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DUALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS

FEI REN AND KAY RULLING

ABSTRACT. Given an effective Cartier divisor D with simple normal crossing support on
a smooth and proper scheme X over a perfect field of positive characteristic p, there is
a natural notion of de Rham-Witt sheaves on X with zeros along D. We show that these
sheaves correspond under Grothendieck duality for coherent sheaves to de Rham-Witt sheaves
on X with modulus (X, D), as defined in the theory of cube invariant modulus sheaves with
transfers developed by Kahn-Miyazaki-Saito-Yamazaki. From this we deduce refined versions
of Ekedahl - and Poincaré duality for crystalline cohomology generalizing results of Mokrane
and Nakkajima for reduced D, and a modulus version of Milne-Kato duality for étale motivic
cohomology with p-primary torsion coeflicients, which refines a result of Jannsen-Saito-Zhao.
We furthermore get new integral models for rigid cohomology with compact supports on the
complement of D and a modulus version of Milne’s perfect Brauer group pairing for smooth
projective surfaces over finite fields.
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Let k be a perfect field of positive characteristic p > 0. There is a wealth of duality results
for smooth and proper k-schemes with p-torsion - or p-adic coefficients, such as Serre duality
for differential forms, Poincaré duality for crystalline cohomology [Ber74], or Milne duality
[Mil76], see also [Kat86], [Kat87], which by [GL00] can be interpreted as a duality for étale
motivic cohomology with mod p™ coefficients. For surfaces over a finite field the latter induces
a pairing for the Brauer group [Mil75]. These parings can all be understood via Grothendieck-
Ekedahl duality [Eke84], [Gro85] which is a duality statement for the de Rham-Witt complex

of Bloch-Deligne-Illusie [Blo77], [I1179].
1


http://arxiv.org/abs/2403.18763v1

2 FEI REN AND KAY RULLING

A generalization of these duality statements to open subschemes (say of a smooth and
proper k-scheme) requires the use of cohomology with compact support and relies on consider-
ing pairings between certain pro-groups (on the compact support side) and certain ind-groups.
For example there is the Deligne-Hartshorne duality for compactly supported cohomology of
coherent sheaves [Har72|, Berthelot’s duality for rigid cohomology [Ber97], and the gener-
alization of Milne duality by Jannsen-Saito-Zhao [JSZ18] and Gupta-Krishna [GK], which
generalizes the p-primary torsion part of geometric global class field theory.

As the (compact supported) cohomology groups of an open in the above situations are very
often not finitely generated over the base ring at hand, e.g., k, W, (k), W(k), or Z/p", it is
desirable to have more precise pairings which hold before taking the colimit or the limit to
go all the way to compactly supported cohomology. This requires to have a sturdy notion of
poles and pole orders along the complement of an open immersion U < X between smooth
k-schemes and also a dual notion of zeros and vanishing order along the same closed subset.
Candidates appear at various places in the literature: in [Bry83], [Kat89], [Mat97], Brylinski,
Kato, and Matsuda introduce pole order filtrations on Witt vectors which under the Artin-
Schreier-Witt sequence measure the ramification of Z/p"-Galois coverings of U along X \U. In
[KS14] these filtrations are used to prove a Lefschetz-type result for the abelian fundamental
group with modulus. In [Tan22] Tanaka introduces Witt divisorial sheaves to obtain Witt
versions of classical vanishing theorems, similar sheaves appear also in [JSZ18], [GK], [KSY16].
Hodge-Witt sheaves with vanishing order along a (non-reduced) closed subscheme also play
an important role in the work [Mor19].

In all these cases we would like to have a precise duality pairing which matches Witt
differential forms with certain poles along X \ U with corresponding zeros along the same
closed subset. In this paper we are going to construct such pairings in the case X \ U is the
support of a simple normal crossing divisor.

Let X be a smooth k-scheme (not necessarily proper) of pure dimension N and let D be
an effective Cartier divisor such that the underlying reduced divisor D,.q has simple normal
crossings and denote the complement by U = X \ D. The question is now how to define
appropriate notions of poles bounded by D and vanishing along D for the Hodge-Witt sheaves
W, Q% . One natural way is to consider the multiplicative lift Pic(X) — Pic(W,,X). Then
D gives rise to an invertible W,,Ox-module W,O(D) and we can consider Wan( OW,0x
W,O(£D) for poles (+) and zeros (—). This approach is taken for example in [Tan22] and
at least for the pole side also in [JSZ18], [GK], [KSY16, Appendix]. The advantage of this
choice is that by Ekedahl duality multiplication induces immediately an isomorphism

Wl @w,0x WaO(D) = RHomuw, 0, (WalY ~ @1w,0, WaO(~D), W, 0Y),

and this clearly works for any Cartier divisor D. The drawback of this choice is that the dif-
ferential d, the Verschiebung V', and the Frobenius F' which are defined on the de Rham-Witt
complex do not extend to endomorphisms of the graded pro-object WoQ% ®@w,0, WeO(D).
Hence we cannot extend this to a pairing for crystalline cohomology or to a Milne type pairing.
Furthermore, this makes it hard to understand the duality in the limit over n, see, e.g, [Lem22],
where the product [[, We(O(p"D)) is considered to accomplish this for ¢ = 0. Also consid-
ering D as a (non-reduced) scheme the complex W7, is defined and studying it requires to
consider Ker(W, Q% — W,,Q%), which is not the same as WoQ% ®@w,0, WeO(—D).! In case
D is reduced the log de Rham-Witt complex [HK94], [Mat17] has all the desired properties.

1Though the pro-systems over n are isomorphic.
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Furthermore, [Mok93] constructed a de Rham-Witt complex with zeros along the reduced di-
visor D, which by [Hyo88] and [Nak05] is dual to the log de Rham-Witt. But at least for the
pole side it was not clear how to define a notion of poles bounded by a non-reduced divisor.

The notion of pole orders we choose in this paper relies on the theory of motives with mod-
ulus developed by Kahn-Miyazaki-Saito-Yamazaki in [KMSY2la], [KMSY21b], [KMSY22].
We will explain the relation more precisely a little later. For now we make the following a bit
more direct definition which comes from the work [RS] and is inspired by [AS11]: Let F be a
Nisnevich sheaf of abelian groups on all finite type and separated k-schemes. Let X and D
be as above. We denote by F'x the Nisnevich sheaf on the small site Xyjis.

Poles along D. Denote by Blp(X x X) the blow-up in D diagonally embedded into

X x X and denote by P;D) the complement of the union of the strict transforms of X x D
and D x X in Blp(X x X). The open embedding U x U < X x X extends to an embedding

UxU < P)((D). We set

*

P

F(X, D) := Equalizer | F(U) —_ F(U x U)/F(P{)

P2
and denote by F{y,p)” the Nisnevich sheaf (V' — X) s F(V, D}y), see 5.3 for details.
Zeros along D. Let D =), D; with D; ;cq smooth. We set

Fix,—p) = Ker (FX — @FD) :

(2

Note that both definitions are functorial in F'. One of the main results of this paper is now:
Theorem 1 (Theorem 9.3). Multiplication induces isomorphisms, for all ¢ > 1 and n,

Wy ) = RHomw, o (Wa( ! ), WaQX)

and
From Ekedahl’s trace isomorphism
(10.1) T Wi (k) = W,QN [N,

where m, : Wy,(X) — Spec W, (k) is the structure map, together with Grothendieck duality
we immediately get:

Corollary 1. Assume additionally that X is proper over k. Then there is a canoncial iso-
morphism of finite W, (k)-modules

N—i N— ~ Iyt
HY X, Wy ) = HY(X, Wy 1),

where (—)V denotes the dual W,,(k)-module.

We make some comments on the above result:
e It is not obvious from the definition given above that WnQ‘(]X’ D) is a W,,Ox-module.
And in fact this is not true for ¢ = 0, which is shown in [RS]. Using a certain
conductor as defined in [RS21], we can also define the correct WnQ(()X’ p)» SO that the

isomorphisms in Theorem 1 hold for ¢ = 0 as well.

2In the body of the text these sheaves will be denoted by F(AX% p); but we prefer to have this simpler notation
in the introduction.
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We have Rj,.W,Qf = colimTWnQ‘(IX D)’ where j : U — X is the open immersion,

hence taking the limit over {rD}, in Corollary 1 yields
HY /U, W,y %) = H'(U, W),

where the left hand side is the compactly supported cohomology from [Har72].

e By Ekedahl’s isomorphism (1.0.1) the W,,Ox-module W,, QY is a dualizing complex
in the sense of Grothendieck. Hence the two isomorphisms in Theorem 1 imply each
other.

e For D = (), Theorem 1 is due to Ekedahl. We have WnQ‘(]X’ Do) = W, Q% (log Dyeq)
and hence for D reduced Theorem 1 recovers the duality from [Nak05, Theorem 5.3(1)],
[Hyo88, (3.3.1)].

e Part of the statement of Theorem 1 is also the vanishing

Ext! (W y 4 ), WaX) =0 for i > 1.
Note that this is not automatic as WnQ‘(]X D) is not a locally free W, Ox-module.

The idea to prove this vanishing is similar as in [Eke84] but the actual computations
are more involved, see Theorem 7 below.

e It is not hard to guess from the existing literature, e.g., [JSZ18], [Mor19], [GK],[RS],
that there is an isomorphism of pro-systems over {rD}, as in the second isomorphism
of Theorem 1, but that these two abstract notions of poles and zeros introduced above
for general sheaves correspond precisely under multiplication came as a surprise to the
authors and indicates that there might be some more abstract yet to discover duality
in the background. We want to stress however, that our proof essentially proceeds by
computing the pole and the zero side completely and then show by hand that they
match.

Before we give more applications we consider the pole part in greater detail. Recall the
notion of cube invariant sheaves with transfers CI{;” from [KSY22], [Sai20], see also 5.1 and
7.1 for some more details and references. In particular we have a functor

W€ NST — CIP
from the category of Nisnevich sheaves with transfers to (certain) cube invariant sheaves with
transfers which in case X is proper is given by

wCN(F)(X, D) = Homnst(ho(X, D), F).

Here ho(X, D) is a certain Nisnevich sheaf with transfers which on a function field K/k is
equal to CHy(Xg, Dg) the Chow group with modulus as introduced in [KS16], where the
index K indicates the base change over K. Moreover, if for each henselian discrete valuation
field L of geometric type over k, we are given an increasing filtration {Fil, F'(L)},>o which
defines a conductor ¢ = {cr : F(L) — N} in the sense of [RS21], then there is a cube
invariant sheaf with transfers F. which for X proper is given by

F.(X,D)={ac F(U) | p*(a) € Fily, (,+pyF(L) for all p:SpecOr, — X},
see 3.2 for details and references. By [RS21, Theorem 4.15] and [RS, Theorem 2.6] we have
(1.0.2) F.(x.p) C w'Fix.p) C Fix,p),

where the right hand side is poles along D as defined above. Furthermore by [RS, Theorem
2.10] the second inclusion is an equality in case X is projective and smooth.
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For L as above we define for r,q > 0
i1, W, Q0 := 1%, W, (L) - dlog(KM (L)) + V"™ <ﬁ11;’g Wi (L) - dlog KM (OL)> ,

where fill°8 W,,(L) is the Brylinski-Kato filtration, m = min{n,v,(r)}, and K denotes the
qth Milnor K-theory, and

FilPW, Q8 =" p* (flys Wo Q4 + d(fils, W, 01)) |
s>0

see section 2 for details. The second main result of this paper, which is also essential for the
proof of Theorem 1, is:

Theorem 2 (Theorem 3.3 and Theorem 5.4). The filtration {Fil2W, Q11,1 defines a con-
ductor c. Moreover, for ¢ > 1 and X smooth (not necessarily proper)

CI
Wi x py =@~ Wallly py = Wallly p)-

For ¢ = 0, the correct definition for the pole side from the point of view of Theorem 1 is
given by WnQS (X.,D)" In view of the first part of this theorem the proof of the second part

is essentially by (1.0.2) reduced to show that the Nisnevich stalk (WnQ[(]X D))Z in a generic

point 7 of D is contained in Fil?W,,Qf, where L = Frac((?%n). The proof of this result takes
the sections 2 - 5. It relies crucially on the construction of some ad hoc characteristic form
(see Lemma 4.1). We remark that for n = 1 the above result is proven in [RS, Theorem 6.6]
and our proof makes use of this result. Note that the p-saturation is not visible in the case
n=1.

Though the definition of the filtration FillW,,Q? looks a bit unmotivated it has several
universal interpretations, e.g., Theorem 2 states (¢ > 1)

FitW,0% = w®'W,Q9(0r, m;"),
which also implies that it defines the motivic conductor in the sense of [RS21]. Furthermore
Theorem 1 gives the isomorphism (which also holds for ¢ = 0)

(1.0.3) Fil?W,Q¢ = Homyy, 0, (WaQhy 1 . W,0N),

(Op,m})
where W,QN~9(Or,m}) = Ker(W,Qp5 ¢ — WanL—/qmz ) and N = trdeg(L/k). If f, :
Spec Wy, (Or/m}) — Spec W, (k) is the structure map, then we get an isomorphism
: N
W (k) FillW, Q7 N 1),
(k) = =N 1
see Corollary 9.8. Also note that this filtration is related to Kato’s ramification filtration
for étale motivic cohomology with p-torsion coefficients from [Kat89], see Lemma 11.8 for a
precise statement. However we remark, that there are several ways to lift W, 29 to a cube
invariant sheaf with transfers (corresponding to different conductors), and that this particular
lift we are using here is the maximal one and turns out to be suitable for duality, but has the
disadvantage, as already remarked in [RS, 6.9] (there for n = 1), that the functor

(X,D) — RI'(X, QCIWnQ[(])Q D))

does not factor through the triangulated category of motives with modulus MDM®! defined
in [KMSY22]. A sufficient criterion for a cube invariant sheaf to have this property is given
by Koizumi in [Koi]. There it is also shown that the filtration {fil'°® W, (L)}, gives rise to a
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structure of cube invariant Nisnevich sheaf with transfers on W,,O which defines a realization
of Witt vector cohomology from MDM®,

In the following, we write WnQ[(]X D) for W,Q1 and allow also ¢ = 0. In particular

¢,(X,D)
we get that WnQ‘(ZXD) is a W, Ox-module, that colimTWnQ‘(leD) = 7. WpQf;, and that the
equality
Wally = W% (10g Drea)

holds. By Theorem 2 this sheaf has transfers, which gives a new proof of a result by Merici
[Mer], see Remark 5.5. We also recall the formula for n = 1, which was proven in [RS],

Wiy p) = Qx py = Lk (log Do) ®oy Ox (Do — Do rea + pD1);

where we write D = Dy + pDq such that Dy and D7 have no irreducible components in
common and Dg has none of its multiplicities divisible by p.

Using the explicit description of the filtration we can check that multiplication induces the
map in (1.0.3) which also induces the natural maps in Theorem 1. To prove that the pairing is
perfect and that the higher ext-groups vanish requires some further analysis of the structure

of WnQ[(]X D) See Theorem 7 below. We first give some applications.

In Theorem 7.3 we use Theorem 7 plus a result from [BRS22] to show

HO_mMNST(Ky7£CIWan)(X,D) = WnQ[(])_(,TD).

For D = {), this was proven in [BRS22]. Hence we can apply the results of [BRS22] to
obtain a projective bundle formula and a blow-up formula for WHQ?K D) See 7.4, and we can
apply Theorem 1 to get these formulas as well for D replaced by —D, see Corollary 9.4. These
generalize results by Gros [Gro85] for the case D = (). We furthermore get a Gysin triangle (for
poles): Let Z < X be a closed immersion of pure codimension r between smooth k-schemes,
which intersects D transversally (D may be non-reduced). Denote by p : X — X the blow-up

of X in Z and by E the exceptional divisor. Then there is a canonical distinguished triangle
in D(WOx)

. q-r g q P q o . q-r
Z*W"Q(Z,D‘Z)[_r] — W"Q(X,D) — RP*W"Q(X,p*D+E) — Z*W"Q(Z,D‘Z)[_T + 1]

As an application we obtain the following Lefschetz-type statement for the cohomology of the
top Hodge-Witt forms:

Theorem 3 (Theorem 7.5). Assume that X is additionally projective and let H C X be a
smooth hypersurface section which intersects D transversally and satisfies

HY (X, Q&D) ®oy Ox(H)) =0, forallj>1.
Then the Gysin map

g: HI7\(H, WnQZ{le)‘H)) — HI (X, W )

is an isomorphism for j > 2 and is surjective for j = 1.

We will not spell it out in the following, but the reader should keep in mind that the
projective bundle formula, the blow-up formula and the Gysin triangle are compatible with
Frobenius, Verschiebung, differential, etc. and that these formulas continue to hold in a
suitably modified sense in the crystalline cohomology and étale motivic cohomology with
poles and zeros which we will discuss next.
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The two isomorphisms in Theorem 1 behave quite differently when taking the limit over n.
Indeed, by Proposition 10.6,

R liyrln WHQ((]X,D) = WQ% (log Dyeq).

Hence taking limits over n, the first isomorphism in Theorem 1 together with Ekedahl’s duality
formalism yields in case X is proper the Poincaré duality, see 10.12(2),

(104) RF(Xv WQZX7—Dred)) = RHomW(erog—crys((Xv Dred)/W)7 W)[_ZN]v

where we use that the de Rham-Witt complex with log poles along D;e.q computes log-
crystalline cohomology of the smooth log-scheme (X, D;eq). On finite level this statement
is also proven in [Hyo88, Proposition (3.3)] and [Nak05, Theorem 5.3]. From the above iso-
morphism (or rather a version before taking the total complex) and weight filtration arguments

[Mok93], [Nak05] we deduce that RI'(X, Wy . Dred)) 3 are coherent complexes of modules
over the Cartier-Dieudonné-Raynaud ring R, in the sense of Illusie-Raynaud, Ekedahl. We
do not know if RI'(X, WQ’(kX B D)) is a coherent R-complex for D non-reduced, in fact we do

not know if it is a complete R-complex, see Remark 10.13. As the natural map
RT(X, WQ’(*X7_D)) — RI(X, WQ?X,—Dred))

is an isomorphism up to bounded p-primary torsion (see 10.12(3)) it follows from Shiho’s
comparison of log-crystalline cohomology with rigid cohomology, Berthelot’s Poincaré duality
for rigid cohomology, and the isomorphism (1.0.4) that RT'(X, Wty D)) is an integral model
for compactly supported rigid cohomology of U, for any D with U = X \ D;cq. There are now
several corollaries one can draw from this concerning the degeneration of the slope spectral
sequence and vanishing results and such, but which all work up to bounded torsion and hence
only require to work with D,eq in which case they can be found at least implicitly in the
literature, see 10.12 for more details.

However the multiplicities of D remain visible when we take the limit in the second iso-
morphism of Theorem 1. To state the result set

WOOQ?X,D) = ColimBWnQ?XD) and WQEKX,—D) = Ker <WQ} — EB WQB) ,

where the colimit is over the map p which is "lift and multiply by p” and D =}, D; with

D; req smooth. We define co-crystalline cohomology with modulus (X, D) by
Ry ((X, D) /Ws) := RT'(X, WOOQEX,D))’

which has an operator V on it induced by pV =9V in degree q. We furthermore define crystalline
cohomology with zeros along D by
Rleys((X, —D)/W) := RI'(X, WQEX,—D))?

which has a Frobenius F' on it induced by the absolute Frobenius on X. Theorem 1 together
with Ekedahl’s duality formalism yields the following version of Poincaré duality.

Theorem 4 (Corollary 10.9). Assume X is proper. There is a canonical isomorphism in
DY (WF])

RT¢ys((X, —D) /W) = RHomyy (RT orys (X, D) /W ), K/W)[—2N],
where the action of F' on the right hand side is induced by VV.

3If C* is a dga of sheaves, we use RI'(X,C”") to denote the dga in complexes, and we use RI'(X,C*®) to
denote the total complex of the double complex RI'(X,C™).
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We have RIcrys((X, Dred)/Wn) = RI'(X, WQEX7Drcd)) @k, W, (cf. Corollary 10.11) and
from this one can deduce that the isomorphism in Theorem 4 for D,qq is induced by (1.0.4).
This is not the case if D is not reduced, as the left hand side of the isomorphism in Theorem
4 depends on the multiplicities of D. See 10.12 for more comments and consequences such as
vanishing statements. Finally we remark that it is an intriguing problem to investigate the
relation of RT rys((X, —D)/W) or Rl ys((X, D)/Wso) with the edged crystalline cohomology
from [D’A].

Next we explain a modulus version of Milne duality which we get from Theorem 1. Consider
the following two complexes of abelian sheaves on Xg;

" . CI gy 1-C  cI1 q _

and

_ W, 09
n c-1-1 nY(X,—D
Z/p"(9)(x-D) = (Wnﬂ‘ng_m X=D) ) —d).
)

n—10d—1
Avr10L Wl ),

Both complexes sit in degree [¢, ¢+ 1] and are for D = () quasi-isomorphic to the étale motivic
complex with Z/p"-coefficients by [GL00]. Complexes similar to Z/p"(q)x,—p) are for exam-
ple considered in [JSZ18], [Mor19], and [GK]. A complex similar to Z/p"(0)x,p) is considered
in [KS14]. We remark that Z/p"(q)(x,—p) is quasi-isomorphic to a sheaf concentrated in de-

gree ¢, which is denoted by W”Q[(]X,—D),log'

but not in general. The local sections of the étale sheaf H7™(Z/p"(q)(x,p)) only vanish after
a finite cover which ramifies along D, see Lemma 11.6 and Remark 11.7.
In order to obtain a version of Kato’s generalization of Milne’s duality we denote by

z/ p"(q)%}i D) the extension to the flat relatively perfect site Xprp.

In the pole-case this is also true if D is reduced

Theorem 5 (Theorem 11.15). There are isomorphisms
Z/p"(9)(x pyla) = D x (Z/p"(N — Q)% [N - q]) :

ZIp" (N = %2 )N = a] = Dax (/6" (@) la))
where Dx ,(—) is Kato’s dualizing functor, see 11.10.

Corollary 2 (Corollary 11.16). Assume additionally that k is a finite field and X is proper
over k. Then there is an isomorphism in D(Z/p")

RT(Xe, Z/p"(q)(x,p)) = RHomgpn (RT(Xer, Z/p" (N — @) (x,-p)), Z/p") [-2N —1].
In particular we obtain isomorphisms of finite groups for all i
H™(Xe1, /9" () (x,p)) = Homgpn (H*N 0 (Xe, Z/p" (N = @) (x,-D))> Z/D").-

Taking the limit over {rD}, in the second isomorphism above yields [JSZ18, Theorem 2],
see Remark 11.17. Denote by 7, (X, D)? the étale fundamental group which classifies abelian
p-covers of U with ramification bounded by D from [KS16]. Then the case ¢ = 0 and i = 1
in the above corollary yields (assuming k finite and X proper)

(X, D) = HY (Xer, Wk _p)

As last application we mention a refinement of Milne’s pairing for the Brauer group of a
smooth projective surface over a finite field to the ramified situation. The Brauer group of X
with ramification bounded by D, is defined by

Br(X, D) := H'(U, R*¢,Q/Z(1);) ® H* (X, R?e,Qp/Zy(1)(x,p));

,log)‘
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where € : X¢ — Xnis 18 the change of sites map, and
Q/Z(1); = colimyy py v, Qp/Zp(l)(X’D) = coling/p"(l)(Xp)
with the colimit on the left over all n’ which are prime to p. The Brauer group with zeros
along D is defined by
Br(X, —D) := H*(X&, O _py);
where (’)(XX7_D) = Ker(O% — OJ)). There are natural inclusions Br(X) C Br(X, D) C Br(U)
and colim, Br(X,rD) = Br(U). Furthermore there is an exact sequence

Pic(X) — Pic(D) — Br(X,—D) — Br(X) — Br(D),

where Br(Z) = H?(Z,G,,). For D = () the following duality statement is the p-part of
Milne’s duality [Mil75, Theorem 2.4].

Theorem 6 (Theorem 12.13). Assume k is a finite field and X is a smooth proper surface.
Then there is a canonical isomorphism of profinite groups

Br(X, —D)[p™] Br(X, D)[p>]
(BT(X, _D)[poo])div (BY(X’D)[pOO])diV

where the index “div” refers to the divisible part and M[p™°] is the p-primary torsion in M.

i>Hom< ,Q/Z) ,

For example, if A is an abelian surface over a finite field, it follows from the finiteness of
Br(A), proved by Tate and Milne, that Br(A, —D)[p™] is finite as well and hence the above
duality yields that Br(A, D)[p>] is the direct sum of a divisible group with a finite group, for
all effective Cartier divisors D on A with D,.q a simple normal crossing divisor, see Remark
12.14.

Finally we state the key results which are needed to complete the proof of Theorem 1.

Theorem 7 (Theorem 6.4, Theorem 8.7). There are short exact sequences of Wy, 410x-
modules

W +1Qq n
q+1 n (X,b) F q
0— BnQ(x,D) — 7PW”Q((]X b — ZnQ(x,D) — 0,
and
vn R _
0— (Q/B)? x_p) > Ker (Wn+1Q‘(’X7_D) LN WanX,_D)) — (Y 2)" 5 py — 0,

where in both cases the outer terms are locally free Ox-modules. Moreover, multiplication
induces Ox-linear isomorphisms
~ N— -1 ~ N—g+1
(B8 x—py — Hom(ZaQx 1, QX)s (/2)7 x _py — Hom(BaQx 1, QX).

Recall that using Theorem 2 we can show that there are well-defined maps as in Theorem
1. With Theorem 7 at hand it is direct to check that the same arguments from Ekedahl’s
proof of Theorem 1 for D = ) work in the general case as well.

The outer terms of the two exact sequences in Theorem 7 are defined in (6.4.1) and (8.6.3).
For D = () the exact sequences were proven by Illusie and Ekedahl and the fact that the
outer terms are locally free O x-modules is proven by Cartier operator calculus. The strategy
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for D # () is the same, but it turns out to be more involved. For example, by definition of
Q/B)? (X,—D) there is a cartesian diagram of W10 x-modules

(Q/B)Z,(X,_D) - n+IQ((ZX7_D)

| |

Fr yn q
Bt Wi 192%.

is not a quotient of

Q((]X,—D) = Qg((log DO,red)(_D)7

where D = Dy + pD1 and Dy has none of its multiplicities divisible by p. It rather depends
on the whole p-divisibility decomposition of D up to length n + 1. More precisely, write

D =Dy+pDi+...+p" "' Dpiq,

But in general (Q/B)i,(x,—D)

where D; and D; have no irreducible components in common for ¢ # j, and p does not divide

any multiplicity of D;, for i = 0,...,n. Then there is a surjection
n—j .
i . ntl_ivy @07
D Fr? (X108 D) S0, Ox(~[D,/0'] — D) 2705 oyt
j=0

where D; = Do+ ... +p7Dj and D"H1—7 = pDji1+... +p" 19D, 1, see Remark 8.22. The
proof of Theorem 7 takes almost all of the sections 6 and 8.

General conventions. Throughout the whole paper, k is a perfect field of characteristic
p > 0. We denote by Sm the category of separated schemes which are smooth and of finite
type over k. If F' is a Nisnevich sheaf on Sm and X € Sm, then we denote by Fx the
restriction of F' to the small Nisnevich site Xnis. If # € X is a point, then we denote by F' )}éx
the Nisnevich stalk at x.

2. THE p-SATURATED FILTRATION

We start by fixing some standard notation and recalling some results on the de Rham-Witt
complex. In 2.5 and Definition 2.6 we introduce a filtration which will play an essential role
throughout the rest of the paper.

2.1. Let X € Sm. We denote by W% the de Rham-Witt complex of Bloch-Deligne-Illusie
of length n on X (see [III79]). We denote by R : W,,11Q% — W,Q%, V : W,,Q% — W,11Q%,
F @ Wy — Wp%, the restriction, the Verschiebung, and the Frobenius morphism,
respectively, which are part of the structure of the de Rham-Witt complex. Furthemore, we
have the map

(2.1.1) P Wak = Wi Q%

which is given by “lifting to level n + 1 and multiply by p”, it is well-defined and injective
by [II79, I, Proposition 3.4]. Recall that W,Q% is a differetial graded W, (k)-algebra; we
denote by d : W,Q% — I/VnQBQ'1 the differential and by W, Q% its degree g part. Also
recall that WnQ?X = W, Ox is the sheaf of Witt vectors of length n on X and that we have
the multiplicative Teichmiiller lift [-] = [—], : Ox — W,,Ox at our disposal. By [KSY22,
Corollary 3.2.5(3)] the functor

X = HY(X,W,0%)
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defines a Nisnevich sheaf with transfers for all ¢ > 0, which has SC-reciprocity; we also denote
it by W, Q¢ € RSChris. See also [CR12] for details on how to define the transfers structure and
see 5.1 for the definition of RSCnys. If f: X — Y is a morphism in Sm, then the morphism

% = [ WaQI(Y) = W,Q9(X)

induced by its graph I'y € Cor(X,Y), is the natural pullback morphism induced by the
functoriality of the de Rham-Witt complex. If f is finite and surjective, then the transpose
of the graph defines an element F? € Cor(Y, X) and F?* = f«, where f, is the pushforward
defined using duality theory. We list some properties of the transfers structure which will be
used later, we refer to [RS21, Lemmas 7.7] for proofs of the first two and further references
to the literature:

(a) The restriction, Verschiebung, Frobenius, p, and the differential define morphisms in

RSCyis
R:W, Q1 —-W,Q4 V W01 — W, 1Q4, F: W, 10— W,Q9
p: W Q4 — W, 1 QU d: W00 — W00t

(b) The Nisnevich sheaf with transfers W,,Q° = W,,O coincides with the Nisnevich sheaf
with transfers defined by the algebraic group W,, in [SS03, Proof of Lemma 3.2].

(c¢) Denote by K, é\/[ , ¢ > 0, the restriction of the improved Milnor K-theory from [Ker10] to
Sm. It is an Al-invariant Nisnevich sheaf with transfers, in particular K éw € RSCyis
and the map

d[u1]n o dfug]n

[ua] [ug]

defines a morphism in RSChyjs, e.g. [BRS22, 11.1(4)]. In particular if f: Y — X is a

finite and surjective morphism in Sm, then

fedlogu = dlog(Nm(u)) in W,,Q4(X), ue€ Oy(Y),

dlog:K%—)Wan, u={ui,...,uq} — dlogu := dlog, u := . u; € 0%,

where Nm : f,Of — O% denotes the usual norm.

Another property of the de Rham-Witt forms which will be important in the following is that
the natural map of Nisnevich sheaves (without transfers)

(2.1.2) W,0 @z K)') & (WoO ®z K)')) = WoQl,  (a®u,b®v) — adlogu+ dbdlogv,

is surjective. This follows easily by induction over n from the corresponding fact for 9, the
exact sequence of Nisnevich sheaves on Sm (see [I1179, I, Proposition 3.2])

01 @it YV gy g0 By 00,
and the formulas V(adlog u) = V(a) dlogu and Vd = pdV, cf. also [HK94, Proposition (4.6)].
The following notation will be used throughout.
Notation 2.2. A henselian discrete valuation field of geometric type over k is a field
L = Frac(Op.)",

where U € Sm, z € U is a point of codimension 1, and (OU7z)h denotes the henselization
of the local ring Op,. We denote the set of all such L by ®. For L € ® we denote by Oy,
vr, mz, K1, the ring of integers, the normalized discrete valuation, the maximal ideal, and the
residue field, respectively. In case there is no ambiguity we also write m instead of my, and &
instead of kz. For each L € &, we pick a local parameter z = zy, € O,
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2.3. Let L € @ (see 2.2) and pick a local parameter z € my. Recall that the Brylinski-Kato
filtration of W,,(L) is defined as follows (see [Bry83]):

ﬁll,Oan(L) = {(ag,...,an-1) \p"_l_ZvL(ai) > —r}
={a e W,(L) | 2] F""(a) e W,,OL}, r>0.

We have
ALEW,, (L) = W,,Op, fill°®L = %W, (L) = m}".
Furthermore, the maps V', R, F' restrict to

R
T
(2.3.1) 181V, (L) —L= A8, 1 (L)
~~

F
and more precisely,
(2.3.2) R(AL5 W, 41(L)) C A% Wi(L) C fL5W,(L).
It follows from the formula V¥([a]) - VI ([b]) = Vi ([a’][b"']) that we have
(2.3.3) 18, (L) - il W, (L) C 6L, W, (L), 7,5 > 0.

In particular, fill°6W, (L) is a W,Op-submodule of W,,(L). Moreover the injective map p:
Win(L) = Wy41(L) induces an isomorphism

(2.3.4) p: filPEW, (L) = p- LW, 41 (L).
Definition 2.4. Let L € ®. For ¢, r > 0 we define

B0, (B0 5 10) S22 .0
Bt (1) 0 K 0) 222 v, 0)

e fil, W, 0% = A1 (W, Q%) + V(62 17,04,
where m = min{v,(r),n} with v, the normalized p-adic valuation. We have filyW, Q! =
ﬁlg)g/WanL (by convention). Finally
Fil, W,,Q% = fil,W,,Q% + d(fil, W, Q4~").
2.5. We make some comments and list some easy properties of the above defined filtrations:

(1) The filtration {Fil,W,,Q%},>0 = {fil,W,,(L)}r>0 coincides with the Kato-Matsuda
filtration [Mat97] (with the notational conventions from [KS16, 2.1]).
(2) The family {Fil,W,,Q?} defines an increasing and exhaustive filtration of W,Q%

FilgW,,Q! Cc FiLw,Q! C ... CFiL,W, Q1 C ... C W, Q4.

