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Abstract. In the classical best approximation pair (BAP) problem, one is given
two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional
Hilbert space, and the goal is to find a pair of points, each from each subset, which
realizes the distance between the subsets. This problem, which has a long history,
has found applications in science and technology. We discuss the problem in more
general normed spaces and with possibly non-convex subsets, and focus our atten-
tion on the issues of uniqueness and existence of the solution to the problem. To
the best of our knowledge these fundamental issues have not received much atten-
tion. In particular, we present several sufficient geometric conditions for the (at
most) uniqueness of a BAP relative to these subsets. These conditions are related
to the structure of the boundaries of the subsets, their relative orientation, and the
structure of the unit sphere of the space. In addition, we present many sufficient
conditions for the existence of a BAP, possibly without convexity. Our results al-
low us to significantly extend the horizon of the recent alternating simultaneous
Halpern-Lions-Wittmann-Bauschke (A-S-HLWB) algorithm [Censor, Mansour and
Reem, The alternating simultaneous Halpern-Lions-Wittmann-Bauschke algorithm
for finding the best approximation pair for two disjoint intersections of convex sets,
arXiv:2304.09600 (2023)] for solving the BAP problem.

1. Introduction

1.1. Background. The classical best approximation pair (BAP) problem is the fol-
lowing problem: there are two nonempty, disjoint, closed and convex subsets A and B
in a finite- (i.e., Euclidean) or an infinite-dimensional real Hilbert space (X, ∥ ·∥), and
the goal is to find a pair of points, each from each subset, which realizes the distance
between the subsets. In other words, the BAP problem is the following minimization

problem: to find a pair (ã, b̃) ∈ A×B such that

dist(A,B) := inf{∥a− b∥ | a ∈ A, b ∈ B} = inf f(A×B) = f(ã, b̃) = ∥ã− b̃∥ (1.1)

where f : X2 → [0,∞) is defined by f(x, y) := ∥x − y∥ for all (x, y) ∈ X2. This
problem has applications in science and technology: see, for instance, [25,27,39,72]
and the references therein for applications in signal processing. It has a long history
which goes back to the classical 1959 work of Cheney and Goldstein [22] (see also [40])
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and continues with various other works such as, e.g., [1,4–6,9,10,20,30,39,44,48,
49,51,70,72]. See also [15,35,36,41,42] for the linear case, namely when both A
and B are affine subspaces and the space is Euclidean, and [31,65] for the case where
one of the subsets is a point (this is the so-called “best approximation problem”, that
is, the problem of projecting a point on another subset).

So far, most of the attention regarding this problem has been focused on the above-
mentioned classical setting, but there are a few works which go beyond this setting,
such as [54,66,71] (normed spaces beyond Hilbert spaces) and [51,71] (nonconvex
sets), although with the exception of [71], their focus is not on the issues of existence
or uniqueness, but rather on algorithmic or characterization aspects. We note that
there is a related but somewhat different (and quite large) domain of research: the
one concerning the so-called “best proximity pair/points theorems”. Here one starts
with some space X, subsets A and B of X, a mapping defined on X (possibly multi-
valued, possibly with a non-full domain of definition), and one is interested in finding
conditions on A, B, X and T which ensure the existence of some x ∈ A such that
dist(x, Tx) = dist(A,B), or variations of this equation (our existence results might
enlarge the pool of such sufficient conditions). For a very partial list of related works,
see [32,47,55,57,62,63,67] and the references therein.

In this work we discuss the BAP problem in more general normed spaces and with
possibly nonconvex subsets. We focus our attention on the fundamental issues of
uniqueness and existence of the solution to the problem. To the best of our knowledge
these issues have not received much attention, especially beyond the classical setting.

One of our main goals is to formulate conditions which will imply the (at most)
uniqueness of the BAP. Our motivation comes from the recent work [18] in which
we discussed the alternating simultaneous Halpern-Lions-Wittman-Bauschke (A-S-
HLWB) algorithm for solving the BAP problem in the Euclidean space Rk (k ∈ N),
under the additional assumption that both A and B are finite intersections of closed
and convex subsets, that is, A = ∩m

i=1Ai and B = ∩n
j=1Bj for some m,n ∈ N (this

assumption leads to the computational advantage that one can orthogonally project
iteratively onto the individual subsets Ai and Bj, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}
instead of projecting directly onto A and B, a task which can be rather demanding
from the computational point of view.). The practical importance of this scenario
stems from its relevance to real-world situations, wherein the feasibility-seeking mod-
elling is used and there are two disjoint constraints sets: one set, namely A, represents
constraints which must be satisfied (“hard” constraints), while the other set (i.e., B)
represents constraints which, hopefully, will be satisfied (“soft” constraints). In this
scenario the goal is to find a point which satisfies all the hard constraints and located
as close as possible to the intersection set B of the soft constraints. This goal leads to
the problem of finding a BAP relative to these two sets: again, see, e.g., [25,27,39,72]
and the references therein for applications in signal processing.

We showed in [18, Theorem 32] that the A-S-HLWB algorithm converges to a BAP
whenever it is known in advance that there is a unique BAP. This naturally leads to
the task of providing conditions, hopefully easy-to-verify, which ensure that there is
a unique BAP. In [18, Proposition 16(iii)] we presented a sufficient condition for the
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uniqueness of the BAP problem: that both A and B are strictly convex, i.e., that
their boundaries do not contain nondegenerate line segments, and that both A and B
are compact. While this condition covers a large class of cases, there are many cases
in which there is a unique BAP but the above-mentioned condition does not hold,
and a simple example was given in [18, Figure 3.1].

We generalize [18, Proposition 16] to all normed spaces, and present various other
sufficient (and sometimes necessary) geometric conditions for the (at most) uniqueness
of a BAP in a wide class of normed spaces. These conditions are related to the
structure of the boundaries of the subsets, their relative orientation, and the structure
of the unit sphere of the space. Roughly speaking, one of these conditions (Corollary
4.3 below) says that if the unit sphere of the space does not contain nondegenerate
intervals (that is, if (X, ∥·∥) is strictly convex), and if either A or B is strictly convex,
or if the boundaries of both of them contain nondegenerate intervals but no interval
from the boundary of one subset is parallel to an interval contained in the boundary
of the other subset, then there is at most one BAP. Our analysis, which is illustrated
by various examples, also covers the case where each of the subsets A and B is a finite
intersection of closed and convex subsets. As can be seen from this discussion, our
results significantly extend the horizon of the A-S-HLWB algorithm.

In connection with the previous paragraph, we note the issue of the uniqueness of
the BAP has been discussed so far only briefly: in [66, Theorem 1.1] (a general normed
space, but the proof suffers from issues: see Remark 4.4 below), [54, Theorem 3.1]
(a strictly convex normed space: see Remark 4.7(ii) below), [1, Proof of Theorem 1]
and [18, Proposition 16 and Theorem 32] (a Euclidean space in both cases).

The issue of existence is considered in Theorem 5.1 below, which presents many
sufficient conditions for the existence of a BAP in various normed spaces and with
possibly nonconvex subsets. This theorem generalizes most of the published results
and adds many more new ones. See this theorem and Remark 5.2 below for more
details regarding the known results (that we are aware of). The existence of a BAP
is important also because without it various algorithms aimed at solving the BAP
problem, such as the Dykstra algorithm [6], the alternating projection algorithm [22,
Theorem 4], [66, Theorems 1.2–1.4] (inspired by von Neumann [69, Theorem 13.7,
pp. 55–56]), and the A-S-HLWB algorithm [18, Theorem 32], may not converge.

As a final remark, we note that while the BAP problem is mainly concerned with
the case where A∩B = ∅, namely the inconsistent feasibility problem, the case where
A∩B ̸= ∅ (namely the convex feasibility problem, or CFP for short, whenever A∩B
is convex) is by itself interesting, has various applications, and has been investigated
thoroughly: see, for example, the following (very partial) list of references, as well as
the references therein: [7,13,14,16,17,19,21,26,37,44].

1.2. Paper layout. Section 2 presents our notation and recalls a few known con-
cepts. Section 3 presents various auxiliary results. Section 4 presents several condi-
tions which ensure the (at most) uniqueness of a BAP, and Section 5 presents many
sufficient conditions for the existence of a BAP. Some of the results are illustrated by
various examples and figures presented in Section 6.
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2. Preliminaries

In this section we present some terminology and recall several known concepts and
results. Unless otherwise stated, our setting is a normed space (X, ∥·∥), X ̸= {0}, but
since some of the notions below hold in a more general setting, such as metric spaces
and vector spaces, we sometimes consider these settings too. We denote by X∗ the
dual of X. Given a subset A ⊆ X, we denote by A its closure, by ∂A its boundary,
and by int(A) its interior. Given another subset B of X, the distance between A
and B is defined by dist(A,B) := inf{∥a − b∥ | a ∈ A, b ∈ B} (if either A or B is
empty, then dist(A,B) := ∞). We say that B is proximinal with respect to A if for
every a ∈ A there exists b ∈ B such that d(a,B) := d({a}, B) = ∥a− b∥. We denote
A + B := {a + b | a ∈ A, b ∈ B} and A − B := {a − b | a ∈ A, b ∈ B}. The recession
cone of A is the set {x ∈ X | {x} + A ⊆ A}. If A is a linear subspace, then we say
that A is topologically complemented if A is closed and there exists a closed linear
subspace F such that A⊕ F = X, that is, A∩ F = {0} and A+ F = X. In this case
we denote by ΠA : X → A the linear projection onto A along F , that is, if z ∈ X is
(uniquely) represented as z = z1 + z1 for some z1 ∈ A and z2 ∈ F , then ΠA(z) = z1.
Similarly, ΠF : X → F denotes the linear projection onto F along A. If F is finite
dimensional, then we say that A has a finite codimension. We say that A is an affine

subspace if A = u + Ã for some u ∈ X and a linear subspace Ã; in this case we say

that Ã is the linear part of A, and the dimension/codimension of A is defined to be

the dimension/codimension of Ã. We say that A is polyhedral, or a polytope, if it is
the intersection of finitely many closed halfspaces.

