, . . . , iq}). Then a(x) 6= 0 in Ωqk(x), for some generic point

x of SpecB, which is a point of dimension q in X.
By induction over n we assume the statement is proven for WmΩ

q
Y , for m ≤ n− 1 and all

Y ∈ Sm. For an étale sheaf of abelian groups F on Sm consider the property:

(∗) For each non-zero element a ∈ F (X), there exists a morphism f : Z → X in Sm such
that dimZ ≤ e− 1 and f∗a 6= 0 in F (Z).

By the above, property (∗) holds for WmΩ
q, for m ≤ n − 1, and it suffices to show that

F =WnΩ
q has property (∗). To this end observe that if we have an exact sequence of sheaves

0→ F ′ → F → F ′′,

and F satisfies (∗), then so does F ′; moreover if F ′′ and F ′ satisfy (∗), then so does F . By
[Ill79, I, Corollaire 3.9] we are reduced to show that Ωq−1/ZnΩ

q−1 and Ωq/BnΩ
q satisfy (∗),
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for all n (with the notation from loc. cit.). Since we have an injection Ωq−1/Z1Ω
q−1 →֒ Ωq

(via d) and isomorphisms induced by the Cartier operator

(3.4.1) Zn−1Ω
q−1/ZnΩ

q−1 ∼= Zn−2Ω
q−1/Zn−1Ω

q−1 ∼= . . . ∼= Ωq−1/Z1Ω
q−1,

the quotient Ωq−1/ZnΩ
q−1 satisfies (∗). Next we consider Ωq/BnΩ

q. Let t := t1 and set
A0 := A/tA. Up to replacing X by a Nisnevich neighborhood of SpecA0 ⊂ X, we can assume
that we have a k-algebra morphism σ : A0 → A which composed with the quotient map
A → A0 is the identity on A0, e.g. [BRS22, Lemma 7.14]. Note that A0[t] → A is étale and

induces an identification Â := lim
←−n

A/tnA ∼= A0[[t]]. As BnΩ
q
X has the structure of a coherent

locally free OX -submodule of FnX∗Ω
q
X we have

(Ωq/BnΩ
q)(X) = ΩqA/BnΩ

q
A =:MA.

Let a ∈MA be a nonzero element. We have to show there exists a map ϕ : A→ C with C a
smooth k-algebra of dimension ≤ e − 1 such that ϕ(a) 6= 0 in MC . Since MA is a projective
A-module of finite rank (with module structure induced by the pn-power map) we find that
the natural map

MA → lim
n
M/tnM ∼=MÂ

is injective, e.g., [Mat89, Theroem 8.9]. Denote by â the image of a in MÂ, which is nonzero.
It suffices to show:

Claim 3.4.1. Either the image of â in MÂ/(t−λ) is nonzero, for some λ ∈ k, or there exists

a map ϕ0 : A0 → C0, with C0 smooth of dimension dimC0 ≤ e− 2, such that the image of â
in MC0[[t]] is nonzero.

Indeed, in this case C := A/(t− λ) (resp. C := A⊗A0 C0) is smooth of dimension ≤ e− 1

and the t-adic completion of the natural map ϕ : A → C is the morphism Â → Â/(t − λ)
(resp. A0[[t]]→ C0[[t]]), hence ϕ(a) 6= 0 in MC .

We prove the claim. Note that we can write any element ΩqA0[[t]]
uniquely as a sum

(3.4.2)

∞∑

l=0

blt
l +

∞∑

l=1

clt
ld log t, bl ∈ ΩqA0

, cl ∈ Ωq−1
A0

.

We characterize those elements which are in BnΩ
q
A0[[t]]

. To this end, note that BnΩ
q
A0[[t]]

=

Fn−1dWnΩ
q−1
A0[[t]]

, by [Ill79, I, Proposition 3.11]. By [GH06, Theorem B] each element in

WnΩ
q−1
A0[[t]]

can uniquely be written as an infinite sum of elements of the form

b0[t]
i, c0[t]

id log[t], (i ≥ 1), V s(bs[t]
j), dV s(cs[t]

j),

where i ≥ 0, j ≥ 1 with (j, p) = 1, s ∈ {1, . . . , n − 1}, and br ∈ Wn−rΩ
q
A0

, cr ∈ Wn−rΩ
q−1
A0

.

It follows that an element (3.4.2) lies in BnΩ
q
A0[[t]]

if and only if the following conditions are

satisfied:

1st case: l = prl0 with r ∈ [0, n − 2] and (l0, p) = 1. Then

∃ γ ∈Wr+1Ω
q−1
A0

such that bl = F rd(γ) and cl = l0F
r(γ).

2nd case: l = pn−1l0 with (l0, p) = 1. Then

∃ γ ∈WnΩ
q
A and δ ∈ Bn−1Ω

q−1
A0

such that bl = Fn−1d(γ) and cl = l0F
n−1(γ) + δ.

3rd case: pn|l (including the case l = 0). Then

bl ∈ BnΩ
q
A0

and cl ∈ BnΩ
q−1
A0

(where cl = 0, if l = 0).
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Let ã ∈ ΩqA0[[t]]
be a representative of â ∈ MA0[[t]] and write ã in the form (3.4.2). As â 6= 0,

we find l1 ≥ 0 minimal with the property

bl1t
l1 + cl1t

l1dlog(t) 6∈ BnΩ
q
A0[[t]]

.

First assume pn|l1. Then either bl1 6∈ BnΩ
q
A0

or cl1 6∈ BnΩ
q−1
A0

. If bl1 6∈ BnΩ
q
A0

, then taking

λ = 1 in Claim 3.4.1 will work; if cl1 6∈ BnΩ
q−1
A0

we find by induction over q a map ϕ0 : A0 → C0

as in the claim such that ϕ(cl1) 6∈ BnΩ
q−1
C0

, whence â does not map to 0 in MC0[[t]].

Now assume l1 = prl0 with r ∈ [0, n − 2] and (l0, p) = 1. If bl1 6∈ Br+1Ω
q
A0

, again taking

λ = 1 in the claim will work. Else there exists a γ ∈ Wr+1Ω
q−1
A0

, such that bl1 = F rd(γ). If

γ′ ∈ Wr+1Ω
q−1
A0

has the same property, then γ − γ′ ∈ FWr+2Ω
q−1
A0

, by [Ill79, I, (3.21.1.1)].

Since Zr+1Ω
q−1 = F r+1Wr+2Ω

q−1
A0

, see [Ill79, I, (3.11.3)], we deduce from the 1st case above
that we have

cl1 − l0F
r(γ) 6= 0 in Ωq−1

A0
/Zr+1Ω

q−1
A0

.

By (∗) for Ωq−1/Zr+1Ω
q−1, proven above, we find a map ϕ0 : A0 → C0 as in the claim such

that, ϕ0(cl1 − l0F
r(γ)) 6= 0 in Ωq−1

C0
/Zr+1Ω

q−1
C0

. Thus the image of â in MC0[[t]] is nonzero.

Finally assume l1 = pn−1l0 with (l0, p) = 1. In the case bl1 6∈ BnΩ
q
A0

we take λ = 1 as

above. Otherwise we can argue as in the 2nd case, as Bn−1Ω
q−1
A0
⊂ ZnΩ

q−1
A0

. This completes
the proof of Claim 3.4.1 and hence of the lemma. �

Remark 3.5. As the above proof shows, the statement of Lemma 3.4 also holds for Ωq/BnΩ
q

instead of WnΩ
q, for n ≥ 1. But note that the same statement does not hold for Ωq/ZnΩ

q,
as the latter sheaf vanishes on all smooth k-schemes of dimension ≤ q.

3.1. The proof of (c3). In the following, we let L ∈ Φ and denote by OL its ring of integers
with maximal ideal mL and we let z ∈ mL be a fixed local parameter.

Lemma 3.6. Let K → OL be a coefficient field. Then modulo WnOL any element of
fillogr WnL, r ≥ 1, is a sum of elements

V j([µzi]) with µ ∈ K, 0 ≤ j ≤ n− 1, −r ≤ ipn−j−1 < 0.

Proof. This is immediate for n = 1. For n ≥ 2 we can write a = [a0] + V (b), where a0 ∈ L
with pn−1vp(a0) ≥ −r and b ∈ fillogr Wn−1L. We find µi ∈ K and c ∈ OL such that a0 =∑

0>ipn−1≥−r µiz
i + c. Note that

[a0]−
∑

0>ipn−1≥−r

[µiz
i]− [c] ∈ (fillogr WnOL ∩ V Wn−1L) = V fillogr Wn−1L.

Hence
a =

∑

0>ipn−1≥−r

[µiz
i] mod V fillogr Wn−1(L) +WnOL.

The statement follows by induction over n. �

Lemma 3.7. For q ≥ 1 denote by V1KM
q (OL) the image under the map

(1 +mL)⊗Z K
M
q−1(OL)→ KM

q (OL), (1 + b)⊗ u 7→ {1 + b, u}.

The multiplication 2.5(5) induces maps

(3.7.1) fillogr Wn(L)⊗Z V
1KM

q (OL) −→ fillogr−1WnΩ
q
L + d(fillogr−1WnΩ

q−1
L )

and
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(3.7.2) filprWn(L)⊗Z V
1KM

q (OL)

−→ Filpr−1WnΩ
q
L +

n−1∑

s=0

ps
(
V n−s−1(fillog

′

(r−1)psWs+1Ω
q
L) + dV n−s−1(fillog

′

(r−1)psWs+1Ω
q−1
L )

)
.

Proof. It suffices to consider the case q = 1, cf. 2.5(5). For (3.7.1) we have to show

V j([x]) dlog(1− b) ∈
(
fillogr−1WnΩ

1
L + d(fillogr−1Wn(L))

)
,

for x ∈ L with pn−1−jvL(x) ≥ −r, and b ∈ mL. In view of V j(y) dlog z = V j(y dlog z) and
(2.9.1) it suffices to consider the case j = 0. By [RS21, Lemma 7.13] we have in WnΩ

q

ÔL
,

where ÔL = lim←−sOL/m
s
L,

dlog(1− b) = −
∑

i≥0

[b]id[b]−
n−1∑

j=1

∑

(i,p)=1

1

i
dV j([b]i).

Thus it remains to show for x ∈ L with pn−1vL(x) ≥ −r and 0 6= b ∈ mL

(a) [x][b]id[b] ∈ fillogr−1WnΩ
1
L, for all i ≥ 0;

(b) [x]dV j([b]i) ∈ fillogr−1WnΩ
1
L + d(fillogr−1Wn(L)), for all 0 ≤ j ≤ n − 1, and all i ≥ 1 with

(i, p) = 1.

For (a) it suffices to consider i = 0, in which case the claim is immediate, as [x]d[b] = [xb] dlog b
and pn−1vL(xb) ≥ −r + pn−1 ≥ −r + 1. For (b) we compute (using the Leibniz rule)

[x]dV j([b]i) = dV j([x]p
j
[b]i)− V j([b]i[x]p

j
) dlog x.

Since pn−j−1(pjvL(x) + i) ≥ −r + 1 it lies in the right hand side of (3.7.1).
We show (3.7.2). By Definition 2.6 and Lemma 2.7

filprWn(L) =

n−1∑

s=0

ps
(
fillog(r−1)psWn(L) + V n−ms(fillogrpsWms(L))

)
,

where ms = min{vp(rp
s), n} = min{vp(r), n − s} + s. By (3.7.1) it suffices to consider

psV n−ms(fillogpsrWms(L)) and by (2.9.3) we may assume s = 0. We can furthermore assume

m := m0 ≥ 1. It remains to show that V j([y]) dlog(1− b) lies in the right hand side of (3.7.2)
for n−m ≤ j ≤ n− 1, y ∈ L with pn−j−1vL(y) = −r, and b ∈ mL. By Corollary 2.10 we may
as before assume j = 0 (and hence m = n) and consider the elements in the cases (a) and (b)
from above with x replaced by y with pn−1vL(y) = −r. Note vp(r) ≥ n hence p|vL(y) =: e.
In case (a) (with i = 0) write b = zcu and y = zev, with u, v ∈ O×

L and c ≥ 1. We obtain

[y]d[b] = c[uv][z]e+c dlog z + [uv][z]e+c dlog u.

It follows that, if n ≥ 2 or c ≥ 2, then

[y]d[b] ∈ fillogr−2WnΩ
1
L ⊂ Filpr−1WnΩ

1
L.

On the other hand if n = 1 = c, then

[y]d[b] = ydb = 1
e+1d(uvz

e+1)− uvze+1( 1
e+1 dlog(uv)− dlog u),

which lies in fillog
′

r−1W1Ω
1
L + d(fillog

′

r−1W1(L)), which lies in the right hand side of (3.7.2).
Finally we consider (b) for y ∈ L as above. We have

[y]dV j([b]i) = dV j([y]p
j
[b]i)− V j([b]i[y]p

j
) dlog y.
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If j < n− 1 or i ≥ 2, then it follows

[y]dV j([b]i) ∈ fillogr−2WnΩ
1
L + d(fillogr−2Wn(L)) ⊂ Filpr−1WnΩ

1
L.

If j = n− 1 and i = 1, then we write y = zev with v ∈ O×
L and obtain

[y]dV n−1([b]i) = dV n−1([y]p
n−1

[b])− V n−1([b][y]p
n−1

) dlog v,

where we use that p divides e and hence e · V n−1(W1OL) = 0. Thus [y]dV n−1([b]) lies in the
right hand side of (3.7.2), in this case as well. �

Lemma 3.8. Let K →֒ OL be a coefficient field. For r ≥ 1 set

E := fillog
′

r WnΩ
1
L +WnΩ

1
OL

(log).

The following two subgroups of WnΩ
1
L are equal:

(1) fillogr WnΩ
1
L + d(fillogr Wn(L)).

(2) The subgroup G generated by E and the elements

µF e(da), a ∈ fillogr Wn+e(L), µ ∈Wn(K), e ≥ 0.

Proof. Clearly, d(fillogr Wn(L)) ⊂ G. We show fillogr WnΩ
1
L ⊂ G. SinceWnΩ

1
OL

(log) is contained
in both groups it suffices by Lemma 3.6 to show

V j([νzi]) dlog b ∈ G, for 0 ≤ j ≤ n− 1, b ∈ L×, ν ∈ K×, 0 > ipn−j−1 ≥ −r.

Write b = zcu with u ∈ O×
L and c ≥ 0 and i = pei0 with (i0, p) = 1 and e ≥ 0. We obtain

V j([νzi]) dlog b = c
i0
V j([ν])F ed(V j([z]i0)) + V j([νzi]) dlog u ∈ G,

where we use

[z]i dlog zc = F e([z]i0 dlog zc) = c
i0
F ed([z]i0) = c

i0
F e+jdV j([z]i0).

We show the other inclusion G ⊂ fillogr WnΩ
1
L+ d(fillogr Wn(L)). By 2.5(5) and Lemma 3.6 it

suffices to show

(3.8.1) µF edV j([νzi]) ∈ fillogr WnΩ
1
L + d(fillogr Wn(L)),

for µ ∈Wn(K), e ≥ 0, 0 ≤ j ≤ n+ e− 1, ν ∈ K×, and ipn+e−j−1 ≥ −r. There are two cases.
First assume e < j. Then

µF edV j([νzi]) = µdV j−e([νzi]) = dV j−e(F j−e(µ)[νzi])− V j−e([νzi]F j−edµ).

Hence (3.8.1) holds in this case by (2.11.1). Now assume e ≥ j. We obtain

µF edV j([νzi]) = µ[νzi]p
e−j

dlog ν + iµ[νzi]p
e−j

dlog z

which satisfies (3.8.1) by Lemma 2.11. �

Lemma 3.9. Let K →֒ OL be a coefficient field and r ≥ 2. The following elements are
contained in FilprWnΩ

q
L:

(3.9.1) adlog u, a ∈ filprWn(L), u ∈ K
M
q (K),

(3.9.2) dadlog v, a ∈ filprWn(L), v ∈ K
M
q−1(K),

(3.9.3) (F edb) · γ, b ∈ filprWn+e(L), γ ∈WnΩ
q−1
K , e ≥ 0.

Furthermore the abelian group
FilprWnΩ

q
L

Filpr−1WnΩ
q
L
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is generated by the elements (3.9.1) and (3.9.2) and those elements (3.9.3), which have b ∈

fillog,pr−1 Wn+e(L).

Proof. As we have by definition psFilppsrWnΩ
q
L ⊂ FilprWnΩ

q
L, it suffices to prove the first

statement with filpr in (3.9.1) - (3.9.3) replaced by filr. In this case we find (3.9.1), (3.9.2) ∈
FilrWnΩ

q
L. It remains to consider (3.9.3) for which it suffices by the surjectivity of (2.1.2)

and by 2.5(5) to show

(a) F e(db)dµ ∈ FilprWnΩ
2
L,

(b) µF e(db) ∈ FilprWnΩ
1
L,

where b ∈ filrWn+e(L), µ ∈Wn(K), and e ≥ 0. In case (a) we have

F e(db)dµ = F ed(bdV e(µ)).

As bdV e(µ) ∈ FilprWn+eΩ
1
L, by Lemma 2.11, the compatibility of Filpr with F and d, see

Corollary 2.10, yields the claim in this case. Similarly we have F e(db) ∈ FilprWnΩ
1
L, since

FilprWnΩ
1
L is an WnOL-module by Corollary 2.12, we get (b).

It remains to show the second statement on the generators of the quotient. We assume
q ≥ 1 as there is nothing to show for q = 0. We define the following subgroups of WnΩ

q
L

V1filprWnΩ
q
L := Im

(
filprWn(L)⊗ V

1KM
q (OL)→WnΩ

q
L

)
,

see Lemma 3.7 for the definition of V1KM
q (OL), and

V1FilprWnΩ
q
L := V1filprWnΩ

q
L + d(V1filprWnΩ

q−1
L ).

Furthermore denote by Gq0 ⊂ WnΩ
q
L the subgroup generated by all the elements (3.9.1) and

(3.9.2). We claim

(3.9.4) V1FilprWnΩ
q
L ⊂ G

q
0 + Filpr−1WnΩ

q
L.

By Lemma 3.7 and the fact that d(Gq−1
0 + Filpr−1WnΩ

q−1
L ) ⊂ Gq0 + Filpr−1WnΩ

q
L it suffices to

show

psV n−s−1(fillog
′

(r−1)psWs+1Ω
q
L) ⊂ G

q
0 + Filpr−1WnΩ

q
L.

By (2.9.2) we can assume s = 0. By the decomposition

(3.9.5) O×
L = K× · (1 +mL)

every element in the left hand side (for s = 0) can be written as a sum of elements

(a) V n−1(adlog u) = V n−1(a) dlog u,
(b) V n−1(adlog β) = V n−1(a) dlog β,

where a ∈ fillogr−1Wn(L), u ∈ K
M
q (K), and β ∈ V1KM

q (OL). The elements (a) are clearly in

Gq0, and the elements (b) are in fillogr−2WnΩ
q
L+ d(fillogr−2WnΩ

q
L) ⊂ Filpr−1WnΩ

q
L, by (3.7.1). This

shows Claim (3.9.4).
As any element inKM

q (L)/V1KM
q (OL) can be represented by a sum of elements u ∈ KM

q (K)

and {z, v} with v ∈ KM
q−1(K) we find by (3.9.4) and the definition of Gq0 a surjection

Hq
0 + d(Hq−1

0 ) ։
FilprWnΩ

q
L

Gq0 +Filpr−1WnΩ
q
L

,

where Hq
0 ⊂WnΩ

q
L is the sugbroup generated by elements

psadlog{z, u} for 0 ≤ s ≤ n− 1, a ∈ fillog(r−1)psWn(L), u ∈ K
M
q−1(K).
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Denote by Hq
1 the subgroup of WnΩ

q
L generated by the elements (3.9.3), which have b ∈

fillog,pr−1 Wn+e(L). It remains to show

Hq
0 + dHq−1

0 ⊂ Rq =: Hq
1 +Gq0 + Filpr−1WnΩ

q
L.

As d(Rq−1) ⊂ Rq (for q ≥ 2) it suffices to showHq
0 ⊂ R

q, for all q ≥ 1. Since the multiplication
WnΩ

1
L ⊗ K

M
q−1(K) → WnΩ

q
L induces a surjection H1

0 ⊗ K
M
q−1(K) ։ Hq

0 and a well-defined

map R1⊗KM
q−1(K)→ Rq it suffices to consider the case q = 1. By (3.7.1), the decomposition

(3.9.5), (2.9.2), and 2.8 we have

psfillog
′

(r−1)psWnΩ
1
L +WnΩ

1
OL

(log) ⊂ R1, for all s.

Hence the inclusion H1
0 ⊂ R

1 follows from Lemma 3.8. �

Lemma 3.10. Let L′/L be a finite extension with ramification degree e. Denote by Tr :
Wn(L

′)→Wn(L) the trace. Then

Tr(filrWn(L
′)) ⊂ fil⌈ r

e
⌉Wn(L) and Tr(filprWn(L

′)) ⊂ filp⌈ r
e
⌉Wn(L).

Proof. By (2.9.2) we have filprWn(L
′) =

∑n−1
s=0 p

sfilrWn−s(L
′). Hence it suffices to prove the

first statement. This is proven in [RS21, (7.5.1)] for the F -saturated filtration filFr Wn(L). We
check that it also works without F -saturation. Set s = ⌈ re⌉. By the same argument as in

loc. cit. (below (7.5.1)) we find Tr(a) ∈ fillogs Wn(L). Set m := min{vp(s), n}. If m = n, then

fillogs Wn(L) = filsWn(L) and we are done. If m ≤ n − 1, then it follows directly from the
definition that we have an isomorphism

(3.10.1) K
≃
−→

fillogs Wn(L)

filsWn(L)
, x 7→ V n−m−1([x̃z−s0 ]),

where s0 = s/pm (which is prime to p) and x̃ ∈ O×
L is any lift of x. The map

Fn−1d : Wn(L)→ Ω1
L, (a0, . . . , an−1) 7→

n−1∑

j=0

ap
n−j−1

j dlog aj,

clearly induces maps

fillogs Wn(L)→ m
−s
L Ω1

OL
(log) and filsWn(L)→ m

−s
L Ω1

OL
.

By (3.10.1) the induced map on the quotient is injective,

fillogs Wn(L)

filsWn(L)
−→

m
−s
L Ω1

OL
(log)

m
−s
L Ω1

OL

, V n−m−1(x̃z−s0) 7→ −s0x̃
pmz−s dlog z.

Thus the statement follows from m
s
L · F

n−1d(Tr(a)) ⊂ Ω1
OL

, see [RS21, (7.5.2)]. �

Now we can complete the proof of Theorem 3.3.

Proof of (c3). Let L′/L be a finite extension with ramification index e and denote by Tr :
WnΩ

q
L′ →WnΩ

q
L the trace. We have to show

(3.10.2) Tr(FilprWnΩ
q
L′) ⊂ Filp⌈ r

e
⌉WnΩ

q
L.

As Tr restricts to Tr : WnΩ
q
OL′
→ WnΩ

q
OL

we can assume r ≥ 1. We consider several cases.

In the following we will use that OL is excellent and that henceforth for every finite extension
L′/L we have [L′ : L] = e(L′/L)f(L′/L).
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0th case: We have finite field extensions L′ ⊃ E ⊃ L, and (3.10.2) holds for L′/E and
E/L. Then it holds for L′/L. This follows from the transitivity of the trace and the formula
⌈⌈r/e1⌉/e2⌉ = ⌈r/e1e2⌉.

1st case: e = 1. In this case the local parameter z ∈ OL is local parameter of OL′ as well
and hence (3.10.2) follows from Lemma 2.11(2) and the fact that Tr commutes with V and d
(see 2.1) and satisfies a projection formula.

2nd case: e = [L′ : L]. Let K →֒ OL be a coefficient field, by assumption the composition
K →֒ OL →֒ OL′ is a coefficient field of OL′ . Let t ∈ OL′ be a local parameter. Any element
in WnΩ

q
OL′

(log)/WnΩ
q
OL′

admits a representative which is a sum of elements αdlog t with

α ∈ WnΩ
q−1
K . We have Tr(α dlog t) = α dlog(Nm(t)), see 2.1(c). Thus in this case (3.10.2)

holds for r = 0, 1, by Lemma 2.8. For r ≥ 2 condition (3.10.2) follows by induction over
r, from the Lemmas 3.9 and 3.10, and the fact that Tr commutes with F , d, and satisfies a
projection formula.

3rd case: L′/L purely inseparable. In this case we can refine L′/L into a tower of subex-
tensions of degree p. Thus the statement follows from the above cases.

4th case: L′/L separable. In this case we use the p-extension trick from [BT73, 5.9]. Let
H a p-Sylow subgroup in the Galois group of some finite Galois extension M/L containing
L′. Set E := MH . Then every finite extension of E inside M has p-power degree and and
([E : L], p) = 1. Since L′/L is separable we obtain decomposition L′⊗L E = ⊕iEi with Ei/E
a finite field extension of p-power degree. We obtain a commutative diagram

(3.10.3) WnΩ
q
L′

TrL′/L

��

⊕iϕi //
⊕

iWnΩ
q
Ei

∑
i TrEi/E

��
WnΩ

q
L

ϕ // WnΩ
q
E.

By the cases 0 - 2, (3.10.2) holds for E/L since it is tamely ramified; similarly (3.10.2) holds
for Ei/E for all i, since a p-power extension can be refined to a tower of degree p-extensions.
Now let a ∈ FilprWnΩ

q
L′ , by definition, or (c6), we have

cEi(ϕi(a)) ≤ e(Ei/L
′) · r,

by (c3) for Ei/E and e(L′/L)e(Ei/L
′) = e(E/L)e(Ei/E) we have

cE(TrEi/E(ϕi(a))) ≤

⌈
e(E/L) · r

e(L′/L)

⌉
,

by (c3) for E/L we have

(3.10.4) cL(TrE/LTrEi/E(ϕi(a))) ≤

⌈
e(E/L) · r

e(L′/L)e(E/L)

⌉
=

⌈
r

e(L′/L)

⌉
.

Thus altogether

cL(TrL′/L(a)) = cL
(
[E : L] · TrL′/L(a)

)
, since [E : L] ∈ Z×

p ,

= cL
(
TrE/L ϕ(TrL′/L(a))

)
, by TrE/L ◦ϕ = [E : L],

= cL

(
∑

i

TrE/LTrEi/E ϕi(a)

)
, by (3.10.3)

≤ max
{
cL
(
TrE/LTrEi/E ϕi(a)

)}
, by (c2)

≤

⌈
r

e(L′/L)

⌉
, by (3.10.4).
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5th case: For an arbitrary finite field extension L′/L property (c3) follows from the cases
0, 3, and 4 above. This completes the proof of Theorem 3.3. �

4. Some more properties of the p-saturated filtration

For later use we analyze in this section the p-saturated filtration further.

Lemma 4.1. Let L ∈ Φ and r ≥ 2. The map

(4.1.1) Fn−1 ⊕ Fn−1d :
FilprWnΩ

q
L

Filpr−1WnΩ
q
L + p(FilprWn−1Ω

q
L)
−→

ΩqL
Filpr−1Ω

q
L

⊕
Ωq+1
L

Filpr−1Ω
q+1
L

is injective.

Proof. First note that the map in the statement is well-defined by Corollary 2.10. LetK →֒ OL
be a coefficient field. Let φ be an element in the source of (4.1.1) and assume

(4.1.2) (Fn−1(φ), Fn−1dφ) = 0 in
ΩqL

Filpr−1Ω
q
L

⊕
Ωq+1
L

Filpr−1Ω
q+1
L

.

By Lemma 3.9 we can assume that φ is a sum

(4.1.3) φ =
∑

i

ai dlog ui +
∑

j

da′j dlog vj +
∑

l

(F cldbl) · δl,

with

ai, a
′
j ∈ grrWnL :=

filrWnL

filr−1WnL
, bl ∈

fillogr−1Wn+clL

filr−1Wn+clL ∩ fillogr−1Wn+clL
,

ui ∈ K
M
q (K), vj ∈ K

M
q−1(K), δl ∈WnΩ

q−1
K , cl ≥ 0.

Write

e = vp(r), e1 = vp(r − 1), r = r0p
e, r − 1 = r1p

e1 .

We consider four cases.

1st case: e = 0, e1 ∈ [0, n − 1]. By [RS21, 7.18(1)] we can assume

ai = V n−1−e1([αiz
−r1 ]), a′j = V n−1−e1([α′

jz
−r1 ]), bl = V n+cl−1−e1([βlz

−r1 ]),

for some αi, α
′
j , βl ∈ K. Hence

φ = V n−1−e1([z]−r1A) + dV n−1−e1([z]−r1B),

where

A :=
∑

i

[αi] dlog ui −
∑

l

[βl]F
n−1−e1dδl ∈We1+1Ω

q
K ,

B :=
∑

j

[α′
j ] dlog vj +

∑

l

[βl]F
n−1−e1(δl) ∈We1+1Ω

q−1
K .

Therefore

Fn−1dφ = z−(r−1)F e1dA+ (−r1)z
−(r−1) dlog z · F e1(A),

Fn−1(φ) = z−(r−1)
(
pn−1−e1F e1(A) + F e1dB

)
+ (−r1)z

−(r−1) dlog z · F e1(B).

If e1 = 0, then

Filpr−1Ω
q
L =

1

zr−2
ΩqOL

(log z)
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and the vanishing (4.1.2) yields A = 0 and B = 0, whence φ = 0. If e1 ∈ [1, n − 1], then

Filpr−1Ω
q
L =

1

zr−1
ΩqOL

and the vanishing (4.1.2) yields F e1(A) = 0 and F e1(B) = 0. By [Ill79, I, (3.11.3)] we find

A′ ∈We1Ω
q
K and B′ ∈We1Ω

q−1
K with V (A′) = A and V (B′) = B. Therefore

φ = V n−e1([z−r1p]A′) + dV n−e1([z−r1p]B′).

Thus φ ∈ Filpr−1WnΩ
q
L, by Lemma 2.11.

2nd case: e = 0, e1 ≥ n. In this case grrWnL = 0 = grrWn+clL, for all cl with e1 ≥ n + cl,
by [RS21, Cor. 7.18(1)]. Hence we can assume φ =

∑
l(F

cldbl) · δl, with e1 < n + cl for all l,
and bl = V n+cl−1−e1([βlz

−r1 ]), with βl ∈ K. Hence

φ = [z]
− r−1

pn−1A+ [z]
− r−1

pn−1 dlog z · B,

where

A =
∑

l

F e1−(n−1)d[βl] · δl ∈WnΩ
q
K and B =

∑

l

F e1−(n−1)([βl])δl ∈WnΩ
q−1
K .

By Lemma 2.11 we have

[z]
− r−1

pn−1A ∈ p · fillogr−1WnΩ
q
L + d(fillog

′

r WnΩ
q−1
L ) ⊂ Filpr−1WnΩ

q
L.

Thus we can assume A = 0 and hence

Fn−1dφ = −z−(r−1) dlog z · Fn−1dB and Fn−1φ = z−(r−1) dlog z · Fn−1(B).

As in the case under consideration

Filpr−1Ω
q
L =

1

zr−1
ΩqOL

the vanishing (4.1.2) yields

(4.1.4) B ∈ Ker(Fn−1) ∩Ker(Fn−1d) = pWnΩ
q−1
K ,

see e.g. [Eke84, (0.6.3)] for the equality5. By Lemma 2.11 and Corollary 2.10 we find

φ ∈ p · FilprWnΩ
q
L ⊂ pFil

p
prWnΩ

q
L = p(FilprWn−1Ω

q
L).

3rd case: e ∈ [1, n − 1], e1 = 0. By [RS21, Cor. 7.18(2) and Cor 7.17(1)], we can assume

ai = V n−1(αiz
−(r−1)) + V n−e(βi[z]

−r0p), a′j = V n−1(α′
jz

−(r−1)) + V n−e(β′j [z]
−r0p),

and
bl = V n+cl−1(γlz

−(r−1)),

for some αi, α
′
j , γl ∈ K, βi, β

′
j ∈WeK. Hence

φ = V n−1(z−(r−1)A) + dV n−1(z−(r−1)B) + V n−e([z]−r0pC) + dV n−e([z]−r0pD),

where
A :=

∑

i

αi dlog ui −
∑

l

γlF
n−1dδl ∈ ΩqK ,

B :=
∑

j

α′
j dlog vj +

∑

l

γlF
n−1(δl) ∈ Ωq−1

K ,

C :=
∑

i

βi dlog ui ∈WeΩ
q
K , D :=

∑

j

β′j dlog vj ∈WeΩ
q−1
K .

5It is easily deduced from [Ill79, I, Proposition 3.11]
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Therefore
Fn−1dφ = z−(r−1)dA− (r − 1)z−(r−1) dlog z · A+ z−rF e−1dC,

Fn−1φ = z−(r−1)dB − (r − 1)z−(r−1) dlog z ·B + z−rF e−1dD.