(The filtration is exhaustive by the surjectivity of (2.1.2).)
(3) The surjectivity of (2.1.2) yields

FilgW, Q% = W, . FiliW,Qf = W,0% (log),

where
W, (10g) = Wald, + Wa2, ! dlog 2 € W0,
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which is also equal to the gth de Rham-Witt forms of the log ring (Op,\) over k
with trivial log structure, where A is the logarithmic structure associated to N — Oy,
1+ z, see e.g. [Matl17].

(4) We have

f1°8, W04 if v,(r) =0
n

fil, W, Q¢ = ,
L {ﬁli?_glwnsz% + AL W,Q0 if v,(r) > n.

(5) For j > 0 we have a natural map
Fil, W, Q) ®z KM (0L) = Fil, W,Q%, a®u > adlogu,

which is surjective for j > 1. (Use the formulas V(adlogu) = V(a)dlogu and
ddlog u = 0 and the surjectivity of L* ®z Ké‘/_ll(OL) — KJ(L), x @ u s {z,u}.)

Definition 2.6. Let {G,},>o be a family of subgroups of W,Q¢ with G, C G,41. The
p-saturation of G, is then defined by

n—1
GP = PGy C W, Q.

s=0

In particular we have
FilbW, Q4 = p*Fil,,s W, Qf = iPW, Q7 + d(f12W, Q7 ).
s>0
We immediately get from 2.5 that {Fil?W,Q%},~0 is an increasing and exhaustive filtration

of W, Q4| which comes with a natural map

(2.6.1) FillW, ), @z K (OL) — FilbW, Q4
which is surjective for j > 1.
Lemma 2.7. For all0 <s<n-—1 and all r > 1 we have

1 1 log’
psﬁl((;g_l)ps WoQf = p*fil, % WaQf, and psﬁl((;g_l)
Proof. Clearly we have this C inclusion in both cases. For the other direction it suffices to
consider ¢ = 0. Let y € L with p" "l (y) > —rp® + 1. If s > n — j, then p*VI([y]) = 0; if
s <mn—j—1,then p"7=*"ly,(y) is an integer > —r + 1/p® and hence it is > —r + 1. This
yields this D inclusion in both cases. ([l

L Wal = PRS00

Lemma 2.8. We have
FilanQqL = WHQ%L, Fil@anQ% = WnQ‘éL (log).

Proof. By 2.5(3) it remains to show the inclusion p*fil,s W,Qf C W, Q, (log), for s € [1,n—1].
Since p* V"5 (W,Q%) = 0, it suffices to show

S lo
D ﬁlpsg_IWnQ% C WnQ‘(IgL (log),
which follows from Lemma 2.7. O
Lemma 2.9. Set w,, := WanL. We have
(2.9.1) V(fil%8w,) C il%w, 1, V(1%%w,) C A% w, iy, V(filaw,) C filwns,

(2.9.2) p(fil%w,) = p- il %w,41, p(AlEw,) = p- il wurr, pllw,) = p- filywns,
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and for ¢ € {R, F'}
(2.9.3) (A% w, 1) C il%w,, (A1 w, 1) C 8% w,, (Al wyi1) C filyw,.
Furthermore,
(2.9.4) FA(fil5W, Q971 C fills W, 0% + d(fillsw, 04 )
and if vy(r) > n+1, then
(2.9.5) Fd(fill¢' W, 1 Q971 € p - 61%5W, 0% + Fil, W, QL.
Proof. The inclusions (2.9.1) and (2.9.3) follow immediately from (2.3.1) and the formula
p(adlogz) = p(a)dlogzx, for ¢ € {F,R,V}, the first two equalities in (2.9.2) follow from
(2.3.4), the last equality from this and Lemma 2.7. Note that any element in ﬁll,OanHQ%_l
is a sum of elements w = adlogz, with a € fill®®W, (L) and = € Ké\fl(L). Write a =
[ag] + V (b), so that [ag] € fill°®W,,;1(L) and b € fil'°®W,,(L). Thus (2.9.4) follows from
Fd(w) = F([ao]) dlog{ag, z} + d(bdlog z) € filosW, Q% + d(ALEW, Q% ).
Finally, (2.9.5). We assume v,(r) > n+ 1. Let w be as above but this time z € Ké‘/_ll((’)L),
and write ag = z%u, with u € (’)z and ep™ > —r. We get
Fd(w) = eF([ag]) dlog{z, z} + F([ao]) dlog{u, z} + d(bdlog x) .
=w €Fil, W Q4
If ep” > —r, then [ao] € f1°%, W, (L) and hence w; € ﬁlio_ngnQ%. If ep™ = —r, then ple
and hence wy € p- ﬁl}?anQ‘}J. This yields the statement. O

Corollary 2.10. The maps F', R, V, p, d on WeQ7} induce well-defined maps

Vip
FillW, Q¢ FilW,, 1Q4 | d: FiPW,Q¢ — FilbWw, Q4.
F,R

Furthermore,
]_Q(Filfan_lQ%) = pFilngnQ%.

Proof. This holds for d by definition. The well-definedness of p and the final statement follow
directly from (2.9.2). For V and R the statement follows from (2.9.1) and (2.9.3) and the
formulas Vd = pdV and Rd = dR. For F it follows from (2.9.3) - (2.9.5) and the observation

lo; lo;
ALOE W, Q0 C L%, WoQf C il et W, 04
]

It will be useful to have a different presentation of FillW,Q? which is provided in the
following lemma.

Lemma 2.11. Let r > 1 and let z € Op, be a local parameter.
(1) For0<j<n-1,i€Z,ac Wn_jQ%L, and B € Wn_jQ?g_Ll we have

(2.11.1) Vi) 'a) € %8, W, Q7 + d(fl°5, W0 Y, if ip" T > e g1,

(2.11.2)  Vi([z)'dlog z - B) € A% W, + d(A1°8, W,Q4~ 1), if ip" T T > —r 41,
Furthermore, if n —m < j <n — 1, where m = min{v,(r),n} > 1, then

(2.11.3) VI([e]' @) € p- VI (AL W, Q8 ) +dV T (LE W, Q0 1), if ipt T = -
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(2) Let H} C W,Q% be the subgroup generated by the elements (2.11.1) - (2.11.3). Then
fil, W,Q% ¢ HY C Fil,W,Q% + p - Fil,, W,Q%.

In particular
n—1

FilPW,Qf =" p*(H . + d(HL")).
s=0
Proof. (1). If a (resp. f3) is equal to adlogu with a € W,,_;(Or) and u € K} (Op) (resp.
u € Kq]\/_fl((’)L)), then (2.11.1) - (2.11.3) follow directly from 2.3 and Definition 2.4. By the
surjectivity of (2.1.2) and 2.5(5) it remains to consider the case where a (resp. () is equal to
db with b € W,,_;(Or) and ¢ =1 (resp. ¢ = 2). We compute
V7 ([2]'db) = p’dV7 (b[2]") — V7 (ib[z]") dlog z,

where the equality follows from the Leibniz rule and the formula Vd = pdV. This yields
(2.11.1). Observe that in the situation of (2.11.3) the integer i is divisible by p, which yields
(2.11.3). Similarly we get

VI ([2]" dlog(z)db) = —p’dV? (b[2]") dlog z,

whence (2.11.2). Concerning the chain of inclusions in (2) observe that the left inclusion
holds by definition and that the right inclusion follows from (1), where for the elements of
type (2.11.3) we observe that

p- il8W,Q0 C p- il 1 W,Q% C p- fil,, W, Q0.
This completes the proof. O

Corollary 2.12. The group FilanQ% 1s a finitely generated W, O -submodule of WnQ%, for
all r,q > 0 and n > 0. Moreover we have inclusions of W,,Or-modules
1

q : q q
(2.12.1) W C FilPW, 08 € W0 - T

n—1"
where z € Of, denotes a local parameter.

Proof. Let H} be as in Lemma 2.11. It is a W,,Op-submodule of W,Q%, by the formula
aVi(z) = VI(FI(a)z). Using additionally the Leibniz rule we find for v € Wn_jQ%_l and
a € W,0p
adV7 ([2]'y) = dV7 ([ F? (a)y) = V7 ([2]' F? (da)).

Hence HY + d(HY) is a W,,Or-submodule of W,,Q, for all » > 0, and hence so is Fil?W, Q] ,
by Lemma 2.11. The first inclusion in (2.12.1) holds by Lemma 2.8, the second inclusion
follows from [z]' - 8,°8W,, (L) C W, Oy, for all t > 0. Since W, Oy, is noetherian (e.g. [LZ04,
Prop A.4]) and WnQ%L is a finite W,,Or-module (where we use that L is of geometric type),
we obtain that Fil? WanL is a finite W,,Or-module as well. O

3. THE p-SATURATED FILTRATION DEFINES A CONDUCTOR

In this section we show that the p-saturated filtration from section 2 defines a conductor
in the sense of [RS21].

3.1. Following [KMSY2la] we call a pair (X, D) a modulus pair, if X is separated and of
finite type over k and D is an effective Cartier divisor on X, such that X \ D is smooth.
The modulus pair (X, D) is called proper if X is a proper k-scheme. A compactification of
a modulus pair (X, D) is a proper modulus pair (X, D’ + X,) such that X \ X, = X and
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D|’ « = D. All compactifications of a fixed modulus pair form a cofiltered set, see [KMSY21a,
Lemma 1.8.2].

3.2. Recall from [RS21, Definition 4.3] that a conductor on a presheaf with transfers F' on
Sm is a collection of set maps

c= {CL : F(L) — NQ}L@;),
where ® denotes the set of henselian discrete valuation fields of geometric type over k, see
Notation 2.2, satisfying the following properties for all L € ® and all X € Sm:
(cl) er(a) =0 = a € Im(F(Or) — F(L)).
(¢2) er(a+b) <max{cr(a),cr(b)}.
(¢3) For any finite extension L’'/L of ramification degree e and any a € F(L') we have

cr (a)w 7

e

cr(Trpypa) < [

where Trz, /7, is the trace which is given by the pullback along the transpose of the
graph of Spec L’ — Spec L (viewed as a finite correspondence) and [—] is the round
up.

(c4) Let a € F(AL). Then

Ch(z) (oo (Ppa) <1, V2 € X = a € F(X),
where k(z)(t)o := Frac(Of, _ ), pz : Speck(z)(t)s — Al is the natural map, and we
identify F(X) with its image in F(A%) under the pullback along A} — X.

(c5) For any a € F(X) there exists a proper modulus pair (X, D) with X = X \ D, such
that for all k-morphisms p : Spec L — X we have

cr(p*a) <wvr(Dyr),

where Dj, denotes the pullback of D under the unique extension Spec Q7 — X of p
and vy (Dr) denotes its multiplicity.

We say a conductor has level n if in (c4) it suffices to consider points
T € X(<p—1) = {points of dimension <n — 1}.4

We say c is semi-continuous if it satisfies the following condition:

(c6) Let X € Sm and let Z C X be a smooth prime divisor with generic point z and
K = Frac(Of}(’Z). Then for any a € F(X \ Z) with cx(ax) < r there exists a
Nisnevich neighborhood u : U — X of z and a compactification (Y, E) of the modulus
pair (U,r - u*Z) such that

cr(pfay) <wvp(Er), forall L € ®andall p:SpecL — U,
where ayy (resp. ax) denotes the restriction of a to U (resp. K).
Theorem 3.3. The collection ¢ = {cr, : W, Q1 — No}peo with
(3.3.1) cr(a) =min{r > 0| a € FikW, Q1 }
defines a semi-continuous conductor of level ¢ + 1. (See Definition 2.6 for FilPW, Q1)

“In fact in [RS21] a conductor of level n is only required to be defined for L € ® of transcendence degree
over k at most n. The restriction of conductor of level n in the above sense to those L is a conductor of level
n in the sense of [RS21].
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Proof. (cl) holds by Lemma 2.8 and (c2) is clear. The proof of (c3) requires some more lemmas
and will be given at the end of the next subsection. (c4) Let X € Sm and a € W,Q9(AL).
For z € X let p, : Speck(z)(t)os — A% be as in (c4). Assume ¢y ()., (pha) < 1, for all
points z € X(<,). Since WnQ%}c (log 00) is a Nisnevich sheaf we find by Lemma 2.8

W"QZ(x)(t)oo (log o)
(WnQ%}NOO(IOg 00))"

a1 € Ker (Wan(Ai) — > = W, (log o) (PL).
We have an exact sequence

0 — WnQ9I(PL) — W, Q% (log oo)(PL) Res, W, (z) LN Hl(]P’i,WnQ%é)a

see [Matl7, p. 68]. By the projective bundle formula (see [Gro85, I, Corollaire 4.2.13]) the
map ¢ is a split injection and we find

ajar € Wp(log 00)(Py) = W,Q4(PL) = W,,Q%(x),

Le., a1 is pulled-back from W,Q4(x). Let s : X — A}( be a section of the projection
m: Al — X and consider b :=a — 7*s*a € W,,Q4(AL). By the above,

(3.3.2) bar =0, forall z € X<g.

We claim that (3.3.2) implies b = 0. To prove this latter claim we may assume X = Spec A,
with A a smooth integral k-algebra and b € WHQ%M. By [HMO04, Theorem B] (for p odd)
and [Cos08, Theorem 4.3] (for p = 2) the abelian group WnQi‘m is isomorphic to a direct sum
of the groups W,,Q% and Win_l, for various m € [0,n]. Furthermore this isomorphism is

natural in A. The claim thus follows from Legma 3.4 below. o
(c5). Let X € Smand a € W,,Q9(X). Let (X, D) be a proper modulus pair with X = X\D.

By the surjectivity of (2.1.2) we find an open cover X = U;V; inducing an open cover X = U,;U;,
with U; = V;\ D, and finitely many elements a; ; € W,O(U;), b; ; € W,O(U;), u; j € Kéw(Ui),
and v; j € Ké‘/_ll(Ui) such that

ay, = Z a; j dlogu; j + Z db; ; dlog v; j,
J J
where ay, denotes the restriction of a to U;. For N > 1 big enough we have
Qi j, b@j S HO(VZ', Wno\/;(N . D|Vi))7 for all i, j
Here for a divisor E on a finite type k-scheme Y, we denote by W, Oy (FE) the invertible
Wy, Oy-modulue, which on an open V' C Y with Ej;, = Div(e) is equal to W,Oy - é By the
proof of [RS21, Claim 7.5.1] we obtain for r > p"~!N

p*(aij), p*(bij) € ﬁli?g_,L_an(L), for all p : SpecOf, — V;,with L € ®, all 4, j,

where m; 1, = vL(p*DM). By definition of Fil? we find for all p : Spec O, — V;
(3.3.3) cr(p*ay,) < vp(rDyy,).
This yields (c5) as any Spec L — X extends uniquely to Spec O, — X and factors via some
Vi— X.

Finally (c6). Let Z C X, 2z € Z and K = Frac(O_f}QZ) be as in (c6). Let a € W, Q4(X \ Z)
with ¢x(ag) < r. By Definition 2.6 and (2.9.2)

n—1

ag = ng(as + dfBs)

s=0
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with a4 € ﬁlrWn_sQ‘}{ and S35 € fil, W, _ SQ‘}{_I. Replacing X by a Nisnevich neighborhood of
z, we can assume that as and [, are the restriction to K of de Rham Witt forms on X \ Z.
As the set of compcatifications of (U,rZ) is cofiltered, for U a Nisnevich neighborhood of z,
see 3.1, it suffices to prove the following, for all ¢ > 0 and n > 1: Assume a as above satisfies
ag € ﬁlTWnQ[}{. Then there exists a Nisnevich neighborhood U — X and a compactification
(Y, E) of (U,rZy) such that

(3.3.4) pra € fil,, (g, )W,Q}, forall p:SpecL — U.
Let m = min{v,(r),n}. We find an open neighborhood U C X of z such that

ay = Z aj dlog(A;) + V™" (b; dlog(u;)),
J

with a; € Wo(U \ Zv), bj € Win(U \ Zp), Aj € KM (U \ Zy), and u; € KM (U), and
ajx € % W, (K), and b € fill9W,,(K), all j.

If r = 0, then we can take aj = 0 = \;. Let (Y, Z'+Y,) be a compactification of (U, Z;) with
Y normal. By the proof of (¢6) in [RS21, Proof of Proposition 7.5] we have for any N > 0
with p"|N, and for any map p: Spec L — U, with L € ®,

p*(az) € ﬁli;OLg((r—l)Z’—l—(N—l)Yoo)W"(L) C ﬁlLOLg(rZ’—I—NYOO)—lW"(L)
and
Vn—m(p*bj) c yn—mo (ﬁILOLg(TZ’+NYoo)WmO (L)),
where mo = min{v,(vy(rZ’ + NYy)),n}. Hence condition (3.3.4) is satisfied for (Y, E)) with
E =rZ"+ NY,, N as above, which is a modulus compactification of (U, rZy).
It remains to prove (c¢3), which is done at the end of the next subsection. 0

Lemma 3.4. Let X be a smooth k-scheme and a € W,Q4(X), for somen > 1 and g > 0.
If a is nonzero, then there exists a point x € X(<gq), such that the image of a in W,,Q4(x) is
nonzero.

Proof. First note that the restriction W,,Q4(X) — W,,Q4(U) along a dense open subset U C X
is injective, which follows from the fact that W, Q% is a successive extension of locally free
Ox-modules, see [I1179, I, Corollaire 3.9]. Since Wan( is moreover an étale sheaf we may
assume k is algebraically closed and X = Spec A with A smooth and étale over k[ty,...,t.]
with e = dim X > q.

For n = 1, the differential forms dt;, ---dtiq, 1 <idp <... <1y <e form a basis of the
A-module Q%. Assume for a € Q% we have b := (dt;, ---dt;,)"(a) # 0 for some sequence
(i1,...,1q) as above. As k is algebraically closed we find elements \; € k such that b # 0 in
B:=A/(t; —Xlj€{1,...,e} \ {ir,...,ig}). Then a(z) # 0 in QZ(I), for some generic point
x of Spec B, which is a point of dimension g in X.

By induction over n we assume the statement is proven for W,,,Q,, for m < n — 1 and all
Y € Sm. For an étale sheaf of abelian groups F' on Sm consider the property:

(x) For each non-zero element a € F'(X), there exists a morphism f: Z — X in Sm such
that dimZ <e—1 and f*a # 0 in F(Z).
By the above, property () holds for W,,Q4, for m < n — 1, and it suffices to show that
F = W, has property (x). To this end observe that if we have an exact sequence of sheaves
0—F - F—=F",

and F' satisfies (x), then so does F’; moreover if F” and F’ satisfy (), then so does F. By
[11179, I, Corollaire 3.9] we are reduced to show that Q471/Z,Q971 and Q9/B,09 satisfy (*),
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for all n (with the notation from loc. cit.). Since we have an injection Q¢=1/Z;Q4~1 «— Q4
(via d) and isomorphisms induced by the Cartier operator
(3.4.1) Zn QWY 2,007 =2 7, Q7 7, il =it 70

the quotient Q47!/Z,0971 satisfies (¥). Next we consider Q9/B,Q9. Let t := t; and set
Ap := A/tA. Up to replacing X by a Nisnevich neighborhood of Spec Ay C X, we can assume
that we have a k-algebra morphism ¢ : Ag — A which composed with the quotient map
A — Ay is the identity on Ay, e.g. [BRS22, Lemma 7.14]. Note that Ag[t] — A is étale and
induces an identification A := lim AJtM A = Ap[[t]]. As BpQ2% has the structure of a coherent

locally free Ox-submodule of F§, Q% we have
(Q1/B,Q9)(X) = Q% /B, Q% =: My.

Let a € M4 be a nonzero element. We have to show there exists a map ¢ : A — C with C a
smooth k-algebra of dimension < e — 1 such that ¢(a) # 0 in M¢. Since My is a projective
A-module of finite rank (with module structure induced by the p"-power map) we find that
the natural map

My — lignM/t"M = Mz

is injective, e.g., [Mat89, Theroem 8.9]. Denote by a the image of a in M 3, which is nonzero.
It suffices to show:

Claim 3.4.1. Either the image of @ in Mg/(t_)\) is nonzero, for some \ € k, or there exists

a map @o : Ag — Co, with Cy smooth of dimension dim Cy < e — 2, such that the image of a
in Mcyp) s nonzero.

Indeed, in this case C := A/(t — A) (resp. C := A®4, Cp) is smooth of dimension < e — 1
and the t-adic completion of the natural map ¢ : A — C' is the morphism A — A/(t — A)
(resp. Aol[t]] = Col[t]]), hence p(a) # 0 in Mc.

We prove the claim. Note that we can write any element Q?ﬁlo[[t]] uniquely as a sum

o o0
(3.4.2) Dot +> atldlogt, b eQf el
1=0 =1

. . . q . q _
We characterize those elements which are in B, Aol To this end, note that B, Aoll] =

F "_ldeQi;[l[t”, by [I179, I, Proposition 3.11]. By [GHO06, Theorem B] each element in
W”sz_o[l[t]] can uniquely be written as an infinite sum of elements of the form

bolt]', coltl'dloglt], (i > 1), Vo(bs[t)), dV(eslt)),

where i > 0, j > 1 with (j,p) =1, s € {1,...,n — 1}, and b, € W, QY , ¢, € Wn_TQi‘_Ol.
It follows that an element (3.4.2) lies in B"Q%o[[t]] if and only if the following conditions are
satisfied:

Ist case: | = p"ly with r € [0,n — 2] and (lp,p) = 1. Then

dy e Wr+1Q?4;1 such that by = F"d(vy) and ¢; = loF" (7).
2nd case: | = p" g with (g, p) = 1. Then
3y € WoQ, and 6 € B,_19Q% " such that b, = F*"'d(y) and ¢; = loF""'(7) + 6.
3rd case: p"|l (including the case [ = 0). Then
b € BnQiO and ¢ € BnQi‘_O1 (where ¢; = 0, if [ = 0).
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Let a Q?ﬁlo[[t]] be a representative of @ € M) and write a in the form (3.4.2). As @ # 0,
we find [; > 0 minimal with the property

byt + ¢t dlog(t) & BnQ?ﬁm[[tH'

First assume p"|l;. Then either b;, & BanAo or ¢, € BanA_Ol. If b, & B"qu’ then taking
A = 1in Claim 3.4.1 will work; if ¢;, ¢ BnQ?{Ol we find by induction over ¢ a map g : A9 — Cy
as in the claim such that ¢(¢;,) ¢ BanC;l, whence @ does not map to 0 in Mg -

Now assume [; = p"ly with r € [0,n — 2] and (lp,p) = 1. If b, & BTHQ?%, again taking
A =1 in the claim will work. Else there exists a v € Wr+1QqA_01, such that b;, = F"d(v). If
~' e Wr+1Q?4_01 has the same property, then v — ' € FWT+QQ?4_017 by [I1179, I, (3.21.1.1)].
Since Z, 10971 = FT+1WT+2Q?4_01, see [I1179, 1, (3.11.3)], we deduce from the 1st case above
that we have

c, —lF"(7) #0 in Q4 1/Z,1,9% "

By (%) for Q971/Z,., 10971 proven above, we find a map ¢g : Ag — Cp as in the claim such
that, wo(c;, —lF" (7)) # 0 in Q‘é;l/Zr+1Q%;1. Thus the image of @ in M) is nonzero.

Finally assume I; = p" !l with (lp,p) = 1. In the case b, & BanAo we take A = 1 as
above. Otherwise we can argue as in the 2nd case, as Bn_lQi_Ol C Zan_Ol. This completes
the proof of Claim 3.4.1 and hence of the lemma. O

Remark 3.5. As the above proof shows, the statement of Lemma 3.4 also holds for Q¢/B,, Q4
instead of W,,Q4, for n > 1. But note that the same statement does not hold for 27/7,, Q9
as the latter sheaf vanishes on all smooth k-schemes of dimension < gq.

3.1. The proof of (c3). In the following, we let L € ® and denote by O, its ring of integers
with maximal ideal m;, and we let z € my, be a fixed local parameter.

Lemma 3.6. Let K — Op be a coefficient field. Then modulo W,Or any element of
ﬁl}?anL, r > 1, is a sum of elements

VIi([ps']) with peK,0<j<n—1,—r<ip" 77! <0.
Proof. This is immediate for n = 1. For n > 2 we can write a = [ag] + V(b), where ag € L

with pn—l?}p(ao) 2 —r and b € ﬁli“ogWN—lL' We find i € K and ¢ € OL such that ag =
20>ip”*12—7‘ Nizl + c¢. Note that

laol = > [ — [c] € (BLEW,OL N VW, _1L) = VALEW,, L.
0>ipn—1>—r
Hence
a= Z [1iz'] mod VA8 W,, (L) + W,Op.
0>ipn—1>—r
The statement follows by induction over n. O

Lemma 3.7. For g > 1 denote by VlKéV[(OL) the image under the map

(1 —I—mL) X7, Kq]\fl(OL) —)KéM(OL), (1—|—b)®ur—>{1+b,u}.
The multiplication 2.5(5) induces maps
(3.7.1) LW, (L) ©7 VIEM(Or) — 2%, W, Q4 + d(RL%, W, 1)

and



DUALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS 21

(3.7.2) AW, (L) ®z V'K (OL)

n—1
: s n—s— log’ n—s— log’ _
I W0 + > pt (VT ALY, W Q) + aVITT AR W98
s=0

Proof. Tt suffices to consider the case ¢ = 1, cf. 2.5(5). For (3.7.1) we have to show

Vi ([z]) dlog(1 — b) € (ﬁlloglw Qb+ d(1%, W, (L)))
for x € L with p"1=Jup(z) > —r, and b € my. In view of VI(y)dlogz = VI (ydlog z) and
(2.9.1) it suffices to consider the case j = 0. By [RS21, Lemma 7.13] we have in W"Q%L’
where O = @18 Or/mj,

n—1

dlog(1 —b) = = > "[b)'d[b] = >

>0 7 1 z7p):1

([8I")-

@|)_;

Thus it remains to show for z € L with p"lvp(z) > —r and 0 # b € mp

(a) [z][b]id[b] € L% W, L, for all i > 0;

(b) [2]dVI([b]') € 1%, W, QL + d(f1°%, W,,(L)), for all 0 < j <n—1, and all i > 1 with

(i,p) = 1.
For (a) it suffices to consider i = 0, in which case the claim is immediate, as [x]d[b] = [xb] dlog b
and p"~lvp(zb) > —r +p"~! > —r 4+ 1. For (b) we compute (using the Leibniz rule)
[e]dV ([B]') = V7 ([]” [)]') — V7 ((b)'[2]"") dlog
Since p" /Y (plvp(z) +4) > —r + 1 it lies in the right hand side of (3.7.1).
We show (3.7.2). By Definition 2.6 and Lemma 2.7

n—1

AW, (L) = p° <ﬁ11(‘:,g 1 Wi(L) +v"—ms(ﬁ1k;%wms(L))),
s=0
where my; = min{v,(rp®),n} = min{v,(r),n — s} +s. By (3.7.1) it suffices to consider

pEV s (ﬁli,ongWmS (L)) and by (2.9.3) we may assume s = 0. We can furthermore assume
m := mg > 1. It remains to show that V7 ([y]) dlog(1 — b) lies in the right hand side of (3.7.2)
forn—m<j<n-—1,y¢c L with p" 7 lur(y) = —r, and b € my. By Corollary 2.10 we may
as before assume j = 0 (and hence m = n) and consider the elements in the cases (a) and (b)
from above with z replaced by y with p"~tvy(y) = —r. Note v,(r) > n hence plvL(y) =: e.
In case (a) (with ¢ = 0) write b = z°u and y = 2°v, with u,v € O] and ¢ > 1. We obtain

[y]d[b] = cuv][2]¢t¢ dlog 2 + [uv][2]°T¢ dlog u.
It follows that, if n > 2 or ¢ > 2, then
[y]d[b] € A1°8, W, Q) C Fil?_ W,Q} .

T

On the other hand if n =1 = ¢, then

[y]d[b] = ydb = —=d(uvzttt) — uvzeﬂ(;ll dlog(uv) — dlogu),

e+1

which lies in fil O_gl Wil + d(ﬁllog W1 (L)), which lies in the right hand side of (3.7.2).
Finally we consider (b) for y € L as above. We have

[yldV7 (b)) = dV ([y]?' b)) — V7 ([b]'[y]"") dlog y.
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If j <n—1ori> 2, then it follows
[y]dV7 ([b]') € L%, W, Q} + d(A1°%,W,,(L)) C Fil’_,W,Q}.
If j=n—1and i =1, then we write y = z°v with v € O} and obtain
[ylav () = v (P ) = V() dioge,

where we use that p divides e and hence e - V*~1(W10r) = 0. Thus [y]dV"~!([b]) lies in the
right hand side of (3.7.2), in this case as well. O

Lemma 3.8. Let K — O, be a coefficient field. For r > 1 set
E = fil’8' W, 0} + W,05, (log).
The following two subgroups of W,Q} are equal:

(1) filsW, QL + d(fill°6W,,(L)).
(2) The subgroup G generated by E and the elements

pFe(da), a € fil®W, (L), p € W,o(K), e > 0.

Proof. Clearly, d(fill®W,,(L)) C G. We show fil8W,,Q} C G. Since WHQ%QL (log) is contained
in both groups it suffices by Lemma 3.6 to show

VIi([vz'])dloghe G, for 0<j<n—-1,beLlL*, veK* 0>ip" 771>

Write b = z°u with u € Of and ¢ > 0 and i = p®iy with (ig,p) = 1 and e > 0. We obtain

VI ([v2"]) dlogb = £V (W) Fed(V7 ([2]")) + V7 ([v2"]) dlogu € G,
where we use

[2] dlog 2¢ = F°([z] dlog 2¢) = %Fed([z]io) = %Feﬂde([z]io).

We show the other inclusion G C fill°8W,,Q} + d(fill°8W,,(L)). By 2.5(5) and Lemma 3.6 it

suffices to show
(3.8.1) pFedvi([vzl) e fills W, Q} + d(fill°8W, (L)),

for p € Wp(K),e>0,0<j<n+e—1,ve K> and ip"t* =1 > —r. There are two cases.
First assume e < j. Then

pFedVI ([v2"]) = pdV?=([v2"]) = dVI=S(FI =% (u) [v2"]) — VI74([v2"[F7 =4 dp).
Hence (3.8.1) holds in this case by (2.11.1). Now assume e > j. We obtain
pFedvi([v2']) = ,u[l/zi]peij dlogv + z',u[uzi]peij dlog z
which satisfies (3.8.1) by Lemma 2.11. O

Lemma 3.9. Let K — Op be a coefficient field and r > 2. The following elements are
contained in FilEW, Q9 :

(3.9.1) adlogu,  a€fillW,(L), u € K})'(K),
(3.9.2) dadlogv,  a€fllW,(L), ve K} (K),
(3.9.3) (Fedb) -,  befilW,yo(L), vy € W,,QL" e >0.

Furthermore the abelian group
Filtw,Q
Fil?_, w,Qf
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is generated by the elements (3.9.1) and (3.9.2) and those elements (3.9.3), which have b €
RL%PW, o (L).

Proof. As we have by definition pSFilgseranL C FilW, Q% it suffices to prove the first
statement with fil? in (3.9.1) - (3.9.3) replaced by fil,. In this case we find (3.9.1),(3.9.2) €

Fil, W, Q% . It remains to consider (3.9.3) for which it suffices by the surjectivity of (2.1.2)
and by 2.5(5) to show

(a) Fe(db)du € FiPW,Q2,
(b) pFe(db) € FilEW, Q1
where b € fil, W,,4.(L), u € W, (K), and e > 0. In case (a) we have
Fe(db)dp = Fed(bdV*(p)).

As bdVe(p) € FillW,+.Q}, by Lemma 2.11, the compatibility of Fil? with F and d, see
Corollary 2.10, yields the claim in this case. Similarly we have F¢(db) € FillW,Q}, since
FillW,, Q! is an W,,0-module by Corollary 2.12, we get (b).

It remains to show the second statement on the generators of the quotient. We assume
g > 1 as there is nothing to show for ¢ = 0. We define the following subgroups of W,,Q{

VW, Q! = Im (W, (L) ® V'K (Or) — W,Q%),
see Lemma 3.7 for the definition of VlKéV[((’)L), and
VIFilPW, 0% = VURIPW, 0% + d(VHEW,00 ).

Furthermore denote by G§ C W,,Q? the subgroup generated by all the elements (3.9.1) and
(3.9.2). We claim

(3.9.4) VIFIEW, Q1 C Gf + Fill_, W, 04 .