We say that ((ak, bk))k∈N is a distance minimizing sequence in A×B if

lim
k→∞

∥ak − bk∥ = dist(A,B). (2.1)

The definition of dist(A,B) obviously implies the existence of at least one distance
minimizing sequence when A ̸= ∅ and B ̸= ∅. We say that (A,B) satisfies the distance
coercivity condition if A ∪B is unbounded and

lim
∥(x,y)∥→∞,(x,y)∈A×B

∥x− y∥ = ∞, (2.2)

where ∥(x, y)∥ :=
√

∥x∥2 + ∥y∥2 for all (x, y) ∈ X2.
If a sequence (xk)k∈N converges weakly to x ∈ X, then we write x = (w) limk→∞ xk.

We say that A is weakly sequentially closed if for every x ∈ X and (xk)k∈N in A, the
condition x = (w) limk→∞ xk implies that x ∈ A. Note that if A is weakly closed, then
it is weakly sequentially closed (since in general, if a subset is closed with respect to
some topology, then it is sequentially closed with respect to that topology), but the
converse is not necessarily true even in Hilbert spaces [8, Example 3.33, p. 60]. We
say that A is weakly sequentially compact if every sequence in A has a subsequence
which converges weakly to some z ∈ A (this is a standard notion but occasionally, as
in [34, Definition II.3.25, pp. 67–68], one requires less and gets less, namely that the
limit z exists in X and not necessarily in A).

Given two points a0 and a1 inX, we denote by [a0, a1] := {a(t) := a0+t(a1−a0) | t ∈
[0, 1]} the interval, or line segment, connecting a0 and a1. This interval is said to be
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nondegenerate if a0 ̸= a1. We denote by (a0, a1) := {a(t) | t ∈ (0, 1)} the open interval
connecting a0 and a1, and by [a0, a1) := {a(t) | t ∈ [0, 1)} and (a0, a1] := {a(t) | t ∈
(0, 1]} the respective half-open intervals. We say that A ⊆ X is strictly convex if for
all distinct points a0, a1 ∈ A, the open interval (a0, a1) is contained in int(A). Any
strictly convex set is obviously convex. Given two lines L and M in the space, we
say that they are parallel if they are disjoint and there is a two-dimensional affine
subspace in which they are located. Given two nondegenerate intervals [a0, a1] and
[b0, b1], we say that they are parallel if they are located on parallel lines, namely there
are two parallel lines L and M , such that [a0, a1] ⊂ L and [b0, b1] ⊂ M .
Finally, we say that the underlying space X is strictly convex if its unit ball (and

hence any other ball) is a strictly convex subset. Equivalently, the boundary of the
ball does not contain nondegenerate intervals. Well-known examples of strictly convex
spaces are Euclidean spaces, Hilbert spaces, the sequence spaces ℓp (sequences with
possibly finitely many components) where p ∈ (1,∞), the function spaces Lp(Ω)
where p ∈ (1,∞) and Ω is a Lebesgue measurable set in Rk for some k ∈ N, uniformly
convex spaces, and sums of strictly convex spaces with the ∥ · ∥p norm (p ∈ (1,∞)).
Well-known examples of spaces which are not strictly convex are the ℓ1, ℓ∞, L1(Ω) and
L∞(Ω) spaces. For more details and examples, see, for instance, [11,24,34,38,50,56].

3. Auxiliary results

In this section we formulate and prove several auxiliary results which we need in
order to prove our main results. We start with the following two simple (and probably
known) lemmata whose proofs are presented for the sake of completeness.

Lemma 3.1. Given two nonempty subsets A and B in a metric space (X, d), one has
dist(A,B) = dist(A,B), where dist(A,B) := inf{d(a, b) | (a, b) ∈ A×B}. Moreover, if
A∩B = ∅ and there exists a BAP with respect to (A,B), namely a pair (a0, b0) ∈ A×B
such that d(a0, b0) = dist(A,B), then dist(A,B) > 0.

Proof. Let a ∈ A and b ∈ B. Then a ∈ A and b ∈ B, and hence, by the definition
of dist(A,B), we have dist(A,B) ≤ d(a, b). Since a ∈ A and b ∈ B are arbitrary,
we have dist(A,B) ≤ inf{d(a, b) | a ∈ A, b ∈ B} = dist(A,B). On the other hand,

let ϵ > 0 be arbitrary. By the definition of dist(A,B) there are ã ∈ A and b̃ ∈ B

such that d(ã, b̃) < dist(A,B) + 0.5ϵ. By the definition of A and B there are some

a ∈ A and b ∈ B such that d(ã, a) < 0.25ϵ and d(̃b, b) < 0.25ϵ. Thus, by the triangle
inequality and because dist(A,B) ≤ d(a, b), we have

dist(A,B) ≤ d(a, b) ≤ d(a, ã) + d(ã, b̃) + d(̃b, b)

< 0.25ϵ+ dist(A,B) + 0.5ϵ+ 0.25ϵ = dist(A,B) + ϵ. (3.1)

Since ϵ can be an arbitrarily small positive number, we conclude that dist(A,B) ≤
dist(A,B) as well. Finally, suppose that A ∩ B = ∅ and that there exists a BAP
(a0, b0) with respect to (A,B). Then a0 ∈ A, b0 ∈ B and d(a0, b0) = dist(A,B), and
since a0 ̸= b0 (otherwise a0 ∈ A and a0 = b0 ∈ B, a contradiction to the assumption
that A ∩B = ∅), we have 0 < d(a0, b0) = dist(A,B), as required. □
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Lemma 3.2. Suppose that (X, ∥·∥) is a normed space and that A and B are nonempty
and disjoint subsets of X. Then dist(A,B) = dist(∂A, ∂B).

Proof. Let ϵ > 0 be arbitrary. By the definition of dist(A,B) there are a ∈ A and
b ∈ B which satisfy ∥a − b∥ < dist(A,B) + ϵ. Consider the function g : [0, 1] → X
defined by g(t) := a+t(b−a) for every t ∈ [0, 1]. We first show that g(t) ∈ ∂A for some
t ∈ [0, 1]. Indeed, if g(0) ∈ ∂A, then we are done. Otherwise, since g(0) = a ∈ A and
g(0) /∈ ∂A, it follows that g(0) ∈ int(A). Similarly, if g(1) ∈ ∂A, then we are done;
otherwise, since g(1) = b ∈ B and B ∩ A = ∅, it follows that g(1) /∈ A, and because
g(1) /∈ ∂A, one has g(1) /∈ A, namely g(1) ∈ X\A. Since [0, 1] is connected and g is
continuous, [a, b] = g([0, 1]) is connected. Since X = int(A) ∪ ∂A ∪ (X\A) and this
union is disjoint, we can write g([0, 1]) = [a, b]∩X = ([a, b]∩ int(A))∪ ([a, b]∩ ∂A)∪
([a, b] ∩ (X\A)), where the first and the third subsets in this union are open subsets
in the connected topological space [a, b] (with the topology induced by the norm on
X) because int(A) and X\A are open subsets in X. Moreover, g(0) ∈ [a, b] ∩ int(A)
and g(1) ∈ [a, b]∩ (X\A). Therefore, if, for the sake of contradiction, [a, b]∩ ∂A = ∅,
then [a, b] can be represented as a disjoint union of two nonempty and open subsets, a
contradiction to the fact that [a, b] is connected. Hence [a, b] ∩ ∂A ̸= ∅, and therefore
there is some t1 ∈ [0, 1] such that g(t1) ∈ ∂A. In particular ∂A ̸= ∅.

Similarly there is some t2 ∈ [0, 1] such that g(t2) ∈ ∂B and ∂B ̸= ∅. These
relations, the definition of dist(∂A, ∂B), and the fact that g(t1) and g(t2) are in the
interval [a, b], all imply that dist(∂A, ∂B) ≤ ∥g(t1) − g(t2)∥ = |t1 − t2|∥a − b∥ ≤
∥a − b∥ < dist(A,B) + ϵ. Since ϵ was an arbitrary positive number, we conclude
that dist(∂A, ∂B) ≤ dist(A,B). On the other hand, given a ∈ ∂A and b ∈ ∂B,
we have a ∈ A and b ∈ B. Since dist(A,B) = dist(A,B) by Lemma 3.1 and since
dist(A,B) ≤ ∥a− b∥ by the definition of dist(A,B), we have d(A,B) = dist(A,B) ≤
∥a − b∥. Thus, since a ∈ ∂A and b ∈ ∂B were arbitrary, we have dist(A,B) ≤
inf{∥a− b∥ | a ∈ ∂A, b ∈ ∂B} = dist(∂A, ∂B) as well. □

Remark 3.3. Lemma 3.2 does not hold in every path connected metric space. Indeed,
suppose that X is the subset of R2 defined by ([−2, 2] × {−2}) ∪ ({2} × [−2, 2]) ∪
([−2, 2]×{2})∪ ({−2}× [1, 2])∪ ({−2}× [−2,−1]), that is, X is the subset obtained
by removing the line segment {−2}× (−1, 1) from the boundary (in R2) of the square
[−2, 2]2. Let d : X2 → [0,∞) be the metric induced by the Euclidean norm, namely

d((x1, x2), (y1, y2)) :=
√

(x1 − y1)2 + (x2 − y2)2 for all (x1, x2), (y1, y2) ∈ X. Let A :=
{−2} × [−2,−1] and B := {−2} × [1, 2]. Then ∂A = {(−2,−2)}, ∂B = {(−2, 2)},
A ∩B = ∅ and 2 = dist(A,B) < dist(∂A, ∂B) = 4.

We continue with the following definition. See Section 6 below for illustrations.

Definition 3.4. Let (X, ∥ · ∥) be a normed space, let a0, a1, b0, b1 ∈ X and let A and
B be two nonempty subsets of X. We say that:

(i) (a0, b0) is a BAP with respect to (or relative to) (A,B) if a0 ∈ A, b0 ∈ B and
∥a0 − b0∥ = dist(A,B).