As in the case under consideration

Filpr−1Ω
q
L =

1

zr−2
ΩqOL

(log z)

the vanishing (4.1.2) yields

A = 0, B = 0, F e−1dC = 0, F e−1dD = 0.

By [Ill79, (3.11.4)] we find C ′ ∈We+1Ω
q
K and D′ ∈We+1Ω

q−1
K such that

C = F (C ′) and D = F (D′).

Altogether
φ = pV n−e−1([z]−r0C ′) + pdV n−e−1([z]−r0D′).

Hence φ ∈ pFilpr+1WnΩ
q
L, by Lemma 2.11. As r + 1 ≤ pr, Corollary 2.10 yields

φ ∈ pFilpprWnΩ
q
L = p(FilprWn−1Ω

q
L).

4th case: e ≥ n, e1 = 0. By [RS21, Cor. 7.18(3) and Cor. 7.17(1)], we can assume

ai = V n−1(αiz
−(r−1)) + βi[z]

− r
pn−1 , a′j = V n−1(α′

jz
−(r−1)) + β′j [z]

− r
pn−1 ,

and
βl = V n+cl−1(γlz

−(r−1)),

for some αi, α
′
j , γl ∈ K, βi, βj ∈WnK. Similarly as in the 3rd case we find

φ = V n−1(z−(r−1)A) + dV n−1(z−(r−1)B) + [z]
− r

pn−1C + p[z]
− r

pn−1 dlog z ·D,

where A ∈ ΩqK , B ∈ Ωq−1
K , C ∈ WnΩ

q
K , and D ∈ WnΩ

q−1
K and where we use that r/pn−1 is

divisible by p to get the p in front of the last summand. Hence

Fn−1dφ = −(r − 1)z−(r−1) dlog z ·A+ z−(r−1)dA+ z−rFn−1(dC),

Fn−1φ = −(r − 1)z−(r−1) dlog z ·B + z−(r−1)dB + z−rFn−1(C).

As in the case under consideration

Filpr−1Ω
q
L =

1

zr−2
ΩqOL

(log z)

the vanishing (4.1.2) yields

A = 0, B = 0, C ∈ Ker(Fn−1) ∩Ker(Fn−1d).

Thus
φ ∈ pFilpr+1WnΩ

q
L ⊂ p(Fil

p
rWn−1Ω

q
L),

by (4.1.4), Lemma 2.11, and Corollary 2.10. This completes the proof. �

Lemma 4.2. Let L ∈ Φ and r ≥ 2. The sequences

(4.2.1) F (Wn+1Ω
q
L) ∩ FilprWnΩ

q
L −→

FilprWnΩ
q
L

Filpr−1WnΩ
q
L + p(FilprWn−1Ω

q
L)

Fn−1d
−→

Ωq+1
L

Filpr−1Ω
q+1
L

and

(4.2.2) V (Wn−1Ω
q
L) ∩ FilprWnΩ

q
L −→

FilprWnΩ
q
L

Filpr−1WnΩ
q
L + p(FilprWn−1Ω

q
L)

Fn−1

−→
ΩqL

Filpr−1Ω
q
L

are exact, the maps on the left being induced by the quotient maps.
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Proof. We use the notation from the proof of Lemma 4.1. Clearly the sequences from the
statement form a complex. Write

e = vp(r), e1 = vp(r − 1), r = r0p
e, r − 1 = r1p

e1 .

We show the exactness of (4.2.1). Let φ ∈ FilprWnΩ
q
L be as in (4.1.3) and assume

Fn−1d(φ) = 0 in
Ωq+1
L

Filpr−1Ω
q+1
L

.

We consider the same four cases as in Lemma 4.1 to show that the image of φ in the quotient
in the middle of (4.2.1) lies in the image of F (Wn+1Ω

q
L).

1st case: e = 0, e1 ∈ [0, n− 1]. With the notation from the corresponding case in Lemma 4.1
we find: if e1 = 0, then A = 0 and hence

φ = dV n−1([z]−r1B) = FdV n([z]−r1B);

if e1 ∈ [1, n − 1], then
A ∈ Ker(F e1) ∩Ker(dF e1) ⊂ pWnΩ

q
K ,

see (4.1.4) for the inclusion, hence writing A = pA′ = FV (A′) yields

φ = F
(
V n−e1([z]−r1A′) + dV n−e1([z]−r1B)

)
.

2nd case: e = 0, e1 ≥ n. The argument from the second case of the proof of Lemma 4.1 yields

φ = [z]
− r−1

pn−1 dlog z ·B, with Fn−1d(B) = 0.

By [Ill79, I, (3.11.4)] we have B = F (B′) and hence

φ = F ([z]
− r−1

pn dlog z · B′).

3rd case: e ∈ [1, n− 1], e1 = 0. As in the third case of the proof of Lemma 4.1 we find A = 0
and C = F (C ′). Thus

φ = F
(
dV n(z−(r−1)B) + V n−e([z]−r0C ′) + dV n−e([z]−r0V (D))

)
.

4th case: e ≥ n, e1 = 0. Similarly as in the fourth case of Lemma 4.1, we get A = 0 and
C = F (C ′). Thus

φ = F
(
dV n(z−(r−1)B) + [z]−

r
pnC ′ + [z]−

r
pn dlog z · V (D)

)
.

This completes the proof of the exactness of (4.2.1).
We show the exactness of (4.2.2). We assume n ≥ 2 as the statement is trivial for n = 1.

Let φ ∈ FilprWnΩ
q
L be as in (4.1.3) and assume

Fn−1(φ) = 0 in
ΩqL

Filpr−1Ω
q
L

.

We consider the same four cases as above to show that the image of φ in the quotient lies in
the image of V (Wn−1Ω

q
L) under the quotient map.

1st case: e = 0, e1 ∈ [0, n− 1]. With the notation from the corresponding case in Lemma 4.1
we find: if e1 = 0, then B = 0 and hence

φ = V n−1([z]−r1A);

if e1 ∈ [1, n − 1], then F e1(B) = 0, hence B = V (B′), by [Ill79, I, (3.11.3)]. As

dV n−e1−1([z−r1B]) = dV n−e1([z]−r1pB′) ∈ Filpr−1WnΩ
q
L,
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by Lemma 2.11, we obtain that the image of φ in the quotient is equal to

φ = V n−1−e1([z]−r1A).

2nd case: e = 0, e1 ≥ n. The argument from the second case of the proof of Lemma 4.1 yields

φ = [z]
− r−1

pn−1 dlog z ·B, with Fn−1(B) = 0.

By [Ill79, I, (3.11.3)] we have B = V (B′) and hence

φ = V ([z]
− (r−1)p

pn dlog z · B′).

3rd case: e ∈ [1, n− 1], e1 = 0. As in the third case of the proof of Lemma 4.1 we find B = 0
and F e−1dD = 0. Thus D = F (D′) and

φ = V n−1(z−(r−1)A) + V n−e([z]−r0pC) + V (FdV n−e−1([z]−r0D′)).

4th case: e ≥ n, e1 = 0. Similarly as in the fourth case of Lemma 4.1, we get B = 0 and
C = V (C ′). Thus

φ = V n−1(z−(r−1)A) + V ([z]
− pr

pn−1C ′) + V F ([z]
− r

pn−1 dlog z ·D).

This completes the proof of the exactness of (4.2.2). �

5. Hodge-Witt sheaves with modulus

We begin this section by recalling the notion of reciprocity sheaves and several a priori
different ways to assign a modulus to a section of certain presheaves, which appear in [KSY22],
[RS21], and [RS]. The main result of this section is Theorem 5.4, which says that these
different notions of modulus agree for WnΩ

q, q ≥ 1. Theorem 3.3 and Lemma 4.1 are crucial
ingredients in the proof of that theorem.

5.1. We recall the definition of a reciprocity sheaf from [KSY22, Definition 2.2.4 and Section
2.4], where these are called sheaves with SC-reciprocity. Denote by PST the category of
presheaves with transfers on Sm in the sense of Voevodsky and by NST its full subcategory
of Nisnevich sheaves. For U ∈ Sm we denote by Ztr(U) the presheaf with transfers represented
by U . Let F ∈ PST and let (X,D) be a proper modulus pair (see 3.1) with X \D = U . A
section a ∈ F (U) has modulus (X,D) if the map a : Ztr(U)→ F , defined by a via the Yoneda
embedding, factors in PST as

Ztr(U) //

��

F

h0(X,D)

;; .

Here h0(X,D) is the presheaf with transfers given on S ∈ Sm by

h0(X,D)(S) = Coker(Cor((P1
S ,∞S), (X,D))

i∗0−i
∗
1−−−→ Ztr(U)(S)),

where iǫ : {ǫ}S →֒ P1
S denotes the closed immersion, for ǫ ∈ {0, 1}, and Cor((P1

S ,∞S), (X,D))
denotes the free abelian group generated on integral closed subschemes Z ⊂ A1

S ×k U which
are surjective and finite over a connected component of U such that

ν∗∞S ≥ ν
∗D,

where ν : Z̃ → P1
S ×k X is the normalization of the closure of Z.
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For (X,D) any modulus pair with U = X \ D and (X,D′ + X∞) a compactification of
(X,D) (see 3.1) we set

ωCIF (X,D) = {a ∈ F (U) | a has modulus (X,D′ +N ·X∞) for some N ≫ 0}.

In fact the assignment (X,D) 7→ ωCIF (X,D) defines a cube invariant semipure modulus
presheaf with M-reciprocity ωCIF as defined in [KSY22] and [Sai20] and with the notation

from there we have ωCIF = τ!h
�
0 ω

∗F .
A presheaf with transfers F is a reciprocity presheaf if for any U ∈ Sm any section a ∈ F (U)

has a modulus, i.e., if F (U) =
⋃
ωCIF (X,D), where the union is over all proper modulus

pairs (X,D) with X \D = U . A reciprocity sheaf is a Nisnevich sheaf on Sm which is also a
reciprocity presheaf. The category of reciprocity sheaves is denoted by RSCNis.

If F ∈ RSCNis and (X,D) is a modulus pair, then the assignment

(étale X-schemes) ∋ (u : V → X) 7→ ωCIF (V, u∗D) =: Γ(V, ωCIF(X,D))

is a sheaf on XNis by [RS21, Corollary 4.16] and is denoted by ωCIF(X,D).

5.2. Let F ∈ NST and let c = {cL : F (L) → N0}L∈Φ be a semi-continuous conductor (see
3.2). Let (X,D) be a proper modulus pair with U = X \D. For a ∈ F (U) we write

cX(a) ≤ D

as a shorthand for

cL(ρ
∗a) ≤ vL(ρ

∗D), for all L ∈ Φ and all ρ : SpecL→ U.

Following [RS21, 4.8] we define for any modulus pair (X,D) with a compactification (X,D′+
X∞)

F̃c(X,D) := {a ∈ F (U) | cX(a) ≤ D
′ +N ·X∞, for some N ≫ 0}.

By [RS21, (4.8.1)] the assignment

(étale X-schemes) ∋ (u : V → X) 7→ F̃c(V, u
∗D) =: Γ(V, F̃c,(X,D))

defines a Nisnevich sheaf F̃c,(X,D) on XNis. By [RS21, Theorem 4.15(4)] we have

(5.2.1) F̃c ⊂ ω
CIF, for F ∈ RSCNis.

For L ∈ Φ with ring of integers OL, maximal ideal mL, and r ≥ 1 set

F̃c(OL,m
−r
L ) = lim

−→
(U,Z)

F̃c(U, rZ),

where the filtered colimit is over all modulus pairs (U,Z) with U and Z smooth and connected
such that OL = OhU,z, with z ∈ Z is the generic point. As c is assumed to be semi-continuous
we have

(5.2.2) F̃c(OL,m
−r
L ) = {a ∈ F (L) | cL(a) ≤ r},

see [RS21, Lemma 4.23]. Finally we recall that if the conductor has level m ≤ ∞ and (X,D)
is a modulus pair with U = X \D, then

F̃c(X,D) = {a ∈ F (U) | f∗a ∈ F̃c(S, f
∗D), for all f : S → X with S ∈ Sm, dimS ≤ m},

see [RS21, Corollary 4.18].
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5.3. The following notion of modulus using dilatations is motivated by work of Abbes and
(Takeshi) Saito, who used this approach to study the ramification of Galois torsors, see [AS11]
and [Sai17]. In the framework of reciprocity sheaves this notion was studied in [RS]. Let
(X,D) be a modulus pair with X ∈ Sm and assume that the reduced divisor Dred underlying
D has only simple normal crossings, i.e., Dred is an SNCD divisor. Denote by BlD(X × X)

the blow-up in D diagonally embedded into X × X and denote by X̃ ×D and D̃ ×X the
strict transforms of X ×D and D ×X, respectively. Set

P
(D)
X = BlD(X ×X) \ (X̃ ×D ∪ D̃ ×X).

We note that P
(D)
X is smooth and that the open embedding U × U →֒ X × X, with U =

X \D, induces an embedding U × U →֒ P
(D)
X , see e.g. [RS, Lemma 2.3]. We denote by p1,

p2 : P
(D)
X → X the maps induced by the projection X×X → X to the first and second factor,

respectively; they restrict to the projection maps on U × U . For F ∈ RSCNis we define

(5.3.1) FAS(X,D) = {a ∈ F (U) | p∗1a− p
∗
2a ∈ F (P

(D)
X )},

for this definition to make sense we use that F (U ×U) is a subgroup of F (P
(D)
X ) by [KSY16,

Theorem 6] together with [KSY22, Corollary 3.2.3]. As an étale map u : V → X induces a

morphism P
(u∗D)
V → P

(D)
X we obtain a Nisnevich sheaf FAS

(X,D) on XNis given by

(u : V → X) 7→ FAS(V, u∗D) = Γ(V, FAS
(V,u∗D)).

By [RS, Theorem 2.6]

(5.3.2) ωCIF(X,D) ⊂ F
AS
(X,D),

for X ∈ Sm and Dred SNCD. By Theorem 2.10 in loc. cit. this is an equality if (X,D)
additionally admits a projective SNC-compactification.

Theorem 5.4. Let c = {cL : WnΩ
q
L → N0}L∈Φ with

(5.4.1) cL(a) = min
{
r ≥ 0 | a ∈ FilprWnΩ

q
L

}
, a ∈WnΩ

q
L,

be the semi-continuous conductor of level q+1 from Theorem 3.3. Let (X,D) be any modulus
pair and let n, q ≥ 1. Then

ωCIWnΩ
q
(X,D) = W̃nΩqc,(X,D).

In particular

ωCIWnΩ
q(OL,m

−r
L ) = FilprWnΩ

q
L,

for all L ∈ Φ and r ≥ 0. If furthermore X is smooth and Dred is an SNCD, then

ωCIWnΩ
q
(X,D) = W̃nΩqc,(X,D) = (WnΩ

q)AS
(X,D).

The proof will be given after the next remark.

Remark 5.5. (1) Note that the statement is not true for q = 0. As the absolute Frobe-
nius on X induces an endomorphism of WnOX one has to consider the Frobenius
saturation of filrWn(L), see [RS21, Theorem 7.20] and [RS, Proposition 5.3].

(2) The case n = 1 and q ≥ 1 follows from [RS, Theorem 6.6 and Corollary 6.8]. In
particular this says that if X and D are smooth and r ≥ 0 then

(5.5.1) (Ωq)AS(X, rD) =

{
ΩqX(logD)((r − 1)D) if p ∤ r
ΩqX(rD) if p|r,
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which at the generic point η of D coincides with FilprW1Ω
q
Lη
, where Lη = Frac(OhX,η).

(3) In the case Dred is an SNCD, Theorem 5.4 and Lemma 2.8 imply

(5.5.2) ωCIWnΩ
q
(X,Dred)

=WnΩ
q
X(logD),

where the right hand side is the logarithmic de Rham-Witt sheaf, see, e.g., [Mat17,
Proposition-Definition 3.10]. (This ⊃ inclusion is immediate, this ⊂ inclusion can be,
for example, deduced from the isomorphism [Ill79, I, (2.14.8)] together with [Mat17,
Corollary 4.4].) Note that the above equality is also true for q = 0 as in this case both
sides are equal to WnOX . As a consequence we obtain the equality

Log(ωCIWnΩ
q)(X,Dred) =WnΩ

q
X(logD),

where Log : MNSTlog → Shvltr
dNis is the functor defined in [Sai23, (6.0.2)]. This gives

a new proof of [Mer, Theorem 4.4].

Proof. First of all we note that by [RS21, Theorem 4.15] and (5.2.2) the first statement of
Theorem 5.4 is equivalent to show

ωCIWnΩ
q(OL,m

−r
L ) = FilprWnΩ

q
L, for all L ∈ Φ.

Furthermore, ifX is smooth andDred is an SNCD, then P
(D)
X (see 5.3) is smooth andWnΩ

q

P
(D)
X

is a successive extension of locally free sheaves (see [Ill79, I, Corollaire 3.9]) and hence the
question whether an element a ∈WnΩ

q(U) lies in (WnΩ
q)AS(X,D) is Nisnevich local around

the 1-codimensional points of D. Thus we are reduced to the following situation:
Let X = SpecA, with A a smooth k-algebra, let D = div(z) be a smooth connected divisor

on X with generic point η ∈ D(0), and set OL = OhX,η and L = Frac(OhX,η). Then we have to
show

FilprWnΩ
q
L = ωCIWnΩ

q(OL,m
−r
L ) =

(
(WnΩ

q)AS
(X,rD)

)h
η
, for all r ≥ 0,

where the right hand side denotes the Nisnevich stalk of (WnΩ
q)AS

(X,rD) in η. By (5.2.1) and

(5.3.2) it remains to show (
(WnΩ

q)AS
(X,rD)

)h
η
⊂ FilprWnΩ

q
L.

By (5.5.1) this is true for n = 1. Thus we assume n ≥ 2 in the following. As {FilprWnΩ
q
L}r≥0

is an exhaustive filtration of WnΩ
q
L it remains to show

(5.5.3) FilprWnΩ
q
L ∩ (WnΩ

q)AS(X, (r − 1)D) ⊂ Filpr−1WnΩ
q
L,

where we identify (WnΩ
q)AS(X, (r−1)D) with its image inWnΩ

q
L. By Lemma 2.8 this is true

for r = 1 and we can assume r ≥ 2. For φ in the left hand side of (5.5.3) we claim

(5.5.4) φ = 0 in
FilprWnΩ

q
L

Filpr−1WnΩ
q
L + p(FilprWn−1Ω

q
L)
.

Indeed, by [RS, Theorem 6.6] (see also Remark 5.5) we have

(Ωq)AS(X, (r − 1)D) ∩ΩqL = Filpr−1Ω
q
L,

and since the formation E 7→ EAS is functorial with respect to any morphism of sheaves of
abelian groups we find

Fn−1
(
(WnΩ

q)AS(X, (r − 1)D)
)
⊂ Filpr−1Ω

q
L

and
Fn−1d

(
(WnΩ

q)AS(X, (r − 1)D)
)
⊂ Filpr−1Ω

q+1
L .
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Thus the claim (5.5.4) follows from Lemma 4.1.
Therefore (after possibly shrinking X around η) we can write φ = ψ + p(φ′) with

ψ ∈ Filpr−1WnΩ
q
L ∩WnΩ

q

A[ 1
z
]

and φ′ ∈ FilprWn−1Ω
q
L ∩Wn−1Ω

q

A[ 1
z
]
.

By Theorem 3.3, (5.2.1), and (5.3.2) the form ψ lies in (WnΩ
q)AS(X, (r − 1)D) and hence

so does p(φ′). Since P
((r−1)D)
X \ U × U is supported on a smooth divisor (e.g. [RS, Lemma

2.3]), the equality (5.3.1) together with Lemma 5.6 below and the injectivity of p imply that

φ′ ∈ (Wn−1Ω
q)AS(X, (r − 1)D). By induction on n we thus have φ′ ∈ Filpr−1Wn−1Ω

q
L. This

proves the containment (5.5.3) and hence the theorem. �

Lemma 5.6 ([GK, Lemma 6.7]). Let C be a smooth k-algebra and t ∈ C an element such
that C/tC is smooth. Then (see (2.1.1) for the notation p)

p(Wn−1Ω
q

C[ 1
t
]
) ∩WnΩ

q
C = p(Wn−1Ω

q
C) in WnΩ

q

C[ 1
t
]
.

6. The structure of Hodge-Witt sheaves with modulus

In this section we investigate the structure of Hodge-Witt sheaves with modulus. The main
result is Theorem 6.4, whose proof will occupy all of this section and which will be essential
for the proof of the main statement in section 9.

Throughout this section we assume X ∈ Sm and we let D be an effective Cartier divisor
on X such that Dred is an SNCD.

6.1. If E is any divisor on X and m ∈ Z \ {0}, then we write

m | E :⇐⇒ m divides the multiplicity of every irreducible component of E

and

m ∤ E :⇐⇒ m does not divide the multiplicity of any irreducible component of E.

Given an increasing sequence of natural numbers 1 ≤ r1 < . . . < rs we say

E = E′ + pr1E1 + . . .+ prsEs

is a p-divisibility decomposition of E (with respect to r1 < . . . < rs), if p
r1 ∤ E′ and pri ∤

pri−1Ei−1, for i = 2, . . . , s, and E′
red +

∑s
i=1Ei,red is a reduced divisor. Note that p | Es is

allowed and that a p-divisibility decomposition of E always exists and is uniquely determined
by the sequence r1 < . . . < rs. For example if E =

∑
i niEi with Ei the irreducible components

of E, Ei 6= Ej , for i 6= j, then to say that

E = E′ + prEr

is a p-divisibility decomposition of E means that

E′ =
∑

i, pr∤ni

niEi and Er =
∑

i, pr |ni

ni
pr
Ei.

Finally for E and m as above we set

⌈E/m⌉ :=
∑

i

⌈ni/m⌉Ei and ⌊E/m⌋ :=
∑

i

⌊ni/m⌋Ei,

where ⌈−⌉ (resp. ⌊−⌋) denotes the round-up (resp. round-down).
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6.2. Under the assumptions of this section all three ways to define Hodge-Witt sheaves with
modulus discussed in Section 5 coincide by Theorem 5.4. We therefore set

(6.2.1) WnΩ
q
(X,D) := ωCIWnΩ

q
(X,D), for q ≥ 1,

which coincides with W̃nΩqc,(X,D) and (WnΩ
q)AS

(X,D). For q = 0 we set

(6.2.2) WnΩ
0
(X,D) :=WnO(X,D) := (W̃n)c,(X,D)

in the notation of 5.2 and where c is the conductor defined in (5.4.1) for q = 0, i.e., it is
defined by the p-saturated Kato-Matsuda filtration filp∗Wn(L), see 2.5 and Definition 2.6. By
[RS21, Theorem 7.20] we have

(6.2.3) ωCIWnO(X,D) =WnO
F
(X,D),

where the upper index F denotes the saturation under the absolute Frobenius acting on
WnOU , with U = X \D. Note that ωCIWnO(X,D) is not a WnOX -module.

Let D = D0 + pD1 be a p-divisibility decomposition, see 6.1. Recall from [RS, Theorem
6.6] (see also Theorem 5.4) that with the above notation

(6.2.4) Ωq(X,D) =

{
ΩqX(logD0)(D0 −D0,red + pD1), q ≥ 1;

OX(D0 −D0,red + pD1), q = 0.

For us the notation ΩqX(logE) for a possibly non-reduced effective Cartier divisor with simple
normal crossing support E will always mean ΩqX(logEred).

We record:

Proposition 6.3. The sheaves WnΩ
q
(X,D) are coherent WnOX-modules, for all q ≥ 0. Fur-

thermore, let a ∈WnΩ
q(U), with U = X \D. Then

a ∈ Γ(X,WnΩ
q
(X,D)) ⇐⇒ aη ∈ Filpmη

WnΩ
q
Lη
, for all η ∈ |D|(0),

where Lη = Frac(OhX,η), aη ∈ WnΩ
q
Lη

denotes the image of a, and mη is the multiplicity of η

in D.

Proof. Denote by WnOX(D) the invertible WnOX-submodule of j∗WnOU , with j : U →֒ X
the open immersion, which is uniquely characterized by the equality

WnOX(D)|U0
=WnOU0 ·

1

[f ]
,

for any open U0 ⊂ X with D|U0
= Div(f), f ∈ O(U0). By Corollary 2.12 we have the following

inclusions of WnOX -modules

(6.3.1) WnΩ
q
X ⊂WnΩ

q
(X,D) ⊂WnΩ

q
X ⊗WnOX

WnOX(p
n−1D), for all q ≥ 0.

AsWnX = (|X|,WnOX) is a scheme of finite type over SpecWn(k) and asWnΩ
q
X is a coherent

WnOX -module, we see that WnΩ
q
(X,D) is a coherent WnOX -module for all q ≥ 0.

The second statement follows for q ≥ 1 from the equality WnΩ
q
(X,D) = (WnΩ

q)AS
(X,D), see the

beginning of the proof of Theorem 5.4. For q = 0, it is direct to check from the definition. �

The aim of this section is to prove the following theorem:
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Theorem 6.4. For n, q ≥ 0 set

(6.4.1) ZnΩ
q
(X,D) := Fn(Wn+1Ω

q
(X,D)) and BnΩ

q
(X,D) :=

{
Fn−1d(WnΩ

q−1
(X,D)), n ≥ 1;

0, n = 0.

Then ZnΩ
q
(X,D) and BnΩ

q
(X,D) are locally free OX -submodules of FnX∗Ω

q
(X,D), where FX : X →

X denotes the absolute Frobenius. Furthermore, there is a short exact sequence of coherent
Wn+1OX-modules

0 −→ BnΩ
q+1
(X,D) −→

Wn+1Ω
q
(X,D)

pWnΩ
q
(X,D)

Fn

−−→ ZnΩ
q
(X,D) −→ 0,

where the first map on the left is given by Fn−1d(β) 7→ V (β) and the Wn+1OX -module struc-
ture on Zn and Bn is induced by Fn : Wn+1OX → OX .

The above theorem follows from Proposition 6.15 and Proposition 6.18 proven below. In
Proposition 6.15 and Lemma 6.16 we also give alternative descriptions of BnΩ

q
(X,D) and

ZnΩ
q
(X,D), in the former using certain twisted Cartier operators, in the latter using the functors

ωCI and (−)AS introduced in section 5.

Remark 6.5. For D = ∅, the first part of the above theorem holds by [Ill79, I, Proposition
3.11] and [Ill79, 0, Proposition 2.2.8], and the second part, the exactness of the sequence, holds
by [Eke84, (0.6.2)]. Note that in this case there is also a second short exact sequence which is
dual (under Grothendieck duality) to the one above, it describes Ker(R : Wn+1Ω

q
X →WnΩ

q
X)

as an extension of locally free OX -modules, see [Ill79, I, (3.9.1)]. For D 6= ∅ this latter
sequence does not seem to work, cf. Remark 6.12.

Lemma 6.6. Let A be an SNCD on X. Let B be a (not necessarily effective) Cartier divisor
whose support is contained in A and let A0 be an irreducible component of A, which is not a
component of |B|. Let s ∈ Z and ρ ∈ N with 0 ≤ ρ ≤ p− 1. Then the natural map

Ω•
X/k(logA)(B + psA0) −→ Ω•

X/k(logA)(B + (ps+ ρ)A0)

is a quasi-isomorphism. Here ΩqX(logE)(D) := ΩqX(logE)⊗OX
OX(D).

Proof. By [MS97, Lemma 4.1] (applied to A = D1 +D2, A0 = D1 and D = B +A0, . . . , B +
ρA0) we have a quasi-isomorphism as in the statement for s = 0. Applying FX∗ we obtain a
quasi-isomorphism of OX -modules; twisting with OX(sA0) therefore yields the statement. �

Lemma 6.7. Let E be an effective Cartier divisor on X such that Dred + Ered is a reduced
SNCD. Then the inverse Cartier operator

(6.7.1) C−1 : ΩqX(logD)
≃
−→ Hq(FX∗Ω

•
X(logD)),

see, e.g., [Kat70, Theorem (7.2)], induces an isomorphism

(6.7.2) C−1 : ΩqX(logD)(⌈D/p⌉ − ⌈D/p⌉red + E)
≃
−→ Hq

(
FX∗Ω

•
X(logD)(D −Dred + pE)

)
.

Proof. Observe

D −Dred = p(⌈D/p⌉ − ⌈D/p⌉red) +
∑

i

ρiDi,

for certain ρi ∈ N with 0 ≤ ρi ≤ p − 1, where the Di are the irreducible components of D.
Indeed, for r ≥ 1 we have r − 1 = p(⌈r/p⌉ − 1) + ρ, for some 0 ≤ ρ ≤ p − 1. Thus tensoring
the isomorphism of OX-modules (6.7.1) with OX(⌈D/p⌉ − ⌈D/p⌉red) and applying Lemma
6.6 yields the isomorphism (6.7.2) in the case E = 0. Tensoring further with OX(E) yields
the general case. �
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6.8. Let E be an effective Cartier divisor on X such that Dred+Ered is a reduced SNCD. We
will use the following notation

(6.8.1) Ωqn(D,E) := ΩqX(logD)(⌈D/pn⌉ − ⌈D/pn⌉red +E), q ≥ 0, n ≥ 0.

This is a locally free coherent OX -module. We observe:

(a) Let n ≥ 1. If D = D′ + pnDn is a p-divisibility decomposition (see 6.1), then

Ωqn(D,E) = ΩqX(log(D
′ +Dn))(⌈D

′/pn⌉ − ⌈D′/pn⌉red +Dn −Dn,red + E).

Hence we have an inclusion

(6.8.2) Ωqn(D,E) ⊂ Ωqn(D
′,Dn +E).

Note that this inclusion is strict if Dn 6= 0 and q < dimX and that the cokernel is
annihilated by OX(−Dn,red). In particular it is not an inclusion of vector bundles.

(b) Let n ≥ 0. There is a well-defined map d : Ωqn(D, pE) → Ωq+1
n (D, pE) induced

by the usual differential of the de Rham complex. (Note that we need to have pE
instead of E for this.) We therefore get a subcomplex Ω•

n(D, pE) ⊂ j∗Ω
•
U , where

j : U = X \ |D + E| →֒ X denotes the open immersion. Given a p-divisibility
decomposition D = D′ + pn+1Dn+1 we obtain an inclusion of complexes

(6.8.3) Ω•
n(D, pE) ⊂ Ω•

n(D
′, p(Dn+1 + E)).

(c) Let n ≥ 1. Using the equality

⌈D/pn⌉ = ⌈⌈D/pn−1⌉/p⌉

we find that the inverse Cartier operator (6.7.2) induces an isomorphism of OX -
modules

(6.8.4) C−1 : Ωqn(D,E)
≃
−→ Hq(FX∗Ω

•
n−1(D, pE)).

Let n ≥ 1. If D = D′ + pnDn is a p-divisibility decomposition, then we obtain a
commutative diagram of locally free OX -modules

(6.8.5) Ωqn(D,E)
C−1

≃
//

� _

��

Hq(FX∗Ω
•
n−1(D, pE))
� _

��
Ωqn(D′,Dn + E)

C−1

≃
// Hq(FX∗Ω

•
n−1(D

′, p(Dn + E))).

Note that the injectivity of the vertical map on the right follows from the injectivity
of the vertical map on the left.

6.9. For a complex C• of OX -modules on a scheme X, we denote

Zq(C•) = Ker(d : Cq → Cq+1), and Bq(C•) = Im(d : Cq−1 → Cq),

which we view as OX -modules.

6.10. Let X, D, and E be as in 6.8 above. The Cartier isomorphism defines the following
exact sequence of locally free OX -modules

(6.10.1) 0→ Bq(FX∗Ω
•
n−1(D, pE))→ Zq(FX∗Ω

•
n−1(D, pE))

C
−→ Ωqn(D,E)→ 0.

The fact that these modules are locally free follows via descending induction on q by consid-
ering as well the exact sequence

0→ Zq → FX∗Ω
q
n−1(D, pE)

d
−→ Bq+1 → 0.
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We obtain a class in the Ext-group which we denote by the symbol

ǫqn(D,E) ∈ Ext1(Ωqn(D,E),Bq(FX∗Ω
•
n−1(D, pE))).

6.11. Let X, D, and E be as in 6.8 above. Let n ≥ 0 and let

D = D0 + pD1 + . . .+ pnDn

be a p-divisibility decomposition. Set

(6.11.1) Dj := D0 + . . .+ pjDj , j = 0, . . . , n,

and

(6.11.2) D0 := 0 and Dj := pDn−j+1 + p2Dn−j+2 + . . .+ pjDn, j = 1, . . . , n.