By Lemma 3.7 and the fact that d(GS™" + Fil?_ W, Q4™ ") € G& + FilP_,W,,Q¢ it suffices to
show
PVPTITLHALE W 1Q9) C G+ FilE W00

(r—=1)p*
By (2.9.2) we can assume s = 0. By the decomposition
(3.9.5) Of =K*-(1+myg)

every element in the left hand side (for s = 0) can be written as a sum of elements
(a) V" (adlogu) = V" !(a)dlogu,
(b) V"~ !(adlog B) = V"~ (a) dlog 5,
where a € ﬁll,(’len(L), u e KM (K), and 8 € VIK}M(OL). The elements (a) are clearly in
G4, and the elements (b) are in fill%, W, Q¢ + d(f1°5,W, Q%) C Fil?_ W, 0%, by (3.7.1). This
shows Claim (3.9.4).
As any element in K%(L)/VlKé‘/"(OL) can be represented by a sum of elements u € KéV[(K)

and {z,v} with v € Ké\fl(K) we find by (3.9.4) and the definition of G} a surjection

FilPw, 0%

HI+ dHIY - ,
o HAHo ) = G woor

where H{ C W,, Q! is the sugbroup generated by elements

p’adlog{z,u} for 0<s<n-—1,a€ ﬁll((;g_l)pSWn(L), u € Ké\fl(K).
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Denote by H{ the subgroup of WnQ% generated by the elements (3.9.3), which have b €
1%V, 1 o(L). It remains to show

HI+dH{™' € RY =: H! + G} + Fil’_ W, Q4.
As d(R7Y) C RY (for ¢ > 2) it suffices to show HJ C R, for all ¢ > 1. Since the multiplication
W0 © KM (K) — W,Qf induces a surjection Hj ® KM (K) — H{ and a well-defined

map R'® K é\f 1(K) — RY it suffices to consider the case ¢ = 1. By (3.7.1), the decomposition
(3.9.5), (2.9.2), and 2.8 we have

pSﬁll(‘;g_ 1pe WL, + W2, (log) € R',  for all s.

Hence the inclusion H& C R! follows from Lemma 3.8. O

Lemma 3.10. Let L'/L be a finite extension with ramification degree e. Denote by Tr :
W, (L") — Wy (L) the trace. Then

Te(fil, W (L)) C filps W (L)  and  Te(REW, (L)) C il W (L).
Proof. By (2.9.2) we have fillW, (L) = Z?;ol p*fil, W,,_s(L'). Hence it suffices to prove the
first statement. This is proven in [RS21, (7.5.1)] for the F-saturated filtration filX' W, (L). We
check that it also works without F-saturation. Set s = [Z]. By the same argument as in

loc. cit. (below (7.5.1)) we find Tr(a) € fill8W,,(L). Set m := min{v,(s),n}. If m = n, then
fill°8TW,, (L) = fil,W,(L) and we are done. If m < n — 1, then it follows directly from the
definition that we have an isomorphism

~ fill°e W, (L)

(3.10.1) SRR

T V"_m_l([:%z_so]),

where sg = s/p™ (which is prime to p) and Z € O] is any lift of z. The map

n—1 -
F7ld - Wo(L) = QF, (ao,...,an_1) — Z:ag-’%J " dlog aj,

§=0

clearly induces maps

LB W, (L) — m*Q4, (log) and LW, (L) — m;*Qp, .
By (3.10.1) the induced map on the quotient is injective,
o —-s01
f1,W, (L) m 0L
Thus the statement follows from m$ - F"~1d(Tr(a)) C Q¢ L+ see [RS21, (7.5.2)]. O

. VT (Em0) s —s02P" 278 dlog 2.

Now we can complete the proof of Theorem 3.3.

Proof of (¢3). Let L'/L be a finite extension with ramification index e and denote by Tr :
WanL, — WnQ% the trace. We have to show

(3.10.2) Tr(FilfW, Q7)) C Filfy,

As Tr restricts to Tr : WnQ%L/ — WnQ%L we can assume r > 1. We consider several cases.

In the following we will use that Op, is excellent and that henceforth for every finite extension
L'/L we have [L' : L] =e(L'/L)f(L'/L).

W07
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Oth case: We have finite field extensions L' D E D L, and (3.10.2) holds for L'/E and
E/L. Then it holds for L' /L. This follows from the transitivity of the trace and the formula
[[r/ei]/e2] = [r/eiez].

1st case: e = 1. In this case the local parameter z € Oy, is local parameter of Oy, as well
and hence (3.10.2) follows from Lemma 2.11(2) and the fact that Tr commutes with V' and d
(see 2.1) and satisfies a projection formula.

2nd case: e = [L' : L]. Let K < Of be a coefficient field, by assumption the composition
K — Op < Oy is a coefficient field of Op/. Let t € O/ be a local parameter. Any element
in WnQ%L, (log)/ WnQ%L, admits a representative which is a sum of elements adlogt with

a € WnQ%_l. We have Tr(adlogt) = adlog(Nm(t)), see 2.1(c). Thus in this case (3.10.2)
holds for » = 0,1, by Lemma 2.8. For r > 2 condition (3.10.2) follows by induction over
r, from the Lemmas 3.9 and 3.10, and the fact that Tr commutes with F', d, and satisfies a
projection formula.

3rd case: L'/L purely inseparable. In this case we can refine L'/L into a tower of subex-
tensions of degree p. Thus the statement follows from the above cases.

4th case: L'/L separable. In this case we use the p-extension trick from [BT73, 5.9]. Let
H a p-Sylow subgroup in the Galois group of some finite Galois extension M /L containing
L'. Set E := M*H. Then every finite extension of E inside M has p-power degree and and
([E : L],p) = 1. Since L'/L is separable we obtain decomposition L' ® F = ¢;E; with E;/E
a finite field extension of p-power degree. We obtain a commutative diagram

Dipi
(3.10.3) W,Qf, —— @, W,QF,
TrL//Ll/ lZiTrEi/E
W,Q! — = W, 04,

By the cases 0 - 2, (3.10.2) holds for E/L since it is tamely ramified; similarly (3.10.2) holds
for E;/E for all i, since a p-power extension can be refined to a tower of degree p-extensions.
Now let a € FillW,Q},, by definition, or (c6), we have

CE; (QDZ(CL)) < e(EZ/L/) T
by (c3) for E;/F and e(L'/L)e(E;/L") = e(E/L)e(E;/E) we have

ex (T (i) < | SR

by (c3) for E/L we have

(3.10.4) c(Trpr Trg,/p(0i(a))) < L(zf(fL/)Iej()é;L)-‘ N L(LT/L)-"

Thus altogether
ce(Trpyp(a)) = cp ([E: L] - Try (), since [E : L] € Z,,
=cr (Trg/L o(Trpr(a))) by Trg/pop = [E: L],
= Cy, <Z TrE'/L TI'E'Z/E (,DZ(CL)> s by (3103)
< max{cL (TrE/LTrEi/E gpi(a))}, by (¢2)

< [mw by (3.10.4).
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5th case: For an arbitrary finite field extension L'/L property (c3) follows from the cases

0, 3, and 4 above. This completes the proof of Theorem 3.3. O
4. SOME MORE PROPERTIES OF THE pP-SATURATED FILTRATION

For later use we analyze in this section the p-saturated filtration further.

Lemma 4.1. Let L € ® and r > 2. The map
. +1
Filtw,Q R Qf EB of

Fill_, W,Qf + p(FiW,_1Q7) Fil?_,Qf Fil”_ 1Q‘IL“

(411)  Fvlerld:
1S injective.
Proof. First note that the map in the statement is well-defined by Corollary 2.10. Let K — Oy,
be a coefficient field. Let ¢ be an element in the source of (4.1.1) and assume

+1
a7 257

4.1.2 F"(¢), F" Ydg) =0 i .
( ) ( (¢)7 d@) 0 in Fllf_lg% Fi1$_19%+1

By Lemma 3.9 we can assume that ¢ is a sum

(4.1.3) ¢ = a;dlogu; + Y _da;dlogv; + > (Fdby) -,
7 i 1
with 1
fil, W,, L il W, 1, L
a,-,a;- egr,W,L := L b € r—1 +1l ,
fil, 1 Wise, L N AL Wiy o, L

~ il W,L’
u € KM(K), v e KM (K), &eW,Qk', ¢>o0.

Write
e=uvp(r), e =uvp(r—1), r=rop® r—1=rp
We consider four cases.
1st case: e =0, e; € [0,n — 1]. By [RS21, 7.18(1)] we can assume
a; = V"‘l_el([aiz_”]), a; = V”_l_el([a;z_”]), b = V"+Cl_1_el([ﬂlz_”]),
for some o, o, B € K. Hence
¢ =V T A) +dVT (2] B),

where

A= o] diogu; — SBIFT IS € Wey a9,
i l

B =Y [of)dlogv; + Y [BIF"TITH6) € Wepn @
J l

Therefore

Fn_ld¢ = z_(r—l)Fe1dA + (_Tl)z—(r—l) dlog 2 - Fel (A),

Frol(@) = 2~ 00 (p 17 R (A) + FdB) + (—m)z ™) dlog 2 - F(B).
If e;1 = 0, then

. 1
Fill_,Qf = FQ%L (log 2)
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and the vanishing (4.1.2) yields A =0 and B = 0, whence ¢ = 0. If e; € [1,n — 1], then
) 1
Fllf_lg% = FQ%L
and the vanishing (4.1.2) yields F°'(A) = 0 and F°'(B) = 0. By [IlI79, I, (3.11.3)] we find
A e W, Q and B' € VVGIQI}{_1 with V(A") = A and V(B’) = B. Therefore
6= VI ([N AV (B
Thus ¢ € Filf_IWnQ%, by Lemma 2.11.
2nd case: e = 0, e; > n. In this case gr,W,L = 0 = gr, W, L, for all ¢; with e; > n + ¢,
by [RS21, Cor. 7.18(1)]. Hence we can assume ¢ = >, (Fdb;) - &, with e; <n + ¢ for all [,
and by = Vra=l=ei([327m)), with 8, € K. Hence
r—1 r—1
¢p=1z] mTA+[z] »» Tdlogz- B,
where
A=Y PGB 6 € WaQk and B=Y_ F-(B])8 € W04
l 1

By Lemma 2.11 we have
r—1 /
[2] 7T A € p- L% W, 00 + (LS W,00 ) C Fil?_ W,00.
Thus we can assume A = 0 and hence
Frldg = —2""Vdlogz- F*'dB and F" !¢ =z~ "Ddlogz- F*1(B).
As in the case under consideration
. 1
Fllf_lg% = FQ%L
the vanishing (4.1.2) yields
n— n— -1
(4.1.4) B € Ker(F" ') nKer(F" 'd) = pW,Q%
see e.g. [Eke84, (0.6.3)] for the equality®. By Lemma 2.11 and Corollary 2.10 we find
¢ € p-FillW,Qf C pFilb, W,Qf = p(FiZW,,_19}).
3rd case: e € [1,n — 1], eg = 0. By [RS21, Cor. 7.18(2) and Cor 7.17(1)], we can assume
a; = V" Nayz D) + VIO (Bi[2]TT0P),  dl = VTN ahzm ) 4 VT8l TOP),
and
b = Vn+cl_1(’7l2_(r_1)),
for some oy, o,y € K, B;,8; € We K. Hence
¢ =V" (U A) 4 avi T (2T TYB) 4+ VITE([]TOPC) 4 dVIT([2] TP D),

where
A= Z a; dlog u; — ZylF"_ldél e 0,
) 1

B := Za} dlogv; + Z’Yan_l(él) e Qi
j l

C:=Y Bidogu; e W%, D=3 g dlogu; € W
i J

5t is easily deduced from [1179, I, Proposition 3.11]
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Therefore

Frldg = 270" DdA — (r = 1)z Vdlog z- A+ 2 "FeLdC,

Frlg=2"0"D4B — (r — 1)z Ydlogz- B+ 2 "FedD.
As in the case under consideration

FilP_ 0 — %Q‘é (log 2)
the vanishing (4.1.2) yields
A=0, B=0, F“YC=0, F°'dD=0.
By [11179, (3.11.4)] we find ¢’ € W1 1Q% and D’ € W, 109" such that
C=F(C") and D=F(D).

Altogether
¢ — pvn—e—l([z]—ro C/) + pdvn—e—l([z]—mD/).
Hence ¢ € pFilf_i_anQ%, by Lemma 2.11. As r + 1 < pr, Corollary 2.10 yields

¢ € pFilE, W,09 = p(FilPIW, Q9.
4th case: e > n,e; = 0. By [RS21, Cor. 7.18(3) and Cor. 7.17(1)], we can assume
a; = V" Yoz D) 4+ Bl 7T, df = VPN a0 4 BT,
and
5= Ve (e,
for some «;, oz;-, m € K, B;, Bj € W, K. Similarly as in the 3rd case we find
¢=V"1 VA 4 av (7 "UB) + [z]_P”%lC + p[z]_P"L*1 dlog z - D,

where A € Q%, B € Q%! C € W,Q%, and D € W,,Q% " and where we use that r/p™! is
divisible by p to get the p in front of the last summand. Hence

Frldg = —(r — 1)z~ Ddlogz- A+ 2~ VdA + 27" F"1(dC),
F'lg=—(r—1)z"C"Ydlogz- B+ 2" ""YdB + 2 "F"~1(C).
As in the case under consideration
FilP_,Qf = 2—1_2939 (log 2)
the vanishing (4.1.2) yields
A=0, B=0, C¢cKer(F" ") nKer(F" 'd).

Thus
¢ € pFil  W,,Qf C p(FilkW,,_197),
by (4.1.4), Lemma 2.11, and Corollary 2.10. This completes the proof. O

Lemma 4.2. Let L € ® and r > 2. The sequences
FﬂanQ% F"_*;d Q%—H
Fill_ W, Q9 + Q(Fili’Wn_IQ‘i) Fﬂf_lQ‘F'l

(421)  F(W,41Q%) NFiPW, QI —

and
Fil?W, Q¢ -1 Q1
_> [
Fill_ W, Q% + p(FilEW,,_1Q7) Fill Q]

are exact, the maps on the left being induced by the quotient maps.

(4.2.2) V(Wi Q9) NFIEW,Q —
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Proof. We use the notation from the proof of Lemma 4.1. Clearly the sequences from the
statement form a complex. Write

e=vp(r), er=uvp(r—1), r=rop r—1=rp.
We show the exactness of (4.2.1). Let ¢ € Fil?W,,Q? be as in (4.1.3) and assume
+1
Y
Fil?_ Qi+t
We consider the same four cases as in Lemma 4.1 to show that the image of ¢ in the quotient
in the middle of (4.2.1) lies in the image of F(W,4+1Q%).

1st case: e =0, e; € [0,n — 1]. With the notation from the corresponding case in Lemma 4.1
we find: if e; = 0, then A = 0 and hence

¢ =dV" ! ([z] 7" B) = FdV"([z] " B);

F"ld(¢) =0 in

if e; € [1,n — 1], then
A € Ker(F') NKer(dF*') C pW,Q%,
see (4.1.4) for the inclusion, hence writing A = pA’ = FV (A’) yields

6= F(V'o (2] A) + v ([T B)).
2nd case: e =0, e; > n. The argument from the second case of the proof of Lemma 4.1 yields
¢ = [z]‘p%1 dlogz- B, with F"'d(B) = 0.
By [I179, I, (3.11.4)] we have B = F(B’) and hence
o= F([z]_rp;”1 dlog 2 - B).

3rd case: e € [1,n — 1], e; = 0. As in the third case of the proof of Lemma 4.1 we find A =0
and C' = F(C"). Thus

¢ = F(dV"(z_(T’_l)B) F VT[]0 + dV"‘e([z]_’"OV(D))>.

4th case: e > n,e; = 0. Similarly as in the fourth case of Lemma 4.1, we get A = 0 and
C = F(C"). Thus

¢ = F(dV"(z_(’"_l)B) Y] 7O+ 2] 7 dlog 2 - V(D)).

This completes the proof of the exactness of (4.2.1).

We show the exactness of (4.2.2). We assume n > 2 as the statement is trivial for n = 1.
Let ¢ € FilPW,, Q7 be as in (4.1.3) and assume

q

in %

Fil,_, Q7
We consider the same four cases as above to show that the image of ¢ in the quotient lies in
the image of V/(W,_1Q7) under the quotient map.

F"(¢) =0

st case: e =0, e; € [0,n — 1]. With the notation from the corresponding case in Lemma 4.1
we find: if e; = 0, then B = 0 and hence

6=Vl A);
if e; € [1,n — 1], then F¢'(B) =0, hence B = V(B’), by [IlI79, I, (3.11.3)]. As
AV ([z7B]) = dV" 4 ([2] P B’) € Fill_ W, Q%
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by Lemma 2.11, we obtain that the image of ¢ in the quotient is equal to
¢ =V (2] A).

2nd case: e =0, e; > n. The argument from the second case of the proof of Lemma 4.1 yields

r—1
¢=1[z] P Tdlogz-B, with F""}(B)=0.
By [I179, I, (3.11.3)] we have B = V(B’) and hence

_(r=Dp
¢»=V(z]" 7 dlogz-B).

3rd case: e € [1,n — 1], eg = 0. As in the third case of the proof of Lemma 4.1 we find B =0
and F*~'dD = 0. Thus D = F(D’) and

¢ =V VA 4 VITE([E)TOPO) + V(FAVT T (2] D).

4th case: e > n,e; = 0. Similarly as in the fourth case of Lemma 4.1, we get B = 0 and

C =V(C"). Thus

6=Vl 0D A) L V([e] 7T C) + VE([2] 7 dlogz - D).
This completes the proof of the exactness of (4.2.2). O

5. HODGE-WITT SHEAVES WITH MODULUS

We begin this section by recalling the notion of reciprocity sheaves and several a priori
different ways to assign a modulus to a section of certain presheaves, which appear in [KSY22],
[RS21], and [RS]. The main result of this section is Theorem 5.4, which says that these
different notions of modulus agree for W,,Q2¢, ¢ > 1. Theorem 3.3 and Lemma 4.1 are crucial
ingredients in the proof of that theorem.

5.1. We recall the definition of a reciprocity sheaf from [KSY22, Definition 2.2.4 and Section
2.4], where these are called sheaves with SC-reciprocity. Denote by PST the category of
presheaves with transfers on Sm in the sense of Voevodsky and by NST its full subcategory
of Nisnevich sheaves. For U € Sm we denote by Z, (U) the presheaf with transfers represented
by U. Let F' € PST and let (X, D) be a proper modulus pair (see 3.1) with X \ D =U. A
section a € F(U) has modulus (X, D) if the map a : Z;(U) — F, defined by a via the Yoneda
embedding, factors in PST as

Ztr(U) —F.

hO (X7 D)
Here ho(X, D) is the presheaf with transfers given on S € Sm by
ho(X, D)(S) = Coker(Cor((PY, ocs), (X, D)) 25 Z,,(U)(S)),

where i. : {e}s = Pk denotes the closed immersion, for € € {0, 1}, and Cor((P§, cog), (X, D))
denotes the free abelian group generated on integral closed subschemes Z C Ag X U which
are surjective and finite over a connected component of U such that

vioog > v*D,

where v : Z — ]P’}9 X X is the normalization of the closure of Z.
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For (X, D) any modulus pair with U = X \ D and (X,D’ + X) a compactification of
(X, D) (see 3.1) we set

wCF(X,D) = {a € F(U) | a has modulus (X, D’ + N - X.) for some N > 0}.

In fact the assignment (X, D) + w®'F(X,D) defines a cube invariant semipure modulus
presheaf with M-reciprocity wCIF as defined in [KSY22] and [Sai20] and with the notation

from there we have wCIF = T!hODw*F.

A presheaf with transfers F' is a reciprocity presheaf if for any U € Sm any section a € F(U)
has a modulus, i.e., if F(U) = Jw® F(X, D), where the union is over all proper modulus
pairs (X, D) with X \ D = U. A reciprocity sheaf is a Nisnevich sheaf on Sm which is also a
reciprocity presheaf. The category of reciprocity sheaves is denoted by RSCyjs.

If F € RSCyjs and (X, D) is a modulus pair, then the assignment

(étale X-schemes) 3 (u:V — X) = wCTF(V,u*D) =: T'(V, QCIF(X,D))
is a sheaf on Xyjs by [RS21, Corollary 4.16] and is denoted by QCIF( X,D)-

5.2. Let FF € NST and let ¢ = {c, : FI(L) = Ngo}res be a semi-continuous conductor (see
3.2). Let (X, D) be a proper modulus pair with U = X \ D. For a € F(U) we write

ex(a) <D
as a shorthand for
cr(p*a) <wvp(p*D), forall L € ® and all p: SpecL — U.

Following [RS21, 4.8] we define for any modulus pair (X, D) with a compactification (X, D’ +
Xoo)

F.(X,D):={ae F{U)| cx(a) < D'+ N - X, for some N > 0}.
By [RS21, (4.8.1)] the assignment

(étale X-schemes) 3 (u:V — X) — F.(V,u*D) =: I(V, ﬁc,(X,D))
defines a Nisnevich sheaf FVQ( x,p) on Xnis. By [RS21, Theorem 4.15(4)] we have

(5.2.1) F.cw®'F,  for F € RSCxis.
For L € ® with ring of integers O, maximal ideal my, and r > 1 set

F(Or,my") = lim F(U,rZ),
U,2)

where the filtered colimit is over all modulus pairs (U, Z) with U and Z smooth and connected
such that Op = (’)[}j ., with z € Z is the generic point. As c is assumed to be semi-continuous
we have

(5.2.2) F(Op,m;") = {a € F(L) | cr(a) <7},

see [RS21, Lemma 4.23]. Finally we recall that if the conductor has level m < oo and (X, D)
is a modulus pair with U = X \ D, then

F.X,D)={a€ F(U)| f*a € F,(S, f*D),for all f:S — X with § € Sm, dim S < m},
see [RS21, Corollary 4.18].
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5.3. The following notion of modulus using dilatations is motivated by work of Abbes and
(Takeshi) Saito, who used this approach to study the ramification of Galois torsors, see [AS11]
and [Sail7]. In the framework of reciprocity sheaves this notion was studied in [RS]. Let
(X, D) be a modulus pair with X € Sm and assume that the reduced divisor D,eq underlying
D has only simple normal crossings, i.e., Dyeq is an SNCD divisor. Denote by Blp(X x X)

—_—

the blow-up in D diagonally embedded into X x X and denote by X x D and D x X the
strict transforms of X x D and D x X, respectively. Set

PP = Blp(X x X)\ (X x DUD x X).

We note that P&D) is smooth and that the open embedding U x U — X x X, with U =

X \ D, induces an embedding U x U < P(D), see e.g. [RS, Lemma 2.3]. We denote by py,
o P)(<D) — X the maps induced by the projection X x X — X to the first and second factor,
respectively; they restrict to the projection maps on U x U. For F' € RSCyjs we define
(5.3.1) FMS(X,D) ={a € F(U) | pia—pia € F(PY)},

for this definition to make sense we use that F'(U x U) is a subgroup of F’ (P)((D)) by [KSY16,
Theorem 6] together with [KSY22, Corollary 3.2.3]. As an étale map u : V — X induces a

morphism P‘(,“*D) — P)(<D) we obtain a Nisnevich sheaf F (AXS’ p)y on Xnis given by

(w:V = X) = FASV,u*D) =T(V, Fi5,0 ).
By [RS, Theorem 2.6]
(5.3.2) wF(x,p) C F{X'p);

for X € Sm and D,.q SNCD. By Theorem 2.10 in loc. cit. this is an equality if (X, D)
additionally admits a projective SNC-compactification.

Theorem 5.4. Let ¢ = {cr : WnQ% — No}res with
(5.4.1) cp(a) =min{r > 0| a € FiIPW,Q!}, a€ W01,

be the semi-continuous conductor of level ¢+ 1 from Theorem 3.5. Let (X, D) be any modulus
pair and let n, ¢ > 1. Then

CI 7 O0
w WnQ((ZX7D) = Wanc,(X,D)'
In particular
wOW, 01O, m;") = FilW,,Q%,

for all L € ® and r > 0. If furthermore X is smooth and Dyeq is an SNCD, then

QCIWnQ‘(IKD) = Wn, (x,p) = (Wan)égD).

The proof will be given after the next remark.

Remark 5.5. (1) Note that the statement is not true for ¢ = 0. As the absolute Frobe-
nius on X induces an endomorphism of W, Ox one has to consider the Frobenius
saturation of fil, W), (L), see [RS21, Theorem 7.20] and [RS, Proposition 5.3].

(2) The case n = 1 and ¢ > 1 follows from [RS, Theorem 6.6 and Corollary 6.8]. In
particular this says that if X and D are smooth and r > 0 then

Q% (log D)((r —1)D) ifpfr

(5:5.1) @)X rD) = {m (D) i plr
X )
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which at the generic point 1 of D coincides with Fil? WlQ%n, where L, = Frac((?%n).
(3) In the case Dyeq is an SNCD, Theorem 5.4 and Lemma 2.8 imply

(5.5.2) W0, = W Q% (log D),

where the right hand side is the logarithmic de Rham-Witt sheaf, see, e.g., [Mat17,
Proposition-Definition 3.10]. (This D inclusion is immediate, this C inclusion can be,
for example, deduced from the isomorphism [I1179, I, (2.14.8)] together with [Mat17,
Corollary 4.4].) Note that the above equality is also true for ¢ = 0 as in this case both
sides are equal to W,,0x. As a consequence we obtain the equality

L0og(w W, Q) (X, Drea) = WnQ% (log D),
where Log : MNST),, — Shv!i,. is the functor defined in [Sai23, (6.0.2)]. This gives

a new proof of [Mer, Theorem 4.4].

Proof. First of all we note that by [RS21, Theorem 4.15] and (5.2.2) the first statement of
Theorem 5.4 is equivalent to show

WwOW, 01O, m;") = FilEW,Q%, for all L € ®.
Furthermore, if X is smooth and D,.q is an SNCD, then P)(<D) (see 5.3) is smooth and WnQ‘JJD( D)

is a successive extension of locally free sheaves (see [I1179, I, Corollaire 3.9]) and hence the
question whether an element a € W,Q9(U) lies in (W,,Q9)43(X, D) is Nisnevich local around
the 1-codimensional points of D. Thus we are reduced to the following situation:

Let X = Spec A, with A a smooth k-algebra, let D = div(z) be a smooth connected divisor
on X with generic point 7 € D), and set O, = Oél(m and L = Frac((?%n). Then we have to
show

1P q CI q —r q\AS h
FillW,Q] = w~ W,Q4Or,m;") = ((WnQ )(X’TD))U7 for all » > 0,
where the right hand side denotes the Nisnevich stalk of (Wan)?)?T py n 7. By (5.2.1) and
(5.3.2) it remains to show
h
((M/ngzq)é§w))77 C FilPW, 04
By (5.5.1) this is true for n = 1. Thus we assume n > 2 in the following. As {Fil?W, Q% },>¢
is an exhaustive filtration of WnQ% it remains to show
(5.5.3) FillW,,Q% N (W, Q)*5(X, (r — 1)D) C Fill_, W, 0%,

where we identify (W,,Q9)A3(X, (r —1)D) with its image in W,,Q%. By Lemma 2.8 this is true
for r = 1 and we can assume r > 2. For ¢ in the left hand side of (5.5.3) we claim

Filr iy, Q4
Fill_, W, Q] + p(FilW,,_1Q})
Indeed, by [RS, Theorem 6.6] (see also Remark 5.5) we have

QNDAS(X, (r —1)D) N QL = FilP_,Q,

(5.5.4) ¢=0 in

and since the formation E — ES is functorial with respect to any morphism of sheaves of
abelian groups we find

=Y (WaQ0)85(X, (r — 1)D)) C Fil?_ Q¢

and
Frld (W,Q0)A8(X, (r —1)D)) C Fil?_, Q4.
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Thus the claim (5.5.4) follows from Lemma 4.1.
Therefore (after possibly shrinking X around 7) we can write ¢ = v + p(¢’) with

Y€ Pl W,oQ8 N W,y and ¢ € FiIPW,1Q% N W, _1Q°

(3] A1

By Theorem 3.3, (5.2.1), and (5.3.2) the form ¢ lies in (W,Q9)*S(X, (r — 1)D) and hence

so does p(¢’). Since P)(<(T_1)D) \ U x U is supported on a smooth divisor (e.g. [RS, Lemma

2.3]), the equality (5.3.1) together with Lemma 5.6 below and the injectivity of p imply that
¢ € (W1 Q9)AS(X, (r — 1)D). By induction on n we thus have ¢/ € Fil?_W,,_;Q¢. This
proves the containment (5.5.3) and hence the theorem. O

Lemma 5.6 ([GK, Lemma 6.7]). Let C be a smooth k-algebra and t € C' an element such
that C/tC is smooth. Then (see (2.1.1) for the notation p)

p(Wyoi QL )N WL QL = p(W,, QL) in W, Q4.
= Cly] = Cl¢]

6. THE STRUCTURE OF HODGE-WITT SHEAVES WITH MODULUS

In this section we investigate the structure of Hodge-Witt sheaves with modulus. The main
result is Theorem 6.4, whose proof will occupy all of this section and which will be essential
for the proof of the main statement in section 9.

Throughout this section we assume X € Sm and we let D be an effective Cartier divisor
on X such that D,.q is an SNCD.

6.1. If F is any divisor on X and m € Z \ {0}, then we write
m | E ;<= m divides the multiplicity of every irreducible component of E
and
m{ E ;<= m does not divide the multiplicity of any irreducible component of E.
Given an increasing sequence of natural numbers 1 < r; < ... <75 we say
E=F +p"Ei+...+p"E,

is a p-divisibility decomposition of E (with respect to r1 < ... < rg), if p"*  E' and p"i {
pli By, for i =2,...,s, and E/ ; + > 7 | Ejed is a reduced divisor. Note that p | Es is
allowed and that a p-divisibility decomposition of F always exists and is uniquely determined
by the sequence 71 < ... < rg. For example if £ = ). n;&; with &; the irreducible components
of B, & # &;, for i # j, then to say that
E=F +p"E,
is a p-divisibility decomposition of F means that
s
E/ = Z m& and Er = Z p—;gl

iqurni ivprlni

Finally for £ and m as above we set
[E/m] = Z[nl/m]& and |E/m] := ZLnl/mJ&
i i

where [—] (resp. |—]) denotes the round-up (resp. round-down).
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6.2. Under the assumptions of this section all three ways to define Hodge-Witt sheaves with
modulus discussed in Section 5 coincide by Theorem 5.4. We therefore set

(6.2.1) WnQ((ZXD) = QCIWnQ‘(vaD), for ¢ > 1,
which coincides with W//_n\@a( x,p) and (W, Q1 )é? D) For ¢ = 0 we set
(6.2.2) WnQ(()X’D) = WnO(x,py = (/W;)C,(X,D)

in the notation of 5.2 and where ¢ is the conductor defined in (5.4.1) for ¢ = 0, i.e., it is
defined by the p-saturated Kato-Matsuda filtration fillW,, (L), see 2.5 and Definition 2.6. By
[RS21, Theorem 7.20] we have

(6.2.3) QCIWnO(X,D) = Wno&,D)?

where the upper index F denotes the saturation under the absolute Frobenius acting on
W, Ou, with U = X \ D. Note that QCIWnO(X’D) is not a W,,Ox-module.

Let D = Dy + pD;y be a p-divisibility decomposition, see 6.1. Recall from [RS, Theorem
6.6] (see also Theorem 5.4) that with the above notation

(624) 04 _ Qg((logDO)(DO_DO,red +pD1)7 QZ 1;
(X.D) ) Ox (Do — Do rea + pD1), q=0.

For us the notation Q% (log E) for a possibly non-reduced effective Cartier divisor with simple
normal crossing support E will always mean Qg((log Eieq).

We record:

Proposition 6.3. The sheaves WnQ?X py are coherent W,Ox-modules, for all ¢ > 0. Fur-
thermore, let a € W,Q4(U), with U = X \ D. Then

a € T(X, W, Qy ) <= ay € Filh, W,.Qf , for alln € D[,

where L, = Frac(Of}(W), ap € VVnQ%7 denotes the image of a, and m,, is the multiplicity of
mn D.

Proof. Denote by W,,Ox (D) the invertible W,,Ox-submodule of j, W, Oy, with j : U — X
the open immersion, which is uniquely characterized by the equality

1

Lf1
for any open Up C X with D)y, = Div(f), f € O(Up). By Corollary 2.12 we have the following
inclusions of W,,Ox-modules

(6.3.1) W2 © Wally ) € Waldy @w,0x WaOx (p"7'D),  forall ¢ > 0.

As W, X = (| X[, W,Ox) is a scheme of finite type over Spec W, (k) and as W, Q% is a coherent

W,Ox-module, we see that WnQ‘(IX D) is a coherent W,,Ox-module for all ¢ > 0.
q AS

The second statement follows for ¢ > 1 from the equality WnQ( X,0) = (W,Q9) (X.D)> See the
beginning of the proof of Theorem 5.4. For ¢ = 0, it is direct to check from the definition. [

W,Ox (D), = WaOuy, -

The aim of this section is to prove the following theorem:
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Theorem 6.4. Forn, ¢ > 0 set

(X,D)
0, n = 0.
Then Z”Q((IX,D) and BnQ‘(JX7D) are locally free Ox -submodules of F)?*Q((IXD)’ where F'xy : X —
X denotes the absolute Frobenius. Furthermore, there is a short exact sequence of coherent
Wi+10x -modules

(6.4.1) ZnQ‘(ZXD) = F”(Wn+1Q‘(ZX7D)) and BpQ!

Frla(W,Qih ), n>1;
(X,0) =

”n—I—IQq n
+1 (X,D) F 7
0— B"Q((]X,D) - pi w,,Q4 - "QE]X,D) — 0,

where the first map on the left is given by F"~'d(B) — V(B) and the W, 1Ox-module struc-
ture on Z, and B, is induced by F™ : Wy,110x — Ox.

The above theorem follows from Proposition 6.15 and Proposition 6.18 proven below. In

Proposition 6.15 and Lemma 6.16 we also give alternative descriptions of BHQ?X D) and

ZnQ‘(IX Dy’ in the former using certain twisted Cartier operators, in the latter using the functors
wCT and (—)*3 introduced in section 5.