(ii) ([a0, a1], [b0, b1]) is a BAP of intervals with respect to (or relative to) (A,B) if
for all t ∈ [0, 1] one has a(t) ∈ A, b(t) ∈ B and ∥a(t)−b(t)∥ = dist(A,B), where
a(t) := a0 + t(a1 − a0) and b(t) := b0 + t(b1 − b0).
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(iii) ([a0, a1], [b0, b1]) is a nondegenerate BAP of intervals with respect to (or relative
to) (A,B) if it is a BAP of intervals with respect to (A,B) and either a0 ̸= a1
or b0 ̸= b1.

(iv) ([a0, a1], [b0, b1]) is a strictly nondegenerate BAP of intervals with respect to (or
relative to) (A,B) if it is a BAP of intervals with respect to (A,B) and both
a0 ̸= a1 and b0 ̸= b1.

Lemma 3.5. Suppose that (X, ∥·∥) is a normed space and that A and B are nonempty
and convex subsets of X such that a0, a1 ∈ A and b0, b1 ∈ B. Then the following two
conditions are equivalent:

(i) (a0, b0) and (a1, b1) are BAPs with respect to (A,B).
(ii) (a(t), b(t)) is a BAP with respect to (A,B) for all t ∈ [0, 1], where a(t) :=

a0 + t(a1 − a0) and b(t) := b0 + t(b1 − b0).

Proof. Condition (ii) obviously implies Condition (i), and hence from now on we
assume that Condition (i) holds and show how it implies Condition (ii). Since both
(a0, b0) and (a1, b1) are BAPs with respect to (A,B), we have ∥a0−b0∥ = dist(A,B) =
∥a1 − b1∥. By the convexity of A and B and the fact that a(t) = (1− t)a0 + ta1 and
b(t) = (1 − t)b0 + tb1, we have at ∈ A and bt ∈ B for each t ∈ [0, 1]. Therefore, in
particular, dist(A,B) ≤ ∥a(t)− b(t)∥. On the other hand, the triangle inequality and
the assumption that (a0, b0) and (a1, b1) are BAPs imply that for all t ∈ [0, 1],

∥a(t)−b(t)∥ ≤ (1−t)∥a0−b0∥+t∥a1−b1∥ = (1−t)dist(A,B)+tdist(A,B) = dist(A,B).

The last two inequalities imply that ∥a(t)−b(t)∥ = dist(A,B) for all t ∈ [0, 1], namely
(a(t), b(t)) is also a BAP with respect to (A,B) for all t ∈ [0, 1]. □

The next lemma is related to, but definitely different from, [62, Proposition 3.1]
(which, by the way, has a minor gap in its proof, where it is claimed without a proof
that the line segment K defined there must intersect ∂A; in this connection, see the
proof of Lemma 3.2 above).

Lemma 3.6. Suppose that (X, ∥·∥) is a normed space and that A and B are nonempty
and disjoint subsets of X. If (a0, b0) is a BAP with respect to (A,B), then it is a BAP
with respect to (∂A, ∂B); in particular, a0 ∈ ∂A and b0 ∈ ∂B. Conversely, if (a0, b0)
is a BAP with respect to (∂A, ∂B) and A and B are also closed (in addition to being
nonempty and disjoint), then (a0, b0) is a BAP with respect to (A,B).

Proof. Suppose first that (a0, b0) is a BAP with respect to (A,B). Then ∥a0 − b0∥ =
dist(A,B), and because of Lemma 3.2, we have dist(A,B) = dist(∂A, ∂B), namely,
∥a0 − b0∥ = dist(∂A, ∂B). Therefore, in order to prove that (a0, b0) is a BAP with
respect to (∂A, ∂B) it remains to show that (a, b) ∈ ∂A× ∂B. Let r > 0 be arbitrary
and consider the open ball with radius r around a0. We need to show that this ball
contains points from A and points outside A. Obviously a0 ∈ A is in the ball. In order
to see that this ball contains points outside A, consider the line segment [a0, b0] =
{a(t) | t ∈ [0, 1]} whose length is ∥a0 − b0∥ = dist(A,B). Let t ∈ (0,min{r/(∥b0 −
a0∥+1), 1}). Since a(t) = a0 + t(b0 − a0), it follows that a(t) is both in [a0, b0] and in
the ball. Since ∥a(t)− b0∥ = (1− t)∥a0− b0∥ < ∥a0− b0∥ = dist(A,B), it is impossible
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that a(t) ∈ A because the distance between a point from A and a point from B is at
least dist(A,B) by the definition of dist(A,B). Thus a(t) is both outside A and in
the ball. Since r > 0 can be arbitrarily small a0 ∈ ∂A. Similarly, b0 ∈ ∂B.

Now assume that A and B are closed and that (a0, b0) is a BAP with respect to
(∂A, ∂B). Then a0 ∈ ∂A ⊆ A, b0 ∈ ∂B ⊆ B and ∥a0 − b0∥ = dist(∂A, ∂B). Because
dist(∂A, ∂B) = dist(A,B) by Lemma 3.2, we also have ∥a0−b0∥ = dist(A,B). Hence
(a0, b0) is a BAP with respect to (A,B). □

Lemma 3.7. Let A and B be nonempty, convex and disjoint subsets of a normed
space (X, ∥ · ∥). Assume that a0, a1 ∈ A and b0, b1 ∈ B. If (a0, b0) and (a1, b1) are
BAPs with respect to (A,B), then ([a0, a1], [b0, b1]) is a BAP of intervals with respect
to both (A,B) and (∂A, ∂B). In particular, [a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B.

Proof. Let t ∈ [0, 1] be arbitrary. Lemma 3.5 implies that (a(t), b(t)) is a BAP with
respect to (A,B), and so ∥a(t) − b(t)∥ = dist(A,B). Because (a(t), b(t)) is a BAP
with respect to (A,B), Lemma 3.6 (with (a(t), b(t)) instead of (a0, b0)) implies that
(a(t), b(t)) is also a BAP with respect to (∂A, ∂B). Thus, a(t) ∈ ∂A, b(t) ∈ ∂B and
∥a(t)− b(t)∥ = dist(∂A, ∂B). Since [a0, a1] = {a(t) | t ∈ [0, 1]} and [b0, b1] = {b(t) | t ∈
[0, 1]}, we have [a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B. Thus, Definition 3.4 implies that
([a0, a1], [b0, b1]) is a BAP of intervals with respect to both (A,B) and (∂A, ∂B). □

Lemma 3.8. Let A and B be nonempty, convex and disjoint subsets of a strictly
convex normed space (X, ∥·∥). If ([a0, a1], [b0, b1]) is a nondegenerate BAP of intervals
with respect to (A,B), then it is a strictly nondegenerate BAP of intervals relative to
both (A,B) and (∂A, ∂B). In particular, [a0, a1] is a nondegenerate interval contained
in ∂A, and [b0, b1] is a nondegenerate interval contained in ∂B.

Proof. Since ([a0, a1], [b0, b1]) is a BAP of intervals with respect to (A,B), we have, in
particular, that (a0, b0) and (a1, b1) are BAPs with respect to (A,B). Hence Lemma
3.7 implies that ([a0, a1], [b0, b1]) is a BAP of intervals with respect to (∂A, ∂B). In
particular, [a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B.

It remains to be shown that the pair ([a0, a1], [b0, b1]) is strictly nondegenerate.
Since this pair is a nondegenerate BAP of intervals with respect to (A,B), we have
that either a0 ̸= a1 or b0 ̸= b1. Assume that a0 ̸= a1: the case b0 ̸= b1 can be treated
similarly. If, for the sake of contradiction, b0 = b1, then this equality and the fact
that (a0, b0) and (a1, b1) are BAPs with respect to (A,B) imply that ∥a0 − b0∥ =
dist(A,B) = ∥a1 − b1∥ = ∥a1 − b0∥. This equality means that both a0 and a1 are
located on the boundary of the ball whose center is b0 and its radius is dist(A,B),
which is positive according to Lemma 3.1. Since a0 ̸= a1 and the space is strictly
convex, the open interval (a0, a1) is strictly inside this ball, and so, in particular,
a0.5 is strictly inside this ball. Thus, ∥a0.5 − b0∥ < dist(A,B). On the other hand,
since a0.5 ∈ A by the convexity of A and since b0 ∈ B, the definition of dist(A,B)
implies that ∥a0.5 − b0∥ ≥ dist(A,B), a contradiction. Hence b0 ̸= b1 and indeed
([a0, a1], [b0, b1]) is a strictly nondegenerate BAP of intervals relative to (A,B) (and
relative to (∂A, ∂B)). □

Lemma 3.9. Suppose that (X, ∥ · ∥) is a strictly convex normed space and that A and
B are nonempty, convex and disjoint subsets of X. If (a0, b0) and (a1, b1) are two
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distinct BAPs with respect to (A,B), then both [a0, a1] and [b0, b1] are nondegenerate
intervals, they are parallel, [a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B.