Thus we have p | Dj, for all j, and

D = Dn−j + pn−j+1

(
1

p
Dj

)

is a p-divisibility decompositionin the sense of 6.1. By abuse of notation we will also say that
D = Dn−j + pn−jDj is a p-divisibility decomposition, keeping in mind that there is an extra

p hidden in Dj. For j = 1, . . . , n, we will use the following notations repeatedly

Ωqj,n := F jX∗Ω
q
n−j(Dn−j,D

j + pjE), Bqj,n := Bq(Ω•
j,n), Zqj,n := Zq(Ω•

j,n).

We define OX -submodules

Bq
j,n(D,E) ⊂ Zqj,n(D,E) ⊂ Ωqj,n

by setting

Bq
0,n(D,E) := 0 ⊂ Ωq0,n := Ωqn(Dn,D

0 + E) =: Zq0,n(D,E),

and for j ≥ 1 recursively by the condition that the squares on the right in the following two
diagrams are pullback squares
(6.11.3)

0 // Bqj,n
// Bq

j,n(D,E) //

��

Bq
j−1,n(D,E)

� _

��

// 0

0 // Bqj,n
// Zqj,n(D,E) //

��

Zqj−1,n(D,E)
� _

��

// 0

0 // Bqj,n
// Zqj,n

C // F j−1
X∗ Ωqn−j+1(Dn−j ,Dn−j+1 +Dj−1 + pj−1E) // 0,

where the vertical inclusion in the lower right corner is induced by the natural inclusion

Ωqj−1,n →֒ F j−1
X∗ Ωqn−j+1(Dn−j ,Dn−j+1 +Dj−1 + pj−1E).

Phrased differently Bq
j,n(D,E), Zqj,n(D,E) are obtained by pulling back the exact sequence

F j−1
X∗ ǫ

q
n−j+1(Dn−j,Dn−j+1 +Dj−1 + pj−1E),

see (6.10.1), along the respective inclusions on the right in the diagram (6.11.3).
Some consequences from this definition:
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(a) We have for n ≥ 1

Bq
1,n(D,E) = Bq1,n = Bq(FX∗Ω

•
n−1(Dn−1,D

1 + pE))

and

Zq1,n(D,E) = Zq(FX∗Ω
•
n−1(D, pE)) +Bq

1,n(D,E).

This follows directly from the definition and (6.8.5).
(b) The sheaves Bq

j,n(D,E) and Zqj,n(D,E) are locally free coherent OX -modules, which

we can identify with submodules of σ∗F
j
X∗Ω

q
U , where σ : U = X \ D + E →֒ X is

the open immersion. Furthermore the j-fold iteration of the inverse Cartier operator
induces an isomorphism

Ωqn(D,E) =
Zq0,n(D,E)

Bq
0,n(D,E)

≃
−→

Zqj,n(D,E)

Bq
j,n(D,E)

.

(c) For j ≥ 1, there are inclusions of OX -submodules of Ωqj,n

FX∗B
q
j−1,n−1(Dn−1,D

1 + pE) ⊂ Bq
j,n(D,E)

and

Zqj,n(D,E) ⊂ FX∗Z
q
j−1,n−1(Dn−1,D

1 + pE).

This follows from the inclusions in the case j = 1 and the fact that for j ≥ 2 the
bottom sequence in (6.11.3) constructed from D, E, n, j is equal to FX∗ applied to
the same sequence constructed from Dn−1, D

1 + pE, n − 1, j − 1. Furthermore, the
(j − 1)-fold iteration of the inverse Cartier operator induces an isomorphism

Bq
1,n(D,E) =

Bq
1,n(D,E)

FX∗B
q
0,n−1(Dn−1,D

1 + pE)

≃
−→

Bq
j,n(D,E)

FX∗B
q
j−1,n−1(Dn−1,D

1 + pE)

as follows from the above and the snake lemma.

Remark 6.12. Classically one defines BjΩ
q
X ⊂ ZjΩ

q
X ⊂ F jX∗Ω

q
X as above in the case D =

E = 0. More precisely, we have BjΩ
q
X = Bq

j,n(0, 0), for all n ≥ j, and similarly for ZjΩ
q
X . In

this case the quotients F jX∗Ω
q
X/ZjΩ

q
X are locally free as well, e.g. [Ill79, I, Corollaire 3.9]. We

warn the reader that this is in general not the case for

(6.12.1) Ωqj,n/Z
q
j,n(D,E).

For example, for j = 1 it follows from (6.11.3) that we have an exact sequence

0→
Ωqn(Dn−1,Dn + E)

Ωqn(D,E)
→

FX∗Ω
q
n−1(Dn−1,D

1 + pE)

Zq1,n(D,E)
→

FX∗Ω
q
n−1(Dn−1,D

1 + pE)

Zq1,n
→ 0.

It is easy to see that the quotient on the right is locally free, but the quotient on the left is
non-zero if Dn 6= 0 and q < dimX and is annihilated by OX(−Dn) and hence is not locally
free. Thus the quotient in the middle is not locally free as well.

Lemma 6.13. Let L ∈ Φ (see Notation 2.2). Then for q, r, n ≥ 0

Rn(FilprWn+1Ω
q
L) =

{
ΩqOL

(log) ·m
−⌈r/pn⌉+1
L , if vp(r) ≤ n,

ΩqOL
·m

−r/pn

L , if vp(r) ≥ n+ 1,

where FilprWn+1Ω
q
L is the filtration from Definition 2.6 and Rn :Wn+1Ω

q
L → ΩqL is the restric-

tion.
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Proof. By Definition of Filp we have

Rn(FilprWn+1Ω
q
L) = Rn(filrWn+1Ω

q
L) + dRn(filrWn+1Ω

q−1
L ).

Assume vp(r) ≤ n. In this case we have by Definition 2.4

Rn(filrWn+1Ω
q
L) = Rn(fillogr−1Wn+1(L)) · dlog(K

M
q (L)) = m

⌈− r−1
pn

⌉

L · ΩqOL
(log).

It is direct to check that ⌈− r−1
pn ⌉ = −⌈

r
pn ⌉+1, which yields the statement in this case. Assume

vp(r) ≥ n+ 1. In this case we have by Definition 2.4 and the above

Rn(filrWn+1Ω
q
L) = m

⌈− r−1
pn

⌉

L · ΩqOL
(log) +Rn(fillogr Wn+1(L)) · dlog(K

M
q (OL))

= m

− r
pn

+1

L · ΩqOL
(log) +m

− r
pn

L · ΩqOL
= m

− r
pn

L · ΩqOL
.

As r/pn is divisible by p, we have d(m
−r/pn

L ·Ωq−1
OL

) ⊂ m
−r/pn

L ·ΩqOL
. Hence the statement. �

Corollary 6.14. Let D = D′+pn+1Dn+1 be a p-divisibility decomposition. Then for q, n ≥ 0
we have with the notation from 6.8

Rn(Wn+1Ω
q
(X,D)) = Ωqn(D

′, pDn+1).

Proof. As Ωqn(D′, pDn+1) is locally free it suffices to show this “⊂” inclusion for the Nisnevich
stalks in the generic points of D. In this case the statement follows from Lemma 6.13 and
the notation (6.8.1), see 6.2, 5.2, and Theorem 5.4. To show the other inclusion we can argue
locally around the closed points of D. Let x ∈ D be a point and set A = OX,x. Then we find
an étale map k[t1, . . . , td]→ A, such that t1, . . . , td form a regular sequence of parameters for
A and on SpecA we have

D′ = Div(tm1
1 · · · t

mr
r ) and Dn+1 = Div(t

mr+1

r+1 · · · t
ms
s ),

with 0 ≤ r ≤ s ≤ d and pn+1 ∤ mi, for i = 1, . . . , r (with the convention that r = 0 means
that D′ = ∅ and r = s means that Dn+1 = ∅). Thus

D = Div(tm1
1 · · · t

mr
r · t

pn+1mr+1

r+1 · · · tp
n+1ms
s ).

A basis of the free A-module Ωqn(D′, pDn+1)x (Zariski stalk at x) is given by

eI,J = t
−⌈

m1
pn

⌉+1

1 · · · t
−⌈mr

pn
⌉+1

r t
−pmr+1

r+1 · · · t−pms
s · dlog tI dlog(1 + tJ),

where I and J run through the tuples I = (1 ≤ i1 < . . . < iq1 ≤ r) and J = (r + 1 ≤ j1 <
. . . < jq2 ≤ d) with q1 + q2 = q and where we use the notations

tI = {ti1 , . . . , tiq1} ∈ K
M
q1 (A[

1
ti1 ···tiq1

]) and 1 + tJ = {1 + tj1 , . . . , 1 + tjq2} ∈ K
M
q2 (A).

As the Zariski stalk Wn+1Ω
q
(X,D),x is a Wn+1(A)-module and Rn(Wn+1(A)) = A, it suffices to

show that there exists an element ẽI,J ∈ Wn+1Ω
q
(X,D),x, for each I, J , with Rn(ẽI,J) = eI,J .

By the second part of Proposition 6.3 it is direct to check from the definition of FilprWnΩ
q
L

that the element

ẽI,J := [t1]
−⌈

m1
pn

⌉+1 · · · [tr]
−⌈mr

pn
⌉+1[tr+1]

−pmr+1 · · · [ts]
−pms · dlog tI dlog(1 + tJ),

which a priori is an element in Wn+1Ω
q
A[

1
t1···ts

], has the looked for properties. �
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Proposition 6.15. Let D = D′ + pn+1Dn+1 be a p-divisibility decomposition. Then with the
notation from (6.4.1) and 6.11 we have for n ≥ 0

BnΩ
q
(X,D) = Bq

n,n(D
′, pDn+1), and ZnΩ

q
(X,D) = Zqn,n(D

′, pDn+1).

In particular, BnΩ
q
(X,D) and ZnΩ

q
(X,D) are locally free coherent OX -modules.

Proof. For n = 0 the statement follows from the definitions and (6.2.4). Assume now n ≥ 1.
Let D′ = D′′ + pnDn be a p-divisibility decomposition. By induction we have

(6.15.1) Zn−1Ω
q
(X,D) = Zqn−1,n−1(D

′′, pE), where E = Dn + pDn+1.

and similarly with Z replaced by B. Consider the following diagram (in which we neglect the
OX-module structure)
(6.15.2)

WnΩ
q−1
(X,D)

d // //

Rn−1

����

d(WnΩ
q−1
(X,D))

Rn−1

����

Fn−1
// // BnΩ

q
(X,D) ⊂ Zn−1Ω

q
(X,D)

)) ))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

Zq
n−1,n−1(D

′′,pE)

Bq
n−1,n−1(D

′′,pE)
.

Ωq−1
n−1(D

′′, pE)
d // // Bq

1,n(D
′, pDn+1)

C−(n−1)

≃
// B

q
n,n(D

′,pDn+1)

Bq
n−1,n−1(D

′′,pE)

(
�

66❧❧❧❧❧❧❧❧❧❧❧❧❧

Here the map d on the lower left is surjective by 6.11(a) and the vertical map Rn−1 on the
left hand side is surjective by Corollary 6.14; clearly the square commutes and hence also the
vertical Rn−1 in the middle is surjective. The lower horizontal map C−(n−1) is induced by
the (n − 1)-fold iteration of the inverse Cartier operator; it is an isomorphism, see 6.11(c).
The upwards diagonal inclusion on the right hand side is induced by the natural inclusions in
6.11(c), the downwards diagonal map is induced by (6.15.1). The inclusion on the top right
is given by
(6.15.3)

BnΩ
q
(X,D) = Fn−1d(WnΩ

q−1
(X,D)) = FndV (WnΩ

q−1
(X,D)) ⊂ F

n(Wn+1Ω
q
(X,D)) = ZnΩ

q
(X,D).

To see that the right part of the diagram commutes observe that by 6.11(b)

Zqn−1,n−1(D
′′, pE)

Bq
n−1,n−1(D

′′, pE)
∼= Ωqn−1(D

′′, pE)

is a locally free OX -module; hence it suffices to check the commutativity after restricting
to U = X \ D in which case it follows from the classical fact that the Frobenius on the de
Rham-Witt complex is a lift of the inverse Cartier operator, see [Ill79, I, Proposition (3.3)].
Thus the whole diagram (6.15.2) commutes and all the maps in the diagram are defined and
are surjections, injections, or isomorphisms as indicated. Furthermore we have the inclusions

Bq
n−1,n−1(D

′′, pE) = Fn−2d(Wn−1Ω
q−1
(X,D)) = Fn−1dV (Wn−1Ω

q−1
(X,D)) ⊂ BnΩ

q
(X,D),

where the first equality holds by induction. Therefore diagram (6.15.2) yields

Bq
n,n(D′, pDn+1)

Bq
n−1,n−1(D

′′, pE)
=

BnΩ
q
(X,D)

Bq
n−1,n−1(D

′′, pE)
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and hence we get the equality of subsheaves of Ωq(X,D)

(6.15.4) Bq
n,n(D

′, pDn+1) = BnΩ
q
(X,D).

Next we consider the diagram

(6.15.5) Wn+1Ω
q
(X,D)

Fn
// //

Rn

����

ZnΩ
q
(X,D) ⊂ Zn−1Ω

q
(X,D)

)) ))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

Zq
n−1,n−1(D

′′,pE)

Bq
n,n(D′,pDn+1)

.

Ωqn(D′, pDn+1)
C−n

≃
// Z

q
n,n(D

′,pDn+1)

Bq
n,n(D′,pDn+1)

(
�

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Here Rn on the left hand side is surjective by Corollary 6.14. The lower horizontal map
C−n is an isomorphism by 6.11(b). The upward diagonal injection is induced by 6.11(c), the
downward diagonal map is induced by (6.15.1). We claim this diagram commutes. As above
it suffices to show that the quotient on the right is locally free as the restriction of the diagram
to U = X \D is known to commute. To this end consider the isomorphisms

Zqn−1,n−1(D
′′, pE)

Bq
n,n(D′, pDn+1)

∼=
Zqn−1,n−1(D

′′, pE)/Bn−1,n−1(D
′′, pE)

Bq
n,n(D′, pDn+1)/Bn−1,n−1(D′′, pE)

∼=
Ωqn−1(D

′′, pE)

Bq(Ω•
n−1(D

′′, pE))
,

where the isomorphisms hold by 6.11(a)–(c). Moreover we have the exact sequence

0→ Ωqn(D
′′, E)

C−1

−→
FX∗Ω

q
n−1(D

′′, pE)

Bq(Ω•
n−1(D

′′, pE))

d
−→ Bq+1(Ω•

n−1(D
′′, pE))→ 0,

see (6.8.4). Since the two outer terms of this exact sequence are locally free so is the middle
term. Hence the quotient on the right in diagram (6.15.5) is locally free and the diagram com-
mutes. Using the equality (6.15.4) and the inclusion (6.15.3), the commutativity of (6.15.5)
yields

ZnΩ
q
(X,D)

BnΩ
q
(X,D)

=
Zn,n(D

′, pDn+1)

BnΩ
q
(X,D)

.

Hence we get the equality

ZnΩ
q
(X,D) = Zn,n(D

′, pDn+1)

of subsheaves of Ωq(X,D), which yields the statement. �

Lemma 6.16. Let j : U = X \ D →֒ X be the open immersion. With the notation from
section 5 we have

(6.16.1) BnΩ
q
(X,D) = (ωCIBnΩ

q)(X,D) = (BnΩ
q)AS

(X,D) = j∗(BnΩ
q
U ) ∩Ωq(X,D), for all q ≥ 0,

and

(6.16.2) ZnΩ
q
(X,D) = (ωCIZnΩ

q)(X,D) = (ZnΩ
q)AS

(X,D) = j∗(ZnΩ
q
U) ∩ Ωq(X,D), for all q ≥ 1,

and

(6.16.3) ZnΩ
0
(X,D) = j∗(ZnΩ

0
U ) ∩Ω0

(X,D) = j∗F
n(Wn+1OU ) ∩ O(X,D).
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Proof. The second equality in (6.16.3) holds by definition. The first equality reduces to

Fn(filrWn+1Ω
0
L) = Fn(Wn+1(L)) ∩ filrΩ

0
L, for L ∈ Φ, r ≥ 0,

which follows directly from Definition 2.4. As BnΩ
0 = 0 we assume q ≥ 1 in the following.

By the definition of BnΩ
q
(X,D) and ZnΩ

q
(X,D) in (6.4.1), by Theorem 5.4, and (5.3.2) we see

that (6.16.1) and (6.16.2) hold with “=” replaced by “⊂”. Thus it remains to show

j∗(BnΩ
q
U ) ∩ Ωq(X,D) ⊂ BnΩ

q
(X,D) and j∗(ZnΩ

q
U) ∩ Ωq(X,D) ⊂ ZnΩ

q
(X,D).

We first consider the Bn case. Set M := j∗(BnΩ
q
U ) ∩ Ωq

(X,D)
and N := BnΩ

q
(X,D)

. We note

that M and N are OX -submodules of V := j∗BnΩ
q
U , with N locally free of finite rank, by

Proposition 6.15, and withM coherent, as it is a submodule of the coherent module Fn∗ Ω
q
(X,D).

Moreover, M|U = N|U = V|U is a finite locally free OU -module. By [Bou98, VII, §4, No. 2,
Corollaire] it suffices therefore to show the inclusion of stalks Mη ⊂ Nη, for all generic points

η of Dred. As Nh
η ∩ Vη = Nη we may consider Nisnevich stalks instead and are thus reduced

to show the following claim for each henselian dvf L ∈ Φ:

(6.16.4) Fn−1d(FilpsWnΩ
q−1
L ) ∩ FilprΩ

q
L ⊂ F

n−1d(FilprWnΩ
q−1
L ), for all s ≥ r ≥ 1.

Indeed, this holds trivially for s = r. Assume s > r and let α ∈ FilpsWnΩ
q−1
L such that

Fn−1d(α) ∈ FilprΩ
q
L ⊂ Filps−1Ω

q
L. By Lemma 4.2 we find elements β ∈ Wn+1Ω

q
L, α

′ ∈
Filps−1WnΩ

q
L, and α

′′ ∈ FilpsWn−1Ω
q
L such that α = α′ + p(α′′) + F (β). Hence

Fn−1d(α) = Fn−1d(α′) ∈ Fn−1d(Filps−1WnΩ
q
L) ∩ FilprΩ

q
L

and claim (6.16.4) holds by induction on s. This completes the proof of (6.16.1).
For Zn we can argue similarly as above to reduce to the following claim for each L ∈ Φ:

(6.16.5) Fn(FilpsWn+1Ω
q
L) ∩ FilprΩ

q
L ⊂ F

n(FilprWn+1Ω
q
L).

Indeed, this holds trivially for s = r. We assume s > r. Let α ∈ FilpsWn+1Ω
q such that

Fn(α) ∈ FilprΩ
q
L ⊂ Filps−1Ω

q
L. By Lemma 4.2 we find elements β ∈WnΩ

q
L, α

′ ∈ Filps−1Wn+1Ω
q
L

and α′′ ∈ FilpsWnΩ
q
L such that α = α′ + p(α′′) + V (β). Hence

Fn(α) = Fn(α′) ∈ Fn(Filps−1Wn+1Ω
q
L) ∩ FilprΩ

q
L

and claim (6.16.5) holds by induction. This completes the proof of (6.16.2). �

Lemma 6.17. For the statement of this lemma denote by Fn(X,D) :Wn+1Ω
q
(X,D) → Ωq(X,D) the

map induced by the nth-power of the de Rham-Witt Frobenius Fn (which otherwise is denoted
by Fn as well). Then we have the following equality of subsheaves of Wn+1Ω

q
(X,D)

Ker(Fn(X,D)) ∩Ker(Fn(X,D) ◦ d) = p(j∗WnΩ
q
U ) ∩Wn+1Ω

q
(X,D) = p(WnΩ

q
(X,D)),

where j : U = X \D →֒ X is the open immersion.

Proof. Denote by FnU : j∗Wn+1Ω
q
U → j∗Ω

q
U the Frobenius on U . As Ωq(X,D) ⊂ j∗Ω

q
U we have

Ker(Fn(X,D)) = Ker(FnU ) ∩Wn+1Ω
q
(X,D) and Ker(Fn(X,D)d) = Ker(FnUd) ∩Wn+1Ω

q
(X,D).

As Ker(FnU ) ∩Ker(FnUd) = p(j∗WnΩ
q
U ) by [Eke84, (0.6.3)] the first equality follows.

For the second equality let a ∈ j∗WnΩ
q
U be a local section with p(a) ∈ Wn+1Ω

q
(X,D). As p

is injective we have to show that a ∈WnΩ
q
(X,D). By Proposition 6.3 it suffices to show

(6.17.1) p(WnΩ
q
L) ∩ FilprWn+1Ω

q
L = p(FilprWnΩ

q
L),
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for all q, r ≥ 0 and L ∈ Φ. For r = 0 this follows from Lemma 5.6 and Lemma 2.8. Assume
r ≥ 1 and let a ∈WnΩ

q
L with p(a) ∈ FilprWn+1Ω

q
L. It follows from Lemma 4.1 that there exist

elements b ∈ FilprWnΩ
q
L and c ∈ Filpr−1Wn+1Ω

q
L such that

p(a) = c+ p(b).

By induction over r we find an element e ∈ Filpr−1WnΩ
q
L such that c = p(e). The injectivity

of p therefore yields a = e+ b ∈ FilprWnΩ
q
L. Hence the second equality holds. �

Proposition 6.18. The sequence

0 −→ BnΩ
q+1
(X,D) −→

Wn+1Ω
q
(X,D)

pWnΩ
q
(X,D)

Fn

−−→ ZnΩ
q
(X,D) −→ 0

is a short exact sequence of Wn+1OX -modules, where the first map on the left is given by
Fn−1d(β) 7→ V (β), and the Wn+1OX -module structure on Zn and Bn is induced by Fn :
Wn+1OX → OX .

Proof. This is a modulus version of [Eke84, Lemma 0.6]. After the previous work the proof
is analogous: consider the diagram (with the notation from Lemma 6.17)

(6.18.1) 0 // Ker(Fn(X,D)) ∩Ker(Fn(X,D)d)
� _

ι

��

// Wn+1Ω
q
(X,D)

//
Wn+1Ω

q
(X,D)

pWnΩ
q
(X,D)

//

Fn

��

0

0 // Ker(Fn(X,D))
// Wn+1Ω

q
(X,D)

Fn
// ZnΩ

q
(X,D)

// 0.

Here the top row is exact by Lemma 6.17, the bottom row is exact by definition, and ι is the
inclusion. By [Ill79, I, (3.11.3)] and the inclusion Ωq(X,D) ⊂ j∗Ω

q
U we have

Ker(Fn(X,D)) = Ker(FnU ) ∩Wn+1Ω
q
(X,D) = j∗(VWnΩ

q
U ) ∩Wn+1Ω

q
(X,D).

We have the following obvious chain of inclusions

BnΩ
q+1
(X,D) = FndVWnΩ

q
(X,D) ⊂ F

nd(j∗(VWnΩ
q
U ) ∩Wn+1Ω

q
(X,D)) ⊂ j∗(BnΩ

q+1
U ) ∩Ωq+1

(X,D)

and by Lemma 6.16 we have equality everywhere. We obtain an exact sequence

0→ Ker(Fn(X,D)) ∩Ker(Fn(X,D)d)
ι
−→ Ker(Fn(X,D))

Fnd
−−→ BnΩ

q+1
(X,D) → 0.

Hence applying the Snake Lemma to (6.18.1) yields the exact sequence from the statement. �

The proof of Theorem 6.4 is now complete. The following proposition is a finite level version
of the exact sequence [IR83, II, (1.2.2)] in the modulus setting.

Proposition 6.19. The following sequence is exact for all r ≥ 1

0→WnΩ
q
(X,D)

pr

−→Wn+rΩ
q
(X,D)

(Fn,Fnd)
−−−−−−→WrΩ

q
(X,D) ⊕WrΩ

q+1
(X,D)

dV n−V n

−−−−−−→Wn+rΩ
q+1
(X,D).

Proof. Denote by j : U = X \D →֒ X the open immersion. We first consider the case r = 1.
Thus we have to show that the sequence

0→ WnΩ
q
(X,D)

p
−→Wn+1Ω

q
(X,D)

(Fn,Fnd)
−−−−−−→ Ωq(X,D) ⊕ Ωq+1

(X,D)

dV n−V n

−−−−−−→Wn+1Ω
q+1
(X,D)
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is exact. The injectivity of p follows from the injectivity of p : WnΩ
q
U → Wn+1Ω

q
U , see

[Ill79, I, Proposition 3.4]. The exactness at Wn+1Ω
q
(X,D) follows from Proposition 6.18 (use

FndV (β) = Fn−1dβ). Let α ∈ Ωq(X,D) and β ∈ Ωq+1
(X,D) be local sections. It remains to show

(6.19.1) dV n(α) = V n(β) =⇒ α = Fn(γ) and β = Fnd(γ), for some γ ∈Wn+1Ω
q
(X,D).

By [Ill79, I, (3.10.3)] we find γ0 ∈Wn+1Ω
q
U such that

dV n(α) = dV nFn(γ0) = V n(Fnd(γ0)) = V n(β).

By [Ill79, I, Remarques 3.21.1] we find δ ∈Wn+2Ω
q
U and ǫ ∈WnΩ

q
U such that

α = Fn(γ0) + Fn+1(δ) and β = Fnd(γ0) + FndV (ǫ).

Setting γ1 := γ0 + F (δ) + V (ǫ) ∈Wn+1Ω
q
U we have

α = Fn(γ1) ∈ Ωq(X,D) ∩ j∗(ZnΩ
q
U ) and β = Fnd(γ1) ∈ Ωq(X,D) ∩ j∗(Bn+1Ω

q
U ).

By Lemma 6.16 we find γ′ ∈Wn+1Ω
q
(X,D) and γ

′′ ∈Wn+1Ω
q
(X,D) such that

α = Fn(γ′) and β = Fnd(γ′′).

By [Ill79, I, Remarques 3.21.1] we find (new) δ, ǫ on U with

(6.19.2) γ1 = γ′ + V (δ) = γ′′ + F (ǫ).

Hence

Fn(γ′ − γ′′) = Fn+1(ǫ) ∈ j∗(Zn+1Ω
q
U ) ∩Ωq(X,D)

and

Fnd(γ′′ − γ′) = Fn−1d(δ) ∈ j∗(BnΩ
q+1) ∩ Ωq+1

(X,D).

By Lemma 6.16 and [Ill79, I, Remarques 3.21.1] we find ǫ′ ∈ Wn+2Ω
q
(X,D), δ

′ ∈ WnΩ
q
(X,D),

and η, ζ ∈Wn+1Ω
q
U such that

F (ǫ) = F (ǫ′) + pζ and V (δ) = V (δ′) + pη.

Thus (6.19.2) yields

γ′′ − γ′ + F (ǫ′)− V (δ′) = p(η − ζ) = p(R(η − ζ)) ∈ p(j∗WnΩ
q
U) ∩Wn+1Ω

q
(X,D).

By Lemma 6.17 we find θ ∈WnΩ
q
(X,D) such that

pθ = p(R(η − ζ)).

Set

γ := γ′ + V (δ′) + pθ = γ′′ + F (ǫ′) ∈Wn+1Ω
q
(X,D).

Then

α = Fn(γ1) = Fn(γ′ + V (δ′)) = Fn(γ) and β = Fnd(γ1) = Fnd(γ′′ + F (ǫ)) = Fnd(γ).

This shows (6.19.1) and completes the proof in the case r = 1.



46 FEI REN AND KAY RÜLLING

Now assume r ≥ 2 and consider the following diagram in which we drop for readability the
subscript (X,D) everywhere

0

��

0

��

0

��

0

��
0 // WnΩ

q
pr−1

// Wn+r−1Ω
q

(Fn,Fnd)
//

p

��

Wr−1Ω
q ⊕Wr−1Ω

q+1 dV n−V n
//

p

��

Wn+r−1Ω
q+1

p

��
0 // WnΩ

q
pr

// Wn+rΩ
q (Fn,Fnd)

//

Fn+r−1 Fn+r−1d
��

WrΩ
q ⊕WrΩ

q+1 dV n−V n
//

(F r−1,F r−1d) (F r−1,F r−1d)
��

Wn+rΩ
q+1

Fn+r−1 Fn+r−1d
��

Ωq ⊕ Ωq+1 ϕ //

dV n+r−1−V n+r−1

��

(Ωq ⊕ Ωq+1)⊕ (Ωq+1 ⊕ Ωq+2)
ψ // Ωq+1 ⊕ Ωq+2

Wn+rΩ
q+1,

where ϕ and ψ are given by

ϕ(a, c) = ((a, 0), (c, 0)) and ψ((a, b), (c, d)) = (b,−d).

We observe

• the diagram is commutative;
• the columns are exact by the case r = 1;
• the first row is exact by induction over r;
• the third row is split exact.

We want to show that the middle row is exact on (X,D). Clearly it is a complex and pr is

injective by the same argument as in the case r = 1. The exactness at Wn+rΩ
q
(X,D) follows

from an easy diagram chase. The exactness at WrΩ
q
(X,D)⊕WrΩ

q+1
(X,D) can be checked directly

by a diagram chase as well once we observed that for α ∈ WrΩ
q
(X,D) and β ∈ WrΩ

q+1
(X,D) with

dV n(α) = V n(β) we have

dV n+r−1(F r−1(α)) = pr−1dV n(α) = pr−1V n(β) = V n+r−1(F r−1(β)).

This completes the proof. �

7. Applications to Hodge-Witt cohomology with modulus

Before we proceed to study Hodge-Witt sheaves with zeros along D in section 8, we draw
some consequences from the structural results in the previous section. The main result is
Theorem 7.3, which makes it possible to apply general results on cube invariant sheaves with
transfers to Hodge-Witt sheaves with modulus, see 7.4.

Throughout this section we assume X ∈ Sm pure dimensional with dimX = N and denote
by D an effective Cartier divisor on X such that Dred is an SNCD.

7.1. Recall the category MCor from [KMSY21a, Definition 1.3.1]: its objects are modulus
pairs (Y,E) (see 3.1) and the morphisms are left proper admissible correspondences. A modu-
lus presheaf with transfers is an additive contravariant functor from MCor to abelian groups
and the category of modulus presheaves with transfers is denoted by MPST. If G ∈MPST
and (Y,E) is a modulus pair, then the assignment

(étale Y -schemes) ∋ (v : V → Y ) 7→ G(V, v∗E),
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defines a (Nisnevich) presheaf on Y denoted by G(Y,E). By definition G ∈ MPST is a
sheaf if G(Y,E) is a Nisnevich sheaf on Y , for each modulus pair (Y,E). The category of
modulus sheaves with transfers is denoted by MNST. By [KMSY21a, Theorem 2] there is
a sheafification functor MPST → MNST, which is an exact left adjoint to the inclusion
MNST→MPST. The full subcategory of MPST with objects the (P1,∞)-invariant mod-
ulus presheaves with transfers having semipurity and M -reciprocity is denoted by CIτ,sp, see
[Sai20, Definition 1.31]. We set CIτ,spNis = CIτ,sp ∩MNST. By [Sai20, Theorem 0.4] the

sheafification restricts to CIτ,sp → CIτ,spNis . Note that if F ∈ RSCNis, then F̃c, ω
CIF ∈ CIτ,spNis ,

see 5.1 and 5.2. In particular,

W̃nΩqc ∈ CIτ,spNis ,

see 5.2 and Theorem 5.4 for the notation (here c is the conductor defined by the filtration

from Definition 2.6), and (W̃nΩqc)(X,D) as defined above coincides with WnΩ
q
(X,D) as defined

in 6.2.
The assignment (Y,E) 7→ KM

r (Y \ E) defines a modulus sheaf with transfers denoted by
ω∗KM

r . For G ∈ CIτ,spNis and r ≥ 0 we define

γrG := HomMPST(ω
∗KM

r , G).

By, e.g., [BRS22, Corollary 4.5], we have γrG ∈ CIτ,spNis and by [BRS22, Theorem 6.3] there is
a canonical isomorphism for any s ≥ r

(7.1.1) (γrG)(X,D)
∼= Rrπ∗G(Ps×X,π∗D),

where π : Ps ×X → X is the projection.

Lemma 7.2. Let G′ → G→ G′′ be a sequence in CIτ,spNis . Assume that

0→ G′
(Ps×X,π∗D) → G(Ps×X,π∗D) → G′′

(Ps×X,π∗D) → 0

is an exact sequence of Nisnevich sheaves on Ps ×X for all s ≥ 0. Then the following is an
exact sequence of Nisnevich sheaves on X for all r ≥ 0

0→ (γrG′)(X,D) → (γrG)(X,D) → (γrG′′)(X,D) → 0.

Proof. From (7.1.1) we get a long exact sequence for any s ≥ 0

0→ G′
(X,D) → G(X,D) → G′′

(X,D) → (γ1G′)(X,D) → . . .→ (γsG)(X,D) → (γsG′′)(X,D).