Remark 6.5. For D = (), the first part of the above theorem holds by [11179, I, Proposition
3.11] and [I1179, 0, Proposition 2.2.8], and the second part, the exactness of the sequence, holds
by [Eke84, (0.6.2)]. Note that in this case there is also a second short exact sequence which is
dual (under Grothendieck duality) to the one above, it describes Ker(R : W,,41Q% — W,Q%)
as an extension of locally free Ox-modules, see [II79, I, (3.9.1)]. For D # ( this latter
sequence does not seem to work, cf. Remark 6.12.

Lemma 6.6. Let A be an SNCD on X. Let B be a (not necessarily effective) Cartier divisor
whose support is contained in A and let Ag be an irreducible component of A, which is not a
component of |B|. Let s € Z and p € N with 0 < p < p— 1. Then the natural map

0%/ (log A)(B + psAg) — Q% (log A)(B + (ps + p) Ao)
is a quasi-isomorphism. Here Q% (log E)(D) := Q% (log E) ®0 Ox (D).

Proof. By [MS97, Lemma 4.1] (applied to A = Dy + Do, Ag = D1 and D =B + Ag,...,B+
pAp) we have a quasi-isomorphism as in the statement for s = 0. Applying Fx. we obtain a
quasi-isomorphism of O x-modules; twisting with Ox (sAg) therefore yields the statement. [

Lemma 6.7. Let E be an effective Cartier divisor on X such that Dieq + Freq 15 a reduced
SNCD. Then the inverse Cartier operator

(6.7.1) C': Q% (log D) = HI(Fx.Q% (log D)),
see, e.g., [Kat70, Theorem (7.2)], induces an isomorphism
(672) €'+ Q%05 D)([D/p] — [D/pla + B) = H( Fx. (105 D)(D — Dyea + pE))-

Proof. Observe
D — Dyeq = p((D/p-| - [D/p-|red) + ZpZDM

for certain p; € N with 0 < p; < p — 1, where the D; are the irreducible components of D.
Indeed, for » > 1 we have r — 1 = p([r/p] — 1) + p, for some 0 < p < p — 1. Thus tensoring
the isomorphism of Ox-modules (6.7.1) with Ox([D/p] — [D/plred) and applying Lemma
6.6 yields the isomorphism (6.7.2) in the case £ = 0. Tensoring further with Ox (FE) yields
the general case. ([l
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6.8. Let E be an effective Cartier divisor on X such that D,.q + Freq is a reduced SNCD. We
will use the following notation
(6.5.1) Q1(D, E) := % (log D)([D/p"] — [D/p"Trea + B);  q=0,n20.
This is a locally free coherent Ox-module. We observe:

(a) Let n > 1. It D = D’ + p"D,, is a p-divisibility decomposition (see 6.1), then

LD, E) = Q% (log(D" + Dn))([D'/p"] = [D'/p"Tsed + Dn — Dpyed + E).
Hence we have an inclusion

(6.8.2) Q(D,E) Cc QUD', D, + E).

Note that this inclusion is strict if D,, # 0 and ¢ < dim X and that the cokernel is
annihilated by Ox(—D,, req). In particular it is not an inclusion of vector bundles.
(b) Let n > 0. There is a well-defined map d : Q%4(D,pE) — Q4T (D, pE) induced
by the usual differential of the de Rham complex. (Note that we need to have pFE
instead of E for this.) We therefore get a subcomplex Qp(D,pE) C j.Qf;, where
j:U = X\|D+ E| — X denotes the open immersion. Given a p-divisibility
decomposition D = D' + p"*t1D,, 1 we obtain an inclusion of complexes

(6.8.3) 0%.(D,pE) € Q3,(D', p(Dnt1 + E)).
(c) Let n > 1. Using the equality
[D/p™] = [[D/p"~"1/p]

we find that the inverse Cartier operator (6.7.2) induces an isomorphism of Ox-
modules

(6.8.4) C™1:QUD,E) = HY(Fx.Q8_1(D,pE)).

Let n > 1. If D = D' + p"D,, is a p-divisibility decomposition, then we obtain a
commutative diagram of locally free Ox-modules

(6.8.5) 0D, E) — "

|

QU(D', Dy + E) <= H4(Fx,Q8_ (D', p(Dy, + E))).

HI(Fx.$%, (D, pE))

Note that the injectivity of the vertical map on the right follows from the injectivity
of the vertical map on the left.

6.9. For a complex C*® of Ox-modules on a scheme X, we denote
Z9C*) =Ker(d: C? — CT™Y), and BI(C®) =Im(d:CI1 = C9),
which we view as Ox-modules.

6.10. Let X, D, and F be as in 6.8 above. The Cartier isomorphism defines the following
exact sequence of locally free Ox-modules

(6.10.1) 0 — BY(Fx,Q%_(D,pE)) — 2UFx,Q%_(D,pE)) % Q4(D, E) — 0.

The fact that these modules are locally free follows via descending induction on g by consid-
ering as well the exact sequence

0 29— Fx,Q!_(D,pE) % Bt 0.
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We obtain a class in the Ext-group which we denote by the symbol
1(D, B) € Ext!(Q4(D, E), BY(Fx.Q_,(D,pE))).
6.11. Let X, D, and F be as in 6.8 above. Let n > 0 and let
D=Dy+pDi+...+p"D,

be a p-divisibility decomposition. Set

(6.11.1) D;:=Dy+...+p'D; j=0,...,n,
and
(6.11.2) D’:=0 and DJ:=pD,_ji1+p*Dp_jio+...+0 Dy, j=1,...,n.

Thus we have p | D?, for all j, and
. 1.
D =D, ;+p" 7" <—Q]>
p

is a p-divisibility decompositionin the sense of 6.1. By abuse of notation we will also say that
D =D,_;+p"’D’ is a p-divisibility decomposition, keeping in mind that there is an extra

p hidden in D?. For j = 1,...,n, we will use the following notations repeatedly
Qf L =F, Q0 _(D, ;D' +pE), Bl =B, 2! =z9Q,).

We define O x-submodules
q q q
Bjm(D,E) C ij(D,E) cQ,
by setting
B{,(D,E):=0CQf, =94D,,D° + E)=: Z§ (D, E),

and for j > 1 recursively by the condition that the squares on the right in the following two
diagrams are pullback squares

(6.11.3)
0—B!, — B! (D,E) B 1n(D, E) 0
0B, —— 21, (D.E) 210D ) 0
0 B?,n Z;'I,n < F)j(;ngL—j—l—l(Qn—ﬁDn—j-i-l +Qj_1 +pj_1E) —0,

where the vertical inclusion in the lower right corner is induced by the natural inclusion

q
Qj—l,n

Phrased differently B;?’n(D, E), Z]q’n(D, E) are obtained by pulling back the exact sequence

- F)j(;lQZ—jH(Qn—j:Dn—jJrl + DI 4 p7E).

Fg(_*lei—j+1(2n_j, Dn—j+1 + Qj—l + pj_lE),

see (6.10.1), along the respective inclusions on the right in the diagram (6.11.3).
Some consequences from this definition:
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(a) We have for n > 1
Bf,(D,E)=B{, = BY(Fx.Q;_1(D,_ 1, D'+ pE))
and
Z{,(D, E) = Z(Fx:{y, (D, pE)) + B (D, E).
This follows directly from the definition and (6.8.5).
(b) The sheaves B;-{n(D, E) and Z]‘-{n(D,E) are locally free coherent Ox-modules, which

we can identify with submodules of o, F )j(*Q‘{], where 0 : U = X\ D+ E — X is
the open immersion. Furthermore the j-fold iteration of the inverse Cartier operator
induces an isomorphism

Z3,(D,E) . Z],D,E)

q
(D, ) = BL,.(D,E) B! (D,E)

(¢) For j > 1, there are inclusions of Ox-submodules of ng

Fx.B?

j—1n— 1(D D +pE)CBq (DvE)

n—1r» =L

and

Z! (D, E) C Fx.Z!

j—1n— 1(Dn laDl +pE)

This follows from the inclusions in the case j = 1 and the fact that for j > 2 the
bottom sequence in (6.11.3) constructed from D, E, n, j is equal to Fx, applied to
the same sequence constructed from D,,_, D' 4+ pE, n—1, j — 1. Furthermore, the
(j — 1)-fold iteration of the inverse Cartier operator induces an isomorphism

B{,.(D.E) -, B1,,(D.E)
FX*BOn I(Dn 17D +pE) FX*B] 1,n— 1(D

B! (D,E) =

n—1» =L
as follows from the above and the snake lemma.

Remark 6.12. Classically one defines B;Q% C Z;Q% C F §<*Qg( as above in the case D =
E = 0. More precisely, we have B;Q% = B;-ln(O, 0), for all n > j, and similarly for Z;Q%. In
this case the quotients F g(*Qg< /Z;Q5% are locally free as well, e.g. [I1179, I, Corollaire 3.9]. We
warn the reader that this is in general not the case for

(6.12.1) Q‘;’n/ZJ‘{n(D,E).

For example, for j =1 it follows from (6.11.3) that we have an exact sequence

QO (D, ,,D,+FE Fx,.Q!_ (D, ,,D'+pFE Fx,.Q!_ (D, ,,D'+pFE
(—nql + )_> XS, ( 1 D )_} xS ( 1 P )_}0‘
Q4(D,E) Z{ (D, E) z]

0—

s

It is easy to see that the quotient on the right is locally free, but the quotient on the left is
non-zero if D, # 0 and ¢ < dim X and is annihilated by Ox(—D,,) and hence is not locally
free. Thus the quotient in the middle is not locally free as well.
Lemma 6.13. Let L € ® (see Notation 2.2). Then for q, r, n >0
Qq 1 _[T/pn1+1 ; <
Rn(FII£Wn+1Q%) — ¢ ( Og_)r/p ’ Zf UP(T) >n
QOL m, if vp(r) > n+1,

where Filﬁ,’WnHQ% is the filtration from Definition 2.6 and R™ : Wn+1Q% — Q% 1s the restric-
tion.
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Proof. By Definition of Fil” we have
RMFiIPW,,1Q%) = R (fil, W, 1Q9) + dR™(fil, W, 1Q471).
Assume v, (r) < n. In this case we have by Definition 2.4

n n O, [ 7L
R, Wi 1029) = R (61%, Wy (L) - dlog(KX (L) = m), 7" |- Q% (log).
It is direct to check that (—T;—nl] = —[ =] +1, which yields the statement in this case. Assume
vp(r) > n + 1. In this case we have by Definition 2.4 and the above
n [~ 2] nrelo
R (il Wy1Q7) =my ™ - Qf (log) + R <ﬁ11 EW41(L)) - dlog(K," (Or))
——m+1 —r

=m,;” - Qf (log)+mL Qf, =m Qg

—r/p"

As r/p™ is divisible by p, we have d(m 'Q%_Ll) C mzr/p -Q%L. Hence the statement. [

Corollary 6.14. Let D = D' +p" ™D, 1 be a p-divisibility decomposition. Then for ¢, n >0
we have with the notation from 6.8

R™ (W41 QY

(x.0)) = (D', pDn11).

Proof. As QL (D', pD,41) is locally free it suffices to show this “C” inclusion for the Nisnevich
stalks in the generic points of D. In this case the statement follows from Lemma 6.13 and
the notation (6.8.1), see 6.2, 5.2, and Theorem 5.4. To show the other inclusion we can argue
locally around the closed points of D. Let x € D be a point and set A = Ox . Then we find
an étale map k[tq,...,tq] — A, such that t1,...,ts form a regular sequence of parameters for
A and on Spec A we have

D" =Div(t{" --- ) and Dyqq = Div(t, 7" t7"),
with 0 < 7 < s < d and p"*! { my, for i = 1,...,r (with the convention that » = 0 means

that D’ = () and r = s means that D,,;1 = (). Thus

D = Div(¢{" -7 - trIr)+1 meg1 t€n+1ms)‘

A basis of the free A-module Q% (D', pD,,+1), (Zariski stalk at x) is given by

—TZ47+1 —[Zr]41
e”_tl[ a --tr[ a byt P dlogty dlog(1+ ¢ ),

where I and J run through the tuples I = (1 <43 < ... <ig <r)and J = (r+1<j <
. < Jg» < d) with ¢1 + g2 = ¢ and where we use the notations

;I:{til,...,tiql}eK;‘f(A[t, L —]) and mJ:{lthjl,...,lthjqz}eK;‘j(A).

21 tqq
As the Zariski stalk Wn+1Q‘(1X D) 1S 2 Wyt1(A)-module and R™(W,,41(A)) = A, it suffices to
show that there exists an element €7 ; € Wn+1Q(X D) , for each I, J, with R™(é; ) = e, .

By the second part of Proposition 6.3 it is direct to check from the definition of Fili’WnQ%
that the element

S [t]” fpn T+1 ] [ ]-i-l[ bygq] TPt TP™s - dlog t, dlog(ﬁJ),

which a priori is an element in Wn+1Q [ ] has the looked for properties. O
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Proposition 6.15. Let D = D' +p" 1D, 1 be a p-divisibility decomposition. Then with the
notation from (6.4.1) and 6.11 we have for n >0

B, Q! :B;ZW(D',pDnH), and Z,0¢ =71

(X,D) (X,D) n,n(D/’pDn+1)'

In particular, B"Q[(]X,D) and Z"Q[(]X,D) are locally free coherent Ox-modules.
Proof. For n = 0 the statement follows from the definitions and (6.2.4). Assume now n > 1.
Let D' = D" + p"D,, be a p-divisibility decomposition. By induction we have

(6.15.1) Zp QY =71

(X,D) n—l,n—l(D//va)7 where ' = D, +pDn+1.

and similarly with Z replaced by B. Consider the following diagram (in which we neglect the
Ox-module structure)

(6.15.2)
-1 d -1 anl
n—1 n—1 Z?L*l,nfl(DN’pE)
f R Bglfl,nfl(DN?pE).

Ci(nil) BgL,n(Dlvaanl)
= By 1,n-1(D"pE)

Q47\ (D", pE) —% B! (D', pDps1)

Here the map d on the lower left is surjective by 6.11(a) and the vertical map R"~! on the
left hand side is surjective by Corollary 6.14; clearly the square commutes and hence also the
vertical R"~! in the middle is surjective. The lower horizontal map C~(™=1 is induced by
the (n — 1)-fold iteration of the inverse Cartier operator; it is an isomorphism, see 6.11(c).
The upwards diagonal inclusion on the right hand side is induced by the natural inclusions in
6.11(c), the downwards diagonal map is induced by (6.15.1). The inclusion on the top right
is given by
(6.15.3)
q _ -1 g—1 \ _ q—1 q _ q
B"Q(X,D) =F" d(WnQ(X,D)) = F"dV(WnQ(XvD)) C F"(WnHQ(X’D)) = Z”Q(X,D)'
To see that the right part of the diagram commutes observe that by 6.11(b)
ZZ—Ln—l(D”? pE)

Bq—l _1(D”,pE) = QZL—I(D//7PE)

is a locally free Ox-module; hence it suffices to check the commutativity after restricting
to U = X \ D in which case it follows from the classical fact that the Frobenius on the de
Rham-Witt complex is a lift of the inverse Cartier operator, see [[1179, I, Proposition (3.3)].
Thus the whole diagram (6.15.2) commutes and all the maps in the diagram are defined and
are surjections, injections, or isomorphisms as indicated. Furthermore we have the inclusions

Bl (D",pE) = F"2d(W, 1Q{ ') = F" V(W1 QfST,) € Bafy ),

where the first equality holds by induction. Therefore diagram (6.15.2) yields
Bin(D',pDusr) _ _ Bullxp)

By 1na(D"pE)  Bi_y, (D", pE)
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q

and hence we get the equality of subsheaves of Q( X,D)

(6.15.4) Bf (D',pDyi1) = BanX,D).
Next we consider the diagram

F7l
)~ ZnSx.p) © Zn1Dx )

T

szl,n71(DNvPE)

B’?L,R(D/7pDn+1) :

/

c—n 28 (D' ,pDnt1)
Qq Dl D n,n 5 n-—+
TL( P TL—I—I) =~ B’?L,R(D/7pDn+1)

(6.15.5) W1y p

R™

Here R™ on the left hand side is surjective by Corollary 6.14. The lower horizontal map
C~"™ is an isomorphism by 6.11(b). The upward diagonal injection is induced by 6.11(c), the
downward diagonal map is induced by (6.15.1). We claim this diagram commutes. As above
it suffices to show that the quotient on the right is locally free as the restriction of the diagram
to U = X \ D is known to commute. To this end consider the isomorphisms

Zq (D”,pE) Zq (D//apE)/Bn—lm—l(D//;pE) Qi_l(D//,pE)

n—1,n—1 ~ “n—1n-1 ~

Bin(D',pDni1) — Bin(D';pDnt1)/Bn-1n-1(D",pE) — BI(Q;_(D",pE))’

where the isomorphisms hold by 6.11(a)—(c). Moreover we have the exact sequence

S Fx.Q! (D", pE)
0 (D" E ot n—1 )
0= D% E) ™ Baon (07, pE)

L, BN (Qs_y (D", pE)) = 0,

see (6.8.4). Since the two outer terms of this exact sequence are locally free so is the middle
term. Hence the quotient on the right in diagram (6.15.5) is locally free and the diagram com-
mutes. Using the equality (6.15.4) and the inclusion (6.15.3), the commutativity of (6.15.5)
yields

Z"Ql(]X,D) _ Zn,n(D,,po-l)

BnQ‘(JXD) BnQ‘(JKD)
Hence we get the equality
Z"Ql(]X,D) = Zn,n(DlapDn—i-l)
of subsheaves of QY which yields the statement. O

(X,D)’

Lemma 6.16. Let j : U = X \ D < X be the open immersion. With the notation from
section 5 we have

(6.16.1) B"Ql(IX,D) = (QCIBan)(X,D) = (Ban)‘(A)gD) = ]*(BnQ?J) N Q((ZX7D)7 fO’I” all ¢ > 0,
and
(6.16.2) ZnQ((ZX7D) = (QCIZan)(X,D) = (Zan)(A)?D) = ]*(ZnQ((l]) N Q((IX,D)’ Jor all g > 1,
and

(6.16.3) ZnQx py = 3:(Zn Q) N QU py = 4o F" (Wn100) N O(x,p).-
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Proof. The second equality in (6.16.3) holds by definition. The first equality reduces to
Fr(fil, W, 199) = FY(W,y1(L)) NfilQY,  for L € ®,r >0,

which follows directly from Definition 2.4. As B,Q° = 0 we assume ¢ > 1 in the following.
By the definition of BnQ?X p) and Zp,Q in (6.4.1), by Theorem 5.4, and (5.3.2) we see

(X,D)
that (6.16.1) and (6.16.2) hold with “=" replaced by “C”. Thus it remains to show
J«(BpQf) N Q‘(’XD) C BnQ‘(]X’D) and . (Z,Qf) N Q‘(]X’D) C ZnQ‘(ZXD).

We first consider the B,, case. Set M := j*(BnQ?J) N Q‘(]KD) and N := B”Q((]X,D)' We note
that M and N are Ox-submodules of V := j,B,Qf,, with N locally free of finite rank, by
Proposition 6.15, and with M coherent, as it is a submodule of the coherent module FfQ‘(]X’ D"
Moreover, M|;; = Njy = Vy is a finite locally free Op-module. By [Bou98, VII, §4, No. 2,
Corollaire] it suffices therefore to show the inclusion of stalks M, C N,, for all generic points
7 of Dieq. As N# NV, = N, we may consider Nisnevich stalks instead and are thus reduced
to show the following claim for each henselian dvf L € ®:

(6.16.4) FrYFIPW,Q0 Y nFiRQY ¢ FrLd(FilEwW, 4, for all s > r > 1.

Indeed, this holds trivially for s = r. Assume s > r and let a € Filé’WnQ%_l such that
Fr=ld(a) € FiPQ? c Fil?_ Q% By Lemma 4.2 we find elements 8 € W,11Q%, o €
Fil?_ W,Q], and o € FilEW,,_1Q] such that a = o/ + p(a”) + F(3). Hence

F"Yd(a) = F* (o)) € FPY4(FilY_ W,Q%) N FilkQ?
and claim (6.16.4) holds by induction on s. This completes the proof of (6.16.1).
For Z,, we can argue similarly as above to reduce to the following claim for each L € ®:

(6.16.5) FM(FilEW,1Q%) NFiRQ] C F*(FIEW,1Q7).
Indeed, this holds trivially for s = r. We assume s > r. Let a € FilEW,,11Q7 such that
F"(a) € Fil2Q4 C Fil?_ Q9. By Lemma 4.2 we find elements § € W,Q1, o/ € Fil!_ W, 11Q}
and o € FiliW,Q} such that o = o/ 4 p(a”) + V(B). Hence

F'(a) = F™*(d) € FM(Fil!_ W, 11 Q1) NFil2Q?
and claim (6.16.5) holds by induction. This completes the proof of (6.16.2). O

Lemma 6.17. For the statement of this lemma denote by Fy 1), : W"'HQ((]X,D) — Q‘(IXD) the
map induced by the nth-power of the de Rham-Witt Frobenius F™ (which otherwise is denoted

by F™ as well). Then we have the following equality of subsheaves of W,+1Q!

(X,D)
Ker(F&D)) N Ker(F&D) od) = Q(j*WanU) N WnHQ[(]X,D) = B(WNQ?X,D))=

where j: U =X \ D — X is the open immersion.

Proof. Denote by F; : j*WnHQqU — j*QqU the Frobenius on U. As Q‘(]X’D) C j*QqU we have

Ker(Fk py) = Ker(F7) N W"+1Q((1X,D) and  Ker(F(x pyd) = Ker(Fyrd) N Wn+1Q‘(1X’D).

As Ker(Fj}) NKer(Fjjd) = p(jxWnQf;) by [Eke84, (0.6.3)] the first equality follows.
For the second equality let a € j*WanU be a local section with p(a) € Wn+1Q[(1X D) Asp
is injective we have to show that a € WnQ?X Dy By Proposition 6.3 it suffices to show

(6.17.1) p(Wn Q) NFIEW, 119 = p(FilPW,09),
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for all ¢, r > 0 and L € ®. For r = 0 this follows from Lemma 5.6 and Lemma 2.8. Assume
r>1and let a € W,Q] with p(a) € FillW,,;1Q7 . It follows from Lemma 4.1 that there exist
elements b € FiEW,Q} and ¢ € Fil!_; W, 1199 such that

pla) = c+ p(b).
By induction over r we find an element e € Fil!_;W,Qf such that ¢ = p(e). The injectivity
of p therefore yields a = e + b € Fil} W, Q% . Hence the second equality holds. O
Proposition 6.18. The sequence
W19

0 — B, D)

_) . S
*.D) ]_QW”Q((IX,D)

=5 2y py — 0

is a short exact sequence of Wy 11Ox-modules, where the first map on the left is given by
F=1d(B) — V(B), and the W, 10x-module structure on Z, and B, is induced by F™ :
Wn+10X — Ox.

Proof. This is a modulus version of [Eke84, Lemma 0.6]. After the previous work the proof
is analogous: consider the diagram (with the notation from Lemma 6.17)

n n Wo1Y s
(6.18.1) 0 ——=Ker(Fy p)) NKer(Fy pyd) —= Wn1Qx p anﬂ‘gf,;)

| -

Ker(F&p))

0

Here the top row is exact by Lemma 6.17, the bottom row is exact by definition, and ¢ is the
inclusion. By [I1179, I, (3.11.3)] and the inclusion Q?X py C 7« we have

Ker(F(TfX’D)) = KeI‘(F{}) N Wn"'lQ[(]X,D) = ]*(VWnQ?]) N WTL+IQ((]X7D)‘

We have the following obvious chain of inclusions

B, = FrdVIWLQYy ) C Fr (. (VW Q) N WanQfy 1)) C iu(BaQf) N QIS

and by Lemma 6.16 we have equality everywhere. We obtain an exact sequence

0 — Ker(Fly p)) NKer(Flx pd) - Ker(Fly p)) —% B, 0.

Hence applying the Snake Lemma to (6.18.1) yields the exact sequence from the statement. [

The proof of Theorem 6.4 is now complete. The following proposition is a finite level version
of the exact sequence [IR83, I, (1.2.2)] in the modulus setting.

Proposition 6.19. The following sequence is exact for all r > 1

(Fm,Fnd) 4
WTQ[(]X,D) @ W’f‘ Q((]X7D)

BT dyn_yn
0— W"Q[(]X,D) = Wn+TQ‘(1X7D)

Proof. Denote by j: U = X \ D < X the open immersion. We first consider the case r = 1.
Thus we have to show that the sequence

dvn_vn 1
S Wy Q4

F7L7F7Ld
0= Wol, o B W0t g0 e gt ol

(X,D) (X,D) (X,D) (X,D)
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is exact. The injectivity of p follows from the injectivity of p : W, — Wi QF, see
[11179, I, Proposition 3.4]. The exactness at Wn+1Q‘(1X D) follows from Proposition 6.18 (use

FrdV(B) = F*~1dB). Let o € Q[(]X D) and 3 € Q‘(];ID) be local sections. It remains to show

(6.19.1)  dV"™(a) = V"(B) = a = F"(y) and B = F"d(y), for some y € W"'HQ((]X,D)'

By [11179, 1, (3.10.3)] we find 79 € W;,419; such that
AV™(@) = AV F" () = V"(F"d(20)) = V"(5).
By [I1I79, I, Remarques 3.21.1] we find § € W, 429Q{; and € € W, Qf; such that
a=F"(y)+F" () and B = F"d(yo) + F"dV ().
Setting v1 := 70 + F(8) + V(e) € Wy 19f; we have
a=F"(m) € Ay p) Njx(Za;) and B =F"d(y) € U py N Jju(Brsr Q).

By Lemma 6.16 we find +' € Wn+1Q‘(1X D) and 7" € Wn+1Q‘(1X D) such that

a=F"(+) and B=F"d(®").
By [1179, I, Remarques 3.21.1] we find (new) 0, € on U with
(6.19.2) 11 =9+ V() ="+ Fle).
Hence

F'(y = ") = F"*\(€) € ju(Znn2) N QU )

and
Frd(y" —+') = F"1d(5) € j. (B, N Q‘g;}m.
By Lemma 6.16 and [I1179, I, Remarques 3.21.1] we find €' € Wn+2Q((Jx,D)= y e WnQ‘(]X,D)v
and 7, ¢ € W,119Qf such that
F(e) = F(¢) +p¢ and V(d) =V(d') +pn.
Thus (6.19.2) yields
V' =+ F() = V(8') = p(n — {) = p(R(n = C)) € p(:WaS2y) N Wit1Ql .-

By Lemma 6.17 we find 0 € WnQ[(]X D) such that

pt = p(R(n = ¢)).
Set
yi=9 + V() +pd=+"+F() € Wn+1Q‘(1X7D).
Then
a=F'y)=F"(Y +V())=F"(y) and B=F"d(y1)=F"d(Y'+ F(e)) = F"d(v).

This shows (6.19.1) and completes the proof in the case r = 1.
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Now assume r > 2 and consider the following diagram in which we drop for readability the
subscript (X, D) everywhere

0 0 0 0
‘( pr'fl Fn7Fnd dymn—yn
0 Wt 2 Wiy Ty e w,_ oot Yy qent
p p p
p" Fn Fnd n_ym
0 —— Wt — w00 — Dy a g wqett Qe
probr-1 | prir-ig (P71 Fr=1d) | (Fr=1,Fr1d) probr=1| prtr-ig

Q1@ Qatt 2 (Q9 & Q1Y) @ (QIF1 g QI+2) _ Y et @ Qa2

dV’!LJrT'* 1 _Vn+7“71

Wn+rQq+17
where ¢ and v are given by
90(&7 C) = (((1, 0)7 (Cv 0)) and Tz[)((a7 b)7 (67 d)) = (bv _d)

‘We observe

the diagram is commutative;

the columns are exact by the case r = 1;
the first row is exact by induction over r;
the third row is split exact.

We want to show that the middle row is exact on (X, D). Clearly it is a complex and p" is

injective by the same argument as in the case r = 1. The exactness at WHHQI(IX’ D) follows

from an easy diagram chase. The exactness at WTQ‘(ZX p)® WTQ?;}D) can be checked directly

by a diagram chase as well once we observed that for o € WTQ?X’ D) and g3 € WTQ‘(];}D) with
dV"(a) = V™(B) we have

an-i—r—l(Fr—l(a)) — pr—ldvn(a) — pr—lvn(ﬁ) — Vn+r_l(FT_l(ﬁ)).
This completes the proof. O

7. APPLICATIONS TO HODGE-WITT COHOMOLOGY WITH MODULUS

Before we proceed to study Hodge-Witt sheaves with zeros along D in section 8, we draw
some consequences from the structural results in the previous section. The main result is
Theorem 7.3, which makes it possible to apply general results on cube invariant sheaves with
transfers to Hodge-Witt sheaves with modulus, see 7.4.

Throughout this section we assume X € Sm pure dimensional with dim X = N and denote
by D an effective Cartier divisor on X such that D,.q is an SNCD.

7.1. Recall the category MCor from [KMSY21la, Definition 1.3.1]: its objects are modulus
pairs (Y, F) (see 3.1) and the morphisms are left proper admissible correspondences. A modu-
lus presheaf with transfers is an additive contravariant functor from MCor to abelian groups
and the category of modulus presheaves with transfers is denoted by MPST. If G € MPST
and (Y, E) is a modulus pair, then the assignment

(étale Y-schemes) 3 (v:V = Y) — G(V,v"E),
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defines a (Nisnevich) presheaf on Y denoted by G(y ). By definition G € MPST is a
sheaf if Gy, is a Nisnevich sheaf on Y, for each modulus pair (Y, E). The category of
modulus sheaves with transfers is denoted by MINST. By [KMSY2la, Theorem 2] there is
a sheafification functor MPST — MNST, which is an exact left adjoint to the inclusion
MNST — MPST. The full subcategory of MPST with objects the (P!, c0)-invariant mod-
ulus presheaves with transfers having semipurity and M -reciprocity is denoted by CI™*P, see
[Sai20, Definition 1.31]. We set CI{Y = CI™*P N1 MNST. By [Sai20, Theorem 0.4] the
sheafification restricts to CI™P — CI:P. Note that if /' € RSChyjs, then F., w°F ¢ CIP,
see 5.1 and 5.2. In particular,

W,01, € CILY,
see 5.2 and Theorem 5.4 for the notation (here ¢ is the conductor defined by the filtration

from Definition 2.6), and (mc)( x,p) as defined above coincides with WnQ‘(IX p) a8 defined
in 6.2.

The assignment (Y, E) — KM (Y \ E) defines a modulus sheaf with transfers denoted by
Ww*KM. For G € CIg? and r > 0 we define

VG = HO_mMPST@*KTMa G).

By, e.g., [BRS22, Corollary 4.5], we have v"G € CIg;? and by [BRS22, Theorem 6.3] there is
a canonical isomorphism for any s > r

(7.1.1) (V" G)x,p) = R'mGpsx xx+ D),

where 7 : P* x X — X is the projection.

Lemma 7.2. Let G' — G — G" be a sequence in CI{;Y. Assume that
0— G/(]P’SXX,W*D) = Gpsxx,mD) = G/(/ﬂMxX,n*D) — 0

is an exact sequence of Nisnevich sheaves on P x X for all s > 0. Then the following is an
exact sequence of Nisnevich sheaves on X for all v >0

0= (VG xp) = (V& xp) = (VG x,p) = 0.
Proof. From (7.1.1) we get a long exact sequence for any s > 0
0— G,(X,D) — Gx,p) — G/(,X7D) — (71G/)(X,D) — ...~ (VG)x,p) — ('7SG”)(X,D)-

Thus it remains to show that (v"G)x,p) — (v"G")(x,p) is surjective, for every r < s. By
(7.1.1) this is equivalent to the surjectivity of

RTW*G(PT‘ x X, m*D) — RTW*G/(IPT- x X,7*D)*
This holds as R”’17T*G’(]P,TX XDy = 0, by the blow-up formula [BRS22, Theorem 6.3]. O

For D = () the following theorem is [BRS22, Theorem 11.8].