Proof. Since (a0, b0) and (a1, b1) are BAPs with respect to (A,B), Lemma 3.7 im-
plies that ([a0, a1], [b0, b1]) is a BAP of intervals with respect to (A,B), and since
(a0, b0) ̸= (a1, b1), either [a0, a1] is nondegenerate or [b0, b1] is nondegenerate. Thus
([a0, a1], [b0, b1]) is a nondegenerate BAP of intervals with respect to (A,B), and since
X is strictly convex Lemma 3.8 implies that both [a0, a1] and [b0, b1] are nondegener-
ate. In addition, Lemma 3.7 implies that [a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B.
It remains to be shown that [a0, a1] and [b0, b1] are parallel. Lemma 3.5 implies

that (a(t), b(t)) is a BAP with respect to (A,B) for each t ∈ [0, 1]. Thus, if we define
f : [0, 1] → [0,∞) by

f(t) := ∥a(t)− b(t)∥ = ∥a0 − b0 + (a1 − b1 − (a0 − b0))t∥, ∀t ∈ [0, 1], (3.2)

then we have f(t) = dist(A,B) for all t ∈ [0, 1]. In particular,

f(0.5) = dist(A,B). (3.3)

Assume for the sake of contradiction that a0 − b0 ̸= a1 − b1. Since ∥a0 − b0∥ =
f(0) = f(1) = ∥a1 − b1∥ = dist(A,B) and since dist(A,B) > 0 according to Lemma
3.1, the distinct points a0 − b0 and a1 − b1 are located on the boundary of the ball
of positive radius dist(A,B) around the origin. Since (X, ∥ · ∥) is strictly convex,
∥0.5(a0− b0)+0.5(a1− b1)∥ < dist(A,B). But from (3.2) we have f(0.5) = ∥0.5(a0−
b0) + 0.5(a1 − b1)∥. Therefore f(0.5) < dist(A,B), a contradiction to (3.3). Thus
a0− b0 = a1− b1 and hence v := a1−a0 = b1− b0. Since we already know that b0 ̸= b1
(because [b0, b1] is nondegenerate as we showed earlier), we also have v ̸= 0.
Consider the lines L := {a0 + tv : t ∈ R} and M := {b0 + sv : s ∈ R}. By letting

t, s ∈ [0, 1] in the definitions of L and M , we see that [a0, a1] ⊂ L and [b0, b1] ⊂ M .
We claim that b0 /∈ L. Indeed, suppose for the sake of contradiction that b0 ∈ L.
Then b0 = a0 + tv for some t ∈ R and hence either t ∈ [0, 1] or t > 1 or t ∈ [−1, 0)
or t < −1. If t ∈ [0, 1], then b0 ∈ [a0, a1] ⊆ A, a contradiction since we assume
that A ∩ B = ∅. If t > 1, then ∥b0 − a1∥ = ∥(a0 + tv) − (a0 + v)∥ = (t − 1)∥v∥ <
t∥v∥ = ∥b0 − a0∥ = dist(A,B), a contradiction to the minimality of dist(A,B). If
t ∈ [−1, 0), then t + 1 ∈ [0, 1), and so b1 = b0 + v = a0 + (t + 1)v ∈ [a0, a1] ⊆ A,
a contradiction to the assumption A ∩ B = ∅. Therefore only the case t < −1
remains; in this case t + 1 < 0, and since b1 = b0 + v = a0 + (t + 1)v, we have
∥b1−a0∥ = |t+1|∥v∥ = −(t+1)∥v∥ < −t∥v∥ = ∥b0−a0∥ = dist(A,B), a contradiction
to the minimality of dist(A,B). As a result, indeed b0 /∈ L.

It must be that v and b0 − a0 are linearly independent. Indeed, if, for the sake of
contradiction, λ1(b0 − a0) + λ2v = 0 for a pair of scalars (λ1, λ2) ̸= (0, 0), then λ1 ̸= 0
since otherwise λ2v = 0, and since the assumption that (λ1, λ2) ̸= (0, 0) implies that
λ2 ̸= 0, we have v = 0, a contradiction; thus λ1 ̸= 0, and hence b0 = a0 + (−λ2/λ1)v,
that is, b0 ∈ L, a contradiction to what has been proved in the previous paragraph.
In addition, L ∩ M = ∅, since otherwise a0 + tv = b0 + sv for some t, s ∈ R, and
so b0 = a0 + (t − s)v ∈ L, a contradiction. Thus L and M are parallel since their
intersection is the empty set and both of them are located on the same two-dimensional
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affine subspace (namely on a0 + span{v, b0 − a0}), and hence [a0, a1] and [b0, b1] are
parallel since they are located on the parallel lines L and M , respectively. □

The following lemma, which actually holds in any topological vector space with
essentially the same proof, might be known.

Lemma 3.10. Let C be a nonempty and convex subset of a normed space (X, ∥ · ∥).
If x,y and z are three distinct points in ∂C satisfying y ∈ [x, z], then [x, z] ⊆ ∂C.

Proof. Let w ∈ [x, z]. Since x and z are in C and since C is convex (because C
is convex, see, e.g., [68, Theorem 2.23(a), p. 28]), we have w ∈ C. Since [x, z] =
[x, y]∪ [y, z], either w ∈ [x, y] or w ∈ [y, z]. Suppose that the first case holds. If w = x
or w = y, then w ∈ ∂C by our assumption on x and y. Otherwise, w ∈ (x, y). Assume
for the sake of contradiction that w /∈ ∂C. This assumption and the fact that w ∈ C
imply that w ∈ int(C). Since, as is well known [68, Theorem 2.23(b), p. 28], the
half-open line segment between an interior point of C and a point in C is contained
in int(C), we have [w, z) ⊆ int(C). From the fact that y ∈ [w, z) we conclude that
y ∈ int(C), a contradiction to our assumption that y ∈ ∂C. Hence w must be in ∂C,
and since w is an arbitrary point in [x, y], we conclude that [x, y] ⊆ ∂C. Similarly,
[y, z] ⊆ ∂C. Thus [x, z] ⊆ ∂C. □

The final two auxiliary assertions will be used in Section 5.

Lemma 3.11. Let (X, ∥ · ∥) be a normed space, A and B be nonempty subsets of X,
and ((ak, bk))k∈N be a distance minimizing sequence in A×B. Then:

(i) Either both (ak)k∈∞ and (bk)k∈N are bounded or both of them are unbounded.
(ii) If either A ∪ B is bounded, or A ∪ B is unbounded and (2.2) holds, then both

(ak)k∈∞ and (bk)k∈N are bounded.
(iii) If ((ak, bk))k∈N has a subsequence which converges weakly in X2 to some point

(a, b) ∈ A×B, then (a, b) is a BAP relative to (A,B).

Proof. (i) If both (ak)k∈∞ and (bk)k∈N are bounded, then we are done. Otherwise,
one of these sequences, say (ak)k∈∞, is unbounded. Hence there is an infinite
subset N1 of N such that limk→∞,k∈N1 ∥ak∥ = ∞. Since (ak− bk)k∈N converges to
the finite number dist(A,B), this sequence is bounded. Since bk = ak− (ak− bk)
for all k ∈ N1, it follows that (bk)k∈N1 is a difference between an unbounded
sequence and a bounded one, and therefore limk→∞,k∈N1 ∥bk∥ = ∞. Thus (bk)k∈N
is unbounded too.

(ii) The assertion obviously holds if A ∪ B is bounded since then A and B are
bounded, and so are any sequences contained in them. Now assume that A∪B is
unbounded and (2.2) holds. If, say, (ak)k∈∞ is unbounded, then by Part (i) there
is an infinite subset N1 of N such that limk→∞,k∈N1 ∥ak∥ = limk→∞,k∈N1 ∥bk∥ =
∞. But then (2.2) implies that limk→∞,k∈N1 ∥ak − bk∥ = ∞, a contradiction to
(2.1). Thus (ak)k∈∞ is bounded, and from Part (i) also (bk)k∈∞ is bounded.

(iii) Suppose that (a, b) = (w) limk→∞,k∈N1(ak, bk) for some infinite subset N1 of N.
Then a = (w) limk→∞,k∈N1 ak and b = (w) limk→∞,k∈N1 bk, and hence a − b =
(w) limk→∞,k∈N1(ak − bk). Since the norm is weakly sequentially lower semi-
continuous [34, II.3.27, p. 68], we have ∥a − b∥ ≤ limk→∞,k∈N1 ∥ak − bk∥ =
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dist(A,B). On the other hand dist(A,B) ≤ ∥a− b∥ since (a, b) ∈ A×B. Hence
∥a− b∥ = dist(A,B) and (a, b) is a BAP relative to (A,B).

□

Lemma 3.12. Suppose that C is a nonempty, convex, closed and locally weakly se-
quentially compact subset of a normed space (X, ∥ · ∥), where local weak sequential
compactness of C means that for every x ∈ C there is a closed ball D ⊆ X centered at
x such that D ∩ C is weakly compact. Then any bounded sequence in C has a weakly
convergent subsequence whose weak limit is in C.

Proof. Let (ck)k∈N be an arbitrary bounded sequence in C. We need to show that there
exists an infinite subsetK ⊆ N and a point c ∈ C such that (w) limk→∞,k∈K ck = c. Fix
an arbitrary point z ∈ C. If ϵ := inf{∥ck − z∥ | k ∈ N} = 0, then the definition of the
infimum implies that there is an infinite subsetK ⊆ N such that limk→∞,k∈K ∥ck−z∥ =
0. Since (ck)k∈K converges strongly to z, it also converges weakly to z, and so we are
done (with c := z). Otherwise ϵ > 0, and so ∥ck− z∥ ≥ ϵ > 0 for all k ∈ N. Since C is
closed and locally weakly sequentially compact, there is a closed ball D, centered at
z, with radius r ∈ (0, ϵ), whose intersection with C is weakly sequentially compact.
Since (ck)k∈N is bounded, there is some ρ > 0 such that ∥ck∥ < ρ for all k ∈ N.
Define αk := 0.5r/∥ck − z∥. Then αk ∈ [0.5r/(ρ + ∥z∥), 0.5r/ϵ] for all k ∈ N by the
triangle inequality and the choice of r and ρ. Hence the compactness of the real-line
interval [0.5r/(ρ + ∥z∥), 0.5r/ϵ] implies that there is an infinite subset S ⊆ N and a
real number α ∈ [0.5r/(ρ+ ∥z∥), 0.5r/ϵ] such that limk→∞,k∈S αk = α.