Thus it remains to show that (γrG)(X,D) → (γrG′′)(X,D) is surjective, for every r ≤ s. By
(7.1.1) this is equivalent to the surjectivity of

Rrπ∗G(Pr×X,π∗D) → Rrπ∗G
′′
(Pr×X,π∗D).

This holds as Rr+1π∗G
′
(Pr×X,π∗D) = 0, by the blow-up formula [BRS22, Theorem 6.3]. �

For D = ∅ the following theorem is [BRS22, Theorem 11.8].

Theorem 7.3. Let η = dlog c1(O(1)) ∈ H
1(PrX ,WnΩ

1
Pr
X ,log

), where c1(O(1)) ∈ H
1(PrX ,Gm)

is first chern class of O(1), and denote by ηr ∈ Hr(PrX ,WnΩ
r
Pr
X ,log

) the r-fold cup product of

η. Then via (7.1.1) cupping with ηr induces an isomorphism

− ∪ ηr : WnΩ
q−r
(X,D)

≃
−→ Rrπ∗WnΩ

q
(Pr×X,π∗D)

∼= (γrWnΩ
q)(X,D).

Furthermore this isomorphism is compatible with F , V , R, p, and d.
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Proof. The last statement follows directly from the usual compatibilities of V , F , R, p, and
d with the dlog-map and the naturality of the isomorphism (7.1.1). Set

X = (X,D), and Pr = (Pr ×X,π∗D).

For n = 1 observe that by (6.2.4) we have a Künneth formula

ΩqPr =
⊕

a+b=q

π∗ΩaX ⊗OPr ρ
∗ΩbPr ,

where ρ : Pr × X → Pr denotes the projection. Hence in this case the statement holds by
the projection formula and the classical result for Pr. For q > N + r both sides of the first
isomorphism in the statement are zero. Set

Gqn := W̃nΩqc, Hq := Ω̃qc ⊕ Ω̃q+1
c.

We have Gqn, Hq ∈ CIτ,spNis . Denote by I ′ the presheaf image of (Fn, Fnd) : Gqn+1 → Hq and

by J ′ the presheaf image of dV n − V n : Hq → Gq+1
n+1. It follows that I ′, J ′ ∈ CIτ,sp, c.f.

[Sai20, Lemma 1.32]. Thus by [Sai20, Theorem 0.4] the sheafifications I and J lie in CIτ,spNis
and are the sheaf-theoretic images of the morphisms (Fn, Fnd) and dV n − V n, respectively.
By Proposition 6.19 we have short exact sequences for all s ≥ 0

0→ Gqn,Ps

p
−→ Gqn+1,Ps → IPs → 0, and 0→ IPs → Hq

Ps → JPs → 0.

Hence Lemma 7.2 gives a commutative diagram with exact rows

0 // (γrGqn)X
p

// (γrGqn+1)X
(Fn,Fnd) // (γrHq)X

dV n−V n
// (γrJ)X

��

(γrGq+1
n+1)X

0 // Gq−rn,X

p
//

α1

OO

Gq−rn+1,X

(Fn,Fnd)
//

α2

OO

Hq−r
X

dV n−V n
//

α3

OO

Gq+1−r
n+1,X ,

α4

OO

where the upwards pointing vertical maps are all induced by cupping with ηr and (7.1.1).
Now α1 is an isomorphism by induction over n, α3 is an isomorphism by the case n = 1,
and α4 is an isomorphism by descending induction over q. Hence α2 is an isomorphism as
well. �

7.4. Thanks to Theorem 7.3 the projective bundle formula, the blow-up formula, and the
Gysin triangle for general G ∈ CIτ,spNis from [BRS22] can be made more explicit for G =

W̃nΩqc ∈ CIτ,spNis :

(1) Let V be a locally free OX -module of rank r + 1 and denote by π : P(V ) → X the
corresponding projective bundle. Then there is a canonical isomorphism in D(WnOX)

Rπ∗WnΩ
q
(P(V ),π∗D)

∼=

r⊕

j=0

WnΩ
q−j
(X,D)[−j].

The morphism is induced by cupping with c1(O(1))
j ∈ CHj(P(V )), see [BRS22, The-

orem 6.3]. In that theorem the isomorphism takes only place in the derived category
of abelian sheaves but it is direct to check that in the case at hand it is WnOX-linear.
Furthermore it is compatible with F , V , R, p, and d. For D = ∅ this isomorphism is
due to Gros [Gro85, I, Theorem 4.1.11].
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(2) Let i : Z →֒ X be a closed immersion of a smooth closed subscheme of pure codi-
mension r which intersects D transversally, i.e., the scheme-theoretic intersection
Z ∩ D1 ∩ . . . ∩ Dj is either empty or smooth of codimension j in Z, for any num-

ber of irreducible components D1, . . . ,Dj of Dred. Let ρ : X̃ → X be the blow-up in
Z. Then there is a canonical isomorphism in D(WnOX)

Rρ∗WnΩ
q

(X̃,ρ∗D)
∼=WnΩ

q
(X,D) ⊕

r−1⊕

j=1

i∗WnΩ
q−j
(Z,D|Z)[−j],

see [BRS22, Corollary 7.3]. For D = ∅, this isomorphism is due to Gros [Gro85, IV,
Corollaire 1.1.11].

(3) Let the notation be as in (2) and denote by E = ρ−1(Z) the exceptional divisor. Then
there is a canonical distinguished triangle in D(WnOX) called the Gysin triangle

i∗WnΩ
q−r
(Z,D|Z)[−r]

g
−→WnΩ

q
(X,D)

ρ∗
−→ Rρ∗WnΩ

q

(X̃,ρ∗D+E)

∂
−→ i∗WnΩ

q−r
(Z,D|Z)[−r + 1],

where g = g(X,D)/(Z,D|Z ) denotes the Gysin morphism, see [BRS22, Theorem 7.16].

For D = ∅, this triangle is also spelled out in [BRS22, Corollary 11.10(2)].

The Gysin triangle gives the following Lefschetz type theorem.

Theorem 7.5. Assume that X is additionally projective and let H ⊂ X be a smooth hyper-
surface section which intersects D transversally and satisfies

Hj(X,ΩN(X,D)(H)) = 0, for all j ≥ 1,

where ΩN(X,D)(H) = ΩN(X,D) ⊗OX
OX(H). Then the Gysin map

Hj−1(H,WnΩ
N−1
(H,D|H)) −→ Hj(X,WnΩ

N
(X,D))

is an isomorphism for j ≥ 2 and is surjective for j = 1.

Proof. By the Gysin triangle from 7.4(3) we have to show the vanishing

(7.5.1) Hj(X,WnΩ
N
(X,D+H)) = 0, for j ≥ 1.

As ZnΩ
N
X = ΩNX , we have

ZnΩ
N
(X,D+H) = ΩN(X,D+H) = ΩN(X,D)(H),

where the second equality follows from ΩNX(log(D+H)) = ΩNX(Dred+H) and the first equality
holds by Lemma 6.16. Thus (7.5.1) follows by induction over n from Proposition 6.18 noting

that BnΩ
N+1
(X,D+H) = 0. �

Finally we mention the following version of Serre type vanishing.

Theorem 7.6. Let H ⊂ X be a smooth and ample divisor intersecting D transversally. Then
for any large enough m we have

Hj(X,WnΩ
q
(X,D+pn+1mH)

) = 0, for all j ≥ 1.

Proof. With the notation from 6.8 and 6.11 we have

Ωqn(D
′, p(Dn+1 +mE)) = Ωqn(D

′, pDn+1)⊗OX
OX(pmE),

where D = D′ + pn+1Dn+1 is a p-divisibility decomposition, and from (6.11.3) we obtain
inductively

Bq
j,n(D

′, p(Dn+1 +mE)) = Bq
j,n(D

′, pDn+1)⊗OX
OX(pmE),
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for all j = 0, . . . , n, and similarly for B replaced by Z. Thus by Serre vanishing the cohomol-
ogy of the sheaves Bq

j,n(D
′, p(Dn+1 +mE)) and Zqj,n(D

′, p(Dn+1 +mE)) vanishes in positive
degrees, for all j and all q and for any large enough m. Hence the statement follows from
Proposition 6.18 together with Proposition 6.15. �

8. The structure of Hodge-Witt sheaves with zeros

By definition a Hodge-Witt form has modulus (X,D) if it is a regular form on X \D with
certain pole constraints along D. In this section we introduce and study a notion of forms
vanishing along D. We will see in the next section that these two notions of poles and zeros
match up under duality. The main result in this section is Theorem 8.7, which gives precise
information about the structure of Hodge-Witt sheaves with zeros along D.

Throughout this section we assume X ∈ Sm and we let D be an effective Cartier divisor on
X such that Dred is an SNCD. We remind the reader of our convention log(D) = log(Dred).

Definition 8.1. Suppose D =
∑

iDi with Di,red smooth. Define

WnΩ
q
(X,−D) := Ker

(
WnΩ

q
X −→

⊕

i

WnΩ
q
Di

)
,

where we view Di as a closed (in general non-reduced) subscheme of X. For n = 1, we write

Ωq(X,−D) :=W1Ω
q
(X,−D).

Remark 8.2. It follows from [Mok93, Lemme 3.15.1], see also [Nak05, Corollary 6.28], that
the sheafWnΩ

q
(X,−Dred)

coincides withWnΩ
q
X(− logDred) defined in [Hyo88, 1.]. To our knowl-

edge the sheaf WnΩ
q
(X,−D) was not considered before for a non-reduced divisor. Moreover it

seems it cannot be defined or studied by the machinery introduced in [Nak05, 6.] as the Cartier
isomorphism from [DI87, (4.2.1.3)] does not extend to this situation. For example if D = nD0

with D0 smooth connected, then the inverse Cartier operator induces an isomorphism (e.g.
Lemma 6.6)

ΩqX(logD0)(−nD0)
≃
−→ Hq(F∗(Ω

•(logD0)(−pn+ (p− 1)D0)))

and only for n = 1 the right hand side is isomorphic to Hq(F∗(Ω
•
X(logD0)(−nD0))).

8.3. Note that since theDi may be non-reduced many of the structure results for the de Rham-
Witt complex given, e.g., in [Ill79] or [IR83] cannot be applied to WnΩ

q
Di
. It is however direct

from the definition that WnΩ
q
(X,−D) is a WnOX -submodule of WnΩ

q
X and that the maps F ,

V , R, p, d restrict to give maps

Wn−1Ω
q
(X,−D)

p, V
//
WnΩ

q
(X,−D)

R,F
oo

d // WnΩ
q+1
(X,−D).

In fact F , V , R, and d are defined on W·Ω
•
T for all Fp-schemes T , by [Ill79, I, Théorème 1.3

and Théorème 2.17]. For the definition of p note, that Kn,Di := Ker(WnΩ
∗
X →WnΩ

∗
Di
) is the

differential graded ideal of WnΩ
∗
X generated byWn(IDi), where IDi ⊂ OX is the ideal sheaf of

the closed subschemeDi ⊂ X, see [Hes04, Lemma 1.2.2]. As the restriction mapWn+1(IDi)→
Wn(IDi) is surjective, it follows directly from the definition that p : WnΩ

∗
X → Wn+1Ω

∗
X

restricts to Kn,Di → Kn+1,Di and hence also to WnΩ
∗
(X,−D) = ∩iKn,Di →Wn+1Ω

∗
(X,−D).

Lemma 8.4. Let D = D0 + pD1 be a p-divisibility decomposition, see 6.1. Then

Ωq(X,−D) = ΩqX(logD0)(−D).
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Proof. Let A be a smooth k-algebra and t ∈ A such that R = A/(t) is smooth as well. In this
case there is an isomorphism A/(tm) ∼= R[t]/(tm), for all m ≥ 1. We find

(8.4.1) ΩqA/(tm)
∼=

{
(R[t]/(tm)⊗R ΩqR)⊕ (R[t]/(tm−1)⊗R Ωq−1

R )dt, if (m, p) = 1

(R[t]/(tm)⊗R ΩqR)⊕ (R[t]/(tm)⊗R Ωq−1
R )dt, if p|m.

Hence ΩqA/(tm) is a free R-module and the map ΩqA/(tm) → ΩqA/(tm) ⊗R Frac(R) is injective.

As ΩqX(logD0)(−D) is locally free and clearly maps into Ωq(X,−D), we see from the above

that it suffices to prove the equality around the generic points of D. In which case it follows
directly from (8.4.1). �

Proposition 8.5. Suppose X has pure dimension N . For all n ≥ 0 the map

(8.5.1) FnX∗Ω
q
(X,−D) ≃ F

n
X∗HomOX

(ΩN−q
(X,D),Ω

N
X) −→ HomOX

(FnX∗Ω
N−q
(X,D),Ω

N
X),

given by

α 7→ (β 7→ Cn(α ∧ β)),

is an isomorphism of locally free OX -modules, where Cn : FnX∗Ω
N
X → ΩNX denotes the Cartier

operator and Ωq(X,D) is defined in 6.2.

Proof. Let D = D0 + pD1 be a p-divisibility decomposition. In the case n = 0 the isomor-

phism follows from twisting the isomorphism ΩqX(logD0) ∼= Hom(ΩN−q
X (logD0),Ω

N
X(logD0))

by OX(−D) together with the explicit formulas given in Lemma 8.4, in (6.2.4), and the iso-
morphism ΩNX(logD0) ∼= ΩNX(D0,red). Applying FnX∗ yields the first isomorphism in (8.5.1).
The second map is an isomorphism as well. Indeed as X is smooth over a perfect field
of characteristic p we have a natural isomorphism of OX -modules (FnX )!ΩNX

∼= ΩNX and the
composition

(8.5.2) FnX∗Ω
N
X
∼= FnX∗(F

n
X)

!ΩNX
TrFn

X−−−→ ΩNX ,

where TrFn
X
is the counit of adjunction, is equal to the n-fold iteration of the Cartier operator

Cn, e.g. [Eke84, II, Lemma 2.1]. Hence the second map is an isomorphism by adjunction. �

8.6. By [Ill79, I, Corollaire 3.9] we have an exact sequence of Wn+1OX -modules

(8.6.1) 0 −→
FnX∗Ω

q
X

BnΩ
q
X

V n

−−→ Ker
(
Wn+1Ω

q
X

R
−→ WnΩ

q
X

)
β
−→

FnX∗Ω
q−1
X

ZnΩ
q−1
X

−→ 0,

where the Wn+1OX -module structure on the two outer OX -modules is induced by Rn :
Wn+1OX → OX and the map β is given by β(V n(a) + dV n(b)) = b. Moreover we have
an injection of Wn+1OX-modules

(8.6.2) 0→
FnX∗Ω

q−1
X

ZnΩ
q−1
X

dV n−1

−−−−→ F∗WnΩ
q
X .

For n = 0 and q ≥ 0, define the OX -modules

(Ω/B)q0,(X,−D) = Ωq(X,−D) and (Ω/Z)q−1
0,(X−D) = 0.
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For n ≥ 1, q ≥ 0 we define the Wn+1OX -modules (Ω/B)qn,(X,−D) and (Ω/Z)q−1
n,(X−D) by

requiring that the following two diagrams are cartesian in the category of Wn+1OX -modules

(8.6.3) (Ω/B)q
n,(X,−D)

//

��

Wn+1Ω
q
(X,−D)

��
Fn
X∗Ω

q
X

BnΩ
q
X

V n
// Wn+1Ω

q
X ,

(Ω/Z)q−1
n,(X,−D)

//

��

F∗WnΩ
q
(X,−D)

��
Fn
X∗Ω

q−1
X

ZnΩ
q−1
X

dV n−1
// F∗WnΩ

q
X .

Note that we can view (Ω/B)qn,(X,−D) and (Ω/Z)q−1
n,(X,D) as OX -submodules of FnX∗Ω

q
X/BnΩ

q
X

and FnX∗Ω
q−1
X /ZnΩ

q
X , respectively. In the following we will denote the top horizontal maps in

the two diagrams as well by V n and dV n−1, respectively.
Some consequences from this definition:

(a) It is direct from the definition that

(Ω/B)q1,(X,−D) = {a ∈ FX∗Ω
q
X/B

q(Ω•
X) | V (a) ∈W2Ω

q
(X,−D)},

(Ω/Z)q−1
1,(X−D) =

FX∗Ω
q−1
(X,−D)

Z1Ω
q−1
X ∩ Ωq−1

(X,−D)

=
FX∗Ω

q−1
(X,−D)

Zq−1(Ω•
(X,−D))

.

(b) For any n ≥ 1, the diagram

(Ω/B)q−1
n,(X,−D)

//

��

Fd◦V n

++
(Ω/Z)q−1

n,(X,−D)
//

��

F∗WnΩ
q
(X,−D)

��
Fn
X∗Ω

q−1
X

BnΩ
q−1
X

// // F
n
X∗Ω

q−1
X

ZnΩ
q−1
X

dV n−1
// F∗WnΩ

q
X .

shows that the surjection ΩqX/BnΩ
q
X → ΩqX/ZnΩ

q
X induces a well-defined map

(8.6.4) (Ω/B)qn,(X,−D) → (Ω/Z)qn,(X,−D).

(c) For n ≥ 0, the diagram

FX∗(Ω/B)qn,(X,−D)
//

��

V ◦V n

++
(Ω/B)qn+1,(X,−D)

//

��

Wn+2Ω
q
(X,−D)

��
Fn+1
X∗ Ωq

X

FX∗BnΩ
q
X

// // F
n+1
X∗ Ωq

X

Bn+1Ω
q
X

V n+1
// Wn+2Ω

q
X ,

shows that the surjection ΩqX/BnΩ
q
X → ΩqX/Bn+1Ω

q
X induces a well-defined map

F∗(Ω/B)q−1
n,(X,−D) → (Ω/B)q−1

n+1,(X,−D).
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Similarly, for n ≥ 1, the diagram

(Ω/Z)q−1
n+1,(X,−D)

//

��

F◦dV n

++
FX∗(Ω/Z)

q−1
n,(X,−D)

//

��

F 2
∗WnΩ

q
(X,−D)

��
Fn+1
X∗ Ωq−1

X

Zn+1Ω
q−1
X

// // F
n+1
X∗ Ωq−1

X

FX∗ZnΩ
q−1
X

dV n−1
// F 2

∗WnΩ
q
X .

shows that the surjection ΩqX/Zn+1Ω
q
X → ΩqX/ZnΩ

q
X induces a well-defined map

(8.6.5) (Ω/Z)q−1
n+1,(X,−D) → F∗(Ω/Z)

q−1
n,(X,−D).

Here we have used the fact that F∗ : (Wn+1OX -mod) → (WnOX-mod) has a left
adjoint and hence the diagrams in (8.6.3) stay cartesian after applying F∗.

The aim of this section is to prove the following theorem:

Theorem 8.7. Let the notation be as above and assume X is of pure dimension N .

(1) There is an exact sequence of Wn+1OX-modules

0 −→ (Ω/B)qn,(X,−D)

V n

−−→ Ker
(
Wn+1Ω

q
(X,−D)

R
−→WnΩ

q
(X,−D)

)
β
−→ (Ω/Z)q−1

n,(X,−D) −→ 0,

where the map β is induced from the map β in (8.6.1).
(2) The restriction map R : Wn+1Ω

q
(X,−D) →WnΩ

q
(X,−D) is surjective.

(3) The isomorphism (8.5.1) induces isomorphisms of locally free coherent OX -modules

(Ω/B)qn,(X,−D)

≃
−→ Hom(ZnΩ

N−q
(X,D),Ω

N
X), (Ω/Z)q−1

n,(X,−D)

≃
−→ Hom(BnΩ

N−q+1
(X,D) ,Ω

N
X),

where ZnΩ
N−q
(X,D) and BnΩ

N−q+1
(X,D) are defined in (6.4.1).

For D = ∅ part (1) holds by [Ill79, I, Corollaire 3.9], part (2) holds by definition of the
de Rham-Witt complex, and part (3) by [Eke84, II, Lemma 2.2.20]. It will take the rest of
this section to prove this theorem. Part (1) is proven in Proposition 8.14 and part (2) in
Lemma 8.15, finally, part (3) follows from Proposition 8.21 and Proposition 8.19 together
with Proposition 6.15.

8.8. Let E be an effective Cartier divisor on X such that Dred+Ered is a reduced SNCD. We
will use the following notation

(8.8.1) Ωqn(−D,−E) := ΩqX(logD)(−⌈D/pn⌉ − E), n, q ≥ 0.

This is a locally free coherent OX-module. Let D = D′ + pnDn be a p-divisibility decompo-
sition. Similar to 6.8, we observe

(a) Ωqn(−D′,−Dn − E) ⊂ Ωqn(−D,−E). This inclusion is strict if Dn 6= 0.

(b) There is a well-defined differential map d : Ωqn(−D,−pE)→ Ωq+1
n (−D,−pE) induced

from the differential map of Ω•
X . Moreover we have an inclusion of complexes

Ω•
n−1(−D

′,−pDn − pE) ⊂ Ω•
n−1(−D,−pE).

(c) The natural map

Ω•
X(logD)(−p⌈D/pn⌉ − pE)→ Ω•

n−1(−D,−pE)
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is a quasi-isomorphism by Lemma 6.6. Hence the inverse Cartier operator induces an
isomorphism of OX-modules

(8.8.2) C−1 : Ωqn(−D,−E)
≃
−→ Hq(FX∗Ω

•
n−1(−D,−pE)).

Moreover we obtain a commutative diagram of locally free OX -modules

(8.8.3) Ωqn(−D′,−Dn − E)
C−1

≃
//

� _

��

Hq(FX∗Ω
•
n−1(−D

′,−pDn − pE))

��
Ωqn(−D,−E)

C−1

≃
// Hq(FX∗Ω

•
n−1(−D,−pE)).

As a consequence the vertical map on the right is injective as well.

8.9. Let X, D, and E be as in 8.8 above. Let n ≥ 1. The inverse Cartier isomorphism defines
the following exact sequence of locally free OX-modules

(8.9.1) 0→ Ωqn(−D,−E)
C−1

−−−→
FX∗Ω

q
n−1(−D,−pE)

Bq(FX∗Ω•
n−1(−D,−pE))

→
FX∗Ω

q
n−1(−D,−pE)

Zq(FX∗Ω•
n−1(−D,−pE))

→ 0.

The fact that these modules are locally free follows via descending induction on q by consid-
ering as well the exact sequence

0→
FX∗Ω

q
n−1(−D,−pE)

Zq(FX∗Ω
•
n−1(−D,−pE))

d
−→ FX∗Ω

q+1
n−1(−D,−pE)→

FX∗Ω
q+1
n−1(−D,−pE)

Bq+1(FX∗Ω
•
n−1(−D,−pE))

→ 0.

Lemma 8.10. Let X, D, and E be as above. Then for n ≥ 0

Bq(Ω•
X) ∩ Ωqn(−D,−pE) = Bq(Ω•

n(−D,−pE)).

In particular

Bq(Ω•
X) ∩Ωq(X,−D) = B

q(Ω•
(X,−D)).

Proof. The “in particular” part follows from the first statement and Lemma 8.4. For the first
statement we only have to show this “⊂” inclusion. As the OX -module Bq(FX∗Ω

•
n(−D,−pE))

is locally free by 8.9 it suffices to show the inclusion around each generic point of D or E, c.f.
the argument in the proof of (6.16.1). Since the question is moreover local in the Nisnevich
topology, we may assume that X = SpecR[t], with R a smooth k-algebra, and D or E is

equal to Div(tr), r ≥ 0. Thus ΩqR[t] = ΩqR[t]⊕Ωq−1
R [t]dt, where for an R-module M we denote

by M [t] the free R-module ⊕j≥0Mtj . In this situation Ωqn(−D,−pE) has one of the following
forms

(a) tsΩqR[t]⊕ t
s−1Ωq−1

R [t]dt, with s = ⌈r/pn⌉, when D = Div(tr);
(b) tprΩqR[t], when E = Div(tr).

We consider the case (a). Let a = a0 +
∑

j≥1(ajt
j + bjt

j−1dt) ∈ Ωq−1
R[t] , with aj ∈ Ωq−1

R and

bj ∈ Ωq−2
R , and assume da ∈ tsΩqR[t]⊕ t

s−1Ωq−1
R [t]dt. Set

a′ := a0 +
∑

1≤j≤s−1

p|j

(ajt
j + bjt

j−1dt) +
∑

1≤j≤s−1

p∤j

(−1)q−2

j d(bjt
j) ∈ Ωq−1

R[t] .

Then it is direct to check that

a− a′ ∈ tsΩq−1
R [t]⊕ ts−1Ωq−2

R [t]dt and da = d(a− a′).
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In case (b), take a ∈ Ωq−1
R[t] with da = tprb, with b ∈ ΩqR[t]. Applying the Cartier operator

yields 0 = trC(b). Thus C(b) = 0, thus b = dc, for some c ∈ Ωq−1
R[t] . Hence da = d(tprc).

Both cases together imply the statement. �

Lemma 8.11. Let D = D′ + pn+1Dn+1 be a p-divisibility decomposition. For α ∈ ΩqX we
have

pn(α) ∈Wn+1Ω
q
(X,−D) ⇐⇒ α ∈ Ωqn(−D

′,−pDn+1).

Moreover, the restriction map

Rj : Wn+j+1Ω
q
(X,−D) ∩ p

n(Wj+1Ω
q
X)→ Wn+1Ω

q
(X,−D) ∩ p

n(ΩqX)

is surjective.

Proof. We first show that for any germ α ∈ Ωqn(−D′,−pDn+1)x, with x ∈ D a closed point,
we find a lift α̃ ∈ Wj+1Ω

q
X,x such that pn(α̃) ∈ Wn+j+1Ω

q
(X,−D),x. Taking j = 0 yields

this “⇐” direction and after the other direction will be proven below, it will also imply the
“Moreover”-part. Let A = OX,x. We find an étale map k[t1, . . . , td]→ A, such that t1, . . . , td
form a regular sequence of parameters for A and on SpecA we have

D′ = Div(tm1
1 · · · t

mr
r ) and Dn+1 = Div(t

mr+1

r+1 · · · t
ms
s ),

with 0 ≤ r ≤ s ≤ d and pn+1 ∤ mi, for i = 1, . . . , r (with the convention that r = 0 means
that D′ = ∅ and r = s means that Dn+1 = ∅). Thus

D = Div(tm1
1 · · · t

mr
r · t

pn+1mr+1

r+1 · · · tp
n+1ms
s ).

A basis of the free A-module Ωqn(−D′,−pDn+1)x = ΩqX(logD
′)(−⌈D′/pn⌉− pDn+1)x is given

by

eI,J = t
⌈
m1
pn

⌉

1 · · · t
⌈mr
pn

⌉
r t

pmr+1

r+1 · · · tpms
s · dlog tI dlog(1 + tJ),

where I and J run through the tuples I = (1 ≤ i1 < . . . < iq1 ≤ r) and J = (r + 1 ≤ j1 <
. . . < jq2 ≤ d) with q1 + q2 = q and where we use the notations

tI = {ti1 , . . . , tiq1} ∈ K
M
q1 (A[

1
ti1 ···tiq1

]) and 1 + tJ = {1 + tj1 , . . . , 1 + tjq2} ∈ K
M
q2 (A).

Set

ẽI,J := [t1]
⌈
m1
pn

⌉ · · · [tr]
⌈mr
pn

⌉
[tr+1]

pmr+1 · · · [ts]
pms · dlog tI dlog(1 + tJ) ∈Wj+1Ω

q
A.

Note that pn : ι∗Wj+1Ω
q
X → Wn+j+1Ω

q
X is Wn+j+1OX -linear, where ι : Wj+1X → Wn+j+1X

denotes the map of schemes induced by the restriction Rj : Wn+j+1OX → Wj+1OX . Since
Wn+j+1Ω

q
(X,−D),x is aWn+j+1A-submodule ofWn+j+1Ω

q
X,x, it suffices to show that pn(ẽI,J) ∈

Wn+j+1Ω
q
(X,−D),x. Indeed, if α =

∑
I,J aI,JeI,J ∈ Ωqn(−D′,−pDn+1)x, aI,J ∈ A, is an

arbitrary element, then we can choose any lifts ãI,J ∈ Wj+1(A) of aI,J , and the element
α̃ :=

∑
I,J ãI,J ẽI,J is a lift of α and satisfies pn(α̃) ∈Wn+j+1Ω

q
(X,−D),x.

Thus it remains to show that the element

pn(ẽI,J) = pn[t1]
⌈
m1
pn

⌉ · · · [tr]
⌈mr
pn

⌉
[tr+1]

pmr+1 · · · [ts]
pms · dlog tI dlog(1 + tJ) ∈Wn+j+1Ω

q
A

lies inWn+j+1Ω
q
(X,−D),x. To this end we have to show that pn(ẽI,J) vanishes inWn+j+1Ω

q
A/tmi

,

where m = mi, if 1 ≤ i ≤ r, and m = pn+1mi, if r + 1 ≤ i ≤ s. We consider the following
four cases:

• If r + 1 ≤ i ≤ s, then

pn(ẽI,J) = pn[tpmi
i ]α = V n([ti]

pn+1mi) · α, for some α ∈Wn+j+1Ω
q
A.



56 FEI REN AND KAY RÜLLING

• If 1 ≤ i ≤ r and i 6∈ I, then pn⌈mi
pn ⌉ = mi + e, for some e ≥ 0, and thus

pn(ẽI,J) = pn[ti]
⌈
mi
pn

⌉
α = V n([ti]

mi+e) · α, for some α ∈Wn+j+1Ω
q
A.

• If 1 ≤ i ≤ r, i ∈ I, and pn ∤ mi, then we have pn⌈mi/p
n⌉ = mi + e, for some e ≥ 1,

and thus

pn(ẽI,J) = pn[ti]
⌈
mi
pn

⌉
dlog ti · β = V n([ti]

mi [ti]
e dlog ti) · β, for some β ∈Wn+j+1Ω

q−1
A .

• If 1 ≤ i ≤ r, i ∈ I, and pn|mi, then µ = mi/p
n is prime to p and we find

pn(ẽI,J) = pn[ti]
µ dlog ti · β = 1

µdV
n([ti]

mi) · β, for some β ∈Wn+j+1Ω
q−1
A .

Therefore the vanishing of pn(ẽI,J) in Wn+j+1Ω
q
A/tmi

holds in all four cases.

Next we prove this “⇒” direction. Since Ωqn(−D′,−pDn+1) is locally free on a smooth
scheme, it suffices to show the statement around all generic points of D. Since the statement
is furthermore Nisnevich local we may assume X = SpecR[t], with R a smooth k-algebra,
and D = Div(tm). Let Rn+1 be a smooth lift of R over Wn+1(k). By [IR83, III, (1.5)] and
[BER12, Proposition 8.4] there is a unique injective map

F̃n+1 : Wn+1Ω
q
R[t]
→ Ωq

Rn+1[t]
/Bq(Ω•

Rn+1[t]
),

which makes the following diagram commutative

Wn+2Ω
q
Rn+1[t]

Fn+1
//

��

ΩqRn+1[t]

��
Wn+1Ω

q
R[t]

F̃n+1
// ΩqRn+1[t]

/Bq,

where we use that the de Rham-Witt complex exists for Rn+1[t] as well, see [HM04]. By
[Hes04, Lemma 1.2.2]

Wn+1Ω
q
(R[t],tm) := Ker(Wn+1Ω

q
R[t] →Wn+1Ω

q
R[t]/tm)

is the degree q part of the differential graded ideal generated by Wn+1(t
mR[t]), i.e.,

Wn+1Ω
q
(R[t],tm) =Wn+1(t

mR[t]) ·Wn+1Ω
q
R[t] + d(Wn+1(t

mR[t])) ·Wn+1Ω
q−1
R[t] .

Thus F̃n+1(Wn+1Ω
q
(R[t],tm)) is contained in the image of the following group in ΩqRn+1[t]

/Bq

tpmΩqRn+1[t]
+mtpm dlog(t)Ωq−1

Rn+1
,

where the second summand contains F̃n+1(dV n(tmR)Wn+1Ω
q−1
R ). More precisely, set

Ωqe := te(ΩqRn+1
⊕ Ωq−1

Rn+1
dlog t), if pn+1 ∤ e ≥ 1,

and
Ωq0,0 := ΩqRn+1

, Ωqe,0 := teΩqRn+1
, Ωqe,1 := teΩq−1

Rn+1
dlog t, if pn+1 | e ≥ 1.