Theorem 7.3. Let n = dlogc;(O(1)) € H(P%, WnQ]%Dg(,log)f where ¢1(0(1)) € HY(P%, Gp)
is first chern class of O(1), and denote by n" € H" (P, WnQIT[;&,log) the r-fold cup product of
n. Then via (7.1.1) cupping with 0" induces an isomorphism

—-un": WnQ‘&TD)

Furthermore this isomorphism is compatible with F', V', R, p, and d.

i RTW*WTLQ((IPTXX,W*D) o (’}/TW”Qq)(X,D)‘
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Proof. The last statement follows directly from the usual compatibilities of V', F', R, p, and
d with the dlog-map and the naturality of the isomorphism (7.1.1). Set
X=(X,D), and P"=(P" x X,7*D).
For n = 1 observe that by (6.2.4) we have a Kiinneth formula
0L, = @ 0% 2o, 5,
a+b=q
where p : P" x X — P" denotes the projection. Hence in this case the statement holds by

the projection formula and the classical result for P". For ¢ > N + r both sides of the first
isomorphism in the statement are zero. Set

G = W,Qe,, H?:=Qi @ Qetl,.
We have G}, H? € CIgY. Denote by I’ the presheaf image of (F™, F"d) : G} ., — H? and
by J' the presheaf image of dV™ — V™ : H? — G%T}. It follows that I’, J' € CI™*, c.f.

n+1-
[Sai20, Lemma 1.32]. Thus by [Sai20, Theorem 0.4] the sheafifications I and J lie in CI{;"

and are the sheaf-theoretic images of the morphisms (F", F"d) and dV"™ — V™, respectively.
By Proposition 6.19 we have short exact sequences for all s > 0

P
q Lo q
0— Gn,PS — Gn+17ps — I’ps — 0, and 0— Ips — HPS — J’ps — 0.
Hence Lemma 7.2 gives a commutative diagram with exact rows

(Fn7F7ld) r dvn_vn r
(YHY)xy —— (V" )x

|

a1 az a3z (fyrGgL——i_i-ll)X

|

_ dvnr—-vn _
q—r q+1—r
HX Gn—i—l,X’

p
0—(VGh)x —= (V"G )x

(F™ Fnd)

p
q—r L= q—r
0 Gn,X Gn—i—l,X

where the upwards pointing vertical maps are all induced by cupping with 7" and (7.1.1).
Now ¢ is an isomorphism by induction over n, as is an isomorphism by the case n = 1,
and a4 is an isomorphism by descending induction over q. Hence asg is an isomorphism as
well. 0

7.4. Thanks to Theorem 7.3 the projective bundle formula, the blow-up formula, and the
Gysin triangle for general G € CI{Y from [BRS22] can be made more explicit for G =

P

W,Q9, e CIEP:
(1) Let V be a locally free Ox-module of rank r + 1 and denote by 7 : P(V) — X the
corresponding projective bundle. Then there is a canonical isomorphism in D(W,,Ox)

T
RW*W"Q((ZIP(V),W*D) = EB W"Q((IX,]D)[_j]'
§=0
The morphism is induced by cupping with ¢;(O(1))7 € CH?(P(V)), see [BRS22, The-
orem 6.3]. In that theorem the isomorphism takes only place in the derived category
of abelian sheaves but it is direct to check that in the case at hand it is W,,O x-linear.
Furthermore it is compatible with F', V', R, p, and d. For D = () this isomorphism is
due to Gros [Gro85, I, Theorem 4.1.11].
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(2) Let i : Z — X be a closed immersion of a smooth closed subscheme of pure codi-
mension r which intersects D transversally, i.e., the scheme-theoretic intersection
Z N Dyn...NDj is either empty or smooth of codimension j in Z, for any num-
ber of irreducible components Dy, ..., D; of Dy.q. Let p: X — X be the blow-up in
Z. Then there is a canonical isomorphism in D(W,,Ox)
r—1
RpsWaly 1 = Wally ) & D 1 Wal57, (=],
7=1
see [BRS22, Corollary 7.3]. For D = (), this isomorphism is due to Gros [Gro85, IV,
Corollaire 1.1.11].
(3) Let the notation be as in (2) and denote by E = p~1(Z) the exceptional divisor. Then
there is a canonical distinguished triangle in D(W,,Ox) called the Gysin triangle

S Wl =+ 1],

2y Rp W)t D

q—r 9 q
1 W, )[ r] = W,Q (%.p* D+)

(2D (X,D)
where g = g(x.p)/(z, Dyz) denotes the Gysin morphism, see [BRS22, Theorem 7.16].
For D = {), this triangle is also spelled out in [BRS22, Corollary 11.10(2)].
The Gysin triangle gives the following Lefschetz type theorem.

Theorem 7.5. Assume that X is additionally projective and let H C X be a smooth hyper-
surface section which intersects D transversally and satisfies

HY(X, Q(XD)( ) =0, forallj>1,
where Q&’D)(H) = Q& p) ®0x Ox(H). Then the Gysin map

H=Y(H, W, Qg{})‘ ) — HY (X, W )

s an isomorphism for j > 2 and is surjective for j = 1.
Proof. By the Gysin triangle from 7.4(3 ) we have to show the vanishing

As ZnQ% = Q%, we have

ZnQég(,DJrH) = Q&,DJFH) = Q&,D)(H)v

where the second equality follows from Q¥ (log(D+ H)) = Q¥ (Dyeq+ H) and the first equality
holds by Lemma 6.16. Thus (7.5.1) follows by induction over n from Proposition 6.18 noting

N+1
that B Q(XD+H) 0. O

Finally we mention the following version of Serre type vanishing.
Theorem 7.6. Let H C X be a smooth and ample divisor intersecting D transversally. Then
for any large enough m we have

HI(X, W, Qf =0, forallj>1.

(X, D+p”+1mH))
Proof. With the notation from 6.8 and 6.11 we have
Q%(D/7P(Dn+l + mE)) = Q?L(D/7pDn+1) ®OX OX(me)7

where D = D’ + p"t'D, ; is a p-divisibility decomposition, and from (6.11.3) we obtain
inductively
Bg,n(D/’p(DnH +mkE)) = B;']7n(D/prn+1) ®oy Ox(pmE),
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for all j =0,...,n, and similarly for B replaced by Z. Thus by Serre vanishing the cohomol-
ogy of the sheaves BY (D',p(Dny1+mkE)) and Z{ (D', p(Dy+1 +mkE)) vanishes in positive
degrees, for all j and all ¢ and for any large enough m. Hence the statement follows from
Proposition 6.18 together with Proposition 6.15. O

8. THE STRUCTURE OF HODGE-WITT SHEAVES WITH ZEROS

By definition a Hodge-Witt form has modulus (X, D) if it is a regular form on X \ D with
certain pole constraints along D. In this section we introduce and study a notion of forms
vanishing along D. We will see in the next section that these two notions of poles and zeros
match up under duality. The main result in this section is Theorem 8.7, which gives precise
information about the structure of Hodge-Witt sheaves with zeros along D.

Throughout this section we assume X € Sm and we let D be an effective Cartier divisor on
X such that Dyeq is an SNCD. We remind the reader of our convention log(D) = log(Dxeq)-

Definition 8.1. Suppose D = ). D; with D; ;oq smooth. Define

W Qx _p, = Ker (Wani( — P w0 ) :

where we view D; as a closed (in general non-reduced) subscheme of X. For n = 1, we write
04 = W01

(X,—D) (X,—D)"
Remark 8.2. It follows from [Mok93, Lemme 3.15.1], see also [Nak05, Corollary 6.28], that
the sheaf WnQ[(]X Dyea) coincides with W, Q% (—log Dyeq) defined in [Hyo88, 1.]. To our knowl-

edge the sheaf WnQ?X _p) Was not considered before for a non-reduced divisor. Moreover it

seems it cannot be defined or studied by the machinery introduced in [Nak05, 6.] as the Cartier
isomorphism from [DI87, (4.2.1.3)] does not extend to this situation. For example if D = nDj
with Dy smooth connected, then the inverse Cartier operator induces an isomorphism (e.g.
Lemma 6.6)

2% (log Do)(—nDo) = HI(F.(92*(log Do)(—pn + (p — 1)Do)))
and only for n = 1 the right hand side is isomorphic to H4(F,(Q% (log Do)(—nDy))).

8.3. Note that since the D; may be non-reduced many of the structure results for the de Rham-

Witt complex given, e.g., in [[1179] or [IR83] cannot be applied to WHQ%Z_. It is however direct
from the definition that WHQ?X _D) is a W,,Ox-submodule of Wan< and that the maps F,
V, R, p, d restrict to give maps

p,V

W1 Qly _p) —— Wl ) — W00 .
In fact F', V, R, and d are defined on W.Q%, for all Fj-schemes T, by [IlI79, I, Théoréme 1.3
and Théoreme 2.17]. For the definition of p note, that K, p, := Ker(W, Q% — WnQ*DZ) is the
differential graded ideal of W, Q% generated by W,,(Ip,), where Ip, C Ox is the ideal sheaf of
the closed subscheme D; C X, see [Hes04, Lemma 1.2.2]. As the restriction map W,,11(Ip,) —
W, (Ip,) is surjective, it follows directly from the definition that p : W, Q% — W, Q%
restricts to K, p, = Ky,+1,p, and hence also to WnQE‘X,—D) = ﬂiKmBi — W”+1QTX,—D)‘

Lemma 8.4. Let D = Dy + pD1 be a p-divisibility decomposition, see 6.1. Then

Q. _py =% (log Do)(~D).
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Proof. Let A be a smooth k-algebra and ¢t € A such that R = A/(t) is smooth as well. In this
case there is an isomorphism A/(t™) = R[t]/(t"), for all m > 1. We find

(8.4.1) qi o J(BIE/(E™) ©r Q%) © (RIE)/ () @ QF dt, i (m,p) =1
h A/ 7 (R (t7) @k Q%) @ (RI/(E™) @ Q5 Ddt,  if plm.

Hence Qf{‘/(tm) is a free R-module and the map QqA/(tm) — ng/q(tm) ®p Frac(R) is injective.
(X,—D
that it suffices to prove the equality around the generic points of D. In which case it follows
directly from (8.4.1). O

As Q% (log Dy)(—D) is locally free and clearly maps into (2 ) We see from the above

Proposition 8.5. Suppose X has pure dimension N. For all n > 0 the map

(8.5.1) Fr,Qf

(x-p) ™ Fy, Homo, (2

ey OX) = Homo (FRQ0 ), 0X),

given by
a (B C*(anp)),

is an isomorphism of locally free Ox-modules, where C™ : F)’}*Q% — Q% denotes the Cartier

operator and Q‘(]X D) is defined in 6.2.

Proof. Let D = Dy + pD; be a p-divisibility decomposition. In the case n = 0 the isomor-
phism follows from twisting the isomorphism Q% (log Dy) = Hom(Qé\(f—q(log Dy), Q¥ (log Dy))
by Ox(—D) together with the explicit formulas given in Lemma 8.4, in (6.2.4), and the iso-
morphism QY (log Do) = Q¥ (Dprea). Applying Fg, yields the first isomorphism in (8.5.1).
The second map is an isomorphism as well. Indeed as X is smooth over a perfect field
of characteristic p we have a natural isomorphism of Ox-modules (FQ)'Q% =~ OF and the
composition

TI‘ n
(8.5.2) FpOY = P (F'o) — af,

where Trpp is the counit of adjunction, is equal to the n-fold iteration of the Cartier operator
C", e.g. [Eke84, II, Lemma 2.1]. Hence the second map is an isomorphism by adjunction. O

8.6. By [IlI79, I, Corollaire 3.9] we have an exact sequence of W,, 110 x-modules

Q%
B,

-1
s Fg.Q%

% R
(8.6.1) 0— — Ker (WHHQ_‘%( — WnQ_‘%() = Zan(_l

— 0,

where the W,11Ox-module structure on the two outer Ox-modules is induced by R" :
W,+10x — Ox and the map S is given by S(V™(a) + dV"™(b)) = b. Moreover we have
an injection of W, 11Ox-modules

FR. Q%" avn

(8.6.2) 0— -
Z, 0%

F W, Q%

For n =0 and ¢ > 0, define the Ox-modules
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For n > 1, ¢ > 0 we define the W, 11Ox-modules (2/B)? (X,-D) and (Q/2)" X D) by
requiring that the following two diagrams are cartesian in the category of W,, 10 X -modules

(863) (B x_p)—= Wiy _p (D) _p —= EWaQ

| | |

n Qq Vn n q—1 ne1
Xx"°X w. q Fg Q dv
B. Q1 TL—I—IQX) X q}fl F*”/an(
X Z’!LQX

Note that we can view (Q/B)? (x,_p) and (Q/Z)i’_&’[)) as Ox-submodules of F Q% /B,Q%

and F Q% ! /Z,Q% | respectively. In the following we will denote the top horizontal maps in
the two diagrams as well by V™ and dV"~!, respectively.
Some consequences from this definition:

(a) It is direct from the definition that

(B)] (x_py = {0 € Fx.Q%/BUQ%) | V(a) € Waly Y,

qg—1 q—1
(Q/Z) FX*Q(X —-D) FX*Q(X —-D)
X D 1 1 1(0e .
)~ Zng( N Q((IX _D) Zq (Q(X D))
(b) For any n > 1, the diagram
FdoV™
/—\
(Q/B)L X _p) - (/7)1 (X D)_>FWQ(X p)
Fn*QQ*l Fn*QQ*l dV"71
B}quX)El Z)quX)El F*Wan(.

shows that the surjection Q% /B,Q% — Q% /Z,Q% induces a well-defined map
(8.6.4) (Q/B)gz,( — (Q/2)! (X,-D)"

(¢) For n > 0, the diagram

VoVn
//\
............ o q
FX*(Q/B) (X,—D) (Q/B)n+1 (X,—D) N+2Q(X,—D)
FErat oy v l q
Fx.BnQ% Bn19% W28,

shows that the surjection Q% /B,Q% — Q% /B, 11Q% induces a well-defined map

(Q/B) (X D) (Q/B)n+1(X -D)*
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Similarly, for n > 1, the diagram

Fodv™

//\
(Q/Z)n—l—l (X,—D) " g FX*(Q/Z)Z,_&,_D) — W

| | T

F;irlgg;l F;irlgg;1 dvr—! F2W Qq
Zn+lﬂg(71 FX*Z7LQg(71 * netxXe

shows that the surjection Q% /Z,11Q% — Q% /Z,Q% induces a well-defined map

(8.6.5) (Q/Z)n+1 (X,— D)%F(Q/Z) (X,—D)

Here we have used the fact that Fy : (W,4+10x-mod) — (W,,0Ox-mod) has a left
adjoint and hence the diagrams in (8.6.3) stay cartesian after applying F.

The aim of this section is to prove the following theorem:

Theorem 8.7. Let the notation be as above and assume X is of pure dimension N.

(1) There is an exact sequence of W, +1Ox-modules

R q
— W"Q(X,—D))

where the map B is induced from the map B in (8.6.1).
(2) The restriction map R : W"'HQ((]X,—D) — W"Q((]X,—D) is surjective.

Vn
0 — (/B! _p) s Ker (WHHQ‘(]X’_D) Q2T _py — 0,

(8) The isomorphism (8.5.1) induces isomorphisms of locally free coherent Ox-modules

(Q/B)! . _p) = Hom(Zu Q5 1 ON), (2T ) = Hom(BoQ i, %),
where ZnQ(X_q) and B Qé\)f( g)rl are defined in (6.4.1).

For D = () part (1) holds by [Il179, I, Corollaire 3.9], part (2) holds by definition of the
de Rham-Witt complex, and part (3) by [Eke84, II, Lemma 2.2.20]. It will take the rest of
this section to prove this theorem. Part (1) is proven in Proposition 8.14 and part (2) in
Lemma 8.15, finally, part (3) follows from Proposition 8.21 and Proposition 8.19 together
with Proposition 6.15.

8.8. Let E be an effective Cartier divisor on X such that D,.q + Freq is a reduced SNCD. We
will use the following notation

(8.8.1) Q4(-D,—E) :=Q%(log D)(—[D/p"] — E), n,q > 0.

This is a locally free coherent Ox-module. Let D = D’ + p"D,, be a p-divisibility decompo-
sition. Similar to 6.8, we observe
(a) Q4 (=D',—D,, — E) C Q%(—D, —E). This inclusion is strict if D,, # 0.
(b) There is a well-defined differential map d : Q%(—D, —pE) — Q4T (=D, —pE) induced
from the differential map of 2§. Moreover we have an inclusion of complexes

.— (_D/v _pDn _pE) C Q:L—l(_Dv _pE)

n—1

(¢) The natural map
Q% (log D)(=p[D/p"] = pE) = Q51 (=D, —pE)
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is a quasi-isomorphism by Lemma 6.6. Hence the inverse Cartier operator induces an
isomorphism of Ox-modules

(8.8.2) C71:Q4(~D,~E) = HY(Fx.Q%_1(—D,—pE)).

Moreover we obtain a commutative diagram of locally free Ox-modules

(8.8.3) Q4 (=D, —D, — E) = HI(Fx.Q%_, (=D, —pD, — pE))

| |

Q4(~D,—E) — <~ HY(Fx, 08, (~D, —pE)).

~ n—1

As a consequence the vertical map on the right is injective as well.

8.9. Let X, D, and F be as in 8.8 above. Let n > 1. The inverse Cartier isomorphism defines
the following exact sequence of locally free Ox-modules

Cfl\ FX*QZ—l(_D7_pE) FX*QEL—I(_D7_pE)

— — 0.
Bi(Fx.Q, (=D, —pE))  29(Fx.Q, (=D, —pE))

(89.1) 0= Qi(—D,—FE)
The fact that these modules are locally free follows via descending induction on g by consid-
ering as well the exact sequence

Fx.Q! (=D,—pE) 4 . Fx,.Q% (=D, —pE)
— n i Fx QY (—D, —pE n-l) 7
Za(F, (D, pE)) ¥ n1(=D;—p )_>BQ+1(FX*Q;L_1(—D,—pE)) -

Lemma 8.10. Let X, D, and E be as above. Then for n >0
B1(Q%) N (=D, —pE) = BY(Q;,(—D, —pE)).

In particular
BIUOK) N9y _py = By _p)).

Proof. The “in particular” part follows from the first statement and Lemma 8.4. For the first
statement we only have to show this “C” inclusion. As the Ox-module BY(Fx.Q(—D,—pE))
is locally free by 8.9 it suffices to show the inclusion around each generic point of D or E, c.f.
the argument in the proof of (6.16.1). Since the question is moreover local in the Nisnevich
topology, we may assume that X = Spec R[t], with R a smooth k-algebra, and D or E is
equal to Div(t"), » > 0. Thus Q;I%[t} =Qlltl® Q‘}]%_l[t]dt, where for an R-module M we denote
by M[t] the free R-module &;>0M¢t/. In this situation Qf(—D, —pE) has one of the following
forms

(a) t5Q%L[t] @ ts_lQI}{l[t]dt, with s = [r/p™], when D = Div(t");

(b) tp’"Q‘}]%[t], when E = Div(t").

We consider the case (a). Let a = ag + ;5 (a;t? + bt/ 'dt) € Q%_[t}, with a; € Q%' and
bj € Q‘}{z, and assume da € t*Q%[t] @ ts_lQ‘f,%_l[t]dt. Set
X . _1)a—2 . 1
di=ag+ Y (et bt td) + Y Ed(bt)) € 0
1<j<s—1 1<j<s—1
plj Pl
Then it is direct to check that
a—a e tSQ‘}]%_l[t] ® ts_lQ‘}]{2[t]dt and da = d(a —d’).
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In case (b), take a € Q‘;{ﬁ with da = tP"b, with b € Qt}l%[t]' Applying the Cartier operator
yields 0 = ¢"C'(b). Thus C'(b) = 0, thus b = dc, for some ¢ € Q‘Et}. Hence da = d(t*"c).
Both cases together imply the statement. O
Lemma 8.11. Let D = D' + p"*'D, .1 be a p-divisibility decomposition. For o € Q4 we
have

p"(a) € Wn+1Q[(1X’_D) < a€Qi(-D' —pD,i1).

Moreover, the restriction map

RI: Wn+j+1Q((]X7_D) ﬂgn(Wj+1Qg() — W"'HQ[(]X,—D) ﬂ]_?n(Qg()

18 surjective.

Proof. We first show that for any germ « € Q%(—D’, —pDy41)z, with € D a closed point,
we find a lift & € W;41Q% , such that p"(a) € Wn+j+19((lx,_D),m' Taking j = 0 yields
this “«<=” direction and after the other direction will be proven below, it will also imply the
“Moreover”-part. Let A = Ox ;. We find an étale map k[t1,...,tq) — A, such that t1,...,t4

form a regular sequence of parameters for A and on Spec A we have
D' =Div(t{"---t") and Dyqq = Div(t, - t7%),

with 0 < r < s < d and p"Jr:l fmy, for i = 1,...,r (with the convention that » = 0 means
that D’ = () and r = s means that D,,;1 = (). Thus
D = Div(ty" -7 -,

A basis of the free A-module Q}(—D’, —pDy11); = Q% (log D')(—[D’/p™| — pDyt1)s is given
by

[Za] 57 1 pmeiq pm

erg=t" ---t," -8 - dlogt; dlog(1 4t ),
where I and J run through the tuples I = (1 <43 < ... <iy <r)and J = (r+1<j; <
.. < Jgo < d) with g1 + g2 = ¢ and where we use the notations
tr={ti,- - tig } €K (Al—5—]) and L1+t ={1+1t;,...,1+t;, } € K} (A).

ti, "'tiql

Set
my my
e =[] o ) P [P - dlog ty dlog (Lt t) € Wi Q.

Note that p” : 1, W1 1Q% — Wiy j1Q% is Wn+j+1OX—lingar, where ¢ : W11 X — Wy X
denotes the map of schemes induced by the restriction R/ : W;,1;110x — W;410x. Since
W”"'j‘l'lQ((]X,—D),x is a Wiy 4j+1A-submodule of Wn+j+IQg<,x, it suffices to show that Bn(é[’J) €
Wn"‘j"‘lQ[(]X,—D),:v' Indeed, if = ZI,J argery € QU(=D',—pDpi1)z, arg € A, is an
arbitrary element, then we can choose any lifts a;; € Wj;11(A) of ar s, and the element
&= yaréry is a lift of o and satisfies p" (&) € Wn+j+1Q((1X Dy

Thus it remains to show that the element

m1 my
P Erg) = p 0] T ] e [P - dlog 8y dlog (Lt )) € Wi QY

q
(X,—D),:L‘

where m = m;, if 1 <i < r, and m = p"'my, if r +1 < i < 5. We consider the following
four cases:

o If r+1<4i<s, then

p(ery) =p "t o = V”([ti]pn+1mi) -, for some o € Wy4j119Y%.

lies in Wi, 44192 . To this end we have to show that p™(é;, ;) vanishes in Wn+j+1Q?4 Jims
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elfl<i<randi¢lI, then pn(%] = m; + e, for some e > 0, and thus

p"(érg) = p”[ti](%wa =V"([t:)"™"°) - «, for some o € Wy j419%.
o If1 <i<r, iecl, and p" { m;, then we have p"[m;/p"™| = m; + e, for some e > 1,
and thus
P"(Ers) = p 6] 7 dlog - B = V(i)™ 1)° dlog t) - B, for some B € Wiy
o If1<i<r,iel, and p"|m;, then u = m;/p" is prime to p and we find
P"(Ers) = p" [t dlogti - 8 = LaVA([t]™) - B, for some B € W1

Therefore the vanishing of p"(ér s) in Wiy,4;419 holds in all four cases.

At

Next we prove this “=" direction. Since Qi(—D’, —pD,41) is locally free on a smooth
scheme, it suffices to show the statement around all generic points of D. Since the statement
is furthermore Nisnevich local we may assume X = Spec R[t], with R a smooth k-algebra,
and D = Div(t"™). Let R,11 be a smooth lift of R over W,,1;(k). By [IR83, III, (1.5)] and
[BER12, Proposition 8.4] there is a unique injective map

rn+1 .
Ft -Wn-l-leg[ﬂ —)Qan+ [4] /B Rn+1[t])’

which makes the following diagram commutative

a Frtt q
Wat2Qp 1 QR
Y
W1 Qg — =, /B9,

where we use that the de Rham-Witt complex exists for R,41[t] as well, see [HMO04]. By
[Hes04, Lemma, 1.2.2]

Wn+IQq

(RIm) = Ker(WnHQR[t} — WnHQR[t}/tm)

is the degree ¢ part of the differential graded ideal generated by W11 (t™RJt]), i
Wn+IQgR[t]7tm) = Wn+1(tmR[t]) : Wn+IQR[t} + d(Wn+1(tmR[ ])) n+IQR[t}
Thus F"H(WnHQ‘(IR[tNm)) is contained in the image of the following group in QRn+1[t} /B

QY+ miP™ dlog ()0, lw

+1[t]
where the second summand contains F n+l(dvn(tmR)Wn+1Q% ). More precisely, set

Of:=t9(Q%,  @Q% " dlogt), ifp"tie>1,

and
Qg 0= = Qf

1 .
B ng = t°Q% e Q‘;l = ter?]%nﬂ dlogt, ifp"*l|e>1.

Then we obtain a direct sum decomposition of complexes
Goon= D %o D e H o
e>1,pntle e>0,pntlle e>1,pntlle

and hence also a direct sum decomposition
q

Qoo Qe Qfy
s - D mam® D Bi(e,) © D

Braalt) ex1,prtife ¢ e>0,pntlle e>1,pntlle
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With this notation the discussion above shows that F”“(WHHQ?R[

(8.11.1)
0 Q! Q! mQl,
D 59 D e D e ® Barar )
Ba(Qe) B1(Qg ) Bu(Qg,) ~ BUQs,, 1) NmS,,

e>pm, prtife €7 e>pm,pntlle &0 e>pm41, prtife pm.1

) is contained in
t],t™)

where the last summand only occurs if p"*!|pm and p"*! { m.
We show that

p QR[t /Qq( D/ pDn+1) — Wn+1Q t]/Wn'i'lQ(R[t} tm)
is injective. Note that in the above situation we have two cases, where s = [m/p™],

t5(QL[t] + QL[] dlogt) if p"Ttim
(D', ~pDi1) = {t; Al gl dlost) v

Rl if pt | m.

Thus any element in the quotient Qtfl%[t] /QL(=D', —pD,11) can be written in the form
s—1 '
a=ag+ Z t!(a; + b; dlogt) + bst® dlogt,
i>1
for a; € Q% and b; € Qq_l where b, = 0, if p"*! { m. We obtain
s—1
F”H(]_) Q) Z:p"t”’nHF"Jrl (a;) + Z:p"t’pn+ F™(b;)dlogt mod B,
J=0 Jj=1

where a; and l;j are lifts of a; and b; to Wn+1Q‘}% and Wn+1Q‘}1{1, respectively. As s—1 < m/p"

we obtain
04

Fn+1 EB pm,1 :
O<2‘<inen Bq 1<§TZ Bq Bq(ng 1)
where the last summand only occurs if p"*! | m. Now assume pla € W"+IQ[(1R[t],tm)‘ Then
Frtl(p"a) lies in (8.11.1) as well. This implies F""!(p"a) = 0 and hence by the injectivity
of F "+_1]_9", also that a = 0. This completes the proof. - O

Lemma 8.12. Let a € Q% be a local section satisfying dv™l(a) € W, Q‘(J;l D) Then there
exist local sections a; € Wj+1Qg(, 7 =0,....n—1, and b € Wn+1Q such that pjaj =
P R (a;) € WJ+1Q(X _p) and

n—1

a=Y Flaj)+F"(b).

§=0
Proof. We show, for all s = —1,...,n — 1 we find a; € W;11Q%, j = 0,...,s, as in the
statement such that

a= Z Fi(a;) mod F*MW, 0%

There is nothing to show for s = —1. Assume 0 < s < n — 1 and the statement is true for
s—1,ie., we find aj, j =0,...,s — 1, as in the claim and b € W, 1Q% such that
s—1
a= ZFj(aj) + F*(b) in Q%.
§=0
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Applying dV* yields
s—1
pPAR(b) = dV*(a) — > dV I (p R (a)) € WSHQ(X ' Dy
7=0
where we use dV*(a) = F"~'=%dV"1(a) € Ws+1Q(X D)y Hence by Lemma 8.10 and Lemma
8.11 we find an element a; € W,41Q% with p*R*(as) € W8+1Q?X’_D) such that dV*(F*(as)) =
dVs(F#(b)). As the kernel of dV* is FS+1WS+QQ§_1 the statement follows. O

Lemma 8.13. The following two equalities of subsheaves of Wy, 4+1Q% hold

Wn+1Q(X D)mV” Qq ZV]< n+l—j (X D) n j(Qq ))

and

n 1 1 n—1q —1
W1l _p) NV (% ZdV (W50 py N7 (%))

Proof. We show the first equality. This “D” inclusion is obvious. We show the other inclusion.
Let a € Q% be a local section with V"(a) € WnHQ[(]X,—D)‘ As dV"Y(a) = FdV"(a) €
W, Q‘(];l py» We find elements a; € Wj+1Qg< and an element b € Wn+1Qg< as in Lemma, 8.12.
Applying V™ to the equality in that lemma yields

n—1

pIRMNb) = p"b =) V"I (p R (a5)) = V"(a) € W1 Uy ),

j=0

which proves the other inclusion in the first equality.
For the second equality we take a € Qg(_l such that dV"(a) € Wn+1Q‘(ZX _Dp)y- Thus Lemma

8.12 yields the existence of a; € Wj+1Qg(_1, j=20,...,n, and b € Wn+QQg(_1 such that

P RI(aj) € W 107 ) and

(X -D
a= Z Fi(aj) + F"(b).
As AV (F"H(b)) = p"TLFd(b) = 0 we find

dV™(a ZdV" (P R (ay)),

7=0
which proves the second equality. O

Proposition 8.14. There is a short exact sequence of Wn+1(’)x—m0dules

(8.14.1) 0= (Q/B)Y v _p) ~— &{x ) 5 2) =0,

(X -D
where griy _p) = = Ker(R : Wn+1Q(X _py W Q(X D)) and the map (8 is induced by V" (a)+
dV™(b) — b. Furthermore the following diagram of sheaves of abelian groups is cartesian

(8.14.2) VO N Woa Q) ——= Wy )

| l

V(i W, Q.
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Proof. Consider the following diagram of W, 11O x-modules

F
/\
(8.14.3) (Q/B)! (x—p) — &(x._p) > (Q/Z)gj&_m — EW,.Q ),
n q n l 5 n q—1 n—1
F

The two outer squares are cartesian in the category of W, +1Ox-modules by definition, and
also in the category of sheaves of abelian groups as the forgetful functor (W,,+1Ox-mod) —
(abelian-sheaves) has a left adjoint. Clearly the square with F' as horizontal maps is commu-
tative and we have dV"~! o 3 = F. Hence by the definition of (/2 )q_&’_ p) as a pullback in

n?
(8.6.3) there is a unique dotted arrow which makes the middle square commutative. Thus all
the maps in (8.14.1) are defined. The injectivity of V™ holds by definition, the exactness in
the middle of (8.14.1) follows from the exactness of (8.6.1) and the fact that the left square
is cartesian. We claim that the diagram of sheaves of abelian groups

n - HB -

(8.14.4) AV () N Wan @y _p) = (VD)5 x_p
nt ) p oy
v Qi) - o

is cartesian, where [y is induced by £, i.e., So(dV"(a)) = a. If the claim is true, then the top

Bo is surjective as the bottom one is and hence also the dotted arrow in (8.14.3) is surjective.

Moreover the square (8.14.2) is cartesian, as it is a composition of two cartesian squares.
We prove the claim. Let a € Qg{l be a local section which mod Zan(_l lies in the

image Im((Q/Z)i’_(}X’_D) < Q2,05 "). By (8.14.3) we have dV""!(a) € W”Q((]X;D)'

As Z,Q% = F"(W,119%), Lemma 8.12 yields the existence of local sections a; € W;11Q%,

j=0,...,n—1, such that p’a; = p/ R/(a;) € Wj+1Q‘(ZX7_D) and

n—1
a=>Y Fia;) inQ%/Z,0%.
§=0

Moreover . .
V(3 Filay) = S dV I (0 R a))) € Warn Q0 )
j=0 j=0
and it maps to a under fy. Hence (8.14.4) is cartesian. 0

Lemma 8.15. The restriction map R : Wn""lQ[(]X,—D) — WnQ‘(JX7_D) 18 surjective.

Proof. We show

(8.15.1) R": Wn+rQ[(1X _py WnQ?X D) is surjective, for all r > 1.

For n =1 this holds by the “Moreover”-part of Lemma 8.11 (take (j,n) there as (r,0) here).

Assume n > 2. Let w € WnQ‘(JX7_D) be a local section. Set w,_1 := R(w) € Wn—IQ((]X7_D)-

By induction there exists an wyy, € WnMQ‘(]X D) with R™ Y (wpyr) = wp_1. Set wy, :
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R (wayr) € Walkly .

Thus there exist elements a € Q% and b € Qg{l with

Since both w and w, are lifts of w,_1, we have R(w — w,) = 0.

Vn_l((l) + dV"_l(b) =w—w, €W, Q((]X -Dy

As F(V"1(a)) = 0, the cartesian diagram (8.14.2) yields dV"~1(b) € W,Q¢

also V" (a) € W, Q7
that

(X,—D) and hence

(X,—D)" By Lemma 8.13 we find elements a; € Q% and b; € Qg{l such

V' a) = Z Vj(Q”_l_jaj) and Q”_l_jaj € W”—J'Q[(]X,—Dy for all j,

and

AV o) = D dVIErT ) and by € Wl Q0L ) dor all

By the “Moreover”-part of Lemma 8.11 we find sections a; € Wn_j+1Q[(1X _p) and §8; €

Wn_jHQ‘(])_{’l_D) with R(aj) = Q"_j_laj and R(B;) = Q”_j_lbj, for all j = 0,...,n — 1.
Altogether we find that the element

n—1
R (wnpr) Zw () + D> _VI(B)
j=0

lies in Wn+1Q‘(1X _p) and lifts w. This completes the proof. O

The proof of part (1) and (2) of Theorem 8.7 is now complete. To prove the last part of
that theorem we need to study certain variants of (2/2)? and (2/B)? which are defined using
iterates of the twisted inverse Cartier operator from 8.8, similar to what we did in section 6.