Define c′k := z + αk(ck − z) for all k ∈ S. Then c′k ∈ D for every k ∈ S. Moreover,
c′k ∈ [z, ck] ⊆ C because C is convex and αk ∈ [0, 1]. Hence c′k ∈ C ∩ D for all
k ∈ S, and therefore, since C ∩ D is weakly sequentially compact, there is a point
c′ ∈ C ∩D and an infinite subset K ⊆ S such that (w) limk→∞,k∈K c′k = c′. We claim
that (w) limk→∞,k∈K ck = c, where c := z + (1/α)(c′ − z). Indeed, given an arbitrary
continuous linear functional g ∈ X∗, the triangle inequality, the definitions of c′k and
c, the linearity of g, and the definition of ∥g∥, the limits limk→∞,k∈K αk = α and
limk→∞,k∈K g(c′k−c′) = 0, and the fact that ∥c′k−z∥ = 0.5r for every k ∈ K, all imply
that for each k ∈ K,

|g(ck − c)| =
∣∣∣∣g((z + 1

αk

(c′k − z))− (z +
1

α
(c′ − z))

)∣∣∣∣
=

∣∣∣∣g( 1

αk

(c′k − z)− 1

α
(c′ − z)

)∣∣∣∣
=

∣∣∣∣g(( 1

αk

− 1

α

)
(c′k − z)

)
+ g

(
1

α
(c′k − z)− 1

α
(c′ − z)

)∣∣∣∣
≤

∣∣∣∣ 1αk

− 1

α

∣∣∣∣ |g(c′k − z)|+ 1

α
|g(c′k − c′)|

≤
∣∣∣∣ 1αk

− 1

α

∣∣∣∣ ∥g∥ · 0.5r + 1

α
|g(c′k − c′)| −−−−−−→

k→∞,k∈K
0. (3.4)
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Because g ∈ X∗ was arbitrary, we have c = (w) limk→∞, k∈K ck. Since C is closed and
convex, it is also weakly closed, and hence, because (ck)k∈K is in C, also c ∈ C. □

Remark 3.13. A result related to (but definitely different from) Lemma 3.12 says
that if (X, d) is a locally compact and almost complete geodesic metric space, then
every infinite set in X has an accumulation point with respect to the topology induced
by the geodesic metric: see [52, Theorem 4.3].

4. Uniqueness

This section presents our results regarding the (at most) uniqueness of the BAP.

Theorem 4.1. Suppose that A and B are two nonempty, convex and disjoint subsets
of a normed space (X, ∥ · ∥). If there does not exist a nondegenerate BAP of inter-
vals with respect to (∂A, ∂B), then there exists at most one BAP relative to (A,B).
Conversely, if A and B are also closed and there exists at most one BAP with re-
spect to (A,B), then there does not exist a nondegenerate BAP of intervals relative
to (∂A, ∂B).

Proof. Assume first that there does not exist a nondegenerate BAP of intervals with
respect to (∂A, ∂B). If dist(A,B) is not attained, then there does not exist any BAP
relative to (A,B), and hence obviously there exists at most one BAP relative to (A,B).
Otherwise dist(A,B) is attained, and hence there exists at least one BAP (a0, b0) with
respect to (A,B). If, for the sake of contradiction, there exists another (different)
BAP (a1, b1) with respect to (A,B), then Lemma 3.7 implies that ([a0, a1], [b0, b1]) is
a BAP of intervals with respect to (∂A, ∂B), and ([a0, a1], [b0, b1]) is nondegenerate
since either a0 ̸= a1 or b0 ̸= b1. This contradicts the assumption that there does
not exist a nondegenerate BAP of intervals with respect to (∂A, ∂B). Hence (a0, b0)
is the unique BAP relative to (A,B). Conversely, suppose that A and B are also
closed and that there exists at most one BAP with respect to (A,B). If, for the
sake of contradiction, there exists a nondegenerate BAP of intervals ([a0, a1], [b0, b1])
with respect to (∂A, ∂B), then either a0 ̸= a1 or b0 ̸= b1, and in both cases (a0, b0)
and (a1, b1) are two distinct BAPs with respect to (∂A, ∂B) and hence, according to
Lemma 3.6, also with respect to (A,B). This is a contradiction to the assumption
that there exists at most one BAP with respect to (A,B). □

Theorem 4.2. Let (X, ∥ · ∥) be a normed space. Suppose that m and n are natural
numbers and that A1, A2, . . . , Am and B1, B2, . . . , Bn are nonempty and strictly convex
subsets of X. If A := ∩m

i=1Ai and B := ∩n
j=1Bj are nonempty and disjoint, then there

exists at most one BAP relative to (A,B). If, in addition, dist(A,B) is attained, then
there exists exactly one BAP relative to (A,B).

Proof. Since, as can easily be proved, any finite intersection of strictly convex sets
is strictly convex, it follows that A and B are strictly convex and, in particular,
convex. Now, if dist(A,B) is not attained, then obviously there exists at most one
(actually zero) BAP relative to (A,B). Otherwise, there exists at least one BAP
(a0, b0) relative to (A,B). Assume for the sake of contradiction that there exists
another BAP (a1, b1) ̸= (a0, b0) relative to (A,B). Then either [a0, a1] or [b0, b1] is
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nondegenerate. Since the conditions of Lemma 3.7 hold, we conclude from it that
[a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B. This contradicts the fact that both A and B are
strictly convex and hence their boundaries do not contain any nondegenerate intervals.
Therefore there exists exactly one BAP relative to (A,B), as claimed. □

Corollary 4.3. Let (X, ∥ · ∥) be a normed space and ∅ ̸= A and ∅ ̸= B be strictly
convex and disjoint subsets of X. Then there exists at most one BAP relative to
(A,B), and there exists a unique such BAP if, in addition, dist(A,B) is attained.

Proof. This follows from Theorem 4.2 by letting m := n := 1. □

Remark 4.4. In [66, Theorem 1.1] Stiles claimed that if A and B are two nonempty
and disjoint subsets of a normed space (X, ∥ · ∥) and if either A or B is strictly
convex, then there exists at most one BAP relative to (A,B) (Stiles formulated this
statement in the following somewhat different manner: “the distance between A and
B is attained at most at one point”). This claim is false, as Example 6.2 below shows.
The main mistake in Stiles’ proof is the implicit assumption that the line segment
[PB(x), PB(y)] mentioned there is non-degenerate, and this is not necessarily true if
X is not strictly convex even if B is strictly convex: again, see Example 6.2. We also
note that [66, Proof of Theorem 1.1] suffers from other issues, such as the unproven
claim that if A and B are disjoint and if (a, b) is a BAP relative to (A,B), then
a ∈ ∂A and b ∈ ∂B (this claim is true but requires a proof, as we showed in Lemma
3.6 above) and the somewhat ambiguous notations PB(x) and PB(y) (while it is clear
from the proof that Stiles meant that both (x, PB(x)) and (y, PB(y)) are BAPs with
respect to (A,B), when presenting the operator of best approximation projection onto
B one needs to consider the issues of existence and uniqueness of this operator, and
this has not been done in [66, Proof of Theorem 1.1]).

Theorem 4.5. Given m,n ∈ N, suppose that A1, A2, . . . , Am and B1, B2, . . . , Bn are
nonempty and convex subsets of a strictly convex normed space (X, ∥ · ∥) such that
A :=

⋂m
i=1Ai and B :=

⋂n
j=1Bj are nonempty and that A ∩ B = ∅. If for each pair

(i, j) ∈ {1, 2, . . . ,m} × {1, 2, . . . , n} either:

(i) Ai is strictly convex, or
(ii) Bj is strictly convex, or
(iii) there does not exist a pair of two nondegenerate and parallel intervals such that

one of them is contained in ∂Ai and the other is contained in ∂Bj,

then there exists at most one BAP with respect to (A,B). If, in addition, dist(A,B)
is attained, then there exists a unique BAP with respect to (A,B).

Proof. If dist(A,B) is not attained, then obviously there exists at most one ( in
fact, zero) BAP with respect to (A,B). Otherwise, there exists at least one BAP
(a0, b0) with respect to (A,B). Suppose by way of contradiction that there exists
another BAP (a1, b1) ̸= (a0, b0) relative to (A,B). Then Lemma 3.9 implies that
[a0, a1] ⊆ ∂A and [b0, b1] ⊆ ∂B, that both [a0, a1] and [b0, b1] are nondegenerate, and
that [a0, a1] and [b0, b1] are parallel. As is well known, and can easily be proved (see,
for instance [3] for the case of two subsets; the case of any finite number of subsets
follows immediately by induction from the case of two subsets), the boundary of a
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finite intersection of subsets is contained in the union of the boundaries of the subsets
which induce the intersection. Therefore, ∂A ⊆

⋃m
i=1 ∂Ai. Hence, [a0, a1] ⊆

⋃m
i=1 ∂Ai,

and so for each t ∈ [0, 1] there is at least one index ϕ(t) ∈ {1, 2, . . . ,m} such that
a(t)a0 + t(a1 − a0) ∈ ∂Aϕ(t). Then ϕ is a function from [0, 1] to {1, 2, . . . ,m}, and
hence we have [0, 1] = ∪m

i=1ϕ
−1(i).

If ϕ−1(i) is finite for each i ∈ {1, 2, . . . ,m}, then so is the finite union ∪m
i=1ϕ

−1(i),
namely [0, 1] is finite, a contradiction. Hence ϕ−1(i) is infinite for some i ∈ {1, 2, . . . ,m},
i.e., there is an infinite subset Ti ⊆ [0, 1] such that a(t) ∈ ∂Ai for each t ∈ Ti. In
particular, there are three points t1 < t2 < t3 in Ti, and since a(t) = a0+ t(a1−a0) for
all t ∈ [0, 1], the points at1 , at2 , and at3 are three distinct points in ∂Ai. In addition,
these points are contained in [a0, a1], and since t1 < t2 < t3 they satisfy at2 ∈ [at1 , at3 ].
We conclude from Lemma 3.10 that [at1 , at3 ] ⊆ ∂Ai. Hence Ai is not strictly convex,
and so Assumption (i) in the formulation of the theorem does not hold. Similarly,
there are some j ∈ {1, 2, . . . , n} and t′1 and t′3 in [0, 1] such that [bt′1 , bt′3 ] is a non-
degenerate interval contained in [b0, b1] ∩ ∂Bj. Hence Bj is not strictly convex, and
so Assumption (ii) in the formulation of the theorem does not hold. Since [a0, a1] is
parallel to [b0, b1] and since [at1 , at3 ] ⊆ [a0, a1] and [bt′1 , bt′3 ] ⊆ [b0, b1], it follows that
[at1 , at3 ] is a nondegenerate interval which is contained in ∂Ai and is parallel to the
nondegenerate interval [bt′1 , bt′3 ] which is contained in ∂Bj, and this shows that also
Assumption (iii) in the formulation of the theorem does not hold.