Then we obtain a direct sum decomposition of complexes

Ω•
Rn+1[t]

=
⊕

e≥1, pn+1∤e

Ω•
e ⊕

⊕

e≥0, pn+1|e

Ω•
e,0 ⊕

⊕

e≥1, pn+1|e

Ω•
e,1

and hence also a direct sum decomposition

ΩqRn+1[t]

Bq(Ω•
Rn+1[t]

)
=

⊕

e≥1, pn+1∤e

Ωqe
Bq(Ω•

e)
⊕

⊕

e≥0, pn+1|e

Ωqe,0
Bq(Ω•

e,0)
⊕

⊕

e≥1, pn+1|e

Ωqe,1
Bq(Ω•

e,1)
.
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With this notation the discussion above shows that F̃n+1(Wn+1Ω
q
(R[t],tm)) is contained in

(8.11.1)
⊕

e≥pm, pn+1∤e

Ωqe
Bq(Ω•

e)
⊕

⊕

e≥pm, pn+1|e

Ωqe,0
Bq(Ω•

e,0)
⊕

⊕

e≥pm+1, pn+1|e

Ωqe,1
Bq(Ω•

e,1)
⊕

mΩqpm,1
Bq(Ω•

pm,1) ∩mΩqpm,1
,

where the last summand only occurs if pn+1|pm and pn+1 ∤ m.
We show that

pn : ΩqR[t]/Ω
q
n(−D

′,−pDn+1)→Wn+1Ω
q
R[t]/Wn+1Ω

q
(R[t],tm)

is injective. Note that in the above situation we have two cases, where s = ⌈m/pn⌉,

Ωqn(−D
′,−pDn+1) =

{
ts(ΩqR[t] + ΩqR[t] dlog t) if pn+1 ∤ m
tsΩqR[t] if pn+1 | m.

Thus any element in the quotient ΩqR[t]/Ω
q
n(−D′,−pDn+1) can be written in the form

α = a0 +

s−1∑

j≥1

tj(aj + bj dlog t) + bst
s dlog t,

for ai ∈ ΩqR and bj ∈ Ωq−1
R , where bs = 0, if pn+1 ∤ m. We obtain

F̃n+1(pnα) ≡
s−1∑

j=0

pntjp
n+1

F̃n+1(ãj) +
s∑

j=1

pntjp
n+1

F̃n+1(b̃j) dlog t mod Bq,

where ãi and b̃j are lifts of ai and bj toWn+1Ω
q
R andWn+1Ω

q−1
R , respectively. As s−1 < m/pn

we obtain

F̃n+1(pnα) ∈
⊕

0≤e<pm

pn+1|e

Ωqe,0
Bq(Ω•

e,0)
⊕

⊕

1≤e<pm

pn+1|e

Ωqe,1
Bq(Ω•

e,0)
⊕

Ωqpm,1
Bq(Ωqpm,1)

,

where the last summand only occurs if pn+1 | m. Now assume pnα ∈ Wn+1Ω
q
(R[t],tm). Then

F̃n+1(pnα) lies in (8.11.1) as well. This implies F̃n+1(pnα) = 0 and hence by the injectivity

of F̃n+1pn, also that α = 0. This completes the proof. �

Lemma 8.12. Let a ∈ ΩqX be a local section satisfying dV n−1(a) ∈ WnΩ
q+1
(X,−D). Then there

exist local sections aj ∈ Wj+1Ω
q
X , j = 0, . . . , n − 1, and b ∈ Wn+1Ω

q
X such that pjaj =

pjRj(aj) ∈Wj+1Ω
q
(X,−D) and

a =

n−1∑

j=0

F j(aj) + Fn(b).

Proof. We show, for all s = −1, . . . , n − 1 we find aj ∈ Wj+1Ω
q
X , j = 0, . . . , s, as in the

statement such that

a ≡
s∑

j=0

F j(aj) mod F s+1Ws+2Ω
q
X .

There is nothing to show for s = −1. Assume 0 ≤ s ≤ n − 1 and the statement is true for
s− 1, i.e., we find aj, j = 0, . . . , s− 1, as in the claim and b ∈Ws+1Ω

q
X such that

a =

s−1∑

j=0

F j(aj) + F s(b) in ΩqX .
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Applying dV s yields

psdRs(b) = dV s(a)−
s−1∑

j=0

dV s−j(pjRj(aj)) ∈Ws+1Ω
q+1
(X,−D),

where we use dV s(a) = Fn−1−sdV n−1(a) ∈Ws+1Ω
q+1
(X,−D). Hence by Lemma 8.10 and Lemma

8.11 we find an element as ∈Ws+1Ω
q
X with psRs(as) ∈Ws+1Ω

q
(X,−D) such that dV s(F s(as)) =

dV s(F s(b)). As the kernel of dV s is F s+1Ws+2Ω
q−1
X the statement follows. �

Lemma 8.13. The following two equalities of subsheaves of Wn+1Ω
q
X hold

Wn+1Ω
q
(X,−D) ∩ V

n(ΩqX) =

n∑

j=0

V j
(
Wn+1−jΩ

q
(X,−D) ∩ p

n−j(ΩqX)
)

and

Wn+1Ω
q
(X,−D) ∩ dV

n(Ωq−1
X ) =

n∑

j=0

dV j
(
Wn+1−jΩ

q−1
(X,−D) ∩ p

n−j(Ωq−1
X )

)
.

Proof. We show the first equality. This “⊃” inclusion is obvious. We show the other inclusion.
Let a ∈ ΩqX be a local section with V n(a) ∈ Wn+1Ω

q
(X,−D). As dV n−1(a) = FdV n(a) ∈

WnΩ
q+1
(X,−D), we find elements aj ∈ Wj+1Ω

q
X and an element b ∈ Wn+1Ω

q
X as in Lemma 8.12.

Applying V n to the equality in that lemma yields

pnRn(b) = pnb =

n−1∑

j=0

V n−j(pjRj(aj))− V
n(a) ∈Wn+1Ω

q
(X,−D),

which proves the other inclusion in the first equality.
For the second equality we take a ∈ Ωq−1

X such that dV n(a) ∈Wn+1Ω
q
(X,−D). Thus Lemma

8.12 yields the existence of aj ∈ Wj+1Ω
q−1
X , j = 0, . . . , n, and b ∈ Wn+2Ω

q−1
X such that

pjRj(aj) ∈Wj+1Ω
q−1
(X,−D) and

a =
n∑

j=0

F j(aj) + Fn+1(b).

As dV n(Fn+1(b)) = pn+1Fd(b) = 0 we find

dV n(a) =
n∑

j=0

dV n−j(pjRj(aj)),

which proves the second equality. �

Proposition 8.14. There is a short exact sequence of Wn+1OX-modules

(8.14.1) 0→ (Ω/B)qn,(X,−D)

V n

−−→ grn(X,−D)
β
−→ (Ω/Z)q−1

n,(X,−D) → 0,

where grn(X,−D) := Ker(R : Wn+1Ω
q
(X,−D) →WnΩ

q
(X,−D)) and the map β is induced by V n(a)+

dV n(b) 7→ b. Furthermore the following diagram of sheaves of abelian groups is cartesian

(8.14.2) dV n(Ωq−1
X ) ∩Wn+1Ω

q
(X,−D)

��

F // WnΩ
q
(X,−D)

��
dV n(Ωq−1

X )
F // WnΩ

q
X .
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Proof. Consider the following diagram of Wn+1OX -modules

(8.14.3) (Ω/B)qn,(X,−D)
//

��

grn(X,−D)

��

//

F

++
(Ω/Z)q−1

n,(X−D)

��

// F∗WnΩ
q
(X,−D)

��
Fn
X∗Ω

q
X

BnΩ
q
X

V n
// grnX

β //

F

44
Fn
X∗Ω

q−1
X

ZnΩ
q−1
X

dV n−1
// F∗WnΩ

q
X .

The two outer squares are cartesian in the category of Wn+1OX -modules by definition, and
also in the category of sheaves of abelian groups as the forgetful functor (Wn+1OX -mod) →
(abelian-sheaves) has a left adjoint. Clearly the square with F as horizontal maps is commu-

tative and we have dV n−1 ◦ β = F . Hence by the definition of (Ω/Z)q−1
n,(X,−D) as a pullback in

(8.6.3) there is a unique dotted arrow which makes the middle square commutative. Thus all
the maps in (8.14.1) are defined. The injectivity of V n holds by definition, the exactness in
the middle of (8.14.1) follows from the exactness of (8.6.1) and the fact that the left square
is cartesian. We claim that the diagram of sheaves of abelian groups

(8.14.4) dV n(Ωq−1
X ) ∩Wn+1Ω

q
(X,−D)

��

β0 // (Ω/Z)q−1
n,(X−D)

��

dV n(Ωq−1
X )

β0 // Ωq−1
X

ZnΩ
q−1
X

is cartesian, where β0 is induced by β, i.e., β0(dV
n(a)) = a. If the claim is true, then the top

β0 is surjective as the bottom one is and hence also the dotted arrow in (8.14.3) is surjective.
Moreover the square (8.14.2) is cartesian, as it is a composition of two cartesian squares.

We prove the claim. Let a ∈ Ωq−1
X be a local section which mod ZnΩ

q−1
X lies in the

image Im((Ω/Z)q−1
n,(X,−D) →֒ Ωq−1

X /ZnΩ
q−1
X ). By (8.14.3) we have dV n−1(a) ∈ WnΩ

q
(X,−D).

As ZnΩ
q
X = Fn(Wn+1Ω

q
X), Lemma 8.12 yields the existence of local sections aj ∈ Wj+1Ω

q
X ,

j = 0, . . . , n− 1, such that pjaj = pjRj(aj) ∈Wj+1Ω
q
(X,−D) and

a =
n−1∑

j=0

F j(aj) in ΩqX/ZnΩ
q
X .

Moreover

dV n(
n−1∑

j=0

F j(aj)) =
n−1∑

j=0

dV n−j(pjRj(aj)) ∈Wn+1Ω
q
(X,−D)

and it maps to a under β0. Hence (8.14.4) is cartesian. �

Lemma 8.15. The restriction map R : Wn+1Ω
q
(X,−D) →WnΩ

q
(X,−D) is surjective.

Proof. We show

(8.15.1) Rr : Wn+rΩ
q
(X,−D) →WnΩ

q
(X,−D) is surjective, for all r ≥ 1.

For n = 1 this holds by the “Moreover”-part of Lemma 8.11 (take (j, n) there as (r, 0) here).
Assume n ≥ 2. Let w ∈ WnΩ

q
(X,−D) be a local section. Set wn−1 := R(w) ∈ Wn−1Ω

q
(X,−D).

By induction there exists an wn+r ∈ Wn+rΩ
q
(X,−D) with Rr+1(wn+r) = wn−1. Set wn :=
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Rr(wn+r) ∈ WnΩ
q
(X,−D). Since both w and wn are lifts of wn−1, we have R(w − wn) = 0.

Thus there exist elements a ∈ ΩqX and b ∈ Ωq−1
X with

V n−1(a) + dV n−1(b) = w − wn ∈WnΩ
q
(X,−D)

.

As F (V n−1(a)) = 0, the cartesian diagram (8.14.2) yields dV n−1(b) ∈ WnΩ
q
(X,−D) and hence

also V n−1(a) ∈ WnΩ
q
(X,−D). By Lemma 8.13 we find elements aj ∈ ΩqX and bj ∈ Ωq−1

X such

that

V n−1(a) =

n−1∑

j=0

V j(pn−1−jaj) and pn−1−jaj ∈Wn−jΩ
q
(X,−D), for all j,

and

dV n−1(b) =
n−1∑

j=0

dV j(pn−1−jbj) and pn−1−jbj ∈Wn−jΩ
q−1
(X,−D), for all j.

By the “Moreover”-part of Lemma 8.11 we find sections αj ∈ Wn−j+1Ω
q
(X,−D) and βj ∈

Wn−j+1Ω
q−1
(X,−D) with R(αj) = pn−j−1aj and R(βj) = pn−j−1bj , for all j = 0, . . . , n − 1.

Altogether we find that the element

Rr−1(wn+r) +

n−1∑

j=0

V j(αj) +

n−1∑

j=0

V j(βj)

lies in Wn+1Ω
q
(X,−D) and lifts w. This completes the proof. �

The proof of part (1) and (2) of Theorem 8.7 is now complete. To prove the last part of
that theorem we need to study certain variants of (Ω/Z)q and (Ω/B)q which are defined using
iterates of the twisted inverse Cartier operator from 8.8, similar to what we did in section 6.

8.16. Let X, D, and E be as in 8.8 above. Let n ≥ 0 and let

D = D0 + pD1 + . . .+ pnDn

be a p-divisibility decomposition. In 6.11 we have defined divisors Dj and Dj such that

D = Dn−j + pn−jDj is a p-divisibility decomposition, for any 0 ≤ j ≤ n.6

For 1 ≤ j ≤ n, define OX-modules

Ωqj,n,− := F jX∗Ω
q
n−j(−Dn−j ,−D

j − pjE), Bqj,n,− := Bq(Ω•
j,n,−), Zqj,n,− := Zq(Ω•

j,n,−),

we furthermore set Bq0,n,− := 0. Define OX -modules (Ω/B)qj,n(−D,−E), (Ω/Z)qj,n(−D,−E)
and natural maps

(8.16.1) Ωqj,n,−/B
q
j,n,− −→ (Ω/B)qj,n(−D,−E) −→ (Ω/Z)qj,n(−D,−E)

by setting

(Ω/B)q0,n(−D,−E) := Ωqn(−D,−E) ։ 0 =: (Ω/Z)q0,n(−D,−E),

6Recall thatDj is divisible by p and that the actual p-divisibility decomposition isD = Dn−j+pn−j+1( 1
p
Dj).
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and for j ≥ 1 recursively by the condition that the two squares on the left in the following
diagram are pushout squares
(8.16.2)

0 // F j−1
X∗ Ωq

n−j+1(−Dn−j ,−Dn−j+1−D
j−1−pj−1E)

C−1
//

��

Ωqj,n,−/B
q
j,n,−

��

// Ωqj,n,−/Z
q
j,n,−

// 0

0 // (Ω/B)qj−1,n(−D,−E) //

��

(Ω/B)qj,n(−D,−E) //

��

Ωqj,n,−/Z
q
j,n,−

// 0

0 // (Ω/Z)qj−1,n(−D,−E) // (Ω/Z)qj,n(−D,−E) // Ωqj,n,−/Z
q
j,n,−

// 0,

where the top horizontal exact sequence is induced by (8.9.1) and the top vertical map on the
left is the composition of the natural map

F j−1
X∗ Ωqn−j+1(−Dn−j ,−Dn−j+1 −D

j−1 − pj−1E) →֒ Ωqj−1,n,− −→
Ωqj−1,n,−

Bqj−1,n,−

with the first map of (8.16.1) (with j replaced by j − 1).
Some consequences of this definition:

(a) By definition we have for n ≥ 1

(Ω/Z)q1,n(−D,−E) = Ωq1,n,−/Z
q
1,n,−.

Moreover we have

(Ω/B)q1,n(−D,−E) =
Zq(FX∗Ω

•
n−1(−D,−pE)) + Ωq1,n,−

Bq(FX∗Ω•
n−1(−D,−pE))

.

For the latter equality note that the right hand side (RHS) fits into a short exact
sequence

0→ Ωqn(−D,−E)
α
−→ RHS

β
−→ Ωq1,n,−/Z

q
1,n,− → 0,

where α is given by C−1 from (8.8.2) composed with the natural inclusion and the
map β is defined by β(a + b) = b, for a ∈ Zq(FX∗Ω

q
n−1(−D,−pE)), and b ∈ Ωq1,n,−.

It is direct to check that β is well-defined, that the sequence is exact, and that this
implies the above equality.

(b) The sheaves (Ω/B)qj,n(−D,−E), (Ω/Z)qj,n(−D,−E) are locally free coherent OX -
modules. For j = 0 this follows from the definition and for j ≥ 1 by induction
from (8.16.2) and the fact that the OX-modules Ωqj,n,−/Z

q
j,n,− are locally free, see 8.9.

Their restrictions to U = X \ (D + E) are quotients of ΩqU . The natural maps

(8.16.3) (Ω/B)qj,n(−D,−E) ։ (Ω/Z)qj,n(−D,−E)

are surjective. Moreover the j-fold iteration of the Cartier operator induces an iso-
morphism

(Z/B)qj,n(−D,−E) := Ker
(
(Ω/B)qj,n(−D,−E)→ (Ω/Z)qj,n(−D,−E)

)
Cj

−−→
≃

Ωqn(−D,−E).

For j = 0 this holds by definition, and for j ≥ 1 it follows by induction from applying
the Snake Lemma to the two lower rows in (8.16.2).
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(c) We have natural maps of OX -modules

(8.16.4) FX∗(Ω/B)qj−1,n−1(−Dn−1,−D
1 − pE)→ (Ω/B)qj,n(−D,−E)

and surjections of OX -modules

(8.16.5) (Ω/Z)qj,n(−D,−E) ։ FX∗(Ω/Z)
q
j−1,n−1(−Dn−1,−D

1 − pE).

In the case j = 1 this follows from the definition and for j ≥ 2 it follows by induction
from the fact the top sequence in (8.16.2) constructed for D, E, n, j is equal to FX∗

applied to the sequence constructed for Dn−1, D
1 + pE, n − 1, j − 1. By definition

the (j − 1)-fold iteration of the Cartier operator induces an isomorphism

Cj−1 : Ker (8.16.5)
≃
−→ (Ω/Z)q1,n(−D,−E).

Remark 8.17. Note that the first map in (8.16.1) is in general not surjective, which under
the duality from Proposition 8.19 relates to the fact that

Zqj,n(D,E) ⊂ F jX∗Ω
q
n−j(Dn−j,D

j + pjE)

is not a subbundle, see Remark 6.12.

Lemma 8.18. In the situation of 8.16 we have natural inclusions

(Ω/B)qj,n(−D,−E) ⊂ F jX∗Ω
q
X/BjΩ

q
X , (Ω/Z)qj,n(−D,−E) ⊂ F jX∗Ω

q
X/ZjΩ

q
X .

Proof. The statements hold by definition for j = 0. The general statement follows by induction
over j. We explain the case (Ω/Z) and a similar argument also works for (Ω/B). We have a
morphism of exact sequences (we drop the Frobenius twists)

0 // (Ω/Z)qj−1,n(−D,−E) //

��

(Ω/Z)qj,n(−D,−E) //

��

Ωqj,n,−/Z
q
j,n,−

//

��

0

0 // ΩqX/Zj−1Ω
q
X

C−1
// ΩqX/ZjΩ

q
X

// ΩqX/Z1Ω
q
X

// 0,

where left vertical map is the inclusion which we have by induction, the right vertical map is
the natural inclusion, and the middle map exists by the definition of (Ω/Z)qj,n(−D,−E) as a

pushout and the fact that there is a natural map Ωqj,n,−/B
q
j,n,−→ ΩqX/ZjΩ

q
X . This yields the

statement. �

Proposition 8.19. Let X be of pure dimension N . The isomorphism (cf. Proposition 8.5)

F jX∗Ω
q
X →Hom(F jX∗Ω

N−q
X ,ΩNX), α 7→

(
β 7→ Cj(α ∧ β)

)
,

induces isomorphisms

(8.19.1) (Ω/B)qj,n(−D,−E) ∼= Hom(ZN−q
j,n (D,E),ΩNX )

and

(8.19.2) (Ω/Z)qj,n(−D,−E) ∼= Hom(BN−q
j,n (D,E),ΩNX),

where ZN−q
j,n (D,E) and BN−q

j,n (D,E) are defined in 6.11.

First we record the following lemma whose proof is similar to the one of Proposition 8.5.

Lemma 8.20. The map

F j∗Ω
q
n(−D,−E)

≃
−→ Hom(F j∗Ω

N−q
n (D,E),ΩNX ), α 7→ (β 7→ Cj(α ∧ β)),

is an isomorphism for all j, n ≥ 0.
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Proof of Proposition 8.19. This is a generalization of [Eke84, II, Lemma 2.2.20]. For j = 0
both sides of (8.19.2) are zero and (8.19.1) holds by Lemma 8.20. Set

D := Hom(−,ΩNX) : (loc. free OX -mod)op → (loc. free OX -mod).

Note that D is dualizing, in the sense that the natural map E → D(D(E)) is an isomorphism for
any locally free OX -module E . Hence D maps a pushout square of locally free OX -modules to
a pullback square and vice versa. Thus it remains to show that D applied to the bottom exact
sequence in (6.11.3) (with N − q instead of q) is isomorphic to the top sequence in (8.16.2),
for all j ≥ 1. Then the result follows by induction over j directly from the definitions. The
looked for duality between the two exact sequences is standard, e.g. [Mil76, Lemma 1.7]. For
convenience of the reader we give the proof in this twisted situation. In the following we
assume j ≥ 1. By Lemma 8.20 the map

bqj : Ω
q
j,n,− −→ D(Ω

N−q
j,n ), bqj(α)(β) = Cj(α ∧ β) (α ∈ Ωqj,n,−, β ∈ ΩN−q

j,n ).

is an isomorphism. If α ∈ Bqj,n,− and β ∈ ZN−q
j,n , then α = dα′ and dβ = 0 and hence

bqj(α)(β) = Cj(dα′ ∧ β) = Cj(d(α′ ∧ β)) = 0.

Similarly, the above vanishing holds if α ∈ Zqj,n,− and β ∈ BN−q
j,n . Therefore the map bqj

induces well-defined maps

cqj : Ω
q
j,n,−/B

q
j,n,− −→ D(Z

N−q
j,n ) and aqj : Ω

q
j,n,−/Z

q
j,n,− −→ D(B

N−q
j,n ).

Consider the following two diagrams,

(8.20.1) 0 // Ωq−1
j,n,−/Z

q−1
j,n,−

d //

aq−1
j

��

Ωqj,n,−
//

bqj ≃
��

Ωqj,n,−/B
q
j,n,−

//

cqj
��

0

0 // D(BN−q+1
j,n )

(−1)qd∨
// D(ΩN−q

j,n ) // D(ZN−q
j,n ) // 0

and
(8.20.2)

0 // F j−1
X∗ Ωq

n−j+1(−Dn−j ,−Dn−j+1−D
j−1−pj−1E)

C−1
//

eq ≃

��

Ωqj,n,−/B
q
j,n,−

//

cqj
��

Ωqj,n,−/Z
q
j,n,−

//

aqj
��

0

0 // D
(
F j−1
X∗ ΩN−q

n−j+1(Dn−j ,Dn−j+1+D
j−1+pj−1E)

) C∨
// D(ZN−q

j,n ) // D(BN−q
j,n ) // 0.

where eq is the isomorphism from Lemma 8.20, which is induced by α 7→ Cj−1(α ∧ β). The
two diagrams clearly commute and the rows are exact. In fact the top sequence of (8.20.2) is
the top sequence of (8.16.2) and the bottom sequence of (8.20.2) is D applied to the bottom
sequence of (6.11.3). Thus by the above it is only left to show that aqj and c

q
j are isomorphisms

for all q ≥ 0 and j ≥ 1. But this follows by descending induction over q from (8.20.1) together
with (8.20.2). This completes the proof of the proposition. �

Proposition 8.21. Let D = D′ + pn+1Dn+1 be a p-divisibility decomposition. Consider the

OX-modules (Ω/Z)q−1
n,(X,−D) and (Ω/B)qn,(X,−D) defined in (8.6.3). There are natural isomor-

phisms of OX-modules for n ≥ 0

(8.21.1) (Ω/Z)q−1
n,n (−D

′,−pDn+1)
≃
−→ (Ω/Z)q−1

n,(X,−D).
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and

(8.21.2) (Ω/B)qn,n(−D
′,−pDn+1)

≃
−→ (Ω/B)qn,(X,−D).

In particular the sheaves on the right hand side are locally free coherent OX -modules.

Proof. The last statement follows from the two isomorphisms and 8.16(b). We first prove
(8.21.1). In case n = 0 both sides are zero by definition. The case n = 1 follows from 8.6(a)
and 8.16(a).

Let n ≥ 2. Let D = D0 + pD1 + . . .+ pn+1Dn+1 be a p-divisibility decomposition. Assume
that by induction we have a natural isomorphism

(Ω/Z)q−1
n−1,n−1(−Dn−1,−pDn − p

2Dn+1)
an−1
−−−→ (Ω/Z)q−1

n−1,(X,−D).

Claim 8.21.1. There exits a natural morphism an which makes the following diagram com-
mutative

(8.21.3) (Ω/Z)q−1
n,n (−Dn,−pDn+1)

an
��

(8.16.5)
// // F∗(Ω/Z)

q−1
n−1,n−1(−Dn−1,−pDn − p

2Dn+1)

an−1

��

(Ω/Z)q−1
n,(X,−D)

(8.6.5) // F∗(Ω/Z)
q−1
n−1,(X,−D).

We prove the claim. The following diagram of sheaves of abelian groups clearly commutes

(Ω/Z)q−1
n,n (−Dn,−pDn+1)

an−1◦(8.16.5) //

��

(Ω/Z)q−1
n−1,(X,−D)

dV n−2
// Wn−1Ω

q
(X,−D)

��
Ωq−1
X /ZnΩ

q−1
X

dV n−1
// dV n−1(ΩqX)

F // Wn−1Ω
q
X ,

where the left vertical map is the natural inclusion from Lemma 8.18. As (8.14.2) is cartesian

we obtain a morphism (Ω/Z)q−1
n,n (−Dn,−pDn+1) → dV n−1(Ωq−1

X ) ∩WnΩ
q
(X,−D), composing

with the inclusion dV n−1(Ωq−1
X ) ∩WnΩ

q
(X,−D) ⊂ WnΩ

q
(X,−D) yields the top horizontal mor-

phism in the following commutative diagram of Wn+1OX-modules

(Ω/Z)q−1
n,n (−Dn,−pDn+1)

dV n−1
//

��

F∗WnΩ
q
(X,−D)

��
FnX∗Ω

q−1
X /ZnΩ

q−1
X

dV n−1
// F∗WnΩ

q
X .

Now the map an in the claim exists by definition of (Ω/Z)q−1
n,(X,−D) in (8.6.3). The diagram

(8.21.3) commutes by construction, or maybe easier, the fact that both lines of the diagram

map injectively into FnX∗Ω
q−1
X /Zn → FnX∗Ω

q−1
X /FX∗Zn−1.

It remains to show that an is an isomorphism. As an−1 is an isomorphism by induction and
the map (8.16.5) is surjective it remains to show that an induces an isomorphism between the
kernels of the horizontal maps in (8.21.3). By construction

Ker (8.6.5) = {a ∈ Zn−1Ω
q−1
X /ZnΩ

q−1
X | dV n−1(a) ∈WnΩ

q
(X,−D)}.

We note

• Zn−1Ω
q−1
X = Fn−1WnΩ

q−1
X ;
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• the (n − 1)-fold iterated Cartier operator C(n−1) maps Fn−1(b) to Rn−1(b), for b ∈

WnΩ
q−1
X ;

• dV n−1(Fn−1(b)) = pn−1dRn−1(b).

Hence C(n−1) induces an isomorphism

C(n−1) : Ker (8.6.5)
≃
−→ {b ∈ Ωq−1

X /Z1Ω
q−1
X | pn−1db ∈WnΩ

q
(X,−D)}.

By Lemma 8.11 and Lemma 8.10 we can rewrite this as

C(n−1) : Ker (8.6.5)
≃
−→

Ωqn−1(−Dn−1,−pDn − p
2Dn+1)

Zq−1(Ω•
n−1(−Dn−1,−pDn − p2Dn+1))

.

This together with 8.16 (a) and (c) implies that an induces an isomorphism on the kernels of
the horizontal maps in (8.21.3). Thus we have proven the isomorphism (8.21.1) in general.

Next (8.21.2). First note that for a ∈ WjΩ
q−1
X , we have V j(F j−1da) = pjdV (a) = 0. As

BjΩ
q
X = F j−1d(WjΩ

q−1
X ) we obtain a well-defined morphism of Wn+1OX -modules

pn−jV j = V jpn−j : F jX∗Ω
q
X/BjΩ

q
X →Wn+1Ω

q
X .

Claim 8.21.2. For j = 0, . . . , n the above map induces well-defined morphisms of Wn+1OX -
modules

pn−jV j : (Ω/B)qj,n(−D
′,−pDn+1)→Wn+1Ω

q
(X,−D).

We prove the claim. For j = 0, this follows from Lemma 8.11 and the definition of (Ω/B)q0,n.
Let j ≥ 1 and consider the following diagram

F j−1
X∗ Ωqn−j+1(−(D

′)
n−j

,−Dn−j+1 − (D′)j−1 − pjDn+1)
C−1

//

��

Ωqj,n,−/B
q
j,n,−

V jpn−j

��
(Ω/B)qj−1,n(−D

′,−pDn+1)
pn−j+1V j−1

// Wn+1Ω
q
(X,−D),

where

Ωqj,n,− = F jX∗Ω
q
n−j(−(D

′)
n−j

,−(D′)
j
− pj+1Dn+1) and Bqj,n,− = dΩq−1

j,n,−.

Here the bottom horizontal map exists by induction and the existence of the right vertical
map follows from Lemma 8.11, which implies pn−j(Ωqj,n,−) ⊂ Wj+1Ω

q
(X,−D). It is direct to

check that the above diagram commutes. Thus by the definition of (Ω/B)qj,n(−D
′,−pDn+1)

as a pushout we obtain the map from the statement of the claim.
Thus we obtain a commutative diagram

(Ω/B)qn,n(−D′,−pDn+1)
V n

//

��

Wn+1Ω
q
(X,−D)

��
FnX∗Ω

q
X/BnΩ

q
X

V n
// Wn+1Ω

q
X ,

where the top map is induced from Claim 8.21.2 with j = n. The definition of (Ω/B)qn,(X,−D)

as a pullback in (8.6.3) yields therefore a natural map

bn : (Ω/B)qn,n(−D
′,−pDn+1)→ (Ω/B)qn,(X,−D).
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Altogether we obtain the following diagram of OX -modules

(8.21.4) (Ω/B)qn,n(−D′,−pDn+1)
(8.16.3)//

bn
��

(Ω/Z)qn,n(−D′,−pDn+1)

an

��
(Ω/B)qn,(X,−D)

(8.6.4)
// (Ω/Z)qn,(X,−D).

The diagram commutes as both lines of the diagram map injectively into FnX∗Ω
q−1
X /Bn →

FnX∗Ω
q
X/Zn. As (8.16.3) is surjective and an is an isomorphism as shown above, it remains

to show that bn induces an isomorphism between the kernels of the horizontal maps. By
construction we have

Ker((8.6.4)) = {a ∈ ZnΩ
q
X/BnΩ

q
X | V

n(a) ∈Wn+1Ω
q
(X,−D)}.

We note

• ZnΩ
q
X/BnΩ

q
X = C−n(ΩqX);

• V n(C−n(b)) = pnb.

Thus the n-fold iterated Cartier operator Cn induces an isomorphism

Cn : Ker((8.6.4))
≃
−→ {b ∈ ΩqX | p

nb ∈Wn+1Ω
q
(X,−D)}.

By Lemma 8.11 the right hand side is isomorphic to Ωqn(−D′,−pDn+1) and thus it follows
from 8.16(b), that bn induces an ismorphism between the kernels of the horizontal maps of
the diagram (8.21.4). This completes the proof. �

The proof of Theorem 8.7 is now complete.

Remark 8.22. Using Proposition 8.21, we can give an explicit description for (Ω/B)qn,(X,−D):

(Ω/B)qn,(X,−D) =

∑n
j=0C

−j(Fn−jX∗ Ωqj(−Dj ,−D
n+1−j))

Bqn(Ω•
n(−D

′,−pDn+1))
.

Here Bqn(Ω•
n(−D

′,−pDn+1)) is defined inductively so that Bq0(Ω
•
n(−D

′,−pDn+1)) = 0, and

C−1 : Bqj (Ω
•
n(−D

′,−pDn+1))
≃
−→

Bqj+1(Ω
•
n(−D

′,−pDn+1))

Bq1(Ω
•
n(−D

′,−pDn+1))
,

for every j ∈ [0, n − 1].

9. Duality for Hodge-Witt cohomology with modulus: finite level

In this section we prove the duality between Hodge-Witt sheaves with modulus and their
counterpart with zeros and draw some first consequences. This is one of the main results of
the paper, see Theorem 9.3.

Throughout this section we assume X ∈ Sm is of pure dimension dimX = N and we let
D be an effective Cartier divisor on X such that Dred is an SNCD.

Lemma 9.1. Set U = X \D. The multiplication map

WnΩ
q
U ×WnΩ

N−q
U →WnΩ

N
U

induces a well-defined map

(9.1.1) WnΩ
q
(X,−D) ×WnΩ

N−q
(X,D) →WnΩ

N
X

of Nisnevich sheaves on X.
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Proof. Let η ∈ D(0) be a geometric point. Set OL := OhX,η , it is a henselian discrete valuation
ring with maximal ideal mL and fraction field L. Let r ≥ 1 be the multiplicity of D at η and
set

WnΩ
q
(OL,m

r
L)

:= (WnΩ
q
(X,−D),η)

h = Ker(WnΩ
q
OL
→WnΩ

q
OL/m

r
L
).