8.16. Let X, D, and F be as in 8.8 above. Let n > 0 and let
D=Dy+pDi+...+p"D,

be a p-divisibility decomposition. In 6.11 we have defined divisors D, and D’ such that
D=D,_;+ p" I D7 is a p-divisibility decomposition, for any 0 < j < n.5
For 1 < j < n, define Ox-modules

Q? - F] Q! ( Qn—j? _Qj _ij)a Bgn - = Bq(Q;,n,—)v z1 = Zq(Q;,n,—)a

]n— Xx""n—j ]n—

we furthermore set Bj, _ := 0. Define Ox-modules (Q/B)],, (=D, ~E), (/2)],(—D,~E)
and natural maps

(8.16.1) n—! B — (Q/B)], (=D, —E) — (Q/2)] ,(-D, —E)

by setting
(/B8 (=D, —E) i= Q4(~D,—E) — 0 =: (/2)} ,(~D,~E),

6Recall that D’ is divisible by p and that the actual p-divisibility decomposition is D = D, +p™~ g+t (%Qj).
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and for 7 > 1 recursively by the condition that the two squares on the left in the following
diagram are pushout squares
(8.16.2)

. . : c-
—1 _ — q q
0— F{,'0% (=D, ;,—Dn_ji1—Di"1—pJ 1E)—>Q /B, ——Qi, /Z!  —0

n—yjo

0 (©/B)j_ 1%( D, —E) (©2/B);] (l -B)—=Qf, /2], —0
00— (Q/2)]_ 1}( D, -E) (Q/2)] n(l D,-E)—Qf, /2], _—0,

where the top horizontal exact sequence is induced by (8.9.1) and the top vertical map on the
left is the composition of the natural map

1 - Q-
F] QZ g+1( Qn—j7_D"—j+1 _Q]_l _P] 1E) — 93 1,n,— — #
j—1,n,—
with the first map of (8.16.1) (with j replaced by j — 1).
Some consequences of this definition:
(a) By definition we have for n > 1
(Q/Z)({,n(_Dv_E) Q({n—/zln—
Moreover we have
Zq(FX*Q. (_D7_pE))+an—

Q/B) (-D,—F) =
( / )1,n( ) Bq(FX*Qn 1( D, —pE))

For the latter equality note that the right hand side (RHS) fits into a short exact
sequence

0—Q4(-D,—E) SRES S0l /20 0,

1,n,—
where « is given by C~! from (8.8.2) composed with the natural inclusion and the
map f is defined by fS(a +b) = b, for a € Z9(Fx.Q}_(-=D,—pE)), and b € Qf , .
It is direct to check that § is well-defined, that the sequence is exact, and that this
implies the above equality.

(b) The sheaves (Q/B)f, (-D,—E), (2/2)},(=D,~E) are locally free coherent Ox-
modules. For j = 0 this follows from the definition and for j > 1 by induction
from (8.16.2) and the fact that the Ox-modules Qq _J 2 in,— are locally free, see 8.9.
Their restrictions to U = X \ (D + E) are quotients of Qf;. The natural maps

(8.16.3) (@/B)!,.(—=D,—E) - (2/2)1 (-D,—E)

are surjective. Moreover the j-fold iteration of the Cartier operator induces an iso-
morphism

(Z/B)},(~D,~E) i=Ker (@/B)],,(-D,~E) = (%/2)},(~-D,~E)) <> Q4(~D, -E).

For j = 0 this holds by definition, and for j > 1 it follows by induction from applying
the Snake Lemma to the two lower rows in (8.16.2).
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(¢c) We have natural maps of Ox-modules

(8.16.4) Fx.(Q/B)]_,, (~Dy_1,—D' = pE) = (2/B)},(-D,-E)
and surjections of Ox-modules
(8.16.5) (©/2)] (=D, ~E) = Fx(Q/2)}_y ,_i(~Dy_1, ~D" — pE).

In the case j = 1 this follows from the definition and for j5 > 2 it follows by induction
from the fact the top sequence in (8.16.2) constructed for D, E, n, j is equal to Flx,
applied to the sequence constructed for D, ;, D' + pE, n — 1, j — 1. By definition
the (j — 1)-fold iteration of the Cartier operator induces an isomorphism

C77': Ker (8.16.5) = (Q/2)1 ,(-D,—E).

Remark 8.17. Note that the first map in (8.16.1) is in general not surjective, which under
the duality from Proposition 8.19 relates to the fact that

Z;J,n(DVE) C Fg(*QgL—j(Qn—ijj +p]E)

is not a subbundle, see Remark 6.12.

Lemma 8.18. In the situation of 8.16 we have natural inclusions
(Q/B)j (=D, -E) C Fx,Q%/B;Q%,  (9/2)],(-D,-E) C Fx,Q%/Z;Q%.

Proof. The statements hold by definition for j = 0. The general statement follows by induction
over j. We explain the case (2/7) and a similar argument also works for (©2/B). We have a
morphism of exact sequences (we drop the Frobenius twists)

0—=(Q/2)j_y (=D, —E) —= (@/2)] (=D, —-E) —= ], _/Z], _—0

| |

0——0b/z; 0t — S _0l/z.0f — =0 /7,0% — 0,

where left vertical map is the inclusion which we have by induction, the right vertical map is
the natural inclusion, and the middle map exists by the definition of (2/Z )‘;—7”(—D, —F)asa
pushout and the fact that there is a natural map Qf, /B~ — Q% /Z;Q%. This yields the
statement. g

Proposition 8.19. Let X be of pure dimension N. The isomorphism (cf. Proposition 8.5)
F Q% — Hom(FL Q% L08), aw (8= Cianp)),

induces isomorphisms

(8.19.1) (Q/B)!,(-D,—E) = Hom(Z},, (D, E), QX)
and
(8.19.2) (/2)!,(~D,—E) = Hom(B}, (D, E),QX),

where Z]]-Yn_q(D,E) and B]]-Yn_q(D,E) are defined in 6.11.
First we record the following lemma whose proof is similar to the one of Proposition 8.5.
Lemma 8.20. The map
FIQI(=D,—E) = Hom(FIQN"9(D,E),Q%), aw (8~ C/(anp)),
>

is an isomorphism for all j, n > 0.
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Proof of Proposition 8.19. This is a generalization of [Eke84, II, Lemma 2.2.20]. For j = 0
both sides of (8.19.2) are zero and (8.19.1) holds by Lemma 8.20. Set

D := Hom(—, Q) : (loc. free Ox-mod)°® — (loc. free O x-mod).

Note that D is dualizing, in the sense that the natural map & — D(D(€)) is an isomorphism for
any locally free Ox-module £. Hence D maps a pushout square of locally free O x-modules to
a pullback square and vice versa. Thus it remains to show that D applied to the bottom exact
sequence in (6.11.3) (with N — ¢ instead of ¢) is isomorphic to the top sequence in (8.16.2),
for all j > 1. Then the result follows by induction over j directly from the definitions. The
looked for duality between the two exact sequences is standard, e.g. [Mil76, Lemma 1.7]. For
convenience of the reader we give the proof in this twisted situation. In the following we
assume j > 1. By Lemma 8.20 the map
.0l — DO, b(@)(B)=Clanp) (e, Be) ).

7m0, =

is an isomorphism. If o € B?,n,— and 8 € Z]]-Yn_q, then a = do’ and df = 0 and hence
q _ ] / _ j / o
bi(a)(B) = C¥(da’ A B) = C(d(a’ A B)) =
Similarly, the above vanishing holds if o € Z]‘{n,_ and 3 € Ban_ ¢, Therefore the map b?
induces well-defined maps
q q N—q q.04 q N—q
Qj,m—/Bj,m — D(Z ) and aj Qjm,—/zjm,— — D(Bj’n ).

Consider the following two diagrams,

(8.20.1) 0—=Qi /20t o, ——Qf, /B, ——0
S
0——= DB}, ) o D)) D(Z) 1) —=0

and
(8.20.2)

0—= F{2'00 (D, -Duy-D i) Sm Q1 BT Q1 Z1 g

= l 4|
0— D (F{'QN=% (D,_;,Dn—js1+DI 1 +pi~1E)) < D(Z;Yn_q) — D(Bﬁ;q) —0.

where e? is the isomorphism from Lemma 8.20, which is induced by a + C7=*(a A 8). The
two diagrams clearly commute and the rows are exact. In fact the top sequence of (8.20.2) is
the top sequence of (8.16.2) and the bottom sequence of (8.20.2) is D applied to the bottom
sequence of (6.11.3). Thus by the above it is only left to show that a?- and cg- are isomorphisms
for all ¢ > 0 and j > 1. But this follows by descending induction over g from (8.20.1) together
with (8.20.2). This completes the proof of the proposition. O

Proposition 8.21. Let D = D'+ p"t'D, 1 be a p-divisibility decomposition. Consider the
Ox-modules (/2)%" (X _p) and (Q/B)? (x,—p) defined in (8.6.3). There are natural isomor-
phisms of Ox-modules for n > 0

(8.21.1) (Q/2)5 (=D, =pDpi1) = (2)% k _p)-
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and

(8.21.2) (2/B)fu(=D's =pDys1) = (/B x_py-

In particular the sheaves on the right hand side are locally free coherent Ox-modules.

Proof. The last statement follows from the two isomorphisms and 8.16(b). We first prove
(8.21.1). In case n = 0 both sides are zero by definition. The case n = 1 follows from 8.6(a)
and 8.16(a).

Let n > 2. Let D = Do+ pD; +...+p" "D, 41 be a p-divisibility decomposition. Assume
that by induction we have a natural isomorphism

(Q/Z)n 1n— (= Qn—17_pDn_p2Dn+l) (Q/Z)n 1,(X,-D)

Claim 8.21.1. There exits a natural morphism a, which makes the following diagram com-
mutative

_ (8.16.5)
(8.21.3) (Q/Z)ghnl(_D ~pDpi1) — F(Q/Z)} =5 1 (=Dy_y, —pDn — p* D)
lan lanl
(8.6.5)
(Q/2)% X _p) F(Q/2)273 (x —py

We prove the claim. The following diagram of sheaves of abelian groups clearly commutes

an—10(8.16.5)

— Vn72
(Q/Z)ghnl(_gnu_pDn-i-l) (Q/Z) (X _D) — Wy— 1Q

| |

0z, avr ! AV Q) — L w104

(X,=D)

where the left vertical map is the natural inclusion from Lemma 8.18. As (8.14.2) is cartesian
we obtain a morphism (Q/2)4, (=D,,, —pDpny1) — dV™™ Qi Hnw, Q(X _p)» composing
with the inclusion dV™*~1(Q% ) N W, Q‘(]X ) C W"Q(X,—D) yields the top horizontal mor-
phism in the following commutative diagram of W,,11Ox-modules

(Q/2)8 1 (=D, ~pDys1) L B W, Q0

| |

et z,00 " — Y R w0l

(X,=D)

Now the map a, in the claim exists by definition of (Q/Z)7" < X _p)y in (8.6.3). The diagram
(8.21.3) commutes by construction, or maybe easier, the fact that both lines of the diagram
map injectively into F)%*Qg(_l/Zn — F)%*Qg(_l/FX*Zn_l.

It remains to show that a,, is an isomorphism. As a,_1 is an isomorphism by induction and
the map (8.16.5) is surjective it remains to show that a,, induces an isomorphism between the
kernels of the horizontal maps in (8.21.3). By construction

Ker (8.6.5) = {a € Z,1Q% /2, Q%" [ dV" "} (a) € Wy 1) }-

‘We note
o Z,1Q% " = Flw, a8
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e the (n — 1)-fold iterated Cartier operator C™~1) maps F"~1(b) to R"~'(b), for b €
—1
Wan( ;
o AV Y FL(D)) = prtdRT (D),
Hence C'"~1) induces an isomorphism

Y Ker (8.6.5) = {b € Q5 /2105 | pr b e W0l ).

By Lemma 8.11 and Lemma 8.10 we can rewrite this as

ng—l(_Qn—h _pDn - p2Dn+l)
274y (=D, _1,—pDn — p?Dpny1))

" Ker (8.6.5) =

This together with 8.16 (a) and (c) implies that a,, induces an isomorphism on the kernels of
the horizontal maps in (8.21.3). Thus we have proven the isomorphism (8.21.1) in general.

Next (8.21.2). First note that for a € Wng(_l, we have VI(FV='da) = p?dV (a) = 0. As
Bng< = FJ _1d(WjQ§(_l) we obtain a well-defined morphism of W,,;1Ox-modules

Bn_jvj — Vj]_?n—j . Fg(*QqX/BjQqX — Wn—i—ng(-

Claim 8.21.2. For j =0,...,n the above map induces well-defined morphisms of W, 110x -
modules

PV (Q)B) (=D, =pDnt1) = Wi Q-

We prove the claim. For j = 0, this follows from Lemma 8.11 and the definition of (£2/ B)gﬂ.
Let j > 1 and consider the following diagram

j— . . Cvfl
F (D), =Daojir = (DY ™ = pI Do) ——Qf, _/B],
| e
Q/B)!_, (~D',—pD P w00
( / )j—l,n( y —D n+1) n+1 (X,—D)

where

QO =F 0 (—(D) . —(DY —p'Dypy) and B, =d0l!

2,m— n—yj 2=

Here the bottom horizontal map exists by induction and the existence of the right vertical
map follows from Lemma 8.11, which implies Q"_j(Q‘;-’m_) C Wj+1Q‘(1X7_ D) It is direct to
check that the above diagram commutes. Thus by the definition of (2/ B)‘;’n(—D’ ,—DpDnt1)
as a pushout we obtain the map from the statement of the claim.

Thus we obtain a commutative diagram

n

(Q/B)%m(—D/, _pDn-i-l) — n+1Qq

| |

Fr.0% /B0t — X W1 0%,

where the top map is induced from Claim 8.21.2 with j = n. The definition of (Q/B)? (X,—D)

n,

as a pullback in (8.6.3) yields therefore a natural map

br : (Q/B)gz,n(_Dlv —pDny1) — (Q/B)gh()g_[))-
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Altogether we obtain the following diagram of Ox-modules

(8.16.3)

(.21.4) (/B (~ D', D) 2 (92 (D, —pDyer)
lbn ‘/an
(8.6.4)
QB 1y ©/2) )

The diagram commutes as both lines of the diagram map injectively into F}&Qg{l /B, —
FY Q% /Z,. As (8.16.3) is surjective and a,, is an isomorphism as shown above, it remains
to show that b, induces an isomorphism between the kernels of the horizontal maps. By
construction we have

Ker((8.6.4)) = {a € Z,Q%/B,Q% | V"(a) € WnHQ?X,—D)}'

We note
o Z,0%/B,Q% = C7"(Q%);
o V(CT"(b)) = p"b.
Thus the n-fold iterated Cartier operator C™ induces an isomorphism

C™: Ker((8.64)) = {b € Q% | p"be WunQfy _p ).

By Lemma 8.11 the right hand side is isomorphic to Q%(—D’, —pD,,11) and thus it follows
from 8.16(b), that b, induces an ismorphism between the kernels of the horizontal maps of
the diagram (8.21.4). This completes the proof. O

The proof of Theorem 8.7 is now complete.

q

Remark 8.22. Using Proposition 8.21, we can give an explicit description for (2/ B)} (X.—D)

n CI(FYIQY(—D,, — Dt
(Q/B)q p = Z]—O q( X j( = = ))
w(X,=D) B (€5,(=D', =pDny1))

Here Bl (Q(—D', —pDy41)) is defined inductively so that B(Q25,(—D’, —pDy41)) = 0, and
BY L (Q4(~ D', —pDyr))

_1; q Q. —D/ - Dn =
O B (=D =pDst)) = gree “p D)

for every j € [0,n — 1].

9. DuALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS: FINITE LEVEL

In this section we prove the duality between Hodge-Witt sheaves with modulus and their
counterpart with zeros and draw some first consequences. This is one of the main results of
the paper, see Theorem 9.3.

Throughout this section we assume X € Sm is of pure dimension dim X = N and we let
D be an effective Cartier divisor on X such that D,.q is an SNCD.

Lemma 9.1. Set U = X \ D. The multiplication map
WnQf x W Q4 — W,
induces a well-defined map

(9.1.1) W, x W QN1 — W, 0

q
(X,—D) (X,D)

of Nisnevich sheaves on X.
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Proof. Let n € D be a geometric point. Set O, = OS‘M, it is a henselian discrete valuation
ring with maximal ideal my and fraction field L. Let r > 1 be the multiplicity of D at n and
set

w,Q4

= (WL = Ker(W,,Q5, — W Q¢

©rmp) ° (0" O /)
In view of the definition of WnQ( X,D) in 6.2 and as WHQ% is a successive extension of locally

free Ox-modules (see [I1179, I, Corollaire 3.9]), it suffices to show that multiplication induces
a well-defined map
q
W Q((9 ;m7)
with Fil?W, Q7 "¢ as in Definition 2.6. By the equality p*(Fil, W, QYY) = poFils W, 00 71
(see Lemma 2. 9) and the formulas

a-p*(B) =p°(R*(a) - B) and  a-d(y) = (-1)%(d(a-7) + —d(a) - 7),
for € W, Q(o ) B e FilrWn_ng_q, and vy € ﬁlrWan_q_l, it suffices to show that
multiplication 1nduces a well-defined map

Walllo, ) X AL WaQL ~1 = WaQl,

By [Hes04, Lemma 1.2.2] W, Q‘(IO ) is the degree g-part of the differential graded ideal in
Wi, generated by W, (m}). Thus any element o € W, Q(O ) is a sum of elements

x FilPW, Q7 9 — W,08

Vi([a])e!  and dV¥([a])a”, with vg(a) >, o/ € W, Qh,, o’ e W, Q%Ll,
where vy : L — Z U {oc} denotes the discrete valuation on L. Let
m = min{v,(r),n}.
By Definition 2.4 any element in ﬁlrWanLV_q is a sum of elements
(1) 8= VI([p]) dlog u, with p"~7 vy (b) > —r+1,u € KN (L), j €{0,...,n —1};
(2) v = Vi(lg]) dlog v, with p" = lv(c) > —r, v € K]J‘\;[_q(OL), je{n—m,...,n—1}.

Thus it suffices to show that for a € Op with vr(a) > r and 8 and v as in (1) and (2),
respectively, we have

Vi(a)B, Vi(lalyy € Walp ", dVi(la))B.  dV'(lal)y € Wal2, "
We consider the various cases separately.
1st case: V'([a])3. We have

vp(a?”' W) > pr 4 p' =L > pl > 1= Vi([a])B = VI ([ '] dlog u) € WoQf,
2nd case: V¢([a])y. We have
vp(a?' &) = plr 4 p' =t > 0 = Vi([a])y = VI ([ '] dlogv) € W05,

3rd case: dV'([a])p.
1st subcase: n— 12> j >i>0. We have

vp(ba?’ ") > = 4 pi i > 0 = dV([a])8 = VI ([bl[a)’’ " dlog{a, u}) € WoQF, .
2nd subcase: n —1>1i > j > 0. We have

fuL(abplﬂ) > —i—pZ J ;Tjrll >1 =

av*([a))8 = V7 (v~ (jab" ] dlog u) — V' ([ab | diog b, u}) ) € W, 05,
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4th case: dV'(|a))y.
1st subcase: n— 1> j > n —m and min{n — 2,5} > i. We have

vi(ea? ") > —=r 4 pi i > 0 = dV([a])y = V7 ([ca?’ ] dlog{a,v}) € WO,
2nd subcase: n —1 =7 =1 >n—m. We have
dV™Y([a])y = V" !([ca] dlog a dlog v)

and vy (ca) > 0. If vg(ca) > 1, then dV"1([a])y is clearly regular. If vy (ca) = 0,
we have vy, (a) = r and vp(r) > m > 1. Thus in this case dloga € Q}gL and hence
also dV"([a])y € WanL

3rd subcase: n—1>17 > j >n—m. We have

vp(ac?' ) >7’—pr S0 =
av'([al)y = V7 (Vi ([ac” | dlog v) — Vi ([ac” | dlog{e, o}) ) € W05,
4th subcase: n—1 =179 2>j > n —m. We have
dv"(la])y = pjdV"_l([acpnilij] dlogv) — V”_l([acpnijil] dlog cdlog v)
and vL(acpnijil) > 0. If vy, (ac?” ") > 1, then dV"([a])y is clearly regular. If

vr(ac?"7") = 0, then p" vy (c) = —r. Sincem < vp(r) = n—j—1+vy(vr(c)),
we see that p|vg(c). Thus dlogc € Q}gL and hence also dV"~1([a])y € WanL.
This completes the proof of the lemma. O

9.2. Consider the scheme W, X = (X, W,,Ox) and denote by m, : W, X — Spec W,,(k) the
structure map, it is separated and of finite-type. Recall that WnQ‘(]X D) and WHQ?X _p) can

be viewed as coherent sheaves on W, X, see Proposition 6.3 and Definition 8.1.
By [Eke84, I, Theorem 4.1] there is a canonical isomorphism

(9.2.1) W QY [N] = 7l Wi (k),
where 7, denotes the twisted inverse image from Grothendieck duality, see [Har66], [Con00],
also [Lip09, 4.8 and 4.10]. Hence

Dx . := RHomw, o0y (— WoQ¥) : DY(W,0x) — DY(W,0x)

is a dualizing functor in the sense that the canonical map id Dy (W,0x) Dx, oDx,p is an
isomorphism, see, e.g., [Har66, V, §10]. If f: X — Y is a proper morphism between smooth
k-schemes and Y is of pure dimension e, then f, : W,X — W,Y is proper as well and
Grothendieck duality yields an isomorphism

(9.2.2) Rfns(Dxn(=)) = Dy (Rfns(=))[-7],

where r = N — e is the relative dimension of f.

The following is one of the main results of the paper. For D = () it is due to Ekedahl, see
[Eke84, I1], for D is reduced, it is [Nak05, Theorem 5.3(1)], cf. [Hyo91, (3.3.1)].

Theorem 9.3. The multiplication map (9.1.1) induces isomorphisms, for all ¢, n

7

(9.3.1) W By = Dxa(Way 1)

and

(9.3.2) W, Q! = Dy (W22 ).
9. nif(X,—D) Xn (X,D)
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Proof. As Dy, is dualizing we obtain the isomorphism (9.3.2) from (9.3.1) by applying Dx .
In view of Theorem 6.4 and Theorem 8.7 the proof of (9.3.1) is along the lines of Ekedahl’s
proof. We explain the strategy and the required modifications in the following. The case
n = 1 holds by Proposition 8.5. For m € {0,...,n} denote by i, : W;, X — W,11X the
closed immersion induced by the restriction R**1=™ : W, ,1O0x — W,,,0Ox. By Theorem 8.7,

the sheaf Wn+1Q‘(1X _p) is a successive extension of W, 11Ox-modules of the from i1, M, with
M a coherent locally free Ox-module. Thus
(9.3.3) 5mt@Vn+10X(Wn+1Q‘gx Dy W, 1Q%) =0, for all i > 1,

by the same proof as in [Eke84, IT, Lemma 2.2.7]. Moreover we get that the restriction map
(9-3-4) Dn—l—LX(WnQ[(])(,_D)) — j*Dn+LU(Wn+IQqU)
along the open immersion j: U = X \ D < X is injective. Set

grix,—p) = Ker(R : W"JrlQ((]X,—D) — in*WnQ‘(’K_D))

and

gy (x,p) = Coker(p: in*WnQé\)f{_’%) — Wn+1Qé\)f{_’%)).

Consider the following diagram

. N— N— n
00— Zn*WnQ(Xf)) W”"'lQ(X,%) grlv(va

| | |

0—— Z'n*DX,n(WnQ((IX7_D)) - DX,n+1(Wn+IQ((1X7_D)) - DX,n—l—l(gr?X’_D)) —0,

) 0

where the vertical maps are induced by the multiplication map (9.1.1) and the horizontal
map on the bottom left side is induced by the duality isomorphism 7,4 0 Dx p, = Dx nt1 © ins«
composed with the dual of the restriction R. As the restriction map (9.3.4) is injective
it follows from [Eke84, II, (2.2.8), (2.2.9)] that the diagram commutes. (Note that it is a
diagram of sheaves by the vanishing of the Ext-groups shown above.) As the lines are exact
it remains by induction to show that the right vertical arrow is an isomorphism. In view of
the exact sequences in Theorem 6.4 and Theorem 8.7(1) the same argument as in [Eke84, II,
Lemma 2.2.17] (see also the explanation around (8.5.2)) reduces us to show that the maps
(9.3.5)

ZaSdc By = Hom (B (x _p) OX), - and - BaSi = Hom((/2); ) %),

induced by o — (8 — C™(a A B)), are isomorphisms. These maps are exactly Dx,; applied
to the isomorphisms in part (3) of Theorem 8.7 and hence are isomorphisms as well. This
completes the proof. O

Corollary 9.4. The projective bundle formula and the blow-up formula from 7.4, (1) and (2)
also hold for D replaced by —D.

Grothendieck duality (9.2.2) yields:

Corollary 9.5. Assume additionally that X is proper over k. Then there is a canoncial
isomorphism of finite W, (k)-modules

HI(X, Wy ) = Homyy, 1) (HN X W), Wn(k:)) .
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Corollary 9.6. Assume X is proper and let (Y, E) be another modulus pair with Y € Sm
proper of pure dimension Ny and Eyeq an SNCD and denote by MCor((X, D), (Y, E)) the
group of left proper admissble correspondences, see [KMSY2la, Definition 1.3.1]. Then for
any correspondence o € MCor((X, D), (Y, E)) we have a natural map

ot HY (X, Wo 04 ) = HYY (VW0 )

such that:
(1) If (Z,F) is a modulus pair with Z € Sm proper of pure dimension Nz and Fieq an
SNCD, and f € MCor((Y,E),(Z,F)) then

Bacs = (Boa)s: Ij[N()(7 WnQé\)fgzD)) N ];[NZ(Y7 WHQ?;Z’__%))

(2) If « is induced by the graph of a morphism f : X — Y satisfying D > f*E, then
oy = fi, the dual of f*.

In particular, if f : X — Y is a morphism which induces an isomorphism X\ f~1(E) = Y \E,
then f, induces an isomorphism f, : H (X, WnQ‘(IX f*E)) = HN(Y, WnQ‘(IYE)).

Proof. Use Corollary 9.5 and the corresponding properties of HY(X, WnQ‘(ZK D)). O

Recall that following an idea of Deligne [Har66, Appendix| Hartshorne defines in [Har72, §2]
cohomology with compact support for coherent sheaves on schemes which are separated and
of finite type over a field k. In fact the same approach works for schemes of finite type over an
artinian ring, as it is only used that the cohomology of a coherent sheaf on a proper scheme
has finite length over the base ring, to guarantee the exactness of certain limits. Let A be an
artinian ring, V' — Spec A be a separated morphism of finite type, and G' a coherent sheaf on
V, then the corresponding cohomology with compact support is denoted by HZ(V,G).

Corollary 9.7. With the above notation and assuming that X is proper there are canonical
isomorphisms
HI

[

(Wn(U)a WnQ((Z]) = @Hj(Xa WHQ((Z)Q_,«D)) = HomWn(k) (HN_j(Ua Wan_q)7 Wn(k)> :

Proof. In view of the definition of HZ(V, ) and Theorem 9.3 we only have to check that the
pro-systems of coherent W, Ox-modules {WnQ?X , D)}T and {W,,(I") - W,Q%}, are isomor-
phic, where I = Ker(Ox — Op). To this end, note that by definition we have an inclusion

Wo(I") - Wan( C WnQ‘(]X D)’ for all » > 1. Furthermore we have an inclusion
(9.7.1) Wally i,y © Wa(IP) - W%

To check this we may assume X = Spec A and rD = Div(f). It follows from the recursive
definition in (8.16.2) that (©2/B)?,(0,—prD) is a quotient of fP7QY and similarly with
(Q/Z )‘]1-;11 (0, —prD). Thus gri’y,_p) is by Propositions 8.14 and 8.21 generated by elements
n ntly I8 940 n ntly r n
VAT a) = [f17V (@) and dV((fPTTIE) = [V (5),
where a € Q, 8 € Qi_l. Thus (9.7.1) holds by induction. O

The following generalizes Ekedahl’s isomorphism (9.2.1) to the case of thickenings of smooth
k-schemes.
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Corollary 9.8. Let H C X be smooth closed subscheme of codimension 1. Denote by H, C X
the closed subscheme defined by the ideal sheaf Ox(—rH), forr > 1. Denote by f : W, (H,) —
Spec W, (k) the structure map. Then there is an isomorphism in D(W, O, )

WnQéVX,TH)
WaQl
Proof. Denote by ¢ : H, — X the closed immersion. Ekedahl’s isomorphism (9.2.1) and

Grothendieck duality yield an isomorphism
Dx (i Wy O, ) [N] 2 i f Wi (k).
Now apply Dx,, to the exact sequence
0— WnO(X,—rH) — WnOX — i*WnOHT —0

and use Theorem 9.3 to obtain the isomorphism from the statement. O

F' W (k) = [N —1].

10. DuALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS: INFINITE LEVEL

Throughout this section X € Sm has pure dimension dim X = N and D is an effective
Cartier divisor on X such that D,.q is an SNCD. We denote by

(10.0.1) 1 W1 X =< W, X
the closed immersion induced by the restriction R : W,,Ox — W,_1O0x and by
(10.0.2) o: WX - W, X

the finite morphism induced by W, (F%) : W,0Ox — W,,Ox, where F'x : X — X denotes the
absolute Frobenius on X. With this notation, e.g., the Verschiebung V' : (0i) W,,_1Q% —

W, Q% and the differential d : (6™), W, Q% — (0")*WHQ§F1 are W,,Ox-linear morphisms.

10.1. We recall some definitions from [Eke84, III, Definition 2.1]. An inverse de Rham- Witt
system on X consists of a family of quasi-coherent graded W,,O x-modules M,,, n > 1, together
with morphisms of graded W,,0x-modules

R: M, — ixMy_1, F: M, = (0i)sMp_1, V : (00)s Mp_1 — My, d: (6") M, — (¢").M,(1),

where My = 0 and for a graded module M we denote by M (1) the graded module with
M(1)? = M97, satisfying the following identities

RF=FR, RV=VR, Rd=dR, FV=p, VF=p, d=0, FdV =d.

A direct de Rham-Witt system consists of a family of quasi-coherent graded W,,Ox-modules
M,,, n > 1, together with maps F, V', d as above, and (instead of the maps R) morphisms of
graded W,,Ox-modules

piMy_1 — My,
such that p, F', V', and d satisfy the same identities as above with R replaced by p. We call a
direct (resp. inverse) de Rham-Witt system coherent if each M, is a coherent W, O x-module.
We denote by

inv-dRWx and dir-dRWx
the categories of inverse- and direct de Rham-Witt systems, respectively, with morphisms
defined in the obvious way, and by inv-dRW x . and dir-dRW x . their full subcategories of
coherent objects. These are abelian categories and the forgetful functors to the product
category [], (graded W, Ox-modules) sending ((M,)n, I, V,d, R(resp. p)) to (M,), is exact
and conservative. For M € dir-dRW we denote by M(j) the direct de Rham-Witt system
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with shifted grading M, (j)? = M;%Jrj, and where RM(j) = Ry, FM(j) = Fuy, VM(j) = Vu,
and dM(j) = (—1)de.
Assume X is proper. Then the global section functor I'(X, —) derives to
RI'(X,—) : D’(inv-dRWx ) — D’(inv-dRWy ), D°(dir-dRWx ) — D(dir-dRWy ),
where inv-dRWy, ;. := inv-dRWgpec i, and similarly with dir-dRW, see [Eke84, III, (2.5.2)].
Example 10.2. We have
WOO.Q?X,:l:D) = ((WWQ?X,:I:D))W7 B, F, ‘/’, d) c dir_dRWX7c7

and
Weldix 1 py == (WaQ(x £py)ns R, F, V, d) € inv-dRW x .

10.3. Recall from [Eke84, III, Example 2.2.1] that the top Witt forms W,Q%, n > 1, together
with the maps p, V, and the n-fold Cartier operators C™ : (0")*Wn9% — WnQ% form a
dualizing system in the sense of [Eke84, III, Definition 2.2]. Hence we obtain a well-defined
functor

(dir-dRWx .)° — inv-dRWx, M = (M), — (Homy, o (M, W, QX))s.

We only remark that the maps R, F', V, and d on (Homy, o, (M, W, 08)),, are induced by
B}k\/j’ Vi, Fyp, and dy, respectively, and refer to [Eke84, p. 205 — 206] for the details, see also
[CR12, 1.6.6].

Let E, x be the Cousin complex of Wn§2§ By [Eke84, III, Example 2.2] E = (E,_x ), has
the structure of a complex of dualizing systems (and is a Witt residual complex in the sense
of [CR12, Definition 1.8.3]). We obtain a functor between the derived categories

Dy : D’(dir-dRWx .)° — Db(inv-dRWx), M + Dy o(M),
where
(Dx,o(M)), = Homy, 0, (M, By x) = Dxn(My)  in DLW, Ox-mod),

with Dx ,, as in 9.2 and where the degree g-part of Dx ,,(M,,) is Dx (M ).
Corollary 10.4. The multiplication map induces isomorphisms in D®(inv-dRW X,c)
Wedix _py = Dx,e(WooeSlix p))(—N) and Wellix p) = Dx,e(Woce 2 x _p))(—N).
Proof. By Theorem 9.3 we have the isomorphisms of graded W,,Ox-modules
WnQEkX,iD) = Homw, 0 (WnQ?X;D)a WnQ%)(—N%

for all n. Thus it suffices to show that these isomorphisms are compatible with the maps
R, F,V,d defined on both sides. As before this can be checked after restriction to U = X \ D
and hence follows from [Eke84, III, Proposition 2.4] O

10.5. Recall from [IR83, I, (1.1)] that the Cartier-Dieudonné-Raynaud ring R is the graded
(non-commutative) W = W (k)-algebra, R = R? @ R' generated by symbols F, V € R? and
d € R' subject to the relations

o(a)F = Fa,aV =Vo(a),da=ad, FV =p=VF,dd=0, FdV =d,

for a € W, where o : W — W denotes the Frobenius lift.
We obtain a functor lim : inv-dRW x . — Sh(X,R), the category of sheaves of R-modules
on X, where the limit is taken along the restriction map R. This functor derives to

Rlim : D’(inv-dRWx ) — D°(X,R),
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see [Eke84, II1, (2.6.2)]. For M € Sh(X,R), the shift M(j) is defined by M(j)9 = M7*9 and
the action of F,V,d on M(j) is induced by the action of F,V,(—1)?d on M.