We conclude that none of the Assumptions (i)–(iii) in the formulation of the theo-
rem holds, a contradiction. Consequently, the assumption that there exists more than
one BAP with respect to (A,B) cannot hold, namely, there exists a unique BAP with
respect to (A,B). □

From Theorem 4.5 with m := n := 1 we obtain the following corollary.

Corollary 4.6. Suppose that A and B are two nonempty, convex and disjoint subsets
of a strictly convex normed space (X, ∥ · ∥). If either
(i) A is strictly convex, or
(ii) B is strictly convex, or
(iii) there does not exist any pair of two nondegenerate and parallel intervals having

the property that one of them is contained in the boundary of A and the other is
contained in the boundary of B,

then there exists at most one BAP with respect to (A,B). If, in addition, dist(A,B)
is attained, then there exists a unique BAP with respect to (A,B).

Remark 4.7. (i) The strict convexity of the norm in Theorem 4.5 and Corollary
4.6 is essential for uniqueness (when both A and B are not strictly convex): see
Examples 6.2 and 6.3 below for counterexamples.

(ii) Theorem 4.5(iii) significantly generalizes [54, Theorem 3.1] which says that if
X is a uniformly convex Banach space (actually strict convexity is sufficient), A
and B are closed and convex and (A−A)∩ (B −B) = {0}, then there exists at
most one BAP relative to (A,B). Indeed, we can assume that A ∩B = ∅, since
otherwise everything is trivial. Suppose that the above-mentioned condition
holds and assume, for a contradiction, that Theorem 4.5(iii) does not hold,



THE BAP PROBLEM IN NORMED SPACES 15

namely that there are nondegenerate and parallel intervals [a1, a2] ⊆ ∂A and
[b1, b2] ⊆ ∂B. Then either u := (a2 − a1)/∥a2 − a1∥ and v := (b2 − b1)/∥b2 − b1∥
are equal, or u = −v. Assume that the first case holds: the proof in the second
case is similar. Let r := min{∥a2 − a1∥, ∥b2 − b1∥}. Then r > 0, a1 + ru ∈ A,
b1+ rv ∈ B, and ru = (a1+ ru)−a1 ∈ A−A, ru = rv = (b1+ rv)− b1 ∈ B−B.
Hence ru is a nonzero vector in (A−A)∩ (B−B), a contradiction which proves
the assertion. We also note that the condition (A − A) ∩ (B − B) = {0} is
frequently violated: indeed, just consider the case where both A and B have
nonempty interior, as in the case of Figure 5: in this case Theorem 4.5(iii)
holds but there are r > 0, a ∈ A and b ∈ B such that the open balls of radius
r and centers a and b, respectively, are contained in A and B, respectively, and
hence, given an arbitrary unit vector u ∈ X, we have a′ := a + 0.5ru ∈ A,
b′ := b+ 0.5u ∈ B, and 0 ̸= 0.5ru = a′ − a = b′ − b ∈ (A− A) ∩ (B −B).

5. Existence

In this section we present, in Theorem 5.1 below, many useful conditions which
ensure the existence of a best approximating pair, and by doing this we significantly
extend the known pool of such sufficient conditions. In particular, in some of these
conditions we do not assume that A and B are convex. Most of these conditions are
new, but some of them are known and we formulate them for the sake of completeness,
and frequently provide some new information regarding them such as a new proof.
In this connection, see Remark 5.2 below for various relevant comments, including
a counterexample (Part (i)), a comparison with several published results (Parts (i)–
(v)), and some extensions (Part (vi)).

Theorem 5.1. Suppose that A and B are two nonempty subsets of a normed space
(X, ∥ · ∥). If at least one of the following conditions holds, then dist(A,B) is attained,
namely there exists at least one BAP with respect to (A,B):

(i) A ∩B ̸= ∅;
(ii) ( [54, pp. 58–59]) A−B is proximinal with respect to {0}. Equivalently, there

is a minimal norm vector in A−B, that is, inf{∥u∥ |u ∈ A−B} is attained.
(iii) A is weakly sequentially compact and B is closed, convex and locally weakly

sequentially compact;
(iv) A is compact and B is closed, convex and locally compact;
(v) ( [71, Theorem 4]): A is weakly sequentially compact and B is convex and

proximinal with respect to A;
(vi) [71, Corollary 1] A is compact and B is proximinal with respect to A;
(vii) A is boundedly compact and B is bounded and proximinal with respect to A;
(viii) [71, p. 322] A and B are boundedly compact and one of them is bounded;
(ix) A and B are weakly sequentially compact;
(x) (classic) A and B are compact;
(xi) For all closed balls D in X2 about the origin the intersection D ∩ (A × B) is

weakly sequentially compact, and either A∪B is bounded or it is unbounded and
the coercivity condition (2.2) holds;
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(xii) X is a reflexive Banach space, A and B are weakly sequentially closed, and there
is at least one distance minimizing sequence ((ak, bk))k∈N such that (ak)k∈N has
a bounded subsequence;

(xiii) X is a reflexive Banach space, A is weakly sequentially compact (alternatively,
bounded and weakly sequentially closed), and B is weakly sequentially closed;

(xiv) ( [71, Corollary 2]): X is a reflexive Banach space, A is bounded and weakly
closed, and B is closed and convex;

(xv) [66, Theorem 1.1] X is a reflexive Banach space, both A and B are convex
and closed, and A is bounded;

(xvi) X is a reflexive Banach space, A and B are weakly sequentially closed, the union
A ∪B is unbounded, and the coercivity condition (2.2) holds;

(xvii) X is a reflexive Banach space, both A and B are convex and closed, A ∪ B is
unbounded and the coercivity condition (2.2) holds;

(xviii) X is a reflexive Banach space and A−B is weakly sequentially closed.
(xix) X is a reflexive Banach space, A and B are convex, and A−B is closed;

(xx) X is a reflexive Banach space, A = Ã+ Â and B = B̃+ B̂, where both Ã and B̃

are weakly sequentially compact, and Â− B̂ is weakly sequentially closed;
(xxi) X is a reflexive Banach space, A is a closed affine subspace with a closed linear

part Ã which is complemented by a closed linear subspace F , and B is an affine

subspace with a linear part B̃ such that ΠF (B̃) is closed;
(xxii) X is a reflexive Banach space, A is a closed affine subspace, and B is a finite-

dimensional affine subspace;
(xxiii) X is a reflexive Banach space, A is a closed affine subspace of finite codimension,

and B is an affine subspace;
(xxiv) X is a reflexive Banach space, A and B are closed and convex, B is locally

compact, and the intersection of the recessions cones of A and B is {0};
(xxv) X is a reflexive Banach space, A and B are closed affine subspaces of X with

linear parts Ã and B̃, respectively, such that Ã∩ B̃ ̸= ∅, and there is some α > 0

such that d(x, Ã ∩ B̃) ≤ αd(x, B̃) for each x ∈ Ã;
(xxvi) (implicit in [4]) X is a real Hilbert space and both A and B are polyhedral;
(xxvii) X is a Hilbert space, A ⊆ X is weakly sequentially closed, p ∈ X\A, and B is the

Voronoi cell of P := {p} with respect to A, i.e., B := {z ∈ X | ∥z−p∥ ≤ d(z, A)};
(xxviii) X is a Hilbert space, A is a closed hyperplane, p ∈ X\A, and B is the full

hyperparaboloid induced by p and A, that is, the set of all points in X whose
distance to p is not greater than their distance to A;

(xxix) X is a Hilbert space and both A and B are hypercylinders.
(xxx) A and B are finite-dimensional affine subsapces;
(xxxi) X is finite-dimensional, A and B are closed, and either A ∪ B is bounded or

A ∪B is unbounded and the coercivity condition (2.2) holds;
(xxxii) X is finite-dimensional, A is closed, ∅ ≠ P ⊂ X is bounded, and B is the

Voronoi cell of P with respect to A, namely B := {z ∈ X | d(z, P ) ≤ d(z, A)};
(xxxiii) ( [22, Theorem 5], [70, the Theorem on p. 209]) X is a finite-dimensional

Euclidean space and both A and B are polyhedral.
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Proof. In what follows ((ak, bk))k∈N is a distance minimizing sequence in A×B.

(i) Since A ∩ B ̸= ∅ there is b := a ∈ A ∩ B, and hence 0 = ∥a − b∥ = dist(A,B)
and (a, b) is a BAP relative (A,B).

(ii) By our assumption there is some v ∈ A−B such that ∥v∥ = inf{∥u∥ |u ∈ A−B},
and so there is a pair (a, b) ∈ A× B such that ∥a− b∥ = inf{∥u∥ |u ∈ A− B}.
It is immediate to verify that dist(A,B) = d(0, A−B) = inf{∥u∥ |u ∈ A−B}.
Therefore dist(A,B) = ∥a− b∥ and (a, b) is a BAP relative to (A,B).

(iii) Since A is weakly sequentially compact there is an infinite subset N1 ⊆ N and a
point a ∈ A which satisfy a = (w) limk→∞,k∈N1 ak. Since any weakly convergent
sequence is bounded [34, II.3.27, p. 68], it follows that (ak)k∈N1 is bounded, and
therefore, by Lemma 3.11(i), also (bk)k∈N1 is bounded. Thus (Lemma 3.12)
b = (w) limk→∞,k∈N2 bk for some infinite subset N2 ⊆ N1 and b ∈ B. Hence
(a, b) = (w) limk→∞,k∈N2(ak, bk) and Lemma 3.11(iii) implies that (a, b) is a
BAP relative to (A,B).