In view of the definition of WnΩ
N−q
(X,D) in 6.2 and as WnΩ

N
X is a successive extension of locally

free OX-modules (see [Ill79, I, Corollaire 3.9]), it suffices to show that multiplication induces
a well-defined map

WnΩ
q
(OL,m

r
L)
× FilprWnΩ

N−q
L → WnΩ

N
OL
,

with FilprWnΩ
N−q
L as in Definition 2.6. By the equality ps(FilrWn−sΩ

N−q
L ) = psFilrpsWnΩ

N−q
L

(see Lemma 2.9) and the formulas

α · ps(β) = ps(Rs(α) · β) and α · d(γ) = (−1)q(d(α · γ) +−d(α) · γ),

for α ∈ WnΩ
q
(OL,mr

L)
, β ∈ FilrWn−sΩ

N−q
L , and γ ∈ filrWnΩ

N−q−1
L , it suffices to show that

multiplication induces a well-defined map

WnΩ
q
(OL,m

r
L)
× filrWnΩ

N−q
L → WnΩ

N
OL
.

By [Hes04, Lemma 1.2.2] WnΩ
q
(OL,m

r
L)

is the degree q-part of the differential graded ideal in

WnΩ
∗
OL

generated by Wn(m
r
L). Thus any element α ∈WnΩ

q
(OL,m

r
L)

is a sum of elements

V i([a])α′ and dV i([a])α′′, with vL(a) ≥ r, α
′ ∈WnΩ

q
OL
, α′′ ∈WnΩ

q−1
OL

,

where vL : L→ Z ∪ {∞} denotes the discrete valuation on L. Let

m = min{vp(r), n}.

By Definition 2.4 any element in filrWnΩ
N−q
L is a sum of elements

(1) β = V j([b]) dlog u, with pn−j−1vL(b) ≥ −r + 1, u ∈ KM
N−q(L), j ∈ {0, . . . , n− 1};

(2) γ = V j([c]) dlog v, with pn−j−1vL(c) ≥ −r, v ∈ K
M
N−q(OL), j ∈ {n−m, . . . , n − 1}.

Thus it suffices to show that for a ∈ OL with vL(a) ≥ r and β and γ as in (1) and (2),
respectively, we have

V i([a])β, V i([a])γ ∈WnΩ
N−q
OL

, dV i([a])β, dV i([a])γ ∈WnΩ
N−q+1
OL

.

We consider the various cases separately.

1st case: V i([a])β. We have

vL(a
pjbp

i
) ≥ pjr + pi −r+1

pn−j−1 ≥ p
j ≥ 1 =⇒ V i([a])β = V i+j([ap

j
bp

i
] dlog u) ∈WnΩ

N
OL
.

2nd case: V i([a])γ. We have

vL(a
pjcp

i
) ≥ pjr + pi −r

pn−j−1 ≥ 0 =⇒ V i([a])γ = V i+j([ap
j
cp

i
] dlog v) ∈WnΩ

N
OL
.

3rd case: dV i([a])β.
1st subcase: n− 1 ≥ j ≥ i ≥ 0. We have

vL(ba
pj−i

) ≥ −r+1
pn−j−1 + pj−ir > 0 =⇒ dV i([a])β = V j([b][a]p

j−i
dlog{a, u}) ∈WnΩ

N
OL
.

2nd subcase: n− 1 ≥ i ≥ j ≥ 0. We have

vL(ab
pi−j

) ≥ r + pi−j −r+1
pn−j−1 ≥ 1 =⇒

dV i([a])β = V j
(
dV i−j([abp

i−j
] dlog u)− V i−j([abp

i−j
] dlog{b, u})

)
∈WnΩ

N
OL
.
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4th case: dV i([a])γ.
1st subcase: n− 1 ≥ j ≥ n−m and min{n− 2, j} ≥ i. We have

vL(ca
pj−i

) ≥ −r
pn−j−1 + pj−ir > 0 =⇒ dV i([a])γ = V j([cap

j−i
] dlog{a, v}) ∈WnΩ

N
OL
.

2nd subcase: n− 1 = j = i ≥ n−m. We have

dV n−1([a])γ = V n−1([ca] dlog adlog v)

and vL(ca) ≥ 0. If vL(ca) ≥ 1, then dV n−1([a])γ is clearly regular. If vL(ca) = 0,
we have vL(a) = r and vp(r) ≥ m ≥ 1. Thus in this case dlog a ∈ Ω1

OL
and hence

also dV n−1([a])γ ∈WnΩ
N
OL

.
3rd subcase: n− 1 > i ≥ j ≥ n−m. We have

vL(ac
pi−j

) ≥ r − rpi−j

pn−j−1 > 0 =⇒

dV i([a])γ = V j
(
dV i−j([acp

i−j
] dlog v)− V i−j([acp

i−j
] dlog{c, v})

)
∈WnΩ

N
OL
.

4th subcase: n− 1 = i ≥ j ≥ n−m. We have

dV n−1([a])γ = pjdV n−1([acp
n−1−j

] dlog v)− V n−1([acp
n−j−1

] dlog cdlog v)

and vL(ac
pn−j−1

) ≥ 0. If vL(ac
pn−j−1

) ≥ 1, then dV n−1([a])γ is clearly regular. If

vL(ac
pn−j−1

) = 0, then pn−j−1vL(c) = −r. Sincem ≤ vp(r) = n−j−1+vp(vL(c)),
we see that p|vL(c). Thus dlog c ∈ Ω1

OL
and hence also dV n−1([a])γ ∈WnΩ

N
OL

.

This completes the proof of the lemma. �

9.2. Consider the scheme WnX = (X,WnOX) and denote by πn : WnX → SpecWn(k) the
structure map, it is separated and of finite-type. Recall that WnΩ

q
(X,D) and WnΩ

q
(X,−D) can

be viewed as coherent sheaves on WnX, see Proposition 6.3 and Definition 8.1.
By [Eke84, I, Theorem 4.1] there is a canonical isomorphism

(9.2.1) WnΩ
N
X [N ]

≃
−→ π!nWn(k),

where π!n denotes the twisted inverse image from Grothendieck duality, see [Har66], [Con00],
also [Lip09, 4.8 and 4.10]. Hence

DX,n := RHomWnOX
(−,WnΩ

N
X) : D

b
c(WnOX)→ Db

c(WnOX)

is a dualizing functor in the sense that the canonical map idDb
c(WnOX) → DX,n ◦ DX,n is an

isomorphism, see, e.g., [Har66, V, §10]. If f : X → Y is a proper morphism between smooth
k-schemes and Y is of pure dimension e, then fn : WnX → WnY is proper as well and
Grothendieck duality yields an isomorphism

(9.2.2) Rfn∗(DX,n(−)) ∼= DY,n(Rfn∗(−))[−r],

where r = N − e is the relative dimension of f .

The following is one of the main results of the paper. For D = ∅ it is due to Ekedahl, see
[Eke84, II], for D is reduced, it is [Nak05, Theorem 5.3(1)], cf. [Hyo91, (3.3.1)].

Theorem 9.3. The multiplication map (9.1.1) induces isomorphisms, for all q, n,

(9.3.1) WnΩ
N−q
(X,D)

≃
−→ DX,n(WnΩ

q
(X,−D))

and

(9.3.2) WnΩ
q
(X,−D)

≃
−→ DX,n(WnΩ

N−q
(X,D)).
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Proof. As DX,n is dualizing we obtain the isomorphism (9.3.2) from (9.3.1) by applying DX,n.
In view of Theorem 6.4 and Theorem 8.7 the proof of (9.3.1) is along the lines of Ekedahl’s
proof. We explain the strategy and the required modifications in the following. The case
n = 1 holds by Proposition 8.5. For m ∈ {0, . . . , n} denote by im : WmX →֒ Wn+1X the
closed immersion induced by the restriction Rn+1−m : Wn+1OX →WmOX . By Theorem 8.7,
the sheaf Wn+1Ω

q
(X,−D) is a successive extension of Wn+1OX-modules of the from i1∗M , with

M a coherent locally free OX-module. Thus

(9.3.3) ExtiWn+1OX
(Wn+1Ω

q
(X,−D)

,Wn+1Ω
N
X) = 0, for all i ≥ 1,

by the same proof as in [Eke84, II, Lemma 2.2.7]. Moreover we get that the restriction map

(9.3.4) Dn+1,X(WnΩ
q
(X,−D))→ j∗Dn+1,U (Wn+1Ω

q
U )

along the open immersion j : U = X \D →֒ X is injective. Set

grn(X,−D) := Ker(R :Wn+1Ω
q
(X,−D) → in∗WnΩ

q
(X,−D))

and

grn1,(X,D) := Coker(p : in∗WnΩ
N−q
(X,D) →Wn+1Ω

N−q
(X,D)).

Consider the following diagram

0 // in∗WnΩ
N−q
(X,D)

p
//

��

Wn+1Ω
N−q
(X,D)

//

��

grn1,(X,D)
//

��

0

0 // in∗DX,n(WnΩ
q
(X,−D))

// DX,n+1(Wn+1Ω
q
(X,−D))

// DX,n+1(gr
n
(X,−D))

// 0,

where the vertical maps are induced by the multiplication map (9.1.1) and the horizontal
map on the bottom left side is induced by the duality isomorphism in∗ ◦ DX,n = DX,n+1 ◦ in∗
composed with the dual of the restriction R. As the restriction map (9.3.4) is injective
it follows from [Eke84, II, (2.2.8), (2.2.9)] that the diagram commutes. (Note that it is a
diagram of sheaves by the vanishing of the Ext-groups shown above.) As the lines are exact
it remains by induction to show that the right vertical arrow is an isomorphism. In view of
the exact sequences in Theorem 6.4 and Theorem 8.7(1) the same argument as in [Eke84, II,
Lemma 2.2.17] (see also the explanation around (8.5.2)) reduces us to show that the maps
(9.3.5)

ZnΩ
N−q
(X,D) →Hom((Ω/B)qn,(X,−D),Ω

N
X), and BnΩ

N−q+1
(X,D) →Hom((Ω/Z)q−1

n,(X,−D),Ω
N
X),

induced by α 7→ (β 7→ Cn(α ∧ β)), are isomorphisms. These maps are exactly DX,1 applied
to the isomorphisms in part (3) of Theorem 8.7 and hence are isomorphisms as well. This
completes the proof. �

Corollary 9.4. The projective bundle formula and the blow-up formula from 7.4, (1) and (2)
also hold for D replaced by −D.

Grothendieck duality (9.2.2) yields:

Corollary 9.5. Assume additionally that X is proper over k. Then there is a canoncial
isomorphism of finite Wn(k)-modules

Hj(X,WnΩ
q
(X,−D))

∼= HomWn(k)

(
HN−j(X,WnΩ

N−q
(X,D)),Wn(k)

)
.
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Corollary 9.6. Assume X is proper and let (Y,E) be another modulus pair with Y ∈ Sm
proper of pure dimension NY and Ered an SNCD and denote by MCor((X,D), (Y,E)) the
group of left proper admissble correspondences, see [KMSY21a, Definition 1.3.1]. Then for
any correspondence α ∈MCor((X,D), (Y,E)) we have a natural map

α∗ : H
N (X,WnΩ

N−q
(X,−D))→ HNY (Y,WnΩ

NY −q
(Y,−E))

such that:

(1) If (Z,F ) is a modulus pair with Z ∈ Sm proper of pure dimension NZ and Fred an
SNCD, and β ∈MCor((Y,E), (Z,F )) then

β∗α∗ = (β ◦ α)∗ : H
N (X,WnΩ

N−q
(X,−D))→ HNZ (Y,WnΩ

NZ−q
(Z,−F )).

(2) If α is induced by the graph of a morphism f : X → Y satisfying D ≥ f∗E, then
α∗ = f∗, the dual of f∗.

In particular, if f : X → Y is a morphism which induces an isomorphism X\f−1(E)
≃
−→ Y \E,

then f∗ induces an isomorphism f∗ : H
N (X,WnΩ

q
(X,f∗E))

≃
−→ HN (Y,WnΩ

q
(Y,E)).

Proof. Use Corollary 9.5 and the corresponding properties of H0(X,WnΩ
q
(X,D)). �

Recall that following an idea of Deligne [Har66, Appendix] Hartshorne defines in [Har72, §2]
cohomology with compact support for coherent sheaves on schemes which are separated and
of finite type over a field k. In fact the same approach works for schemes of finite type over an
artinian ring, as it is only used that the cohomology of a coherent sheaf on a proper scheme
has finite length over the base ring, to guarantee the exactness of certain limits. Let A be an
artinian ring, V → SpecA be a separated morphism of finite type, and G a coherent sheaf on

V , then the corresponding cohomology with compact support is denoted by Hj
c (V,G).

Corollary 9.7. With the above notation and assuming that X is proper there are canonical
isomorphisms

Hj
c (Wn(U),WnΩ

q
U)
∼= lim
←−
r

Hj(X,WnΩ
q
(X,−rD))

∼= HomWn(k)

(
HN−j(U,WnΩ

N−q
U ),Wn(k)

)
.

Proof. In view of the definition of Hj
c (V,G) and Theorem 9.3 we only have to check that the

pro-systems of coherent WnOX -modules {WnΩ
q
(X,−rD)}r and {Wn(I

r) ·WnΩ
q
X}r are isomor-

phic, where I = Ker(OX → OD). To this end, note that by definition we have an inclusion
Wn(I

r) ·WnΩ
q
X ⊂WnΩ

q
(X,−rD), for all r ≥ 1. Furthermore we have an inclusion

(9.7.1) WnΩ
q
(X,−pn+1rD)

⊂Wn(I
pr) ·WnΩ

q
X .

To check this we may assume X = SpecA and rD = Div(f). It follows from the recursive

definition in (8.16.2) that (Ω/B)qj,n(0,−prD) is a quotient of fp
j+1rΩqA and similarly with

(Ω/Z)q−1
j,n (0,−prD). Thus grn(X,−D) is by Propositions 8.14 and 8.21 generated by elements

V n([fp
n+1r]α) = [f ]prV n(α) and dV n([fp

n+1r]β) = [f ]prdV n(β),

where α ∈ ΩqA, β ∈ Ωq−1
A . Thus (9.7.1) holds by induction. �

The following generalizes Ekedahl’s isomorphism (9.2.1) to the case of thickenings of smooth
k-schemes.
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Corollary 9.8. Let H ⊂ X be smooth closed subscheme of codimension 1. Denote by Hr ⊂ X
the closed subscheme defined by the ideal sheaf OX(−rH), for r ≥ 1. Denote by f :Wn(Hr)→
SpecWn(k) the structure map. Then there is an isomorphism in D(WnOHr)

f !Wn(k) ∼=
WnΩ

N
(X,rH)

WnΩ
N
X

[N − 1].

Proof. Denote by i : Hr →֒ X the closed immersion. Ekedahl’s isomorphism (9.2.1) and
Grothendieck duality yield an isomorphism

DX,n(i∗WnOHr)[N ] ∼= i∗f
!Wn(k).

Now apply DX,n to the exact sequence

0→WnO(X,−rH) →WnOX → i∗WnOHr → 0

and use Theorem 9.3 to obtain the isomorphism from the statement. �

10. Duality for Hodge-Witt cohomology with modulus: infinite level

Throughout this section X ∈ Sm has pure dimension dimX = N and D is an effective
Cartier divisor on X such that Dred is an SNCD. We denote by

(10.0.1) i :Wn−1X →֒WnX

the closed immersion induced by the restriction R : WnOX → Wn−1OX and by

(10.0.2) σ :WnX →WnX

the finite morphism induced by Wn(F
∗
X) : WnOX → WnOX , where FX : X → X denotes the

absolute Frobenius on X. With this notation, e.g., the Verschiebung V : (σi)∗Wn−1Ω
q
X →

WnΩ
q
X and the differential d : (σn)∗WnΩ

q
X → (σn)∗WnΩ

q+1
X are WnOX-linear morphisms.

10.1. We recall some definitions from [Eke84, III, Definition 2.1]. An inverse de Rham-Witt
system onX consists of a family of quasi-coherent gradedWnOX -modulesMn, n ≥ 1, together
with morphisms of graded WnOX -modules

R :Mn → i∗Mn−1, F :Mn → (σi)∗Mn−1, V : (σi)∗Mn−1 →Mn, d : (σn)∗Mn → (σn)∗Mn(1),

where M0 = 0 and for a graded module M we denote by M(1) the graded module with
M(1)q =M q+1, satisfying the following identities

RF = FR, RV = V R, Rd = dR, FV = p, V F = p, d2 = 0, FdV = d.

A direct de Rham-Witt system consists of a family of quasi-coherent graded WnOX -modules
Mn, n ≥ 1, together with maps F , V , d as above, and (instead of the maps R) morphisms of
graded WnOX-modules

p : i∗Mn−1 →Mn,

such that p, F , V , and d satisfy the same identities as above with R replaced by p. We call a
direct (resp. inverse) de Rham-Witt system coherent if each Mn is a coherent WnOX-module.
We denote by

inv-dRWX and dir-dRWX

the categories of inverse- and direct de Rham-Witt systems, respectively, with morphisms
defined in the obvious way, and by inv-dRWX,c and dir-dRWX,c their full subcategories of
coherent objects. These are abelian categories and the forgetful functors to the product
category

∏
n(graded WnOX -modules) sending ((Mn)n, F, V, d,R(resp. p)) to (Mn)n is exact

and conservative. For M ∈ dir-dRW we denote by M(j) the direct de Rham-Witt system
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with shifted grading Mn(j)
q = M q+j

n , and where RM(j) = RM , FM(j) = FM , VM(j) = VM ,

and dM(j) = (−1)jdM .
Assume X is proper. Then the global section functor Γ(X,−) derives to

RΓ(X,−) : Db(inv-dRWX,c)→ Db(inv-dRWk,c), Db(dir-dRWX,c)→ Db(dir-dRWk,c),

where inv-dRWk,c := inv-dRWSpec k,c and similarly with dir-dRW, see [Eke84, III, (2.5.2)].

Example 10.2. We have

W∞•Ω
∗
(X,±D) := ((WnΩ

∗
(X,±D))n, p, F, V, d) ∈ dir-dRWX,c,

and
W•Ω

∗
(X,±D) := ((WnΩ

∗
(X,±D))n, R, F, V, d) ∈ inv-dRWX,c.

10.3. Recall from [Eke84, III, Example 2.2.1] that the top Witt formsWnΩ
N
X , n ≥ 1, together

with the maps p, V , and the n-fold Cartier operators Cn : (σn)∗WnΩ
N
X → WnΩ

N
X form a

dualizing system in the sense of [Eke84, III, Definition 2.2]. Hence we obtain a well-defined
functor

(dir-dRWX,c)
o → inv-dRWX , M = (Mn)n 7→ (HomWnOX

(Mn,WnΩ
N
X))n.

We only remark that the maps R, F , V , and d on (HomWnOX
(Mn,WnΩ

N
X))n are induced by

p∗
M
, V ∗

M , F ∗
M , and d∗M , respectively, and refer to [Eke84, p. 205 – 206] for the details, see also

[CR12, 1.6.6].
Let En,X be the Cousin complex of WnΩ

N
X . By [Eke84, III, Example 2.2] E = (En,X)n has

the structure of a complex of dualizing systems (and is a Witt residual complex in the sense
of [CR12, Definition 1.8.3]). We obtain a functor between the derived categories

DX,• : D
b(dir-dRWX,c)

o → Db(inv-dRWX), M 7→ DX,•(M),

where

(DX,•(M))n = HomWnOX
(Mn, En,X) = DX,n(Mn) in Db

c(WnOX-mod),

with DX,n as in 9.2 and where the degree q-part of DX,n(Mn) is DX,n(M
−q
n ).

Corollary 10.4. The multiplication map induces isomorphisms in Db(inv-dRWX,c)

W•Ω
∗
(X,−D)

∼= DX,•(W∞•Ω
∗
(X,D))(−N) and W•Ω

∗
(X,D)

∼= DX,•(W∞•Ω
∗
(X,−D))(−N).

Proof. By Theorem 9.3 we have the isomorphisms of graded WnOX -modules

WnΩ
∗
(X,±D)

∼= HomWnOX
(WnΩ

∗
(X,∓D),WnΩ

N
X)(−N),

for all n. Thus it suffices to show that these isomorphisms are compatible with the maps
R,F, V, d defined on both sides. As before this can be checked after restriction to U = X \D
and hence follows from [Eke84, III, Proposition 2.4] �

10.5. Recall from [IR83, I, (1.1)] that the Cartier-Dieudonné-Raynaud ring R is the graded
(non-commutative) W = W (k)-algebra, R = R0 ⊕R1 generated by symbols F , V ∈ R0 and
d ∈ R1 subject to the relations

σ(a)F = Fa, aV = V σ(a), da = ad, FV = p = V F, dd = 0, FdV = d,

for a ∈W , where σ : W →W denotes the Frobenius lift.
We obtain a functor lim : inv-dRWX,c → Sh(X,R), the category of sheaves of R-modules

on X, where the limit is taken along the restriction map R. This functor derives to

R lim : Db(inv-dRWX,c)→ Db(X,R),
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see [Eke84, III, (2.6.2)]. For M ∈ Sh(X,R), the shift M(j) is defined by M(j)q = M j+q and
the action of F, V, d on M(j) is induced by the action of F, V, (−1)jd on M .

Proposition 10.6. The following equalities hold in Db(X,R)

R limW•Ω
∗
(X,−D) =WΩ∗

(X,−D) := Ker

(
WΩ∗

X →
⊕

i

WΩ∗
Di

)
,

where we write D =
∑

iDi with Di,red smooth, and

R limW•Ω
∗
(X,D) =WΩ∗

X(logD),

the log de Rham-Witt complex, see, e.g., [Mat17, Proposition-Definition 3.10]. In particular,

R limW•Ω
∗
(X,D) = R limW•Ω

∗
(X,Dred)

.

Proof. The statement for W•Ω
∗
(X,−D) follows directly from the surjectivity of R, see Theorem

8.7(2), and the left exactness of lim. By (5.5.2) we have a natural inclusion,

(10.6.1) W•Ω
∗
X(logD) →֒W•Ω

∗
(X,D).

Let M > 0 be a positive integer such that pM is strictly larger than all the multiplicities of
D. We claim

RM(Wn+MΩ∗
(X,D)) =WnΩ

∗
X(logD), for all n ≥ 1.

By the above we only have to prove this “⊂” inclusion. It suffices to prove this after pullback
to henselian dvf’s L of geometric type. Thus by Theorem 5.4 it suffices to show for r < pM

and s = 0, . . . , n− 1,

(10.6.2) RM (psfilrpsWn+MΩ∗
L) ⊂WnΩ

∗
OL

(log).

Under our assumptions on M , the inequality

−rps

pn+M−i−1
≤ −1

is only possible if i > n− s− 1. But in this case psV i([a]) = 0 in Wn(L), for a ∈ L. In view of
the definition of FilprWnΩ

q
L in Definition 2.6 this yields the inclusion (10.6.2). It follows that

the inclusion (10.6.1) is an isomorphism of pro-objects and hence

R limW•Ω
∗
(X,D) = R limW•Ω

∗
X(logD) =WΩ∗

X(logD),

where the last equality follows from the surjectivity of the restriction map R onW•Ω
∗
X(logD).

�

Theorem 10.7. Assume additionally that X is proper and set

W∞Ω∗
(X,D) := colimW∞•Ω

∗
(X,D),

see Example 10.2. Then we have isomorphisms in Db(R)

RΓ(X,WΩ∗
(X,−D))

∼= RHomW (RΓ(X,W∞Ω∗
(X,D)),K/W )(−N)[−N ],

where K =W [1/p]. In particular we have isomorphisms of R0-modules, for i, q ≥ 0,

H i(X,WΩq(X,−D))
∼= HomW (HN−i(X,W∞ΩN−q

(X,D)),K/W ).
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Proof. Applying R lim ◦RΓ(X,−) to the first isomorphism in Corollary 10.4 gives

RΓ(X,WΩ∗
(X,−D))

∼= RΓ(X,R limW•Ω
∗
(X,−D)) (by Proposition 10.6)

∼= R limRHomWn(RΓ(X,WnΩ
∗
(X,D)),Wn)(−N)[−N ] (by (9.2.2))

∼= R limRHomW (RΓ(X,WnΩ
∗
(X,D)),K/W )(−N)[−N ],

where the transition maps in the last limit are given by precomposition with p. Here the
third isomorphism holds by definition of the restriction maps on DX,•(M) in 10.3, see [Eke84,
III, (2.3.2)]. Let U be an affine covering of X and denote by Cn = C•(U ,WnΩ

∗
(X,D)) the

Čech complex (it is a complex of graded Wn[d]-modules). Then (Cn)n is a representative of
RΓ(W∞•Ω

∗
(X,D)) in D

b(dir-dRWSpec k,c) and colimp Cn is a representative of RΓ(W∞Ω∗
(X,D)).

As p :WnΩ
∗
(X,−D) → Wn+1Ω

∗
(X,−D) is injective, the induced map p : Cn → Cn+1 is term-wise

injective. As K/W is an injective W -module, p∗ : Hom(Cn+1,K/W ) → Hom(Cn,K/W ) is
term-wise surjective and thus (e.g. [Sta23, Tag 07KW(5)])

R limRHomW (RΓ(X,WnΩ
∗
(X,D)),K/W ) = limHomW (Cn,K/W )

= HomW (colimCn,K/W ),

which implies the statement. �

10.8. We denote by W [F ] the freeW -algebra with generator F subject to the relation F ·a =
σ(a) · F , for all a ∈W , where σ :W →W is the Frobenius. Let

RΓcrys((X,−D)/W ) ∈ Db(W [F ])

be the simple complex associated to the double complex RΓ(X,WΩ∗
(X,−D)), where F acts via

the absolute Frobenius F ∗
X , cf. [Eke84, III, (5.3), (5.4)]. Furthermore denote by

F : RHomW (RΓ(X,W∞Ωq(X,D)),K/W )→ RHomW (RΓ(X,W∞Ωq(X,D)),K/W )

the morphism, which sends a map µ to the composition

RΓ(X,W∞Ωq(X,D))
pN−q·V
−−−−−→ RΓ(X,W∞Ωq(X,D))

µ
−→ K/W

σ
−→ K/W.

Representing RΓ(X,W∞Ωq(X,D)) by a Čech complex C•,q
∞ we find that (HomW (C•,q

∞ ,K/W ),F)

is a complex of W [F ]-modules. As

d : HomW (C•,q
∞ ,K/W )→ HomW (C•,q−1

∞ ,K/W )

is given by (see [CR12, 1.6.6])

µ 7→ (−1)q+1µ ◦ d

it follows from the relation V d = pdV that (HomW (C•,•
∞ ,K/W ),F) is a double complex of

W [F ]-modules. We denote the image of the associated simple complex in Db(W [F ]) by

RHomW (RΓcrys((X,D)/W∞),K/W ).

Corollary 10.9. Assume X is proper. Multiplication in W•Ω
∗
X induces an isomorphism in

Db(W [F ])

RΓcrys((X,−D)/W ) ∼= RHomW (RΓcrys((X,D)/W∞),K/W )[−2N ].

Proof. The isomorphism follows by applying the functor which sends a double complex to its
associated simple complex from the isomorphism in Theorem 10.7. For the compatibility with
F ∗
X on the left and F on the right we observe:

https://stacks.math.columbia.edu/tag/07KW
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• for α ∈Wn+mΩ
q
(X,−D) and β ∈WnΩ

N−q
(X,D) (m ≥ 1) we have

V (Rm(F ∗
X(α))β) = V (pqF (Rm−1α)β) = Rm−1(α) · pqV (β);

• under the identification Wn(k) ∼=
1
pnW/W ⊂ K/W the inverse map to V : Wn(k) →

Wn+1(k) is induced by σ : K/W → K/W .

Now the statement follows from this and the definition of F . �

10.10. Set Rn = R/(V nR + dV nR). It is a right R-module and a left Wn[d]-module. By
[Ill83, (2.3)] Rn⊗R derives to

Rn⊗
L
R : Db(R)→ Db(Wn[d]).

Recall that a complex M ∈ Db(R) (or an R-module M) is called coherent (in the sense of
Illusie-Raynaud-Ekedahl) if the following two conditions are satisfied

(1) H i(Rn ⊗
L
R M) is a finitely generated Wn-module for all i, and

(2) M is complete, i.e., M = R limn(Rn ⊗
L
R M).

By [Eke84, p. 190] (see also [Ill83, 2.4]) a complex M is coherent if and only if H i(M) is
a coherent R-module in the sense of Illusie-Raynaud [IR83, I, Définition 3.9]. The coherent
subcomplexes form a triangulated subcategory ofDb(R), which is denoted by Db

c(R). Ekedahl
shows in [Eke84, IV, Proposition 1.1] that there is a well-defined functor

(10.10.1) D : Db
c(R)

op → Db
c(R), M 7→ D(M) = R limRHomWn(Rn ⊗

L
R M,Wn),

which is dualizing in the sense that it satisfies D ◦ D = id. Moreover for any M ∈ Db
c(R)

(10.10.2) Rn ⊗
L
R D(M) = RHomWn(Rn ⊗

L
R M,Wn) in Db(Wn[d]).

In case D = ∅ the following corollary is [IR83, II, Théorème 2.2], [Eke84, III, Theorem
2.9], and [IR83, II, (1.4.3)]. The last part on the compatibility with Rn⊗

L
R follows also from

[Nak05, Theorem 6.24], but the proof is different, see also [Mok93, Lemme 1.3.3].

Corollary 10.11. Assume X is proper. We have

RΓ(X,WΩ∗
(X,±Dred)

) ∈ Db
c(R),

and

(10.11.1) RΓ(X,WΩ∗
(X,−Dred)

) ∼= D(RΓ(X,WΩ∗
(X,Dred)

))(−N)[−N ],

where D is the dualizing functor (10.10.1). Moreover,

Rn ⊗
L
R RΓ(X,WΩ∗

(X,±Dred)
) = RΓ(X,WnΩ

∗
(X,±Dred)

).

Proof. Write Dred =
∑r

j=1Dj , with Dj smooth and connected. Set

D(s) =
∐

(j1<...<js)

Dj1 ∩ . . . ∩Djs .

By [Mat17, 9.] (see also [Nak05, Proposition 9.3]) and (5.5.2) there is an increasing filtration
(the weight filtration) {Ps}s=0,...,r of R-submodules of WΩ∗

(X,Dred)
with P0 = WΩ∗

X and

Pr =WΩ∗
(X,Dred)

, which fits into exact sequences of R-modules

(10.11.2) 0→ Ps−1 → Ps
ρ
−→WΩ∗

D(s)(−s)→ 0.

As it is not stated explicitly in loc. cit. we remark that ρ is a morphism of R-modules.
Indeed, the iterated residue map ρ is induced by the inverse of the isomorphism

WΩ∗
D(s)(−s)→ Ps/Ps−1,
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which sends a local form α ∈ WΩq−sDj1
∩...∩Djs

to dlog{tj1 , . . . , tjs} · α̃, where α̃ ∈ WΩq−sX is a

lift of α and tj is a local equation for Dj . This is clearly a morphism of R-modules (see 10.5

for the “(−s)” shift of an R-module). As RΓ(D(s),WΩ∗
D(s)) ∈ D

b
c(R), for all s = 0, . . . , r,

by [IR83, II, Théorème 2.2], we find RΓ(X,WΩ∗
(X,Dred)

) ∈ Db
c(R). Similarly it follows from

[IR83, II, (1.4.3)] (applied to WΩ∗
D(s)(−s)) that we have

Rn ⊗
L
R RΓ(X,WΩ∗

(X,Dred)
) = RΓ(X,WnΩ

∗
(X,Dred)

).

Hence applying R lim ◦RΓ to (9.3.2) (for Dred) yields (10.11.1) in view of the discussion in
10.1, 10.3, 10.5. The remaining statements for −Dred follow from (10.10.1) and (10.10.2). �

10.12. We can now use the results on coherent R-modules from [IR83] and [Eke84] to get
many consequences, which however only work in the case D is reduced or we work up to
bounded torsion7. Here is a sample of corollaries, where we assume that X is proper addi-
tionally to our standing assumptions:

(1) RΓ(X,WΩ∗
(X,Dred)

) is a complex of R-modules of level N , i.e., it is represented by

a complex of R-modules which vanishes in degrees outside [0, N ] and on which F is
invertible in degree N . (That F is invertible in degree N in the case at hand, follows by
induction from the exact sequences (10.11.2) and [Ill79, I, Proposition 3.7].) Therefore
by [Eke84, III, 5.] taking the simple complex of the duality isomorphism in Theorem
10.11 we get an isomorphism of F -crystals of level N

RΓ(X,WΩ•
(X,−Dred)

) ∼= RHomW (RΓ(X,WΩ•
(X,Dred)

),W )[−2N ].