Proposition 10.6. The following equalities hold in D*(X,R)
RIEmWoQly _py = Wy _p) = Ker <WQ} - P WQEZ) :

where we write D =Y. D; with D; yeq smooth, and
Rlim WeQd(y ) = WQx (log D),

the log de Rham-Witt complex, see, e.g., [Mat17, Proposition-Definition 3.10]. In particular,

Rlim W’Q?KD) = Rlim W-Q?X,D

rcd) :

Proof. The statement for W.Q?X _D) follows directly from the surjectivity of R, see Theorem
8.7(2), and the left exactness of lim. By (5.5.2) we have a natural inclusion,

(10.6.1) Wex (log D) = Weld(x p)-
Let M > 0 be a positive integer such that p is strictly larger than all the multiplicities of
D. We claim
RM(Wn+MQfX7D)) = W,Q%(log D), for all n > 1.
By the above we only have to prove this “C” inclusion. It suffices to prove this after pullback

to henselian dvf’s L of geometric type. Thus by Theorem 5.4 it suffices to show for r < p™
and s =0,...,n—1,

(10.6.2) RM (p*fil, s W) C W2, (log).
Under our assumptions on M, the inequality
_rr'ps
prtM—i—1 <1

is only possible if i > n — s — 1. But in this case p*V*([a]) = 0 in W, (L), for a € L. In view of
the definition of FilPW,Q¢ in Definition 2.6 this yields the inclusion (10.6.2). It follows that
the inclusion (10.6.1) is an isomorphism of pro-objects and hence

Rlim Wy p) = Rlim WeQx (log D) = Wk (log D),

where the last equality follows from the surjectivity of the restriction map R on W,Q% (log D).
O

Theorem 10.7. Assume additionally that X is proper and set
Woold(x,py = colim WeeeS(x py,
see Example 10.2. Then we have isomorphisms in D?(R)
RI(X,WQ(x _py) = RHomw (RU'(X, WeeQ(x ), K/W)(=N)[-N],
where K = W [1/p|. In particular we have isomorphisms of R°-modules, for i,q >0,

H'(X, W _ ) = Homyw (HN (X, W Q0 1)), K/W).
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Proof. Applying Rlim oRI'(X, —) to the first isomorphism in Corollary 10.4 gives
RI(X,WQ(x _py) = RI'(X, Riim WeQ(y _p)) (by Proposition 10.6)
2 Rlim R Homyy, (RI'(X, WanXD)),Wn)(—N)[—N] (by (9.2.2))
= Rlim R Homyy (RT'(X, WnQ’(kX’D)), K/W)(—=N)[—N],
where the transition maps in the last limit are given by precomposition with p. Here the

third isomorphism holds by definition of the restriction maps on Dx o(M) in 10.3, see [Eke84,

III, (2.3.2)]. Let U be an affine covering of X and denote by C,, = C*(U, WnQ’(kX’D)) the

Cech complex (it is a complex of graded W, [d]-modules). Then (C,), is a representative of

RF(WOO.QE*XD)) in D*(dir-dRWgpec k) and colimy Cy, is a representative of RF(WOOQE‘X’D)).

As p: Wanx_D) — W”‘i'lekX,—D) is injective, the induced map p : €}, — Cpy1 is term-wise
injective. As K/W is an injective W-module, p* : Hom(Cyy1, K/W) — Hom(Cy, K/W) is
term-wise surjective and thus (e.g. [Sta23, Tag 07TKW(5)])
Rlim R Homw (RI'(X, Wn(x p)), K/W) = lim Hom (Cp,, K/W)
= Homyy (colim Cy,, K/W),

which implies the statement. O

10.8. We denote by W[F] the free W-algebra with generator F' subject to the relation F-a =
o(a) - F, for all a € W, where 0 : W — W is the Frobenius. Let
chrys((X7 _D)/W) S Db(W[F])

*

be the simple complex associated to the double complex RT'(X, WQ( X D)), where F' acts via
the absolute Frobenius Fy, cf. [Eke84, III, (5.3), (5.4)]. Furthermore denote by

F : RHom (RT(X, Wy 1)), K/W) — R Homy (RT(X, Wao Ol 1)), K/W)

the morphism, which sends a map p to the composition

N-—a. o
RT(X, W2 P20 RO(X, Waell ) 2 K/W 5 KW,

(x.0))
(X,D) (X,
Representing RI'(X, WOOQ‘(IK py) by a Cech complex C we find that (Homy, (C?, K/W), F)
is a complex of W[F]-modules. As

d : Homy (C29, K/W) — Homy, (C2971 K /W)
is given by (see [CR12, 1.6.6])

p (=D puod

it follows from the relation Vd = pdV that (Homy (CS", K/W),F) is a double complex of
W [F]-modules. We denote the image of the associated simple complex in D*(W[F]) by

RHomy (R erys (X, D)/ Woao), K/W).

Corollary 10.9. Assume X is proper. Multiplication in W% induces an isomorphism in
DY(WTF])

RT¢ys (X, —D) /W) = RHompy (Rl ¢rys (X, D) /W), K/W)[—2N].
Proof. The isomorphism follows by applying the functor which sends a double complex to its

associated simple complex from the isomorphism in Theorem 10.7. For the compatibility with
F% on the left and F on the right we observe:
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o for a € Wn+mQ‘(1X D) and 3 € Wan(_%) (m > 1) we have

V(R™(Fx(a))B) = V(p?F(R" a)B) = R™"}(a) - p?V (B);
e under the identification W, (k) = #W/ W C K/W the inverse map to V : Wy, (k) —
Wi+1(k) is induced by o : K/W — K/W.
Now the statement follows from this and the definition of F. O
10.10. Set R, = R/(V"R + dV™R). It is a right R-module and a left W), [d]-module. By
11183, (2.3)] R,®r derives to
Rn®% : D'(R) — D*(W,[d]).

Recall that a complex M € D’(R) (or an R-module M) is called coherent (in the sense of
[lusie-Raynaud-Ekedahl) if the following two conditions are satisfied

(1) H(R,, ®k M) is a finitely generated W,,-module for all i, and

(2) M is complete, i.e., M = Rlim,(R, &k M).
By [Eke84, p. 190] (see also [I1183, 2.4]) a complex M is coherent if and only if H!(M) is
a coherent R-module in the sense of Illusie-Raynaud [IR83, I, Définition 3.9]. The coherent
subcomplexes form a triangulated subcategory of D?(R), which is denoted by D%(R). Ekedahl
shows in [Eke84, IV, Proposition 1.1] that there is a well-defined functor
(10.10.1) D: DY(R)°® — DY(R), M — D(M) = Rlim RHomy, (R, @5 M, W,,),
which is dualizing in the sense that it satisfies D o D = id. Moreover for any M € D%(R)
(10.10.2) Ry, @5 D(M) = RHomyy, (R, ®% M, W,,) in D*(W,[d]).

In case D = () the following corollary is [IR83, II, Théoreme 2.2], [Eke84, III, Theorem
2.9], and [IR83, II, (1.4.3)]. The last part on the compatibility with R,,®@% follows also from
[Nak05, Theorem 6.24], but the proof is different, see also [Mok93, Lemme 1.3.3].

Corollary 10.11. Assume X is proper. We have
* b
RT(X, WQ(Xd:Dred)) € D (R),
and
(10.11.1) RT(X, WQ){Xv_Dred)) >~ D(RI(X, WQ)(kaDred)))(_N)[_N]’
where D is the dualizing functor (10.10.1). Moreover,
Ry ®% RI(X, W ip,..) = BUX, Wallix 1 p)-
Proof. Write Dyeq = z;zl Dj, with D; smooth and connected. Set

p®= T[ Djn...nD;.
(J1<...<Js)

By [Mat17, 9.] (see also [Nak05, Proposition 9.3]) and (5.5.2) there is an increasing filtration
(the weight filtration) {Ps}s=o, ., of R-submodules of WQ’(*X Drea) with Py = WQ% and
P, = WQ’(X Drea)? which fits into exact sequences of R-modules

(10.11.2) 0= Pyoy — Py 5 W (—s) — 0.
As it is not stated explicitly in loc. cit. we remark that p is a morphism of R-modules.
Indeed, the iterated residue map p is induced by the inverse of the isomorphism

WQ*D(S)(—S) — PS/PS—la
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which sends a local form «a € WQqD;fm..nDjs to dlog{t;,,...,t;,} - &, where @ € WQ%L " is a
lift of o and ¢; is a local equation for D;. This is clearly a morphism of R-modules (see 10.5
for the “(—s)” shift of an R-module). As RI'(D®), WQ* ) € DY(R), for all s = 0,...,r,

D(s)
by [IR83, II, Théoreme 2.2], we find RI'(X, Wy Dred)) € DY%(R). Similarly it follows from
[IR83, II, (1.4.3)] (applied to W7, (—s)) that we have

Ry ®% RI(X, W b)) = BU(X, WnQx b 1)-

Hence applying RlimoRT" to (9.3.2) (for Dyeq) yields (10.11.1) in view of the discussion in
10.1, 10.3, 10.5. The remaining statements for —D;eq follow from (10.10.1) and (10.10.2). O

10.12. We can now use the results on coherent R-modules from [IR83] and [Eke84] to get
many consequences, which however only work in the case D is reduced or we work up to
bounded torsion’. Here is a sample of corollaries, where we assume that X is proper addi-
tionally to our standing assumptions:

(1) RT'(X, WQ’(X Dred)) is a complex of R-modules of level N, i.e., it is represented by

a complex of R-modules which vanishes in degrees outside [0, N] and on which F' is
invertible in degree N. (That F'is invertible in degree N in the case at hand, follows by
induction from the exact sequences (10.11.2) and [I1179, I, Proposition 3.7].) Therefore
by [Eke84, III, 5.] taking the simple complex of the duality isomorphism in Theorem
10.11 we get an isomorphism of F-crystals of level N

RF(X, WQEX7_Der)) = R HOmW(RF(X, WQEX7Der))7 W)[_2N].
(2) We have
RO(X, Wy ) = RU(X, W% (log D)) = Rlggcrys (X, D)/ W),

where the equality holds by (5.5.2) and the isomorphism, e.g., by [Mat17, Theorem
7.2]. Tt is a perfect complex of W-modules by, e.g., [I1I79, II, Théoréme 2.7] and
(10.11.2). Thus duality yields an isomorphism

RU(X, Wy _p. ) = RHomy (R lggcrys (X, D)/ W), W)[-2N].

Hence RT'(X, WQZX 3 Dred)) is a perfect complex as well.
(3) As the cokernel of the natural inclusion WQ’(X’_ D)~ WQ’(X’_ D,oq) 18 annihilated by

some fixed p-power (take p” greater than all the multiplicities in D) it follows that
RI'(X, WQZ}Q_D)) — RT'(X, WQ)(k«Xy_Dred))

is an isomorphism up to bounded p-primary torsion. As the complex on the right

is a coherent R-module, it follows that the cohomology groups H'(X, WQ‘(]X _ D))

are finitely generated W-modules up to bounded torsion, and RI'(X, WQEX _ D)) is

a perfect complex of W-modules up to bounded (but possibly infinitely generated)
torsion.

(4) As observed in [Nak05, Remark 5.4(1)] it follows from Shiho’s comparison of log-
crystalline cohomology for (X, D) with rigid cohomology, see [Shi02, Corollary 2.4.13
and Theorem 3.1.1], and Berthelot’s Poincaré duality for rigid cohomology, see [Ber97,
Théoreme 2.4], that the above yields an isomorphism

RF(X, WQZX,—D)) Kw K = ch,rig(U)a

TWe say that a certain statement in an additive category C is true up to bounded torsion, if it is true in
the localized category Cy which has the same objects but the Hom’s are tensored with Q.



DUALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS 7

where U = X \ D and K = Frac(W). Thus for any effective Cartier divisor D with
SNC support equal to X \ U the complex RI'(X, WQZX _D)) is perfect up to bounded
torsion and is an integral model for the compactly supported rigid cohomology of U.
(5) By [11183, Corollary 2.5.4] and the above the slope spectral sequence
By = H'(X,WQ( _p) = H (X, Wl _p))
degenerates up to bounded torsion and thus by the same argument ® as in [Blo77, III,
Corollary 3.4] (see also [I1179, II, Corollary 3.5]) we obtain the isomorphism

HE o (U)ja = HU(X, WQ?);J'_ D) @w K,

where the left hand side denotes the part of the compactly supported rigid cohomology
of U on which the Frobenius acts with slope A with j < A < j + 1. Note that the
above isomorphism also appears in the proof of [Nak05, Theorem 5.9] (there for D
reduced). In particular H*(X, WOx,—p)) @w K is equal to the compactly supported
Witt vector cohomology of U defined in [BBEOT].

(6) Assume U is affine (e.g. D is ample) then, the same argument as in [BBE07, Corollary
1.2] yields

(10.12.1) H(X,WQy ) @w K =0, foralli+j<dimX.

As rigid cohomology of an affine k-scheme vanishes above the dimension a similar
argument using the slope decomposition of H*(X, WQ% (log D)) yields the vanishing

(10.12.2) H(X, WQ{X py) ©w K =0, foralli+j>dimX,

these two vanishing results can be viewed as a kind of Kodaira-Akizuki-Nakano van-
ishing. See also [Tan22, Theorem 1.1], where a different kind of Kodaira vanishing
for Witt vector cohomology is proven. The above two vanishing results depend only
on D,,q and can be found a least implicitly in the literature and are probably not
so surprising. What might be more intriguing is that by (10.12.1) and (3) we know
that H'(X, WQ{X’_D)), i+ j < dim X, is annihilated by some fixed p-power, say pM.
Hence by Theorem 10.7

p™ - colim, H'(X, W.Q{X’ py) =0, foralli+j>dimX.

Note that D does not need to be reduced here and that M might depend on D.

Remark 10.13. (1) We remark that the complex R, ®% RT(X, Wiy D)) will for non-
reduced D in general not be isomorphic to RI'(X, WnQ’{X -~ D)). For example take X

smooth projective with a smooth effective and ample divisor H such that H (X, WOx)
does not vanish for some i > 0. Choose 7 > 1 such that H'(X, Q{X _TH)) = 0 for all
i < dim X = N and for all j. (This is always possible by Serre vanishing and duality.)

We claim that in this situation

Ry @% RU(X, Wy ) # RUX, WSk ) for all m.

<j
(X,—Drea

which follows from [I1179, II, Proposition 2.10] and the resolution WQ(%g Dy WQE{, see [Mok93, Lemme
3.15.1] and [Nak05, Corollary 6.28]

8This argument uses that V' acts topologically nilpotent on H*(X, W )) in the p-adic topology,
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Indeed, else it would follow from Ekedahl’s Nakayama Lemma [Eke85, I, Proposition

1.1, ii)] that we have H*(X, WnQ{X —rH)) =0, for all ¢ < N and all j, n. By Corollary
9.5 we get H(X, WnQ{X TH)) =0 for all > 0 and all j, n. In particular

HY(X,WOx) = H'(X, Rlim W,0x 1)) = lim H' (X, W,O(x iry) = 0, for all 4,

where the first equality holds by Proposition 10.6, and the second follows from the fact
that the H'(X, WnOxrmy) are W-modules of finite length, for all . This contradicts
our choice of X.

(2) Item (1) in particular implies that in general

Ru @% Wx _p) # Walllx _p)-

That Nakkajima’s method [Nak05, Theorem 6.24] cannot be applied is realted to
Remark 8.2. We analyze the tor-terms in case D,.q is smooth: define the quotient Q)
by the exact sequence

0—=WQx_py = WQx_p.H)—>Q—0.
Definition 8.1 together with the Snake Lemma give the exact sequence
0—Q—WQp,—-Wwap  —0.
We have
R @ Wb, = Waldp,,, and Ru ©r Wk _p,.) = Walx,-p,00)

where the first equality holds by [IR83, II, Théoreme (1.2)] and the second equality
by [Nak05, Theorem 6.24]. Moreover

TorX (R, W) = W, Q2
by, e.g., [HMO03, Lemma 3.2.4]. Altogether we get an exact sequence
0 = Torf (R, WQp) = Tory (R, W(x _py) = Wal(x _p..) = Wallp = Wallp_, — 0
and equalities
Torf (R, Wx _py) = Tory (R, WQp),  Torf(Rp, Wiy _py) =0, j#0,1.

Here the vanishing follows from [IR83, I, Corollaire (3.3)], which can be also used to
express Tor;-z(Rn, WQy,), j =1, 2, more explicitly.

11. MILNE-KATO DUALITY WITH MODULUS

In this section we generalize some of the duality results from Milne [Mil76] and [Kat86],
[Kat87] to the modulus setup. The main result is Theorem 11.15.

We continue to assume that X is smooth of pure dimension N and D is an effective Cartier
divisor on X such that D,eq is an SNCD. We denote by j : U = X \ D — X the open
immersion of the complement.

(X,+D)
in fact étale sheaves of coherent W,Ox-modules. Indeed, if u : V — X is étale, then so is
Uy : W,V — W, X and it follows from the étale base change for the de Rham-Witt complex
(see [1II79, I, Proposition 1.14]) and the Definition 8.1 (in case of —D), and the Propositions
6.15 and 6.18 (in case of +D) that we have

PV WSy 1)) = DOV Wl 1))

11.1. We note that the Nisnevich sheaves W,Q7 defined by V' — I'(V, WnQ‘(JV n D\V)) are



DUALITY FOR HODGE-WITT COHOMOLOGY WITH MODULUS 79

In particular we have

(11.1.1) RE*W”Q[(]X,j:D) = W”Q((]XviD)’

where € : X — Xnis is the change-of-sites morphism.

11.2. Recall that the Cartier operator on the de Rham-Witt complex is the morphism on X

(11.2.1) C: F(Wyp1Q%) =» WoQ%, F(a) = R(a).
The so called inverse Cartier operator is given by
(11.2.2) CH WL Q% = WL /dvi L o F(@), where R(@) = a.

Note that these are morphisms of W, O x-modules when F(W,, 11 Qg<) is viewed as a submodule
of F,W,Q% and W,Q%/ alV"_ngf_1 as a quotient-module of F,W,Q%. Furthermore, we
remark that W, QN = F (Wn+1§2§) and that the Cartier operator coincides in this case with
the composition

(11.2.3) C: Fx.W,QF = Fy.w\ W, (k)[-N] = Fx,m., F,W,(k)[-N]

~ Lo Urx N

= Fx Fxm, Wi (k) [=N] —= m, W (k) [-N] = WaQy,
where Fx : Wp(X) — W,(X) denotes the morphism induced by the absolute Frobenius
(similarly for Fj, : W, (Speck) — W,(Speck)), trp, : Fx.Fi — id denotes the counit of
adjunction, and the other notation is as in 9.2, see [Eke84, II, Lemma 2.1)°.
Lemma 11.3. Set

(FWTL+1Qq)(X,D) = j*F(WTH_lQ(q]) N Wan

(xX,D)
and —_—
W, Q9 /dV™ ) _py 1= v (X=D) .
( / )(X, D) an_lqu—l m WnQ((]X7_D)

These extend naturally to coherent W,Ox-modules on Xg;. In particular
Re.(FWn1Q%)(x,p) = (FWn1129) (x,D)>
and
Re,(WnQ0/dV™ 1) x _py = (W Q9/dV" ) x _p),

where € : Xg — Xnis 1S the change-of-sites morphism. Furthermore, on Xg the Cartier
operator on j F(Wn11QY,) restricts to

(11.3.1) C: (FWn+1Qq)(X7D) — WnQ((Z)QD)
and the inverse Cartier operator C~1 on Wan( restricts to
(11.3.2) ct: WSy _py = (Wa24/dV" 1) (x.—p).-

Proof. Since FW,11Q, = Ker(F"1d : W, — QF), by [I179, I, (3.21.1.1)], the sheaf

(11.3.3) (FWn199) x,py = Ker(F* " 'd : F*W"Q((]X,D) - FfQ((IX,D))

is a kernel between coherent (étale) sheaves and hence is coherent. Similarly, the sheaf

(Wan/dV”_qu_l)(x,_D) is a quotient of the coherent étale sheaf F*WHQ‘(]X _p) and hence
q

is coherent. The existence of (11.3.2) follows from the surjectivity of R onto WnQ( X,—p)» See

9n loc. cit. the statement is for C"™, the n-fold iterate of the Cartier operator, but the same proof works
here.
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Lemma 8.15. For the pole side, note that C' defines a morphism C : F(W,,11Q%) — W,,Q? of
Nisnevich sheaves with transfers and hence induces a well-defined map C : wCTF (W, 1Q9) —
WwCIW, Q9. For g > 1 we have gCIF(WnHQq)(X,D) = (FWy,1109)(x,p) by definition (see also
5.1) and Theorem 5.4, which yields (11.3.1). By the definition in (6.2.2), the case for ¢ = 0
is reduced to show the following: Let L be a henselian dvf and let a € W;,11(L) such that
F(a) € filW, (L), for r > 2, then R(a) € filPW,,(L) (see 2.4 and 2.6 for the notation). By
definition we find b, € fil,,s Wy, (L), s = 0,...,n — 1, such that

Fa)=bo+ Y p'bs=by+ Y F(p* 'V (bs)).
s>1 s>1

Hence there exists an ag € W4 1(L) with F(ag) = by € fil, W, (L) C fill%s W, (L). It fol-
lows directly from the definition that this implies ag € fill° W,,,;(L) and hence R(ag) €
ﬁllﬁipJ W, (L) C fill°8, W, (L) C fil,W,(L), see (2.3.2). Moreover, for s > 1, we have V (b,) €
filyps Wiy 1 (L) and hence R(V (bs)) € fil,,s-1 Wy, (L). Thus

R(a) = R(ag) + Y p*'R(V (bs)) € BEW,(L).

s>1

This completes the proof of (11.3.1). O

Definition 11.4. We define the following two complexes of abelian sheaves on X

n 1-C
Z/p"(q0)(x,p) = ((FWnHQq)(X,D) — WnQ?XD)) [—a]

and

" c-1- .
Z/p"(q)(x,-p) = <WnQ((1X,_D) C L (W0/dv 1)(X,—D)) [—q].

Both complexes sit in degree [g, ¢ + 1].

11.5. We make some comments on the complexes defined above:

(1) If D = 0, then the two complexes are isomorphic to W,Q%, ogl—4] in the derived cat-
egory of abelian sheaves on Xy (see, e.g., [Kat86, Lemma 4.1.5]), which is isomorphic
to the motivic complex Z/p™(q)x, by [GL00, Theorem 8.3].

(2) Let € : X¢ — Xnis be the change-of-sites map then by Lemma 11.3

1-C
Re.Z/p"(q)(x,p) = w ((FWn+IQq) sy Wnﬂq)(x o ezl

for ¢ = 0 the complex is still a two-term complex of cube invariant Nisnevich sheaves
with transfers.

(3) As the open immersion j : U — X is affine we have in D(Xg)

colim, Z/p"(q) x,rpy = Rj«Z/p" (q)uv-

(4) Complexes similar to Z/p"(q)x,—p) were already considered in [JSZ18], [Mor19], and
[GK]. More precisely, in [JSZ18, (3.1.3)] the analog complex with W"Q[(]X,—D) replaced
by W,Q% (log D) ®w,0x WnOx(—D) is used, and in [GK, below (7.12)] (see also
[Mor19, 2.4]) the sheaf Ker(W,,Q% — W, Q%)) is considered instead. The pro-systems
over (X, —rD), r > 1, defined by the respective complexes are isomorphic but for fixed
D the complexes differ. We do not know whether they are quasi-isomorphic, but we
expect them not to be.

(5) For ¢ =0 a complex similar to Z/p"(0)x, p) is considered in [KS14, (3-2)], where the
filtration fill° W, (L) was used instead of fil’W,,(L) which is used here, also there the
sequence with F = C~! is considered instead of the one with C' considered here.
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Lemma 11.6. Set
WnQ((ZX,—D),log = HUZ/p"(q)(x,—D))-

Then the natural map
WSy _py1ogl—0] = Z/p"(a)(x,-D)

is an isomorphism in the derived category D(Xgt).

Proof. We have to show that C~! —1 : WHQ?X _p) (Wan/dV”_l)(X,_D) is surjective in
the étale topology. For n = 1 this holds by the following claim, which is a version of the

surjectivity statement in [JSZ18, Theorem 1.2.1]:

Claim 11.6.1. Let A be an SNCD, and B be an effective Cartier divisor with (A + B)ieq an
SNCD. Then
c1-1

0% (log A)(— B) “—% 0% (log A)(—B)/(dQ% " N Q% (log A)(—B))
18 surjective on Xg.

Indeed, let R be the strict henselization of a local ring at a closed point of X and choose a
system tq,...,tq of regular parameters of R such that

A=Div(t1...te), B=Div(t" ...ttt

where e, f are integers such that 0 < e < f < d, and rq,...7ry are non-negative integers. Let
I7 be the set of strictly increasing functions {1,...,q} — {1,...,d}. Let s € I? and let 6 be
the biggest integer in the image of s such that s(f) < e. Denote

ws = dlogtyqy ... dlogtyg) dlog(l +typ11)) - - - dlog(l +tsq))-

Then the wy, s € 19, form an R-basis of Q% (log A). Moreover, Q,(log A)(—B) = (7)-Q%(log A)
with m = ¢' ... tlet, t;f . Since wy is invariant under C~', it suffices to show that for
any a € mR, there exists an element b € wR such that a = b — b. Such b exists by [JSZ18,
Claim 1.2.2]. This shows the claim.

Now we do induction on n and assume n > 2. As R is surjective by Lemma 8.15, it suffices

to show that Ker(R : W"Q[(]X,—D) — W”—lg?x,—D)) lies in the image of C~! — 1. Every

element of this kernel is of the form V™*~!(a) 4+ dV" () with o € Q% and 8 € QL. As

FV™"a) =0, (8.14.2) yields dV"~1(3) € WnQ‘(IX _p)- Hence Vril(a) € WnQ[(]X _p) as well

and it suffices to show V" !(a) lies in the image of C~! — 1. Combining Lemma 8.13 with
Lemma 8.11, we see that V" ~!(a) can be written as a sum

n—1
V' a) = p"Hao) + Y V()

j=1
with ag € Q_,(=D’,—pD,,), where D = D' + p"D,, is a p-divisibility decomposition, and
aj € Wn_jQ‘(IX _py for j > 1. By induction «; lies in the image of C~'—1, for j > 1, and
ap lies in the image by Claim 11.6.1, hence so does V" "!(a). O
Remark 11.7. (1) In[JSZ18, Definition 1.1.1] a sheaf W"Q?X\D) og 18 defined and in [GK,
(5.3)] a sheaf WnQ[(]X D) log 15 defined. These are related to the complexes mentioned in

11.5 (4) in the same way as WnQ?X _p) s defined in Lemma 11.6. We don’t know what

is the precise relation between these three sheaves, but the pro-systems for (X,rD),
r > 1, are isomorpic.
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(2) A similar argument as for Lemma 11.6 shows that in D(Xg;) we have an isomorphism

HUZ/P"(0)(x, D)) =2 = Z/P" (@) (X, Dyea)-

(This would correspond to the case B = 0 in Claim 11.6.1.) However, even in the
étale toplogy the sheaf ’Hq*l(Z/p"(q)(K p)) does in general not vanish if D is not
reduced. The main problem when trying to adapt the proof of Claim 11.6.1 is that
for a € % - A the Artin-Schreier covering defined by b — b = a will (wildly) ramify
along the vanishing locus of 7 and is in particular not étale over A. Also it is direct
to show that we have

(11.7.1) HUZ/P"(0)(x,p)) = 3+ WnS2,

which only depends on the support of D. Thus all the information about the multi-
plicities of the components of D is stored in the étale sheaf H9*(Z/p"(q)(x,p)), or

the Nisnevich sheaf R e, (Z/p"(q)(x,py)- The study of this sheaf was initiated by
Kato in [Kat89] as becomes apparent from the following Lemma.

Lemma 11.8. Let n € X be a generic point of D and set L = Frac(Og(m). Denote by r > 1
the multiplicity of D at 1. Set H7'(Spec L, Z/p™(q)) := HIT (L). Then

Im(fil, W,Qf — HI (L)) = R¥ e (Z/p"(0) (x,p))1s

see Definition 2.4 for notation. In particular, if ﬁlfatOH%H(L) denotes the filtration defined
in [Kat89, Definition 2.1], then

L2 HATH (L) € R™en(Z/p"(9)(x,p))y € AL HIT(L).
Proof. By definition

FilPW,,Q%
(1 - CY(FW,1Q]) NFIEW,0F

(11.8.1) R e, (Z/p™(q) (x.p))h =

For a € Fil,s,W,,Q7 and s > 1 we have
pPa=F°*V?(a) = V*(R*(a)) mod (1 —C)(FW,4:10Q9).

It follows from the definition (see (2.3.2)) that we have R*(Fil,s, W, Q%) C Fil, W, _;Q%, hence
FilrWanL surjects onto the quotient (11.8.1). Moreover for b € ﬁerVanL_1 we have

db = FdV (b) = dVR(b) mod (1 — C)(FW,10%).

Iterating this we see that db vanishes in the quotient, which yields the first statement. By
[Kat89, Theorem (3.2)] we have a surjection

fill8 W,, Q% — filkat Fat(L),
for all » > 0, which gives the second statement. O

Proposition 11.9. There is an isomorphism in D(W,Ox,,)
(FWy1929) (x.0) = Dxn (Wa¥~9/adV" ) (x ),

induced by F(a) — (8 — C(F(a)B)), where Dx, = RHomw, o, (—, W,QY) denotes the
dualizing functor considered in 9.2 (and extended to the étale site).
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Proof. Consider the following two short exact sequences of W, O x-modules

Frn—lq .
(11.9.1) 0= (FWni1Q9)(x.0) = FxWaQly ) — 0. B.Q0 ) = 0,

(119.2) 0 i(Q/2)N 4 M Fe W) = (WaN79/dV™ 1) (x _py — 0,

see (11.3.3), (6.4.1), and (8.6.3), where i : X < W,, X denotes the closed immersion induced
by R"~'. We have an isomorphism

0 Fx, Woly ) 5 FxuDxn (WS b)) = Dxn(Fxu a2 L ).

which by Theorem 9.3 and (11.2.3) is induced by o — (8 — C(«f)). Moreover, there is an
isomorphism

b: i*Ban;}D) =N i*DX,l((Q/z)ﬁ()g;lD)) = D n(in(Q/Z)) (—)gj_lD)),

which is a composition of the isomorphism (9.3.5) with the duality isomorphism and which is
induced by

i*BnQ‘&}D) — Homw, 0 (i*(Q/Z)iV,(_)?,_—lD)’ W,Q%), a (y=p"'CM(aw)),

see [Eke84, II, (2.2.5)] for the fact that the second isomorphism in the defintion of b is induced
by Q"_l : Z*Q§ — WnQ% . Finally the following diagram commutes (note that the top row is
concentrated in degree zero)

_ (dV7L71)\/ ) o
D (Fxe Wy 1) Dxn(i=(Q/2)), &)
aT (—1)q1bT
Fr—1q . +1
Fx, Wy 1, i Ba Q% )

Indeed, the commutativity follows directly from the relations Q"_IC”_I = V" land Co
dV"~! = 0, which follow from the definition of the Cartier operator. Taking everything

together we obtain an isomorphism (11.9.1) = Dy ,((11.9.2)), which yields the isomorphism
of the statement. O

11.10. To extend Milne’s classical duality result for étale cohomology with mod p™ coefficients
(see [Mil76, Theorem 5.2] and [Mil86, Theorem 1.11]) to the modulus setup we will use
Kato’s general dualizing formalism from [Kat86, Kat87], which we recall in the following. A
morphism of F,-schemes 7" — X is relatively perfect if and only if the relative Frobenius
Fr/x + T — T Xx py X is an isomorphism. If 7" — X is additionally flat, then so is
Wy(T) — W, (X) and the following diagrams are cartesian,

(11.10.1) WalT) LW (T) W) —— Wi (T)

b b l

Wi (X) —=Wi(X), Wi (X) —= Wy (X),

where the horizontal maps in the diagram on the right hand side are the closed immersions
induced by the restriction R, see [Kat80, Lemma 2] and [I1179, 0, Proposition 1.5.8].
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Let Xwrp be the site with underlying category, the category of all flat and relatively perfect
X-schemes, equipped with the étale topology. In particular, the underlying category of Xwrp
contains all étale X-schemes and we get a fully faithful functor of the underlying catgeories

u: X¢ — X¥rp,

which is continuous, cocontinuous, and commutes with fiber products. The induced restriction

functor on the topoi Xprp — Xet, S +— u*S = S)x,,, therefore is exact and has an exact left
adjoint, see [SGAT2a, I, Proposition 5.4, 4) and III, Proposition 2.6]. Hence for any complex
L € D(Xprp,Z/p"™) in the derived category of Z/p"-sheaves on Xprp we get a canonical
isomorphism

(11.10.2) RT'(Xprp, L) = RI'(Xe, Lix,, )

in the derived category of Z/p™-modules.
For any n > 1, the association T' — I'(T, W,,Or) defines a sheaf on Xprp, we denote it by
Wnog(RP . Now let 7 = Zar, Nis or ét. For any W,,Ox-module M on X, the association

(g: T — X)—=T(T,(Wyg)"M)

defines a presheaf of WnOE(RP—modules on Xprp, we denote its sheafification by M¥RP. When

M is (quasi-)coherent as a W,,Ox-module on X,, we say that M is (quasi-)coherent as

a Wn(’)iRP—module on Xyrp. The functor M — MR from the category of W,,Ox-modules

on the site X; to the category of Wn(’))F<RP—modules is exact. In particular, the association
(9:T = X) o DT, (Wag) Wallly )

defines a sheaf of Wnog(RP -modules on Xgrp, which we denote by WHQ@?T;). The maps

F,V,R,p,d,C, C~! on W )% extend naturally to maps on W.Q’{}?If;); this follows from the
cartesian diagrams (11.10.1) and the flatness of W,,(g) : W, (T) — W, (X), see also 11.12
below where we spell out how to extend F' and C. In particular, when D = (), we write

WnQ}FRP = WnQZ}flg)P. Since (W, 9)*W,Q% ~ W, Q4 for any flat and relatively perfect

morphism g : T' — X, the sheaf W, agrees with the presheaf given by T' — I'(T, W,,Q1.),
cf. the discussion in [Kat86, §4] or the proof of [LZ04, Proposition 1.7].