(iv) This is an immediate consequence of Part (iii) because a compact subset is
sequentially compact and hence (strong convergence implies weak convergence)
also weakly sequentially compact, and a locally compact subset is locally sequen-
tially compact and hence also locally weakly sequentially compact.

(v) Since A is weakly sequentially compact there exist an infinite subset N1 ⊆ N
and a point a ∈ A such that (w) limk→∞,k∈N1 ak = a. We claim that d(a,B) =
dist(A,B). Indeed, consider the function g : X → [0,∞) defined for all x ∈ X
by g(x) := d(x,B). As is well known, g is continuous (even Lipschitz continuous
[46, p. 19]), and it is also convex since B is convex [68, Examples 5.18(b),
p. 66]. Hence g is weakly lower semicontinuous [12, Corollary 3.9, p. 61]. In
addition, since (bk)k∈N is in B, we have d(ak, B) ≤ ∥ak − bk∥ for all k ∈ N1

by the definition of d(ak, B). Hence d(a,B) = g(a) ≤ lim infk→∞,k∈N1 g(ak) =
lim infk→∞,k∈N1 d(ak, B) ≤ lim infk→∞ ∥ak − bk∥ = dist(A,B). On the other
hand dist(A,B) ≤ d(a,B) because a ∈ A. Thus d(a,B) = dist(A,B). Since
B is proximinal with respect to A there is b ∈ B such that d(a,B) = ∥a − b∥.
Therefore ∥a− b∥ = dist(A,B) and so (a, b) is a BAP relative to (A,B).

(vi) From the compactness of A there are a ∈ A and an infinite subset N1 ⊆ N such
that limk→∞,k∈N1 ak = a. Since B is proximinal with respect to A there is b ∈ B
such that ∥a− b∥ = d(a,B). Since (bk)k∈N is in B, we have d(ak, B) ≤ ∥ak − bk∥
for all k ∈ N. Hence, because the function g : X → [0,∞) defined for all
x ∈ X by g(x) := d(x,B) is continuous [46, p. 19]), we have ∥a − b∥ =
d(a,B) = limk→∞,k∈N1 d(ak, B) ≤ limk→∞,k∈N1 ∥ak − bk∥ = dist(A,B), where
the last equality is by the assumption that ((ak, bk))k∈N is a distance minimizing
sequence. Therefore ∥a − b∥ ≤ dist(A,B), and obviously dist(A,B) ≤ ∥a − b∥
since (a, b) ∈ A×B. Thus (a, b) is a BAP relative to (A,B).

(vii) Since B is bounded, so is (bk)k∈N. Hence Lemma 3.11(i) ensures that (ak)k∈N is
bounded too. Let C be a closed ball which contains both (ak)k∈N and (bk)k∈N.
Since A is boundedly compact, A ∩ C is compact. Hence there are a ∈ A ∩ C
and an infinite subset N1 ⊆ N such that limk→∞,k∈N1 ak = a. From now on we
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continue word for word as in the proof of Part (vi) and conclude the existence
of a BAP (a, b) relative to (A,B).

(viii) Suppose that A is bounded. The proof is similar if B is bounded. Then (ak)k∈N
is bounded, and hence, as follows from Lemma 3.11(i), also (bk)k∈N is bounded.
Thus there is a closed ball C such that both (ak)k∈N and (bk)k∈N are in C,
and since both A and B are boundedly compact, the intersections A ∩ C and
B ∩ C are compact. Thus (A ∩ C) × (B ∩ C) is a compact subset of X2 which
contains ((ak, bk))k∈N, and so there are (a, b) ∈ (A ∩ C) × (B ∩ C) and an
infinite subset N1 ⊆ N such that limk→∞,k∈N1(ak, bk) = (a, b). Since the norm
is continuous and since ((ak, bk))k∈N is a distance minimizing sequence, we have
∥a− b∥ = limk→∞,k∈N1 ∥ak − bk∥ = dist(A,B), and so (a, b) is a BAP relative to
(A,B).

(ix) SinceA andB are nonempty and weakly sequentially compact, so is their product
A×B, and so there is some (a, b) ∈ A×B which is the weak limit of a subsequence
of ((ak, bk))k∈N, that is (a, b) = (w) limk→∞,k∈N1(ak, bk) for some infinite subset
N1 ⊆ N. Hence Lemma 3.11(iii) implies that (a, b) is a BAP relative to (A,B).

(x) This is a consequence of Part (ix) because any compact set is also sequentially
compact and hence (strong convergence implies weak convergence) weakly se-
quentially compact. Alternatively, one can show directly, using the continuity of
the norm, that any accumulation point of ((ak, bk))k∈N (which exists because of
the compactness of A×B) is a BAP relative to (A,B).

(xi) Since either A∪B is bounded, or A∪B is unbounded and the coercivity condi-
tion (2.2) holds, Lemma 3.11(ii) implies that (ak)k∈∞ and (bk)k∈N are bounded.
Hence ((ak, bk))k∈N is contained in some closed ball D of X2 about the origin.
Since ((ak, bk))k∈N is contained in A × B, we conclude that ((ak, bk))k∈N is con-
tained in C := D ∩ (A × B), which is a weakly sequentially compact subset by
the assumption in the formulation of this part. Hence there is a pair (a, b) ∈ C
and an infinite subset N1 ⊆ N such that (a, b) = (w) limk→∞,k∈N1(ak, bk). Con-
sequently, Lemma 3.11(iii) implies that (a, b) is a BAP relative to (A,B).

(xii) Let ((ak, bk))k∈N be a distance minimizing sequence with the property that
(ak)k∈N has a bounded subsequence (ak)k∈N1 for some infinite subset N1 ⊆ N.
Since X is reflexive, any bounded sequence in it has a weakly convergent sub-
sequence [34, Theorem II.3.28, p. 68]. Hence there is some a ∈ X and an
infinite subset N2 of N1 such that a = (w) limk→∞,k∈N2 ak. Since A is weakly
sequentially closed, we have a ∈ A. Since (ak)k∈N2 is bounded, also (bk)k∈N2 is
bounded by Lemma 3.11(i). Hence the reflexivity of X implies that there is
some b ∈ X and an infinite subset N3 of N2 such that b = (w) limk→∞,k∈N3 bk.
Thus (a, b) = (w) limk→∞,k∈N3(ak, bk) and b ∈ B since B is weakly sequentially
closed. Hence Lemma 3.11(iii) implies that (a, b) is a BAP relative to (A,B).

(xiii) Since A is weakly sequentially compact, it must be bounded (otherwise there
is some sequence (xk)k∈N in A such that limk→∞ ∥xk∥ = ∞, and hence (xk)k∈N
cannot have a weakly convergent subsequence since any weakly convergent sub-
sequence is bounded [34, II.3.27, p. 68]; thus not every sequence in A has a
convergent subsequence, in contradiction with the assumption that A is weakly
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sequentially compact). In addition, as a weakly sequentially compact subset,
A is evidently weakly sequentially closed. Hence for every distance minimizing
sequence ((ak, bk))k∈N, the sequence (ak)k∈N is automatically bounded. Thus the
assertion follows from Part (xii).

(xiv) Since A is weakly closed and bounded and since X is reflexive, A is weakly
compact [34, Corollary V.4.8, p. 415], and hence weakly sequentially compact
since any weakly compact subset of a normed space is weakly sequentially com-
pact [45, Corollary in Section 18A, p. 146]. Since B is closed and convex, it is
weakly closed [34, Theorem V.3.13, p. 422], and so weakly sequentially closed.
Thus the assertion follows from Part (xiii).

(xv) The result follows from either Part (xiv) or Part (xiii) because any nonempty,
closed and convex subset is weakly closed and hence weakly sequentially closed,
and any nonempty, closed, convex and bounded subset of a reflexive Banach
space is weakly compact and hence weakly sequentially compact.

(xvi) Because A ∪ B is unbounded and the coercivity condition (2.2) holds, we con-
clude from Lemma 3.11(ii) that (ak)k∈∞ and (bk)k∈N are bounded for every
distance minimizing sequence ((ak, bk))k∈N. The assertion now follows from Part
(xii).

(xvii) The assertion follows from Part (xvi) because any closed and convex subset of
a Banach space is weakly closed and hence weakly sequentially closed.

(xviii) Since limk→∞ ∥ak−bk∥ = dist(A,B) < ∞, if we denote zk := ak−bk for every k ∈
N, then (zk)k∈N is bounded and hence (becauseX is reflexive) (w) limk→∞,k∈N1 zk =
z for some infinite subset N1 ⊆ N and some z ∈ X. Because A − B is
weakly sequentially closed and (zk)k∈N is in A − B, we have z ∈ A − B. Thus
z = a − b for some (a, b) ∈ A × B. In addition, since the norm is weakly se-
quentially lower semicontinuous [34, II.3.27, p. 68], we have ∥a − b∥ = ∥z∥ ≤
lim infk→∞,k∈N1 ∥zk∥ = dist(A,B). Since (a, b) ∈ A × B, we obviously have
dist(A,B) ≤ ∥a − b∥. Hence ∥a − b∥ = dist(A,B) and (a, b) is a BAP relative
to (A,B).

(xix) By the assumptions on A and B we see that A−B is closed and convex. Hence
A − B is weakly closed and therefore weakly sequentially closed. Since X is
reflexive, the assertion follows from Part (xviii).