(2) We have

RΓ(X,WΩ•
(X,Dred)

) = RΓ(X,WΩ•
X(logD)) ∼= RΓlog-crys((X,D)/W ),

where the equality holds by (5.5.2) and the isomorphism, e.g., by [Mat17, Theorem
7.2]. It is a perfect complex of W -modules by, e.g., [Ill79, II, Théorème 2.7] and
(10.11.2). Thus duality yields an isomorphism

RΓ(X,WΩ•
(X,−Dred)

) ∼= RHomW (RΓlog-crys((X,D)/W ),W )[−2N ].

Hence RΓ(X,WΩ•
(X,−Dred)

) is a perfect complex as well.

(3) As the cokernel of the natural inclusion WΩ∗
(X,−D) → WΩ∗

(X,−Dred)
is annihilated by

some fixed p-power (take pr greater than all the multiplicities in D) it follows that

RΓ(X,WΩ∗
(X,−D))→ RΓ(X,WΩ∗

(X,−Dred)
)

is an isomorphism up to bounded p-primary torsion. As the complex on the right
is a coherent R-module, it follows that the cohomology groups H i(X,WΩq(X,−D))

are finitely generated W -modules up to bounded torsion, and RΓ(X,WΩ•
(X,−D)) is

a perfect complex of W -modules up to bounded (but possibly infinitely generated)
torsion.

(4) As observed in [Nak05, Remark 5.4(1)] it follows from Shiho’s comparison of log-
crystalline cohomology for (X,D) with rigid cohomology, see [Shi02, Corollary 2.4.13
and Theorem 3.1.1], and Berthelot’s Poincaré duality for rigid cohomology, see [Ber97,
Théorème 2.4], that the above yields an isomorphism

RΓ(X,WΩ•
(X,−D))⊗W K = RΓc,rig(U),

7We say that a certain statement in an additive category C is true up to bounded torsion, if it is true in
the localized category CQ which has the same objects but the Hom’s are tensored with Q.
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where U = X \D and K = Frac(W ). Thus for any effective Cartier divisor D with
SNC support equal to X \U the complex RΓ(X,WΩ•

(X,−D)) is perfect up to bounded

torsion and is an integral model for the compactly supported rigid cohomology of U .
(5) By [Ill83, Corollary 2.5.4] and the above the slope spectral sequence

Ei,j1 = H i(X,WΩj(X,−D)) =⇒ H∗(X,WΩ•
(X,−D))

degenerates up to bounded torsion and thus by the same argument 8 as in [Blo77, III,
Corollary 3.4] (see also [Ill79, II, Corollary 3.5]) we obtain the isomorphism

Hn
c,rig(U)[j,j+1[

∼= H i(X,WΩn−j(X,−D))⊗W K,

where the left hand side denotes the part of the compactly supported rigid cohomology
of U on which the Frobenius acts with slope λ with j ≤ λ < j + 1. Note that the
above isomorphism also appears in the proof of [Nak05, Theorem 5.9] (there for D
reduced). In particular H i(X,WO(X,−D))⊗W K is equal to the compactly supported
Witt vector cohomology of U defined in [BBE07].

(6) Assume U is affine (e.g. D is ample) then, the same argument as in [BBE07, Corollary
1.2] yields

(10.12.1) H i(X,WΩj(X,−D))⊗W K = 0, for all i+ j < dimX.

As rigid cohomology of an affine k-scheme vanishes above the dimension a similar
argument using the slope decomposition of H∗(X,WΩ•

X(logD)) yields the vanishing

(10.12.2) H i(X,WΩj(X,D))⊗W K = 0, for all i+ j > dimX,

these two vanishing results can be viewed as a kind of Kodaira-Akizuki-Nakano van-
ishing. See also [Tan22, Theorem 1.1], where a different kind of Kodaira vanishing
for Witt vector cohomology is proven. The above two vanishing results depend only
on Dred and can be found a least implicitly in the literature and are probably not
so surprising. What might be more intriguing is that by (10.12.1) and (3) we know

that H i(X,WΩj(X,−D)), i+ j < dimX, is annihilated by some fixed p-power, say pM .

Hence by Theorem 10.7

pM · colimpH
i(X,W•Ω

j
(X,D)) = 0, for all i+ j > dimX.

Note that D does not need to be reduced here and that M might depend on D.

Remark 10.13. (1) We remark that the complex Rn⊗
L
RRΓ(X,WΩ∗

(X,−D)) will for non-

reduced D in general not be isomorphic to RΓ(X,WnΩ
∗
(X,−D)). For example take X

smooth projective with a smooth effective and ample divisorH such thatH i(X,WOX)

does not vanish for some i > 0. Choose r ≥ 1 such that H i(X,Ωj(X,−rH)) = 0 for all

i < dimX = N and for all j. (This is always possible by Serre vanishing and duality.)
We claim that in this situation

Rn ⊗
L
R RΓ(X,WΩ∗

(X,−rH)) 6= RΓ(X,WnΩ
∗
(X,−rH)) for all n.

8This argument uses that V acts topologically nilpotent on Hi(X,WΩ≤j
(X,−Dred)

) in the p-adic topology,

which follows from [Ill79, II, Proposition 2.10] and the resolution WΩ≤j
(X,−Dred)

→ WΩ≤j
D• , see [Mok93, Lemme

3.15.1] and [Nak05, Corollary 6.28]
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Indeed, else it would follow from Ekedahl’s Nakayama Lemma [Eke85, I, Proposition

1.1, ii)] that we have H i(X,WnΩ
j
(X,−rH)) = 0, for all i < N and all j, n. By Corollary

9.5 we get H i(X,WnΩ
j
(X,rH)) = 0 for all i > 0 and all j, n. In particular

H i(X,WOX ) = H i(X,R lim
n
WnO(X,rH)) = lim

n
H i(X,WnO(X,rH)) = 0, for all i,

where the first equality holds by Proposition 10.6, and the second follows from the fact
that the H i(X,WnO(X,rH)) are W -modules of finite length, for all i. This contradicts
our choice of X.

(2) Item (1) in particular implies that in general

Rn ⊗
L
R WΩ∗

(X,−D) 6=WnΩ
∗
(X,−D).

That Nakkajima’s method [Nak05, Theorem 6.24] cannot be applied is realted to
Remark 8.2. We analyze the tor-terms in case Dred is smooth: define the quotient Q
by the exact sequence

0→WΩ∗
(X,−D) →WΩ∗

(X,−Dred)
→ Q→ 0.

Definition 8.1 together with the Snake Lemma give the exact sequence

0→ Q→ WΩ∗
D →WΩ∗

Dred
→ 0.

We have

Rn ⊗
L
R WΩ∗

Dred
=WnΩ

∗
Dred

and Rn ⊗
L
R WΩ∗

(X,−Dred)
=WnΩ

∗
(X,−Dred)

,

where the first equality holds by [IR83, II, Théorème (1.2)] and the second equality
by [Nak05, Theorem 6.24]. Moreover

TorR0 (Rn,WΩ∗
D) =WnΩ

∗
D,

by, e.g., [HM03, Lemma 3.2.4]. Altogether we get an exact sequence

0→ TorR1 (Rn,WΩ∗
D)→ TorR0 (Rn,WΩ∗

(X,−D))→WnΩ
∗
(X,−Dred)

→ WnΩ
∗
D → WnΩ

∗
Dred
→ 0

and equalities

TorR1 (Rn,WΩ∗
(X,−D)) = TorR2 (Rn,WΩ∗

D), TorRj (Rn,WΩ∗
(X,−D)) = 0, j 6= 0, 1.

Here the vanishing follows from [IR83, I, Corollaire (3.3)], which can be also used to
express TorRj (Rn,WΩ∗

D), j = 1, 2, more explicitly.

11. Milne-Kato duality with modulus

In this section we generalize some of the duality results from Milne [Mil76] and [Kat86],
[Kat87] to the modulus setup. The main result is Theorem 11.15.

We continue to assume that X is smooth of pure dimension N and D is an effective Cartier
divisor on X such that Dred is an SNCD. We denote by j : U = X \ D →֒ X the open
immersion of the complement.

11.1. We note that the Nisnevich sheaves WnΩ
q
(X,±D) defined by V 7→ Γ(V,WnΩ

q
(V,±D|V )) are

in fact étale sheaves of coherent WnOX -modules. Indeed, if u : V → X is étale, then so is
un : WnV → WnX and it follows from the étale base change for the de Rham-Witt complex
(see [Ill79, I, Proposition 1.14]) and the Definition 8.1 (in case of −D), and the Propositions
6.15 and 6.18 (in case of +D) that we have

Γ(V,WnΩ
q
(V,±D|V )) = Γ(V, u∗nWnΩ

q
(X,±D)).
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In particular we have

(11.1.1) Rǫ∗WnΩ
q
(X,±D) =WnΩ

q
(X,±D),

where ǫ : Xét → XNis is the change-of-sites morphism.

11.2. Recall that the Cartier operator on the de Rham-Witt complex is the morphism on Xét

(11.2.1) C : F (Wn+1Ω
q
X)→WnΩ

q
X , F (a) 7→ R(a).

The so called inverse Cartier operator is given by

(11.2.2) C−1 :WnΩ
q
X → WnΩ

q
X/dV

n−1Ωq−1
X , a 7→ F (ã), where R(ã) = a.

Note that these are morphisms ofWnOX -modules when F (Wn+1Ω
q
X) is viewed as a submodule

of F∗WnΩ
q
X and WnΩ

q
X/dV

n−1Ωq−1
X as a quotient-module of F∗WnΩ

q
X . Furthermore, we

remark that WnΩ
N = F (Wn+1Ω

N
X) and that the Cartier operator coincides in this case with

the composition

(11.2.3) C : FX∗WnΩ
N
X
∼= FX∗π

!
nWn(k)[−N ] ∼= FX∗π

!
nF

!
kWn(k)[−N ]

∼= FX∗F
!
Xπ

!
nWn(k)[−N ]

trFX−−−→ π!nWn(k)[−N ] =WnΩ
N
X ,

where FX : Wn(X) → Wn(X) denotes the morphism induced by the absolute Frobenius
(similarly for Fk : Wn(Spec k) → Wn(Spec k)), trFX

: FX∗F
!
X → id denotes the counit of

adjunction, and the other notation is as in 9.2, see [Eke84, II, Lemma 2.1]9.

Lemma 11.3. Set

(FWn+1Ω
q)(X,D) := j∗F (Wn+1Ω

q
U ) ∩WnΩ

q
(X,D),

and

(WnΩ
q/dV n−1)(X,−D) :=

WnΩ
q
(X,−D)

dV n−1Ωq−1
X ∩WnΩ

q
(X,−D)

.

These extend naturally to coherent WnOX -modules on Xét. In particular

Rǫ∗(FWn+1Ω
q)(X,D) = (FWn+1Ω

q)(X,D),

and
Rǫ∗(WnΩ

q/dV n−1)(X,−D) = (WnΩ
q/dV n−1)(X,−D),

where ǫ : Xét → XNis is the change-of-sites morphism. Furthermore, on Xét the Cartier
operator on j∗F (Wn+1Ω

q
U) restricts to

(11.3.1) C : (FWn+1Ω
q)(X,D) →WnΩ

q
(X,D)

and the inverse Cartier operator C−1 on WnΩ
q
X restricts to

(11.3.2) C−1 :WnΩ
q
(X,−D)

→ (WnΩ
q/dV n−1)(X,−D).

Proof. Since FWn+1Ω
q
U = Ker(Fn−1d :WnΩ

q
U → ΩqU ), by [Ill79, I, (3.21.1.1)], the sheaf

(11.3.3) (FWn+1Ω
q)(X,D) = Ker(Fn−1d : F∗WnΩ

q
(X,D) → Fn∗ Ω

q
(X,D))

is a kernel between coherent (étale) sheaves and hence is coherent. Similarly, the sheaf
(WnΩ

q/dV n−1Ωq−1)(X,−D) is a quotient of the coherent étale sheaf F∗WnΩ
q
(X,−D) and hence

is coherent. The existence of (11.3.2) follows from the surjectivity of R onto WnΩ
q
(X,−D), see

9In loc. cit. the statement is for Cn, the n-fold iterate of the Cartier operator, but the same proof works
here.
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Lemma 8.15. For the pole side, note that C defines a morphism C : F (Wn+1Ω
q)→ WnΩ

q of
Nisnevich sheaves with transfers and hence induces a well-defined map C : ωCIF (Wn+1Ω

q)→
ωCIWnΩ

q. For q ≥ 1 we have ωCIF (Wn+1Ω
q)(X,D) = (FWn+1Ω

q)(X,D) by definition (see also
5.1) and Theorem 5.4, which yields (11.3.1). By the definition in (6.2.2), the case for q = 0
is reduced to show the following: Let L be a henselian dvf and let a ∈ Wn+1(L) such that
F (a) ∈ filprWn(L), for r ≥ 2, then R(a) ∈ filprWn(L) (see 2.4 and 2.6 for the notation). By
definition we find bs ∈ filrpsWn(L), s = 0, . . . , n− 1, such that

F (a) = b0 +
∑

s≥1

psbs = b0 +
∑

s≥1

F (ps−1V (bs)).

Hence there exists an a0 ∈ Wn+1(L) with F (a0) = b0 ∈ filrWn(L) ⊂ fillogr Wn(L). It fol-

lows directly from the definition that this implies a0 ∈ fillogr Wn+1(L) and hence R(a0) ∈

fillog⌊r/p⌋Wn(L) ⊂ fillogr−1Wn(L) ⊂ filrWn(L), see (2.3.2). Moreover, for s ≥ 1, we have V (bs) ∈

filrpsWn+1(L) and hence R(V (bs)) ∈ filrps−1Wn(L). Thus

R(a) = R(a0) +
∑

s≥1

ps−1R(V (bs)) ∈ filprWn(L).

This completes the proof of (11.3.1). �

Definition 11.4. We define the following two complexes of abelian sheaves on Xét

Z/pn(q)(X,D) :=
(
(FWn+1Ω

q)(X,D)
1−C
−−−→WnΩ

q
(X,D)

)
[−q]

and

Z/pn(q)(X,−D) :=

(
WnΩ

q
(X,−D)

C−1−1
−−−−→ (WnΩ

q/dV n−1)(X,−D)

)
[−q].

Both complexes sit in degree [q, q + 1].

11.5. We make some comments on the complexes defined above:

(1) If D = ∅, then the two complexes are isomorphic to WnΩ
q
X,log[−q] in the derived cat-

egory of abelian sheaves on Xét (see, e.g., [Kat86, Lemma 4.1.5]), which is isomorphic
to the motivic complex Z/pn(q)X , by [GL00, Theorem 8.3].

(2) Let ǫ : Xét → XNis be the change-of-sites map then by Lemma 11.3

Rǫ∗Z/pn(q)(X,D) = ωCI

(
(FWn+1Ω

q)
1−C
−−−→WnΩ

q
)
(X,D)

[−q], q ≥ 1,

for q = 0 the complex is still a two-term complex of cube invariant Nisnevich sheaves
with transfers.

(3) As the open immersion j : U →֒ X is affine we have in D(Xét)

colimr Z/pn(q)(X,rD) = Rj∗Z/pn(q)U .

(4) Complexes similar to Z/pn(q)(X,−D) were already considered in [JSZ18], [Mor19], and

[GK]. More precisely, in [JSZ18, (3.1.3)] the analog complex withWnΩ
q
(X,−D) replaced

by WnΩ
q
X(logD) ⊗WnOX

WnOX(−D) is used, and in [GK, below (7.12)] (see also
[Mor19, 2.4]) the sheaf Ker(WnΩ

q
X → WnΩ

q
D) is considered instead. The pro-systems

over (X,−rD), r ≥ 1, defined by the respective complexes are isomorphic but for fixed
D the complexes differ. We do not know whether they are quasi-isomorphic, but we
expect them not to be.

(5) For q = 0 a complex similar to Z/pn(0)(X,D) is considered in [KS14, (3-2)], where the

filtration fillogr Wn(L) was used instead of filprWn(L) which is used here, also there the
sequence with F = C−1 is considered instead of the one with C considered here.
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Lemma 11.6. Set

WnΩ
q
(X,−D),log := H

q(Z/pn(q)(X,−D)).

Then the natural map

WnΩ
q
(X,−D),log[−q]

≃
−→ Z/pn(q)(X,−D)

is an isomorphism in the derived category D(Xét).

Proof. We have to show that C−1 − 1 : WnΩ
q
(X,−D) → (WnΩ

q/dV n−1)(X,−D) is surjective in

the étale topology. For n = 1 this holds by the following claim, which is a version of the
surjectivity statement in [JSZ18, Theorem 1.2.1]:

Claim 11.6.1. Let A be an SNCD, and B be an effective Cartier divisor with (A+B)red an
SNCD. Then

ΩqX(logA)(−B)
C−1−1
−−−−→ ΩqX(logA)(−B)/(dΩq−1

X ∩ ΩqX(logA)(−B))

is surjective on Xét.

Indeed, let R be the strict henselization of a local ring at a closed point of X and choose a
system t1, . . . , td of regular parameters of R such that

A = Div(t1 . . . te), B = Div(tr11 . . . tree t
re+1

e+1 . . . t
rf
f )

where e, f are integers such that 0 ≤ e ≤ f ≤ d, and r1, . . . rf are non-negative integers. Let
Iq be the set of strictly increasing functions {1, . . . , q} → {1, . . . , d}. Let s ∈ Iq and let θ be
the biggest integer in the image of s such that s(θ) ≤ e. Denote

ωs = dlog ts(1) . . . dlog ts(θ) dlog(1 + ts(θ+1)) . . . dlog(1 + ts(q)).

Then the ωs, s ∈ I
q, form anR-basis of ΩqR(logA). Moreover, ΩqR(logA)(−B) = (π)·ΩqR(logA)

with π = tr11 . . . tree t
re+1

e+1 . . . t
rf
f . Since ωs is invariant under C−1, it suffices to show that for

any a ∈ πR, there exists an element b ∈ πR such that a = bp − b. Such b exists by [JSZ18,
Claim 1.2.2]. This shows the claim.

Now we do induction on n and assume n ≥ 2. As R is surjective by Lemma 8.15, it suffices
to show that Ker(R : WnΩ

q
(X,−D)

→ Wn−1Ω
q
(X,−D)

) lies in the image of C−1 − 1. Every

element of this kernel is of the form V n−1(α) + dV n−1(β) with α ∈ ΩqX and β ∈ Ωq−1
X . As

FV n−1(α) = 0, (8.14.2) yields dV n−1(β) ∈WnΩ
q
(X,−D). Hence V

n−1(α) ∈WnΩ
q
(X,−D) as well

and it suffices to show V n−1(α) lies in the image of C−1 − 1. Combining Lemma 8.13 with
Lemma 8.11, we see that V n−1(α) can be written as a sum

V n−1(α) = pn−1(α0) +

n−1∑

j=1

V j(αj)

with α0 ∈ Ωqn−1(−D
′,−pDn), where D = D′ + pnDn is a p-divisibility decomposition, and

αj ∈ Wn−jΩ
q
(X,−D), for j ≥ 1. By induction αj lies in the image of C−1 − 1, for j ≥ 1, and

α0 lies in the image by Claim 11.6.1, hence so does V n−1(α). �

Remark 11.7. (1) In [JSZ18, Definition 1.1.1] a sheafWnΩ
q
(X|D),log is defined and in [GK,

(5.3)] a sheafWnΩ
q
(X,D),log is defined. These are related to the complexes mentioned in

11.5 (4) in the same way asWnΩ
q
(X,−D) is defined in Lemma 11.6. We don’t know what

is the precise relation between these three sheaves, but the pro-systems for (X, rD),
r ≥ 1, are isomorpic.
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(2) A similar argument as for Lemma 11.6 shows that in D(Xét) we have an isomorphism

Hq(Z/pn(q)(X,Dred))[−q]
∼= Z/pn(q)(X,Dred).

(This would correspond to the case B = 0 in Claim 11.6.1.) However, even in the
étale toplogy the sheaf Hq+1(Z/pn(q)(X,D)) does in general not vanish if D is not
reduced. The main problem when trying to adapt the proof of Claim 11.6.1 is that
for a ∈ 1

π · A the Artin-Schreier covering defined by bp − b = a will (wildly) ramify
along the vanishing locus of π and is in particular not étale over A. Also it is direct
to show that we have

(11.7.1) Hq(Z/pn(q)(X,D)) = j∗WnΩ
q
U ,

which only depends on the support of D. Thus all the information about the multi-
plicities of the components of D is stored in the étale sheaf Hq+1(Z/pn(q)(X,D)), or

the Nisnevich sheaf Rq+1ǫ∗(Z/pn(q)(X,D)). The study of this sheaf was initiated by
Kato in [Kat89] as becomes apparent from the following Lemma.

Lemma 11.8. Let η ∈ X be a generic point of D and set L = Frac(OhX,η). Denote by r ≥ 1

the multiplicity of D at η. Set Hq+1(SpecLét,Z/pn(q)) := Hq+1
n (L). Then

Im(filrWnΩ
q
L → Hq+1

n (L)) = Rq+1ǫ∗(Z/pn(q)(X,D))
h
η ,

see Definition 2.4 for notation. In particular, if filKato
r Hq+1

n (L) denotes the filtration defined
in [Kat89, Definition 2.1], then

filKato
r−1 H

q+1
n (L) ⊂ Rq+1ǫ∗(Z/pn(q)(X,D))

h
η ⊂ filKato

r Hq+1
n (L).

Proof. By definition

(11.8.1) Rq+1ǫ∗(Z/pn(q)(X,D))
h
η =

FilprWnΩ
q
L

(1− C)(FWn+1Ω
q
L) ∩ FilprWnΩ

q
L

.

For a ∈ FilpsrWnΩ
q
L and s ≥ 1 we have

psa = F sV s(a) ≡ V s(Rs(a)) mod (1− C)(FWn+1Ω
q
L).

It follows from the definition (see (2.3.2)) that we have Rs(FilpsrWnΩ
q
L) ⊂ FilrWn−sΩ

q
L, hence

FilrWnΩ
q
L surjects onto the quotient (11.8.1). Moreover for b ∈ filrWnΩ

q−1
L we have

db = FdV (b) ≡ dV R(b) mod (1− C)(FWn+1Ω
q
L).

Iterating this we see that db vanishes in the quotient, which yields the first statement. By
[Kat89, Theorem (3.2)] we have a surjection

fillogr WnΩ
q
L ։ filKato

r Hq+1
n (L),

for all r ≥ 0, which gives the second statement. �

Proposition 11.9. There is an isomorphism in D(WnOXét
)

(FWn+1Ω
q)(X,D)

≃
−→ DX,n

(
(WnΩ

N−q/dV n−1)(X,−D)

)
,

induced by F (α) 7→ (β 7→ C(F (α)β)), where DX,n = RHomWnOX
(−,WnΩ

N
X) denotes the

dualizing functor considered in 9.2 (and extended to the étale site).
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Proof. Consider the following two short exact sequences of WnOX -modules

(11.9.1) 0→ (FWn+1Ω
q)(X,D) → FX∗WnΩ

q
(X,D)

Fn−1d
−−−−→ i∗BnΩ

q+1
(X,D) → 0,

(11.9.2) 0→ i∗(Ω/Z)
N−q−1
n,(X,−D)

dV n−1

−−−−→ FX∗WnΩ
N−q
(X,−D)

→ (WnΩ
N−q/dV n−1)(X,−D) → 0,

see (11.3.3), (6.4.1), and (8.6.3), where i : X →֒ WnX denotes the closed immersion induced
by Rn−1. We have an isomorphism

a : FX∗WnΩ
q
(X,D)

≃
−→ FX∗DX,n(WnΩ

N−q
(X,−D))

∼= DX,n(FX∗WnΩ
N−q
(X,−D)),

which by Theorem 9.3 and (11.2.3) is induced by α 7→ (β 7→ C(αβ)). Moreover, there is an
isomorphism

b : i∗BnΩ
q+1
(X,D)

≃
−→ i∗DX,1((Ω/Z)

N−q−1
n,(X,−D))

∼= DX,n(i∗(Ω/Z)
N−q−1
n,(X,−D)),

which is a composition of the isomorphism (9.3.5) with the duality isomorphism and which is
induced by

i∗BnΩ
q+1
(X,D) →HomWnOX

(i∗(Ω/Z)
N−q−1
n,(X,−D),WnΩ

N
X), α 7→ (γ 7→ pn−1Cn(αγ)),

see [Eke84, II, (2.2.5)] for the fact that the second isomorphism in the defintion of b is induced
by pn−1 : i∗Ω

N
X → WnΩ

N
X . Finally the following diagram commutes (note that the top row is

concentrated in degree zero)

DX,n(FX∗WnΩ
N−q
(X,−D)

)
(dV n−1)∨

// DX,n(i∗(Ω/Z)
N−q−1
n,(X,−D)

)

FX∗WnΩ
q
(X,D)

a

OO

Fn−1d // i∗BnΩ
q+1
(X,D).

(−1)q−1b

OO

Indeed, the commutativity follows directly from the relations pn−1Cn−1 = V n−1 and C ◦

dV n−1 = 0, which follow from the definition of the Cartier operator. Taking everything

together we obtain an isomorphism (11.9.1)
≃
−→ DX,n((11.9.2)), which yields the isomorphism

of the statement. �

11.10. To extend Milne’s classical duality result for étale cohomology with mod pn coefficients
(see [Mil76, Theorem 5.2] and [Mil86, Theorem 1.11]) to the modulus setup we will use
Kato’s general dualizing formalism from [Kat86, Kat87], which we recall in the following. A
morphism of Fp-schemes T → X is relatively perfect if and only if the relative Frobenius
FT/X : T → T ×X,FX

X is an isomorphism. If T → X is additionally flat, then so is
Wn(T )→Wn(X) and the following diagrams are cartesian,

(11.10.1) Wn(T )
Wn(FT )//

��

Wn(T )

��
Wn(X)

Wn(FX)
// Wn(X),

Wn(T ) //

��

Wn+1(T )

��
Wn(X) // Wn+1(X),

where the horizontal maps in the diagram on the right hand side are the closed immersions
induced by the restriction R, see [Kat80, Lemma 2] and [Ill79, 0, Proposition 1.5.8].
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Let XFRP be the site with underlying category, the category of all flat and relatively perfect
X-schemes, equipped with the étale topology. In particular, the underlying category of XFRP

contains all étale X-schemes and we get a fully faithful functor of the underlying catgeories

u : Xét → XFRP,

which is continuous, cocontinuous, and commutes with fiber products. The induced restriction

functor on the topoi X̃FRP → X̃ét, S 7→ u∗S = S|Xét
, therefore is exact and has an exact left

adjoint, see [SGA72a, I, Proposition 5.4, 4) and III, Proposition 2.6]. Hence for any complex
L ∈ D(XFRP,Z/pn) in the derived category of Z/pn-sheaves on XFRP we get a canonical
isomorphism

(11.10.2) RΓ(XFRP, L) ∼= RΓ(Xét, L|Xét
)

in the derived category of Z/pn-modules.
For any n ≥ 1, the association T 7→ Γ(T,WnOT ) defines a sheaf on XFRP, we denote it by

WnO
FRP
X . Now let τ = Zar, Nis or ét. For any WnOX -module M on Xτ , the association

(g : T → X) 7→ Γ(T, (Wng)
∗M)

defines a presheaf ofWnO
FRP
X -modules on XFRP, we denote its sheafification byMFRP. When

M is (quasi-)coherent as a WnOX-module on Xτ , we say that MFRP is (quasi-)coherent as
a WnO

FRP
X -module on XFRP. The functor M 7→MFRP from the category of WnOX -modules

on the site Xτ to the category of WnO
FRP
X -modules is exact. In particular, the association

(g : T → X) 7→ Γ(T, (Wng)
∗WnΩ

q
(X,±D))

defines a sheaf of WnO
FRP
X -modules on XFRP, which we denote by WnΩ

q,FRP
(X,±D). The maps

F, V,R, p, d, C,C−1 on W•Ω
∗
X extend naturally to maps on W•Ω

∗,FRP
(X,±D); this follows from the

cartesian diagrams (11.10.1) and the flatness of Wn(g) : Wn(T ) → Wn(X), see also 11.12
below where we spell out how to extend F and C. In particular, when D = ∅, we write

WnΩ
•,FRP
X := WnΩ

•,FRP
(X,∅) . Since (Wng)

∗WnΩ
•
X ≃ WnΩ

q
T for any flat and relatively perfect

morphism g : T → X, the sheafWnΩ
•,FRP
X agrees with the presheaf given by T 7→ Γ(T,WnΩ

q
T ),

cf. the discussion in [Kat86, §4] or the proof of [LZ04, Proposition 1.7].
Denote by D0(XFRP,Z/pn) the full triangulated subcategory of D(XFRP,Z/pn) generated

by coherent OFRP
X -modules regarded as complexes of Z/pn-modules in degree 0. Note that

WnΩ
q,FRP
(X,±D)

∈ D0(XFRP,Z/pn), by the Theorems 6.4 and 8.7. Set

DX,n(−) := RHomD(XFRP,Z/pn)(−,WnΩ
N,FRP
X,log ),

where WnΩ
N,FRP
X,log is defined by the short exact sequence

(11.10.3) 0→WnΩ
N,FRP
X,log →WnΩ

N,FRP
X

C−1
−−−→WnΩ

N,FRP
X → 0.

This functor agrees with Kato’s functor defined in [Kat86, §6] and differs from the one defined
in [Kat87, §3] by a shift [N ]. Kato proves the following results:

(1) If M ∈ Db
c(XZar,WnOX), then the natural map WnΩ

N,FRP
X → WnΩ

N,FRP
X,log [1] from

(11.10.3) induces an isomorphism in D0(XFRP,Z/pn)

(11.10.4) Dn,X(M)FRP ≃ Dn,X(MFRP)[1],

where Dn,X = RHomWnOX
(−,WnΩ

N
X) as in 9.2, see [Kat86, Proposition 6.1].
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(2) The functor DX,n restricts to an involutive endo-functor of D0(XFRP,Z/pn), i.e.,

(11.10.5) DX,n ◦DX,n ≃ id : D0(XFRP,Z/pn)→ D0(XFRP,Z/pn),

see [Kat87, Theorem (0.1) and Proposition (3.4)].
(3) Let f : X → Y be a proper morphism of relative dimension r between two pure

dimensional smooth k-schemes. There is a natural isomorphism

(11.10.6) Rf∗Dn,X(M) ≃ Dn,Y (Rf∗M)[−r]

in D0(YFRP,Z/pn), for any M ∈ D0(XFRP,Z/pn), see [Kat87, Theorem (0.2)].

The following Lemma is implicitly in [Kat86] and [Mil76].

Lemma 11.11. Assume k is a finite field and X is proper over k. Let M ∈ D0(XFRP,Z/pn).
There is a canonical isomorphism

RΓ(XFRP,DX,n(M)) ∼= RHomD(Z/pn)
(
RΓ(Xét,M|Xét

),Z/pn
)
[−N − 1].

Proof. We start by giving a canonical map from left to right. As k is finite, we can view
X also as a smooth proper scheme of relative dimension N over S0 := SpecFp. Note that
(11.10.3) for S0 instead of X yields in view of (11.10.2) a decomposition

(11.11.1) RΓ(S0,FRP,WnΩ
0,FRP
S0,log

) =Wn(Fp)[0]⊕Wn(Fp)[−1].