Denote by Do(Xprp,Z/p™) the full triangulated subcategory of D(Xggrp,Z/p") generated
by coherent OEQRP -modules regarded as complexes of Z/p"-modules in degree 0. Note that

WNQ?}?T;)) € Do(Xrrp,Z/p"™), by the Theorems 6.4 and 8.7. Set

o FRP
Qy

N,FRP
DX,n(_) = RHomD(XFRPZ/P”)(_’ W”QXJOg );

where WHQQ’EEP is defined by the short exact sequence

(11.10.3) 0 — W, QY TEP 5w, 0 FRP C2L gy, o FRP s g,

This functor agrees with Kato’s functor defined in [Kat86, §6] and differs from the one defined
in [Kat87, §3] by a shift [N]. Kato proves the following results:
(1) If M € Dg(XZar,WnOX), then the natural map WnQQ’FRP — Wanfgp[l] from
(11.10.3) induces an isomorphism in Dy(Xprp,Z/p™)
(11.10.4) D x (M)~ Dy, 5 (MFRP) 1],

where D,, x = RHomy, 0, (—, WoQ¥) as in 9.2, see [Kat86, Proposition 6.1].
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(2) The functor Dx , restricts to an involutive endo-functor of Dy(Xpgrp,Z/p"), i.€.,
(11.10.5) ]DX,n o ]D)X,n ~id: D()(XFRP,Z/pn) — DO(XFRP,Z/pn),

see [Kat87, Theorem (0.1) and Proposition (3.4)].
(3) Let f : X — Y be a proper morphism of relative dimension r between two pure
dimensional smooth k-schemes. There is a natural isomorphism

(11.10.6) RfDp x (M) ~ Dy y (RfM)[—r]

in Dy(Yrrp,Z/p"), for any M € Do(Xprp,Z/p"), see [Kat87, Theorem (0.2)].
The following Lemma is implicitly in [Kat86] and [Mil76].

Lemma 11.11. Assume k is a finite field and X is proper over k. Let M € Dy(Xygrp,Z/p™).
There is a canonical isomorphism

RT(Xwrp, Dx 0 (M)) = RHompz/pmy (BT (Xet, Mix,, ), Z/p") [-N —1].

Proof. We start by giving a canonical map from left to right. As k is finite, we can view
X also as a smooth proper scheme of relative dimension N over Sy := SpeclF,. Note that
(11.10.3) for Sy instead of X yields in view of (11.10.2) a decomposition

(11.11.1) RT(Soprp W3 1 ) = Win(F,)[0] @ Wi (F,) [~ 1]-

Let m : X — Sy = SpecF,, be the structure map. We define the map from the statement to
be the composition

(11.11.2)
RT(Xprp, Dx.n(M)) = RT(Sorrp; Dsym(RmM))[~N]

— RHompz/,n)(RT(So pre, R M), RT'(So prP, W Q%OFE};))[ N]

= RHompz/pm) (R (Xgt, M x,,), Wn(Fp)[0] © Wy (F,)[—1]) [~ N]
— RHomp gz /pm)(RT(Xs, Mix,,), Z/p")[-N — 1],

where the first isomorphism is induced from the duality isomorphism (11.10.6), the second
map is the natural transformation RI'(T,—) o R Hom(—, —) - RHom(RI'(T,—), RT(T, —)),
the third isomorphism is (11.10.2) and (11.11.1), and the last map is the projection to the
second summand plus the identification W,,(F,) = Z/p™. We note that this morphism defines
for M variable an exact functor of triangulated categories Do(Xprp,Z/p"™) — D(Z/p™). Thus
it suffices to show that it is an isomorphism for M = LFRP with L € Db%(Xza:, W,,Ox). For
such L we have isomorphisms

12

(11113) RF(XFRP,DXJL(LFRP)) RF(XFRP,DXn( )FRP)[ ]
F

= RI'(Xet, (Dxn (L)) x, ) [—1]
= RT'(Xzar, Dxn(L))[—1]
=R

)
HOIIan (Fp) ( F(Xzar, )7WN(FP))[_N - 1]
= RHomyy, (r,) (R (Xer, (L70) ), 2/p") =N = 1],
where the first isomorphism is (11.10.4), the second is (11.10.2), the third isomorphism holds

since Dx (L) € DY%(Xzar, WoOx), the fourth isomorphism is Ekedahl-Grothendieck duality
and the last isomorphism is clear. It follows from the construction of the duality isomorphism
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(11.10.6) and the isomorphism (11.10.4) that the two compositions (11.11.2) and (11.11.3)
agree for M = LFRP Indeed by [Kat87, (3.2.2), (3.2.3)] we have a commutative diagram

R W, QQ,FRP V] Tr Wan,OFRP

l |

T
R WY EEPIN 4 1] > W, 08 1P 1]

where the horizontal maps are the trace maps defining the respective duality isomorphism
and the vertical maps are induced by (11.10.3). With this commutativity and the formula
Rr (L¥RP) = (Rm,(L))¥RP (see [Kat87, Lemma 2.6)) it is straightforward to check that the
above compositions agree. This completes the proof. O

11.12. We extend the complexes from Definition 11.4 to the site Xprp by setting

n 1-C 7
2" @) = (FWan ) =5 W0 ) [al

and
n , c—1-1 n—
Z/pM (@)X py == <Wn9‘g§‘if;) — (W,Q1/dV 1)?)251))) [—q].

We spell out the extension of 1 — C' to Xprp. Let g : T'— X be relatively perfect and flat.
Then the Frobenius on W.Qq’FRP is induced by the composition

(X,+D)
W1 (9) W1 Q) MO,y () FWa Q) = FWi(g) W
n+1(9) Wn1¥(x 4 py n+1\g) FaxWniex o py = LWnlg) Wnl(x 1y

which on elements is given by

W10 @w,0x Wn+19((]X7iD) Sa®ar— Fla) ® F(a) € W,0r ® W"Q[(]X,j:D)‘

Here the isomorphism on the right hand side comes from the cartesian diagrams (11.10.1) and
the flatness of W,,11(g). Hence

D(T, (FWy1Q9) (% b)) = DT, F (W1 (9) Waa Q. p)))-

The map (F Wn+1Qq)(F§%) =< WnQ?}?%I; is therefore induced by

F(a)® F(a) = F(a) ® F(a) — R(a) @ R(a).

Similarly for the map C~' — 1 in the definition of Z/p"(q)?)?P:D).

Lemma 11.13. Let o : A — A! and 8 : B — B! be two morphisms of sheaves of abelian

groups on some site X. Let C* = (C° 4 C1) be a two term complex of sheaves of abelian
groups on X sitting in degree [0,1]. Assume we are given pairings

(= =000: A%®z B = C° (=, -)ig:A'@z B’ = C', (=, —),: A%z B' = C,
such that
(@(=), =)0+ (= B(=Dg1 =do (= =) A @z B — C".
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Then we obtain the following morphism between distinguished triangles in the homotpoy cat-
egory of complezes of abelian sheaves on X 1°

A°[0] = AY0] cone(a)

T

Hom* (B, C*)[1] 2L 1om® (BY, 0#)[1] — cone(5*[1]) —— Hom* (B, C*)[2],

where the non-labled horizontal maps are the natural morphisms in the respective cone sequence
and the vertical maps are defined as follows: the morphism m is in degree -1 given by

A0 — ’Hom(BO, CO) &) Hom(Bl, Cl), T (—(a;, —>8’0, —(x, —>(1)71) ,
and in degree 0 by
Al —>7—[0m(B0,C1), Y= <y7_>%707
and 7 and 7 are (in degree 0) given by

w'(2) = —(z,~)o1 and 7"(y) =y, ~)io.

Furthermore, there is an isomorphism of complexes
(11.13.1) cone(5*[1]) = Hom®(cone(3)[—1], C*)[1],

which is the identity in the degrees -2 and 0 and which in degree -1 is given by id ®(—1id) €
End(Hom(B%, C°) & Hom(B*, C1)).

Proof. This is all direct to check. We remark that the square on the left commutes only up
to homotopy, more precisely if h : A° — (Hom(B°, C*)[1])~! = Hom(B°, C?) is defined by

h(z) = —(z,—){ o, then we have 7’ 0 a — (8*) o ' = (d[1]) o h. O
11.14. We define the following pairings on Xgrp:

(= =000 :(FWn1Q9)(X ) @2 WaQx 25 — WP Y, a® B af,

(= =)o Wl ) @2 W95 — W0, a®fr af,

(= =1 {(FWo QO @z (W Q2 /dVr )R o) = W00 a @B Clap).
These satisfy
(C =D (@), )10+ (., (1= C7(Y))o1 = (C = 1){z,9)50,

for all local sections = € (F'W,, 1104 )?RP) and y € W, Qg{ 3’51;”1). Note that

n C 1 )
2/ ()[R la) = cone (FWoa Q1R S w000 50) (1],

n , 1-Cc-! n—
Z/p"(N = q){x* p)[N — q] = cone <W QI —— (Wa07/dV 1)(F)1§ED)> [—1].

Hence we obtain a natural morphism in Do(Xgrp,Z/p")
(11.14.1)  Z/p" ()55 g] = cone(C — 1)[~1]
— RHom (cone(l — O YH[-1], (W, QN FRP O-1, yy QN’FRP))

=D, x <Z/p"( — Q) (xo N - q]) :

10We use the usual sign conventions, see, e.g., [Sta23, Tag OFNG].


https://stacks.math.columbia.edu/tag/0FNG
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where the morphism in the second line is induced by the composition of 7[—1] from Lemma
11.13 with the isomorphism (11.13.1) and the isomorphism in the third line is induced by the
exact sequence (11.10.3).

In view of Kato’s duality isomorphism (11.10.6) the following Theorem generalizes Milne’s
duality, see [Mil76, Theorem 5.2] (for smooth projective surfaces), [Mil86, Theorem 1.11]
(for general smooth proper k-schemes), and [Kat86, Theorem 4.3|, to the case of non-empty
modulus.

Theorem 11.15. The morphism (11.14.1) induces isomorphisms in Do(Xprp,Z/p™)

Z/p" (@) la] = Dox (Z/0"(V = %2 [N - q]) .

Z/p"(N = 8% ) [N = a] = Dax (Z/p" (@) ld])

Proof. By (11.10.5) it suffices to show that (11.14.1) is an isomorphim. By Lemma 11.13 we
have a morphism of distinguished triangles

Wl 1] Z/p"(@){x 4] (FWp1 Q9 (p) ———

jw”[—u l jw/

Do o) —= D (Z/p"(N = )f T 1) [N = q]) —= D((Wo ¥ =4/aV"HER? 1] ——

where we write D instead of D, x. By definition the map n”[—1] factors as

Wan’FRP 1] Thm. 9.3

(X,D) Dn,X(WnQN_q )FRP[—1]

(Xv_D)

(11.10.4)
—_—

N—q,FRP
Dn,X(WnQ(X73D) )

and hence is an isomorphism. Similarly, the morphism 7’ factors as

Prop. 11.9 _ n—
(FWat1 Q)% %Dn,x((WnQN 1/dV" ) x _py)"RY

(11.10.4)
I

~

Dn,X((WnQN_q/an_l)(F)?,IiD) )]
and hence is an isomorphism as well. This completes the proof of the theorem. O

Corollary 11.16. Assume additionally that k is a finite field and X is proper over k. Then
the morphism (11.14.1) induces an isomorphism in D(Z/p")

RI(Xet, Z/p"(a) x,0)) = R Homg,pn (RT(Xet, Z/5" (N — @)x.— p))s Z/p") [-2N — 1].
In particular we obtain isomorphisms of finite groups for all i
H™(Xe, Z/p"(q) (x,p)) = Homgjpn (H*N 9 (X, Z/p"(N = q)(x,-D)), Z/D").

Proof. As (Z/}U"(q)g?lip))‘Xét = Z/p"(q)(x,+D), this follows from Theorem 11.15, Lemma

11.11, and (11.10.2). O

Remark 11.17. By Lemma 11.6 the isomorphism in Corollary 11.16 also induces an isomor-
phism

— N— ~ 171 n
HN +1(Xét7 WTLQ(X73D)710g) =H +q(Xét7 Z/p (q)(X,D))V7
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where the (—)Y on the right hand side denotes the Pontryagin dual. Taking the limit and
using 11.5(3) yields the isomorphism

h7m HN=1 (X, WnQ?)[(_,zrD),log) ~ Hi(Ug, WnQ((Z],log)\/7

which gives back [JSZ18, Theorem 2].

12. WEIGHTS ZERO AND ONE

In this section we consider the complex Z/ p"(q)( x,p) for ¢ = 0,1 and and apply the finite
duality from the previous section. The main results are Corollaries 12.4 and 12.6, and Theorem
12.13. The assumptions on X and D are the same as in the previous sections.

12.1. Weight zero.

Lemma 12.1. Assume X is irreducible. For all i we have natural maps
(12.1.1) H' (X, Z/p") = H' (X1, Z/p"(0) (x,p)) = H'(Uet, Z/p")
inducing an isomorphism
colim, H' (Xer, /" (0) (x.rp)) = H' (Uer, Z/p").
Moreover, the maps (12.1.1) are injective for i = 1 and identify with the inclusions
H®(Xnis, R'e(Z/p") x,,) = H(Xnis, R'e.Z/p™(0)(x.py) = H°(Xnis, juR' e (Z /0"y, ),
where € : X¢g — Xnis 18 the change of sites map.

Proof. The natural maps in (12.1.1) are induced from the usual Artin-Schreier-Witt sequence
on Xg and Ug and the isomorphism comes from 11.5(3). For the injectivity note that

ROe.Z/p"(0)(x,p) = (Z/P") Xnse-
Hence H*(Xnis, Re.Z/p"(0)x.p) =0 = Hi(UNiS,ROE*Z/p‘”U,t), for all ¢ # 0, which yields the
identification of (12.1.1) for ¢ = 1 with the maps in the second part of the statement. Using
the usual Artin-Schreier-Witt sequence and the definition of Z/p"(0)x,p) (see Lemma 11.3
and Definition 11.4) we see that this latter maps are injective. O

Lemma 12.2. There is distinguished triangle in D(Xg, Z/p™)

Z/p"(0)x— ) = (Z/0") x0 — (Z/D") Dy 5,

where the second map is the natural restriction map. In particular, the natural map
Z/p"(0)(x,—py = Z/P"(0)(X,~Dyeq)
is an isomorphism.
Proof. By the Artin-Schreier-Witt sequence the complex of étale sheaves
(12.2.1) Z/p"(0)y = <Wn(’)y £, Wn(’)y>
sitting in degrees [0, 1] is quasi-isomorphic to the constant sheaf (Z/p")y,,, for any F,-scheme
Y. Thus the first statement follows from the exact sequence of complexes
0= Z/p"(0)(x,-p) = Z/p"(0)x — Z/p"(0)p — 0.

For the exactness on the left note that a local section a € W,,Ox maps to zero in W,,0Op if
and only if it maps to zero in all W,Op,, where D = Y. D;, with D;,eq € Sm. The last
statement follows from the equivalence of topoi Sh(Dg;) = Sh(Dyedét), see [SGAT2b, VIII,
Théoreme 1.1]. O
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12.3. Set

(X, D)P := lim Hom(H ' (Xet, Z/p"(0) x,p) ) Q/Z),
where the transition maps in the limit are induced by p : Z/p™(0)(x,py = Z/p" " (0)(x,py- It
follows from Lemma 12.1, Lemma 11.8, and [KS14, Proposition 2.5] that this group is equal
to the maximal pro-p quotient of the group m$P(X, D) considered in [KS14, (2-4)] (see also
[KS16]). It classifies finite étale covers of U which have an abelian p-group as Galois group

and whose ramification is bounded by D.
Moreover, set

(X, D) = lim Hom(H ' (Xey, Z/p"(0)(x,- p)), Q/Z).-

By Lemma 12.2
ﬂ?b(Xy _D)p = ﬂ-ilb(Xa _Dred)p
and if X is proper and |D| connected we have an exact sequence of profinite groups
(12.3.1) TP (DY — 1P (X)P — 7P (X, —D)? — 0.
Note that ﬂi’“b(X ,—D) classifies finite étale covers of X, which have an abelian p-group as
Galois group and split completely when restricted to D.
Now Corollary 11.16 directly gives:

Corollary 12.4. Assume k is finite and X is proper. Then

i (X, D) = lim H* (Xe, Z/p" (N) (x,-p)) = H™ (Xet, Wk _p) 1og)-

where WQ?)’Q_D) = lim,, WnQég(’_D)’log) and

;log
(X, =D)? = lim H*™ (X4, Z/p"(N) (x.))-

Remark 12.5. Taking the limit over {rD}, in the first equality above gives back the isom-
rophism from [JSZ18, below Theorem 2].

Corollary 12.6. Let k be a finite field, let X be proper and let H C X be a smooth ample
divisor intersecting D transversally. Then the natural map

H'(Xt, Z/p"(0)(x,-py) = H'(Het, /" (0) (1, )
e is injective, if N > i, and
e is bijective, if N > i+ 1.
Proof. With the notation from (12.2.1) we define for a closed immersion of F,-schemes Z C Y’
the complex Z/p™(0)(y,—z) of sheaves on Yg by the exact sequence
0= Z/p"(0)v,-z) = Z/p"(0)y — Z/p"(0)z — 0.

By (the proof of) Lemma 12.2 the complex Z/p"(0)y,—z) coincides with the one defined
in Definition 11.4 in case Y is smooth and Z,.q is an SNCD. Furthermore, up to quasi-
isomorphism, these complexes only depend on Y;eq and Z..q. For r > 1 we denote in the
following by D + rH also the closed subscheme of X defined by the the effective Cartier
divisor. It follows directly from the definition and an application of the Snake Lemma, that
we have a short exact sequence of complexes on X

(12.6.1) 0=+ Z/p"(0) (x —p—rir) = Z/0"(0)x—) = Z/5"(0) (Dsr11.—) = 0.
There is a natural morphism of complexes

(12.6.2) Z[p"(0)(D+ri,—D) = Z/P"(0)(r1,— D}, 1)
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which is an isomorphism. Indeed the map is induced by the natural surjection Opy,g(—D) —
Oru(—=D),p) and it suffices to check that this latter map is an isomorphism. This is a local
question and we can assume that X = Spec A with a factorial local noetherian ring A and D
and H are given by elements d and h in A, which have no prime divisors in common (as H
intersects D transversally). In this case the global sections of Op,,g(—D) are

L(Opyru(—D)) =dA/dh" A =dA/(dANK"A) = (dA+h"A)/W"A=T(Oru(—Djru))-
This shows that (12.6.2) is an isomorphism. Thus (12.6.1) yields an exact sequence

H' (Xet, Z/p™(0) (x,—D—riy) = H (X1, Z/p"(0)(x,—p)) — Hi(HétaZ/pn(o)(rH,—D‘rH))
— H™ (X4, Z/p™ (0)(x,—D—rm))-
As the third term only depends on (rH),eq = H (see Lemma 12.2) it suffices to show for the
injectivity statement that the term on the left hand side vanishes for » > 0 and N > ¢, and
for the bijectivity that additionally the term on the right hand side vanishes for » > 0 and
N > i+ 1. By Corollary 11.16 the statement follows from the vanishing
(12.6.3) H*N =4 (X, Z/p" (N ) (x,p4rm) =0, if N >iand r>> 0.
By definition of Z/p"(N)(x,p+rm) this last cohomology group fits into an exact sequence
HY7(X, WNQ%(,DJ,-TH)) = BN (X, 20" (N) (x,p4rmy) — HY TN, WnQé\)[(,D—l—rH))'
Thus the vanishing (12.6.3) follows from the Serre-type vanishing Theorem 7.6. O
Remark 12.7. (1) The Lefschetz type statement that
" (H,— D)’ — (X, —D)"

is surjective, if N > 2, and bijective, if N > 3, which is implied by Corollary 12.6, of

course follows also directly from the general Lefschetz Theorem for the étale funda-

mental group and the sequence (12.3.1).

(2) In [KS14, Theorem 1.1] (see also [KS22]), the authors prove a Lefschetz Theorem for
W?b(X , D). Note that we cannot get a proof of this statement directly from the duality

statements which we developed here so far as it would require to deal with complexes
like ”Z/p"(0)(x,s—p)”, i-e., we need to allow divisors which are neither effective nor

anti-effective. Note also that in the Lefschetz statement for 7#°(X, D) from [KS14]
one needs H to be sufficiently ample, whereas in Corollary 12.6 any effective ample
H works.

12.2. Weight one.

12.8. We will use the notation

(12.8.1) O(XX’_D) = Ker(Ox — Op) and (O*/p")x,—p) := Ker(O% /p" = OF/p").

Note that the sheaf on the left is in the literature often denoted by variants of O(XX Dy’ but
in order to have the notation consistent with the other parts of the paper, we put here the
minus in front of the D.

Proposition 12.9. There is a quasi-isomorphism induced by the dlog-map
(OX/Pn)(X,—D) — Z/P"(U(X,-D)[l],
which gives rise to a distinguished triangle

X
(12.9.1) O(X,—[D/pn])

n n 1
- O(XX,—D) — Z/p"(1)(x,-p)[1] =
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Proof. By definition and the surjectivity of the restriction map Oy — O we have
OX

X n _ (X7_D) _ n . X X
(O*/p )(X,—D) = (0% ﬂO(XX ) = Coker(F 'O(X,—[D/pn]) — O(X,—D))‘

By [CTSS83, 1.4, Lemme 2] together with [I1179, I, Proposition 3.23.2] we have an exact
sequence

(12.9.2) 0= O /(O%" 25 w0 C=% w0l Javiloy.
In view of Lemma 11.6 it remains to show that the natural map
(1293) dlog : O(XX,—D) — WHQ%X,—D) N WHQ}(,loy

induced by restriction of dlog : O% — WnQ}X log» 18 Surjective.
We do induction on n. For n = 1, this essentially follows from [JSZ18, Theorem 1.2.1]. In
fact, by loc. cit. the map

dlog : O _p) = Q% (log D)(—D)

is surjective. As this map factors via the natural inclusion Q% (log E)(—D) — Q% (log D)(—D),
for any reduced effective Cartier divisor F, satisfying Dy req C B C Dyeq, where D = Do+pD;
is a p-divisibility decomposition, we get the surjectivity

(12.9.4) dlog : O _pp) = Qi (log E)(=D) N 0 1o,

As Q4 (log Dy)(—D) = Q%X _py by Lemma 8.4, we in particular obtain (12.9.3) for n =1
The induction step is adapted from the proof of [JSZ18, Theorem 2.3.1]. Denote

M, := Image (dlog : (’)(XX7_D) - WnQ%X,—D) N WNQ&JO%) :

The restriction map R clearly induces a surjection R : M,, — M,,_1. Consider the following
commutative diagram

My,

pnfl [ R

1 = 1 1
0 QX,log W"QX,log "—1QX,log 0.

Mn—l

The second row is exact by [CTSS83, 1.4, Lemme 3|. Take = € WHQ%X _pyN Wanlog. Then
R(x) € Wn_lQ%X’_D) N Wn_lQ}mOg, and hence by induction hypothesis, R(x) € M,,_;. Since
R : M, — M,_ is surjective, there exists an element y € M,, such that R(y) = R(x). By the
exactness of the second row, r —y = Qn_l(z), for some z € Qﬁ( log- 11 particular, Q”_l(z) €
WnQ%X,_D) and thus Lemma 8.11 yields z € Q! |(—=D’, —pD,,), where D = D' + p"D,, is a
p-divisibility decomposition. By the surjectivity of (12.9.4) we find

z =dlogu, for some u € O(><X7_[D//pn—1'|_pDn)'

Hence p"~!(z) = dlog w”" "' € M, and therefore z = y + p"}(2) € M,. This finishes the
induction step. O

Remark 12.10. Let Zx|p)(r) be the relative motivic cycle complex from [BS19]. By [BS19,
Theorem 4.1] there is a quasi-isomorphism of complexes of étale sheaves

Z(x|p)e, (D[] = O(XX,—D)‘
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And hence Proposition 12.9 gives rise to a distinguished triangle of complexes of étale sheaves

yn n 41
Zx|1p/p)e (1) — Z(x|p), (1) = Z/p"(1)(x,—D) —
where V" is induced by pullback along idx xF" : X Xp, (IP’%FP)T’ — X X, (IP’%FP)T’, cf. [KP15,
Lemma 5.7]. Thus the notation Z/p"(1)x,—p) might be a bit misleading as we rather have
Z/p"(1)(x,-p) = “Zx1p)(1)/V"Zx|[D/spr1) (1),

which does not agree with Zxpy(1)/p"Zx|py(1). (It does, if D = ().) Tt is interesting to
note that the difference between the p-adic and the V-adic filtraton, which we have on the de
Rham-Witt complex (or just on the Witt vectors of a non-perfect field), seems to be visible
also on the motivic complex with modulus.

12.11. We define the Brauer group of X with ramification bounded by D, by
Br(X, D) := H(U, R*e.Q/Z(1)y;) & H°(X, R*e.Qp/Zy(1) (x, 1)),
where U = X \ D, € : X¢t — Xnis is the change of sites map, and
Q/Z(1)y = colimyy puy v, Qp/Zp(1)(x,p) = colimy, Z/p" (1)(x,p)

with the colimit on the left over all n’ which are prime to p.
We define the Brauer group with zeros along D by

Br(X,—D) := H*(Xg, O.—p))-

We remark:
(1) There are natural inclusions Br(X) C Br(X, D) C Br(U) and by 11.5(3)
colim, Br(X,rD) = Br(U).
(2) We have an exact sequence
(12.11.1) Pic(X) — Pic(D) — Br(X,—D) — Br(X) — Br(D),

where for a singular scheme Z we use the definition Br(Z) = H?(Z¢, G,y,).

(3) Assume p" is bigger than all the multiplicities of D. Then the n-power Frobenius
induces by (12.9.1) induces a morphism F" fitting in the following commutative dia-
gram

(12.11.2) Br(X, - D) Br(X, D)

T~ _F

Br(X, —Dyeq)-

Remark 12.12. As is well-known Br(X) and Br(U) are torsion groups and hence so is
Br(X, D). But note that Br(X, —D) is in general not a torsion group as becomes apparent
from the exact sequence (12.11.1). For example if X = P? and D = F is an elliptic curve we
have E(k) C Br(P?, —E). Even if k is a finite field the subgroup Coker(Pic(X) — Pic(D))
might not be torsion due to a contribution by Picp,,(k)/ Pic%/k(k‘).

Now assume that k is a finite field, p # 2, and X is a smooth projective surface. In this case
the Tate conjecture for divisors is equivalent to the finiteness of Br(X) which is also equivalent
to the finiteness of its the p-primary torsion subgroup Br(X)[p>], see [Mil75, Theorem 4.1].
We note:

(1) Br(X) is finite if and only if Br(X, —D)[p>] is finite.
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(2) If the reduced irreducible components of D are linearly independent in Num(X) ® Q
(divisors modulo numerical equivalence) and Br(X) is finite, then Br(X, —D) is finite
as well.

Indeed, first note that Br(D) = 0 as follows from the Brauer-Hasse-Noether Theorem, see
also [Gro68, Remarques (2.5), b)], together with [CTS21, 3.6.6]. Thus the finiteness of
Br(X,—D)[p>] implies the finiteness of Br(X). On the other hand, Pic%/k is a smooth
algebraic group scheme (e.g. [BLR90, §9.2]) and hence Pic% /k(k) is a finite group. Moreover
(PiCD/k/Pic%/k)(k) is a finitely generated group and hence so is Pic(D)/Pic%/k(k;). It fol-
lows that Im(Pic(D) — Br(X, —D)) NBr(X, —D)[p®] is finite, which yields the “if” direction
in (1). For (2) it remains to observe that under the assumptions made there the index of
Pic(X) — Pic(D)/ Pic%/k(k‘) is finite.

For D = () the following duality statement is the p-part of Milne’s duality for the Brauer
group of a smooth projective surface over a finite field, see [Mil75, Theorem 2.4].

Theorem 12.13. Assume k is a finite field and X is a smooth proper surface (i.e. N =2).
Then there is a canonical isomorphism of profinite groups
Br(X, —D)[p*] Br(X, D)[p>]
00 00 ) Q/Z )
(Br(X, =D)[p*>])aiv (Br(X, D)[p>])aiv

where the index “div” refers to the divisible part, and M[p™]| denotes the p-primary torsion
mn M.

i>Hom<

Proof. The proof follows the same strategy as the one in [Mil75, Theorem 2.4]. First of all
note that the right hand side of the isomorphism in the statement is a profinite group by
Pontryagin duality, hence it suffices to prove the isomorphism of abstract groups. We start
by showing that we have an exact sequence

(12.13.1) 0= Pic(U)/p" = H*(Xa, Z/p" (1) (x,p)) = H*(X, R*e.(Z/p"(1)(x,p))) — 0.
To this end we first claim that we have
R'e.(Z/p"(1)(x,p)) = 3+(OF, _/P") = Ri.(OF__/p").

The first equality follows directly from the definition, see also (11.7.1), and the exact sequence
(12.9.2). The second equality follows from the vanishing R'j,O;; = 0, i > 1, which relies on
the smoothness of X. Therefore we get a distinguished triangle

Rj.(OF,./P")=1] = Reu(Z/p" () (x.p)) = B2 (Z/p"(1)(x.0))[-2] 5 .

As H"(Unis, Of;) = 0, for r > 2, we get the exact sequence (12.13.1). Taking the colimit over
n of (12.13.1) gives an exact sequence

(12.13.2) 0 — Pic(U) ®z Q,/Zy — H*(Xs, Qp/Zy(1)) — Br(X, D)[p™] — 0.

Now we consider the negative divisor. The distinguished triangle (12.9.1) yields an exact
sequence

Br(X,—-D) .
FrBr(X, —[D/p"]) — H3(Xy,Z/p (D) x,-p))

n . 3 . X
— Ker(F": H (XCt’O(X,—(D/p"D

(12.13.3) 0 —

) = H3(Xg, O

(x,.-p))) = 0.
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Assume n is large enough so that [D/p™] = Dyeq. Note that the quotient sheaf Q =

(XX _Dyed) / O(XX _p) is a successive extension of coherent Op-modules. As D is a curve we get
Hi(X¢, Q) =0, i > 2, and hence an isomorphism
3 X =~ 3 X
H*(Xet, Oy, —p)) = H'(Xet, Ox _p,,.)-

Thus the term on the right of (12.13.3) is equal to the p"-torsion in H3(Xét,o(><x Db d))'
Furthermore for fixed ng with [D/p™] = Dyeq we have by (12.11.2) the following inclusions

p"Br(X,—D) C F"(Br(X, —Dyeq)) C F™(p" " Br(X, —Dyeq)) C p" " Br(X, —D),

for n > ng. Thus {F" Br(X, —Dred) }n>ne and {p" Br(X, —D)},, define the same topology on
Br(X,—D). As (12.13.3) is an exact sequence of finite groups taking the limit over n yields
an exact sequence

. Br(X,-D)

lim ——2 7
0= (X, —D)
where T),M denotes the Tate module of M. As T,H 3(Xét,0(><X _D d)) is torsion-free and
Pic(U) ®z Q/Z is divisible the statement follows from Corollary 11.16 by the same argument
as in [Mil75, Theorem 2.4]. O

— lim H?(Xer, Z/p" (1) (x,—py) = TpH* (X4, OX Do) = 0

Remark 12.14. Tate has shown that if X is an abelian surface over a finite field, then
Br(X)[¢>®] (¢ # p) is finite, see [Tat66, Corollary]. By [Mil75, Theorem 4.1] we also have
the finiteness of Br(X)[p™]. Hence by Remark 12.12 and Theorem 12.13 we find that
Br(X, D)[p™] is the direct sum of a divisible group with a finite group, for all effective Cartier
divisors D on X with D,.q a simple normal crossing divisor.
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