Let π : X → S0 = SpecFp be the structure map. We define the map from the statement to
be the composition

RΓ(XFRP,DX,n(M))
≃
−→ RΓ(S0,FRP,DS0,n(Rπ∗M))[−N ]

(11.11.2)

→ RHomD(Z/pn)(RΓ(S0,FRP, Rπ∗M), RΓ(S0,FRP,WnΩ
0,FRP
S0,log

))[−N ]

∼= RHomD(Z/pn)(RΓ(Xét,M|Xét
),Wn(Fp)[0]⊕Wn(Fp)[−1])[−N ]

→ RHomD(Z/pn)(RΓ(Xét,M|Xét
),Z/pn)[−N − 1],

where the first isomorphism is induced from the duality isomorphism (11.10.6), the second
map is the natural transformation RΓ(T,−) ◦RHom(−,−) → RHom(RΓ(T,−), RΓ(T,−)),
the third isomorphism is (11.10.2) and (11.11.1), and the last map is the projection to the
second summand plus the identification Wn(Fp) = Z/pn. We note that this morphism defines
forM variable an exact functor of triangulated categories D0(XFRP,Z/pn)→ D(Z/pn). Thus
it suffices to show that it is an isomorphism for M = LFRP, with L ∈ Db

c(XZar,WnOX). For
such L we have isomorphisms

RΓ(XFRP,DX,n(LFRP)) ∼= RΓ(XFRP,DX,n(L)
FRP)[−1](11.11.3)

∼= RΓ(Xét, (DX,n(L)
FRP)|Xét

)[−1]
∼= RΓ(XZar,DX,n(L))[−1]
∼= RHomWn(Fp)(RΓ(XZar, L),Wn(Fp))[−N − 1]

∼= RHomWn(Fp)(RΓ(Xét, (L
FRP)|Xét

),Z/pn)[−N − 1],

where the first isomorphism is (11.10.4), the second is (11.10.2), the third isomorphism holds
since DX,n(L) ∈ D

b
c(XZar,WnOX), the fourth isomorphism is Ekedahl-Grothendieck duality

and the last isomorphism is clear. It follows from the construction of the duality isomorphism
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(11.10.6) and the isomorphism (11.10.4) that the two compositions (11.11.2) and (11.11.3)
agree for M = LFRP. Indeed by [Kat87, (3.2.2), (3.2.3)] we have a commutative diagram

Rπ∗WnΩ
N,FRP
X [N ]

Tr //

��

WnΩ
0,FRP
S0

��

Rπ∗WnΩ
N,FRP
X,log [N + 1]

Tr // WnΩ
0,FRP
S0,log

[1],

where the horizontal maps are the trace maps defining the respective duality isomorphism
and the vertical maps are induced by (11.10.3). With this commutativity and the formula
Rπ∗(L

FRP) = (Rπ∗(L))
FRP (see [Kat87, Lemma 2.6]) it is straightforward to check that the

above compositions agree. This completes the proof. �

11.12. We extend the complexes from Definition 11.4 to the site XFRP by setting

Z/pn(q)FRP
(X,D) :=

(
(FWn+1Ω

q)FRP
(X,D)

1−C
−−−→WnΩ

q,FRP
(X,D)

)
[−q],

and

Z/pn(q)FRP
(X,−D) :=

(
WnΩ

q,FRP
(X,−D)

C−1−1
−−−−→ (WnΩ

q/dV n−1)FRP
(X,−D)

)
[−q].

We spell out the extension of 1 − C to XFRP. Let g : T → X be relatively perfect and flat.

Then the Frobenius on W•Ω
q,FRP
(X,±D) is induced by the composition

Wn+1(g)
∗Wn+1Ω

q
(X,±D)

Wn+1(g)∗(F )
−−−−−−−−→Wn+1(g)

∗F∗WnΩ
q
(X,±D)

∼= F∗Wn(g)
∗WnΩ

q
(X,±D),

which on elements is given by

Wn+1OT ⊗Wn+1OX
Wn+1Ω

q
(X,±D) ∋ a⊗ α 7→ F (a) ⊗ F (α) ∈WnOT ⊗WnΩ

q
(X,±D).

Here the isomorphism on the right hand side comes from the cartesian diagrams (11.10.1) and
the flatness of Wn+1(g). Hence

Γ(T, (FWn+1Ω
q)FRP

(X,D)) = Γ(T, F (Wn+1(g)
∗Wn+1Ω

q
(X,D))).

The map (FWn+1Ω
q)FRP

(X,D)
1−C
−−−→WnΩ

q,FRP
(X,D) is therefore induced by

F (a)⊗ F (α) 7→ F (a)⊗ F (α) −R(a)⊗R(α).

Similarly for the map C−1 − 1 in the definition of Z/pn(q)FRP
(X,−D).

Lemma 11.13. Let α : A0 → A1 and β : B0 → B1 be two morphisms of sheaves of abelian

groups on some site X. Let C• = (C0 d
−→ C1) be a two term complex of sheaves of abelian

groups on X sitting in degree [0, 1]. Assume we are given pairings

〈−,−〉00,0 : A0 ⊗Z B
0 → C0, 〈−,−〉11,0 : A

1 ⊗Z B
0 → C1, 〈−,−〉10,1 : A

0 ⊗Z B
1 → C1,

such that

〈α(−),−〉11,0 + 〈−, β(−)〉
1
0,1 = d ◦ 〈−,−〉00,0 : A

0 ⊗Z B
0 → C1.
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Then we obtain the following morphism between distinguished triangles in the homotpoy cat-
egory of complexes of abelian sheaves on X 10

A0[0]
α //

π′

��

A1[0] //

π′′

��

cone(α)

π

��

// A0[1]

π′[1]
��

Hom•(B1, C•)[1]
β∗[1] // Hom•(B0, C•)[1] // cone(β∗[1]) // Hom•(B1, C•)[2],

where the non-labled horizontal maps are the natural morphisms in the respective cone sequence
and the vertical maps are defined as follows: the morphism π is in degree -1 given by

A0 →Hom(B0, C0)⊕Hom(B1, C1), x 7→
(
−〈x,−〉00,0,−〈x,−〉

1
0,1

)
,

and in degree 0 by

A1 →Hom(B0, C1), y 7→ 〈y,−〉11,0,

and π′ and π′′ are (in degree 0) given by

π′(x) = −〈x,−〉10,1 and π′′(y) = 〈y,−〉11,0.

Furthermore, there is an isomorphism of complexes

(11.13.1) cone(β∗[1])
≃
−→ Hom•(cone(β)[−1], C•)[1],

which is the identity in the degrees -2 and 0 and which in degree -1 is given by id⊕(− id) ∈
End(Hom(B0, C0)⊕Hom(B1, C1)).

Proof. This is all direct to check. We remark that the square on the left commutes only up
to homotopy, more precisely if h : A0 → (Hom(B0, C•)[1])−1 = Hom(B0, C0) is defined by
h(x) = −〈x,−〉00,0, then we have π′′ ◦ α− (β∗) ◦ π′ = (d[1]) ◦ h. �

11.14. We define the following pairings on XFRP:

〈−,−〉00,0 :(FWn+1Ω
q)FRP

(X,D) ⊗Z WnΩ
N−q,FRP
(X,−D) →WnΩ

N,FRP
X , α⊗ β 7→ αβ,

〈−,−〉11,0 :WnΩ
q,FRP
(X,D)

⊗Z WnΩ
N−q,FRP
(X,−D)

→WnΩ
N,FRP
X , α⊗ β 7→ αβ,

〈−,−〉10,1 :(FWn+1Ω
q)FRP

(X,D) ⊗Z (WnΩ
q/dV n−1)FRP

(X,−D) →WnΩ
N,FRP
X , α⊗ β 7→ C(αβ).

These satisfy

〈(C − 1)(x), y〉11,0 + 〈x, (1 − C
−1(y))〉10,1 = (C − 1)〈x, y〉00,0,

for all local sections x ∈ (FWn+1Ω
q)FRP

(X,D) and y ∈WnΩ
N−q,FRP
(X,−D) . Note that

Z/pn(q)FRP
(X,D)[q] = cone

(
(FWn+1Ω

q)FRP
(X,D)

C−1
−−−→WnΩ

q,FRP
(X,D)

)
[−1],

Z/pn(N − q)FRP
(X,−D)[N − q] = cone

(
WnΩ

q,FRP
(X,−D)

1−C−1

−−−−→ (WnΩ
q/dV n−1)FRP

(X,−D)

)
[−1].

Hence we obtain a natural morphism in D0(XFRP,Z/pn)

Z/pn(q)FRP
(X,D)[q] = cone(C − 1)[−1](11.14.1)

−→ RHom
(
cone(1− C−1)[−1], (WnΩ

N,FRP
X

C−1
−−−→ WnΩ

N,FRP
X )

)

∼= Dn,X
(
Z/pn(N − q)FRP

(X,−D)[N − q]
)
,

10We use the usual sign conventions, see, e.g., [Sta23, Tag 0FNG].

https://stacks.math.columbia.edu/tag/0FNG
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where the morphism in the second line is induced by the composition of π[−1] from Lemma
11.13 with the isomorphism (11.13.1) and the isomorphism in the third line is induced by the
exact sequence (11.10.3).

In view of Kato’s duality isomorphism (11.10.6) the following Theorem generalizes Milne’s
duality, see [Mil76, Theorem 5.2] (for smooth projective surfaces), [Mil86, Theorem 1.11]
(for general smooth proper k-schemes), and [Kat86, Theorem 4.3], to the case of non-empty
modulus.

Theorem 11.15. The morphism (11.14.1) induces isomorphisms in D0(XFRP,Z/pn)

Z/pn(q)FRP
(X,D)[q]

≃
−→ Dn,X

(
Z/pn(N − q)FRP

(X,−D)[N − q]
)
,

Z/pn(N − q)FRP
(X,−D)[N − q]

≃
−→ Dn,X

(
Z/pn(q)FRP

(X,D)[q]
)
.

Proof. By (11.10.5) it suffices to show that (11.14.1) is an isomorphim. By Lemma 11.13 we
have a morphism of distinguished triangles

WnΩ
q,FRP
(X,D) [−1]

π′′[−1]

��

// Z/pn(q)FRP
(X,D)[q]

��

// (FWn+1Ω
q)FRP

(X,D)

π′

��

//

D(WnΩ
N−q,FRP
(X,−D) ) // D

(
Z/pn(N − q)FRP

(X,−D)[N − q]
)

// D((WnΩ
N−q/dV n−1)FRP

(X,−D))[1]
// ,

where we write D instead of Dn,X . By definition the map π′′[−1] factors as

WnΩ
q,FRP
(X,D) [−1]

Thm. 9.3
−−−−−−→

≃
Dn,X(WnΩ

N−q
(X,−D))

FRP[−1]

(11.10.4)
−−−−−→

≃
Dn,X(WnΩ

N−q,FRP
(X,−D) )

and hence is an isomorphism. Similarly, the morphism π′ factors as

(FWn+1Ω
q)FRP

(X,D)
Prop. 11.9
−−−−−−→

≃
Dn,X((WnΩ

N−q/dV n−1)(X,−D))
FRP

(11.10.4)
−−−−−→

≃
Dn,X((WnΩ

N−q/dV n−1)FRP
(X,−D))[1]

and hence is an isomorphism as well. This completes the proof of the theorem. �

Corollary 11.16. Assume additionally that k is a finite field and X is proper over k. Then
the morphism (11.14.1) induces an isomorphism in D(Z/pn)

RΓ(Xét,Z/p
n(q)(X,D)) ∼= RHomZ/pn

(
RΓ(Xét,Z/p

n(N − q)(X,−D)),Z/p
n
)
[−2N − 1].

In particular we obtain isomorphisms of finite groups for all i

H i+q(Xét,Z/p
n(q)(X,D)) ∼= HomZ/pn(H

2N−i−q+1(Xét,Z/p
n(N − q)(X,−D)),Z/p

n).

Proof. As (Z/pn(q)FRP
(X,±D))|Xét

= Z/pn(q)(X,±D), this follows from Theorem 11.15, Lemma

11.11, and (11.10.2). �

Remark 11.17. By Lemma 11.6 the isomorphism in Corollary 11.16 also induces an isomor-
phism

HN−i+1(Xét,WnΩ
N−q
(X,−D),log)

∼= H i+q(Xét,Z/pn(q)(X,D))
∨,
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where the (−)∨ on the right hand side denotes the Pontryagin dual. Taking the limit and
using 11.5(3) yields the isomorphism

lim
r
HN−i+1(Xét,WnΩ

N−q
(X,−rD),log)

∼= H i(Uét,WnΩ
q
U,log)

∨,

which gives back [JSZ18, Theorem 2].

12. Weights zero and one

In this section we consider the complex Z/pn(q)(X,D) for q = 0, 1 and and apply the finite
duality from the previous section. The main results are Corollaries 12.4 and 12.6, and Theorem
12.13. The assumptions on X and D are the same as in the previous sections.

12.1. Weight zero.

Lemma 12.1. Assume X is irreducible. For all i we have natural maps

(12.1.1) H i(Xét,Z/p
n)→ H i(Xét,Z/p

n(0)(X,D))→ H i(Uét,Z/p
n)

inducing an isomorphism

colimrH
i(Xét,Z/p

n(0)(X,rD)) ∼= H i(Uét,Z/p
n).

Moreover, the maps (12.1.1) are injective for i = 1 and identify with the inclusions

H0(XNis, R
1ǫ∗(Z/pn)Xét

)→ H0(XNis, R
1ǫ∗Z/pn(0)(X,D))→ H0(XNis, j∗R

1ǫ∗(Z/pn)Uét
),

where ǫ : Xét → XNis is the change of sites map.

Proof. The natural maps in (12.1.1) are induced from the usual Artin-Schreier-Witt sequence
on Xét and Uét and the isomorphism comes from 11.5(3). For the injectivity note that

R0ǫ∗Z/pn(0)(X,D) = (Z/pn)XNis
.

Hence H i(XNis, R
0ǫ∗Z/pn(0)X,D) = 0 = H i(UNis, R

0ǫ∗Z/pn|Uét
), for all i 6= 0, which yields the

identification of (12.1.1) for i = 1 with the maps in the second part of the statement. Using
the usual Artin-Schreier-Witt sequence and the definition of Z/pn(0)(X,D) (see Lemma 11.3
and Definition 11.4) we see that this latter maps are injective. �

Lemma 12.2. There is distinguished triangle in D(Xét,Z/pn)

Z/pn(0)(X,−D) → (Z/pn)Xét
→ (Z/pn)Dét

+1
−−→,

where the second map is the natural restriction map. In particular, the natural map

Z/pn(0)(X,−D) → Z/pn(0)(X,−Dred)

is an isomorphism.

Proof. By the Artin-Schreier-Witt sequence the complex of étale sheaves

(12.2.1) Z/pn(0)Y :=
(
WnOY

F−1
−−−→WnOY

)

sitting in degrees [0, 1] is quasi-isomorphic to the constant sheaf (Z/pn)Yét , for any Fp-scheme
Y . Thus the first statement follows from the exact sequence of complexes

0→ Z/pn(0)(X,−D) → Z/pn(0)X → Z/pn(0)D → 0.

For the exactness on the left note that a local section a ∈ WnOX maps to zero in WnOD if
and only if it maps to zero in all WnODi , where D =

∑
iDi, with Di,red ∈ Sm. The last

statement follows from the equivalence of topoi Sh(Dét) ∼= Sh(Dred,ét), see [SGA72b, VIII,
Théorème 1.1]. �
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12.3. Set
πab1 (X,D)p := lim

n
Hom(H1(Xét,Z/pn(0)(X,D)),Q/Z),

where the transition maps in the limit are induced by p : Z/pn(0)(X,D) → Z/pn+1(0)(X,D). It
follows from Lemma 12.1, Lemma 11.8, and [KS14, Proposition 2.5] that this group is equal
to the maximal pro-p quotient of the group πab1 (X,D) considered in [KS14, (2-4)] (see also
[KS16]). It classifies finite étale covers of U which have an abelian p-group as Galois group
and whose ramification is bounded by D.

Moreover, set

πab1 (X,−D)p := lim
p

Hom(H1(Xét,Z/p
n(0)(X,−D)),Q/Z).

By Lemma 12.2
πab1 (X,−D)p = πab1 (X,−Dred)

p

and if X is proper and |D| connected we have an exact sequence of profinite groups

(12.3.1) πab1 (D)p → πab1 (X)p → πab1 (X,−D)p → 0.

Note that πab1 (X,−D) classifies finite étale covers of X, which have an abelian p-group as
Galois group and split completely when restricted to D.

Now Corollary 11.16 directly gives:

Corollary 12.4. Assume k is finite and X is proper. Then

πab1 (X,D)p = lim
n
H2N (Xét,Z/p

n(N)(X,−D)) = HN (Xét,WΩN(X,−D),log),

where WΩN(X,−D),log = limnWnΩ
N
(X,−D),log, and

πab1 (X,−D)p = lim
n
H2N (Xét,Z/p

n(N)(X,D)).

Remark 12.5. Taking the limit over {rD}r in the first equality above gives back the isom-
rophism from [JSZ18, below Theorem 2].

Corollary 12.6. Let k be a finite field, let X be proper and let H ⊂ X be a smooth ample
divisor intersecting D transversally. Then the natural map

H i(Xét,Z/p
n(0)(X,−D))→ H i(Hét,Z/p

n(0)(H,−D|H ))

• is injective, if N > i, and
• is bijective, if N > i+ 1.

Proof. With the notation from (12.2.1) we define for a closed immersion of Fp-schemes Z ⊂ Y
the complex Z/pn(0)(Y,−Z) of sheaves on Yét by the exact sequence

0→ Z/pr(0)(Y,−Z) → Z/pn(0)Y → Z/pn(0)Z → 0.

By (the proof of) Lemma 12.2 the complex Z/pn(0)(Y,−Z) coincides with the one defined
in Definition 11.4 in case Y is smooth and Zred is an SNCD. Furthermore, up to quasi-
isomorphism, these complexes only depend on Yred and Zred. For r ≥ 1 we denote in the
following by D + rH also the closed subscheme of X defined by the the effective Cartier
divisor. It follows directly from the definition and an application of the Snake Lemma, that
we have a short exact sequence of complexes on Xét

(12.6.1) 0→ Z/pn(0)(X,−D−rH) → Z/pn(0)(X,−D) → Z/pn(0)(D+rH,−D) → 0.

There is a natural morphism of complexes

(12.6.2) Z/pn(0)(D+rH,−D) → Z/pn(0)(rH,−D|rH ),
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which is an isomorphism. Indeed the map is induced by the natural surjection OD+rH(−D)→
OrH(−D|rH) and it suffices to check that this latter map is an isomorphism. This is a local
question and we can assume that X = SpecA with a factorial local noetherian ring A and D
and H are given by elements d and h in A, which have no prime divisors in common (as H
intersects D transversally). In this case the global sections of OD+rH(−D) are

Γ(OD+rH(−D)) = dA/dhrA = dA/(dA ∩ hrA) = (dA+ hrA)/hrA = Γ(OrH(−D|rH)).

This shows that (12.6.2) is an isomorphism. Thus (12.6.1) yields an exact sequence

H i(Xét,Z/p
n(0)(X,−D−rH))→ H i(Xét,Z/p

n(0)(X,−D))→ H i(Hét,Z/p
n(0)(rH,−D|rH ))

→ H i+1(Xét,Z/p
n(0)(X,−D−rH)).

As the third term only depends on (rH)red = H (see Lemma 12.2) it suffices to show for the
injectivity statement that the term on the left hand side vanishes for r ≫ 0 and N > i, and
for the bijectivity that additionally the term on the right hand side vanishes for r ≫ 0 and
N > i+ 1. By Corollary 11.16 the statement follows from the vanishing

(12.6.3) H2N−i+1(Xét,Z/p
n(N)(X,D+rH)) = 0, if N > i and r ≫ 0.

By definition of Z/pn(N)(X,D+rH) this last cohomology group fits into an exact sequence

HN−i(X,WnΩ
N
(X,D+rH))→ H2N−i+1(Xét,Z/pn(N)(X,D+rH))→ HN−i+1(X,WnΩ

N
(X,D+rH)).

Thus the vanishing (12.6.3) follows from the Serre-type vanishing Theorem 7.6. �

Remark 12.7. (1) The Lefschetz type statement that

πab1 (H,−D|H)
p −→ πab1 (X,−D)p

is surjective, if N ≥ 2, and bijective, if N ≥ 3, which is implied by Corollary 12.6, of
course follows also directly from the general Lefschetz Theorem for the étale funda-
mental group and the sequence (12.3.1).

(2) In [KS14, Theorem 1.1] (see also [KS22]), the authors prove a Lefschetz Theorem for
πab1 (X,D). Note that we cannot get a proof of this statement directly from the duality
statements which we developed here so far as it would require to deal with complexes
like ”Z/pn(0)(X,H−D)”, i.e., we need to allow divisors which are neither effective nor

anti-effective. Note also that in the Lefschetz statement for πab1 (X,D) from [KS14]
one needs H to be sufficiently ample, whereas in Corollary 12.6 any effective ample
H works.

12.2. Weight one.

12.8. We will use the notation

(12.8.1) O×
(X,−D) := Ker(O×

X → O
×
D) and (O×/pn)(X,−D) := Ker(O×

X/p
n → O×

D/p
n).

Note that the sheaf on the left is in the literature often denoted by variants of O×
(X,D), but

in order to have the notation consistent with the other parts of the paper, we put here the
minus in front of the D.

Proposition 12.9. There is a quasi-isomorphism induced by the dlog-map

(O×/pn)(X,−D)
≃
−→ Z/pn(1)(X,−D)[1],

which gives rise to a distinguished triangle

(12.9.1) O×
(X,−⌈D/pn⌉)

Fn

−−→ O×
(X,−D) −→ Z/pn(1)(X,−D)[1]

+1
−−→ .
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Proof. By definition and the surjectivity of the restriction map O×
X → O

×
D we have

(O×/pn)(X,−D) =
O×

(X,−D)

(O×
X )pn ∩ O×

(X,−D)

= Coker(Fn : O×
(X,−⌈D/pn⌉) → O

×
(X,−D)).

By [CTSS83, 1.4, Lemme 2] together with [Ill79, I, Proposition 3.23.2] we have an exact
sequence

(12.9.2) 0→ O×
X/(O

×
X)

pn dlog
−−→WnΩ

1
X

C−1−1
−−−−→WnΩ

1
X/dV

n−1OX .

In view of Lemma 11.6 it remains to show that the natural map

(12.9.3) dlog : O×
(X,−D) →WnΩ

1
(X,−D) ∩WnΩ

1
X,log,

induced by restriction of dlog : O×
X →WnΩ

1
X,log, is surjective.

We do induction on n. For n = 1, this essentially follows from [JSZ18, Theorem 1.2.1]. In
fact, by loc. cit. the map

dlog : O×
(X,−D)

→ Ω1
X(logD)(−D)

is surjective. As this map factors via the natural inclusion Ω1
X(logE)(−D) →֒ Ω1

X(logD)(−D),
for any reduced effective Cartier divisor E, satisfying D0,red ⊂ E ⊂ Dred, where D = D0+pD1

is a p-divisibility decomposition, we get the surjectivity

(12.9.4) dlog : O×
(X,−D) ։ Ω1

X(logE)(−D) ∩ Ω1
X,log.

As Ω1
X(logD0)(−D) = Ω1

(X,−D), by Lemma 8.4, we in particular obtain (12.9.3) for n = 1

The induction step is adapted from the proof of [JSZ18, Theorem 2.3.1]. Denote

Mn := Image
(
dlog : O×

(X,−D) →WnΩ
1
(X,−D) ∩WnΩ

1
X,log

)
.

The restriction map R clearly induces a surjection R : Mn → Mn−1. Consider the following
commutative diagram

Mn
R // //

� _

��

Mn−1� _

��
0 // Ω1

X,log

pn−1

// WnΩ
1
X,log

R // Wn−1Ω
1
X,log

// 0.

The second row is exact by [CTSS83, 1.4, Lemme 3]. Take x ∈WnΩ
1
(X,−D) ∩WnΩ

1
X,log. Then

R(x) ∈Wn−1Ω
1
(X,−D) ∩Wn−1Ω

1
X,log, and hence by induction hypothesis, R(x) ∈Mn−1. Since

R :Mn →Mn−1 is surjective, there exists an element y ∈Mn such that R(y) = R(x). By the
exactness of the second row, x − y = pn−1(z), for some z ∈ Ω1

X,log. In particular, pn−1(z) ∈

WnΩ
1
(X,−D) and thus Lemma 8.11 yields z ∈ Ω1

n−1(−D
′,−pDn), where D = D′ + pnDn is a

p-divisibility decomposition. By the surjectivity of (12.9.4) we find

z = dlog u, for some u ∈ O×
(X,−⌈D′/pn−1⌉−pDn)

.

Hence pn−1(z) = dlog up
n−1
∈ Mn and therefore x = y + pn−1(z) ∈ Mn. This finishes the

induction step. �

Remark 12.10. Let Z(X|D)(r) be the relative motivic cycle complex from [BS19]. By [BS19,
Theorem 4.1] there is a quasi-isomorphism of complexes of étale sheaves

Z(X|D)ét(1)[1] ≃ O
×
(X,−D).
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And hence Proposition 12.9 gives rise to a distinguished triangle of complexes of étale sheaves

Z(X|⌈D/pn⌉)ét(1)
Vn

−−→ Z(X|D)ét(1)→ Z/pn(1)(X,−D)
+1
−−→,

where Vn is induced by pullback along idX ×F
n : X ×Fp (P

1
Fp
)r → X ×Fp (P

1
Fp
)r, cf. [KP15,

Lemma 5.7]. Thus the notation Z/pn(1)(X,−D) might be a bit misleading as we rather have

Z/pn(1)(X,−D) = “Z(X|D)(1)/V
nZ(X|⌈D/pn⌉)(1)”,

which does not agree with Z(X|D)(1)/p
nZ(X|D)(1). (It does, if D = ∅.) It is interesting to

note that the difference between the p-adic and the V -adic filtraton, which we have on the de
Rham-Witt complex (or just on the Witt vectors of a non-perfect field), seems to be visible
also on the motivic complex with modulus.

12.11. We define the Brauer group of X with ramification bounded by D, by

Br(X,D) := H0(U,R2ǫ∗Q/Z(1)′U )⊕H
0(X,R2ǫ∗Qp/Zp(1)(X,D)),

where U = X \D, ǫ : Xét → XNis is the change of sites map, and

Q/Z(1)′U = colimn′ µn′,U , Qp/Zp(1)(X,D) = colimp Z/pn(1)(X,D)

with the colimit on the left over all n′ which are prime to p.
We define the Brauer group with zeros along D by

Br(X,−D) := H2(Xét,O
×
(X,−D)).

We remark:

(1) There are natural inclusions Br(X) ⊂ Br(X,D) ⊂ Br(U) and by 11.5(3)

colimr Br(X, rD) = Br(U).

(2) We have an exact sequence

(12.11.1) Pic(X)→ Pic(D)→ Br(X,−D)→ Br(X)→ Br(D),

where for a singular scheme Z we use the definition Br(Z) = H2(Zét,Gm).
(3) Assume pn is bigger than all the multiplicities of D. Then the n-power Frobenius

induces by (12.9.1) induces a morphism Fn fitting in the following commutative dia-
gram

(12.11.2) Br(X,−D)
pn //

((PP
PP

PP
PP

PP
PP

Br(X,−D)

Br(X,−Dred).

Fn

66♥♥♥♥♥♥♥♥♥♥♥♥

Remark 12.12. As is well-known Br(X) and Br(U) are torsion groups and hence so is
Br(X,D). But note that Br(X,−D) is in general not a torsion group as becomes apparent
from the exact sequence (12.11.1). For example if X = P2 and D = E is an elliptic curve we
have E(k) ⊂ Br(P2,−E). Even if k is a finite field the subgroup Coker(Pic(X) → Pic(D))
might not be torsion due to a contribution by PicD/k(k)/Pic

0
D/k(k).

Now assume that k is a finite field, p 6= 2, and X is a smooth projective surface. In this case
the Tate conjecture for divisors is equivalent to the finiteness of Br(X) which is also equivalent
to the finiteness of its the p-primary torsion subgroup Br(X)[p∞], see [Mil75, Theorem 4.1].
We note:

(1) Br(X) is finite if and only if Br(X,−D)[p∞] is finite.
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(2) If the reduced irreducible components of D are linearly independent in Num(X) ⊗Q
(divisors modulo numerical equivalence) and Br(X) is finite, then Br(X,−D) is finite
as well.

Indeed, first note that Br(D) = 0 as follows from the Brauer-Hasse-Noether Theorem, see
also [Gro68, Remarques (2.5), b)], together with [CTS21, 3.6.6]. Thus the finiteness of
Br(X,−D)[p∞] implies the finiteness of Br(X). On the other hand, Pic0D/k is a smooth

algebraic group scheme (e.g. [BLR90, §9.2]) and hence Pic0D/k(k) is a finite group. Moreover

(PicD/k /Pic
0
D/k)(k) is a finitely generated group and hence so is Pic(D)/Pic0D/k(k). It fol-

lows that Im(Pic(D)→ Br(X,−D))∩Br(X,−D)[p∞] is finite, which yields the “if” direction
in (1). For (2) it remains to observe that under the assumptions made there the index of
Pic(X)→ Pic(D)/Pic0D/k(k) is finite.

For D = ∅ the following duality statement is the p-part of Milne’s duality for the Brauer
group of a smooth projective surface over a finite field, see [Mil75, Theorem 2.4].

Theorem 12.13. Assume k is a finite field and X is a smooth proper surface (i.e. N = 2).
Then there is a canonical isomorphism of profinite groups

Br(X,−D)[p∞]

(Br(X,−D)[p∞])div

≃
−→ Hom

(
Br(X,D)[p∞]

(Br(X,D)[p∞])div
,Q/Z

)
,

where the index “div” refers to the divisible part, and M [p∞] denotes the p-primary torsion
in M .

Proof. The proof follows the same strategy as the one in [Mil75, Theorem 2.4]. First of all
note that the right hand side of the isomorphism in the statement is a profinite group by
Pontryagin duality, hence it suffices to prove the isomorphism of abstract groups. We start
by showing that we have an exact sequence

(12.13.1) 0→ Pic(U)/pn → H2(Xét,Z/pn(1)(X,D))→ H0(X,R2ǫ∗(Z/pn(1)(X,D)))→ 0.

To this end we first claim that we have

R1ǫ∗(Z/pn(1)(X,D)) = j∗(O
×
UNis

/pn) = Rj∗(O
×
UNis

/pn).

The first equality follows directly from the definition, see also (11.7.1), and the exact sequence
(12.9.2). The second equality follows from the vanishing Rij∗O

×
U = 0, i ≥ 1, which relies on

the smoothness of X. Therefore we get a distinguished triangle

Rj∗(O
×
UNis

/pn)[−1]→ Rǫ∗(Z/pn(1)(X,D))→ R2ǫ∗(Z/pn(1)(X,D))[−2]
+1
−−→ .

As Hr(UNis,O
×
U ) = 0, for r ≥ 2, we get the exact sequence (12.13.1). Taking the colimit over

n of (12.13.1) gives an exact sequence

(12.13.2) 0→ Pic(U)⊗Z Qp/Zp → H2(Xét,Qp/Zp(1))→ Br(X,D)[p∞]→ 0.

Now we consider the negative divisor. The distinguished triangle (12.9.1) yields an exact
sequence

(12.13.3) 0→
Br(X,−D)

FnBr(X,−⌈D/pn⌉)
→ H3(Xét,Z/pn(1)(X,−D))

→ Ker(Fn : H3(Xét,O
×
(X,−⌈D/pn⌉))→ H3(Xét,O

×
(X,−D)))→ 0.
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Assume n is large enough so that ⌈D/pn⌉ = Dred. Note that the quotient sheaf Q =
O×

(X,−Dred)
/O×

(X,−D) is a successive extension of coherent OD-modules. As D is a curve we get

H i(Xét,Q) = 0, i ≥ 2, and hence an isomorphism

H3(Xét,O
×
(X,−D))

≃
−→ H3(Xét,O

×
(X,−Dred)

).

Thus the term on the right of (12.13.3) is equal to the pn-torsion in H3(Xét,O
×
(X,−Dred)

).

Furthermore for fixed n0 with ⌈D/pn0⌉ = Dred we have by (12.11.2) the following inclusions

pnBr(X,−D) ⊂ Fn(Br(X,−Dred)) ⊂ F
n0(pn−n0 Br(X,−Dred)) ⊂ p

n−n0 Br(X,−D),

for n ≥ n0. Thus {F
n Br(X,−Dred)}n≥n0 and {pn Br(X,−D)}n define the same topology on

Br(X,−D). As (12.13.3) is an exact sequence of finite groups taking the limit over n yields
an exact sequence

0→ lim
n

Br(X,−D)

pnBr(X,−D)
→ lim

n
H3(Xét,Z/pn(1)(X,−D))→ TpH

3(Xét,O
×
(X,−Dred)

)→ 0,

where TpM denotes the Tate module of M . As TpH
3(Xét,O

×
(X,−Dred)

) is torsion-free and

Pic(U)⊗Z Q/Z is divisible the statement follows from Corollary 11.16 by the same argument
as in [Mil75, Theorem 2.4]. �

Remark 12.14. Tate has shown that if X is an abelian surface over a finite field, then
Br(X)[ℓ∞] (ℓ 6= p) is finite, see [Tat66, Corollary]. By [Mil75, Theorem 4.1] we also have
the finiteness of Br(X)[p∞]. Hence by Remark 12.12 and Theorem 12.13 we find that
Br(X,D)[p∞] is the direct sum of a divisible group with a finite group, for all effective Cartier
divisors D on X with Dred a simple normal crossing divisor.
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201, 1976.

https://arxiv.org/abs/2306.14803
https://arxiv.org/abs/2211.14303


98 FEI REN AND KAY RÜLLING

[Mil86] J. S. Milne. Values of zeta functions of varieties over finite fields. Amer. J. Math., 108(2):297–360,
1986.

[Mok93] A. Mokrane. La suite spectrale des poids en cohomologie de Hyodo-Kato. Duke Math. J.,
72(2):301–337, 1993.

[Mor19] Matthew Morrow. K-theory and logarithmic Hodge-Witt sheaves of formal schemes in character-
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Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L.
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