(xx) Since A = Ã + Â and B = B̃ + B̂, an immediate verification shows that A −
B = (Ã − B̃) + (Â − B̂). Hence by Part (xiii) it is sufficient to show that

Ã− B̃ is weakly sequentially compact because we already assume that Â− B̂ is

weakly sequentially closed. This is immediate because both Ã and B̃ are weakly

sequentially compact (hence if (xk − yk)k∈N is an arbitrary sequence in Ã − B̃

where (xk)k∈N is in Ã and (yk)k∈N is in B̃, then we can find infinite subsets

N2 ⊆ N1 ⊆ N and points x ∈ Ã and y ∈ B̃ such that x = (w) limk→∞,k∈N1 xk

and y = (w) limk→∞,k∈N2 yk; thus x − y = (w) limk→∞,k∈N2(xk − yk), namely

(xk − yk)k∈N has a subsequence which converges to a point in Ã− B̃).
(xxi) Our goal is to use Part (xix). Since A and B are affine and hence convex, it

remains to show that A−B is closed. We can write A = p1+ Ã and B = p2+ B̃
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for some p1, p2 ∈ X and linear subspaces Ã and B̃ of X. Since A − B =

(p1 − p2) + (Ã− B̃), it is sufficient to show that Ã− B̃ is closed.

We claim that Ã− B̃ = Ã⊕ΠF (B̃). Indeed, let z ∈ Ã− B̃ be arbitrary. Then

z = x − y for some x ∈ Ã and y ∈ B̃. From our assumption that X = Ã ⊕ F

we can write y = y1 + y2, where y1 = ΠÃ(y) ∈ Ã and y2 = ΠF (B̃) ∈ F . Because

Ã, as a linear subspace, is closed under sums, we have x− y1 ∈ A. In addition,

ΠF (B̃) = −ΠF (B̃) since ΠF (B̃) is a linear subspace. Hence −y2 ∈ ΠF (B̃) and

x− y = (x− y1) + (−y2) ∈ Ã⊕ΠF (B̃). Since z ∈ Ã− B̃ was arbitrary, we have

Ã− B̃ ⊆ Ã + ΠF (B̃). Because ΠF (B̃) ⊆ F and Ã ∩ F = {0}, we actually have

Ã+ΠF (B̃) = Ã⊕ΠF (B̃). Now let z ∈ Ã⊕ΠF (B̃) be arbitrary. Then z = x+w

for some (unique) x ∈ Ã and w ∈ ΠF (B̃). Since w ∈ ΠF (B̃), there is some y ∈ B̃
such that w = ΠF (y). Hence z = x + w = (x − ΠÃ(y)) + (ΠÃ(y) + ΠF (y)) =

(x− ΠÃ(y)) + y = (x− ΠÃ(y))− (−y). Because Ã and B̃ are linear subspaces,

we have x−ΠÃ(y) ∈ Ã and −y ∈ B̃. Therefore z ∈ Ã− B̃. Since z ∈ Ã⊕ΠF (B̃)

was arbitrary, we have Ã⊕ ΠF (B̃) ⊆ Ã− B̃, as required.

We claim that A ⊕ ΠF (B̃) is a closed subset of X. Indeed, let (zk)k∈N be

any convergent sequence in Ã ⊕ ΠF (B̃), and let z ∈ X be its limit. Then for

all k ∈ N, one has zk = xk + wk for some (unique) xk ∈ Ã and wk ∈ ΠF (B̃).

Since Ã and B̃ are topologically complemented in the Banach space X, the linear
projection ΠÃ is continuous [28, Theorems 13.1, 13.2, p. 94]. Hence limk→∞ xk =

limk→∞ΠÃ(zk) = ΠÃ(z) ∈ Ã. Thus w := limk→∞wk = limk→∞(zk − xk) =

z − ΠÃ(z). Because (wk)k∈N is in the closed subspace ΠF (B̃), its limit w is in

ΠF (B̃). Hence z = ΠÃ(z) + w ∈ Ã ⊕ ΠF (B̃) and Ã ⊕ ΠF (B̃) is closed. Since

Ã− B̃ = A⊕ ΠF (B̃), also Ã− B̃ is closed, as required.

(xxii) Since the linear part Ã of A is closed (because so is A), and since we assume that

the linear part B̃ of B is finite dimensional, we conclude from [46, Proposition

20.1, p. 195] that Ã+B̃ is closed. Since obviously B̃ = −B̃ because B̃ is a linear

subspace, we see that Ã − B̃ = Ã + B̃ is closed, and hence so is its translated
copy A−B. Therefore the assertion follows from Part (xix).

(xxiii) By our assumption X = Ã ⊕ F for some finite dimensional linear subspace F .

Therefore ΠF (B̃), which is a linear subspace of F , is also finite dimensional and
hence closed [46, p. 196]. The assertion now follows from Part (xxi).

(xxiv) It follows from [45, Lemma 15D, p. 104] that A − B is closed, and hence the
assertion follows from Part (xix).

(xxv) Let Ã and B̃ be the linear parts of A and B, respectively. It follows from [12, Ex.

2.16, p. 52] that Ã+ B̃ is closed. Since B̃ is a linear subspace, B̃ = −B̃ and so

Ã− B̃ = Ã+ B̃ is closed. Thus A−B, which is a translation of Ã− B̃, is closed,
and hence the assertion follows from Part (xix).

(xxvi) According to [4, Corollary 3.4.8], the infimum σ := inf{∥z−PBPAz∥ | z ∈ X} is
attained at some b ∈ X, namely σ = ∥b − PBPAb∥, where PA is the orthogonal



THE BAP PROBLEM IN NORMED SPACES 21

projection on A and PB is the orthogonal projection on B, which are well defined
since A and B are nonempty, closed and convex. According to [4, Corollary
4.4.3, Fact 4.4.4 and Remark 4.4.6], since σ is attained, one has σ := 0. Thus
∥b− PBPAb∥ = 0, namely b is a fixed point of PBPA, and, in particular, b ∈ B.
But according to [4, Fact 5.1.4(i)], which is actually [22, Theorem 2], any fixed
point z of PBPA satisfies d(z, A) = dist(A,B). Since d(z, A) = ∥z − PAz∥ by
the definition of PA, if we let z := b and a := PAb, then a ∈ A and dist(A,B) =
∥b− a∥, that is, (a, b) is a BAP relative to (A,B).

(xxvii) Since B = ∩a∈AH(p, a), where H(p, a) := {z ∈ X | ∥z − p∥ ≤ ∥z − a∥}, it
follows that B is an intersection of closed halfpsaces and hence closed and convex
(because p /∈ A, one has p ̸= a for all a ∈ A, and hence H(p, a) is indeed a
halfspace for each a ∈ A). Thus B is weakly closed and thus weakly sequentially
closed. Therefore if B is bounded, then the assertion follows from Part (xiii)
(where B and A are interchanged there). Otherwise, B is unbounded and so
is A ∪ B. We claim that (2.2) holds. Indeed, let µ > 0 be arbitrary and
denote ρ := 3(µ+ ∥p∥). Let (x, y) be an arbitrary pair in A×B which satisfies
∥(x, y)∥ > ρ. Either ∥y∥ > µ + ∥p∥ or ∥y∥ ≤ µ + ∥p∥. In the first case the
relations y ∈ B, x ∈ A and the triangle inequality imply that µ < ∥y∥ − ∥p∥ ≤
∥y− p∥ ≤ d(y, A) ≤ ∥y− x∥. In the second case we must have ∥x∥ > 2(µ+ ∥p∥)
because otherwise ∥(x, y)∥2 = ∥x∥2 + ∥y∥2 ≤ 5(µ + ∥p∥)2 < 9(µ + ∥p∥)2 = ρ2,
a contradiction to what we assumed on (x, y). Thus the triangle inequality and
the inequalities ∥y∥ ≤ µ+ ∥p∥ and ∥x∥ > 2(µ+ ∥p∥) imply that µ ≤ µ+ ∥p∥ <
∥x∥ − ∥y∥ ≤ ∥y − x∥. Therefore µ < ∥x− y∥ whenever (x, y) ∈ A× B satisfies
∥(x, y)∥ > ρ. Since ρ was an arbitrary positive number, the definition of the
limit implies that (2.2) holds. Consequently, Part (xvi) implies the existence
of a BAP with respect to (A,B).

(xxviii) B is nothing but the Voronoi cell of P := {p} with respect to A, i.e., B := {z ∈
X | ∥z − p∥ ≤ d(z, A)}. Since A is closed and convex, it is weakly closed and
hence weakly sequentially closed. Thus the assertion follows from Part (xxvii)

(xxix) We first recall that a hypercylinder is a set of the form C + L, where L is a line
(hence a one-dimensional affine subspace) and C is a closed ball contained in the

orthogonal complement subspace L̃⊥ of the linear part L̃ of L, having the origin

of L̃ as its center. Therefore A = C1 +L1 and B = C2 +L2 for two lines L1 and
L2, and two balls C1 ⊂ L̃⊥

1 and C2 ⊂ L̃⊥
2 . Since the linear part of L1 − L2 is

the linear subspace L̃1 − L̃2 which is finite dimensional and hence closed [46, p.
196], also L1 − L2 is closed. Because L1 − L2 is also convex, it is weakly closed
and hence weakly sequentially closed. Since C1 and C2 are closed, convex and
bounded and X is reflexive, both C1 and C2 are weakly sequentially compact.
The assertion now follows from Part (xx).

(xxx) Since both A and B are finite-dimensional affine subspaces, so is their difference
A − B. As is well known, the distance from any point x in a normed space X
to a finite-dimensional affine subspace F of X is attained (this is immediate: let
(xk)k∈N in F satisfy limk→∞ ∥x − xk∥ = d(x, F ); then (xk)k∈N is bounded, and
so has a convergent subsequence since F is finite-dimensional, and the limit z
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of this subsequence satisfies ∥x − z∥ = d(x, F ) by the continuity of the norm).
Hence d(0, A−B) is attained and the assertion follows from Part (ii).

(xxxi) Since any finite-dimensional normed space is a reflexive Banach space and since
in finite-dimensional normed spaces a sequence converges weakly if and only if
it converges strongly, the assertion follows from either Part (xiii) (if A ∪ B is
bounded) or Part (xvi) (if A ∪B is unbounded).

(xxxii) The proof is somewhat similar to the proof of Part (xxvii), but because there are
differences in the settings, some modifications are needed. First we observe that
since the function g : X → R defined by g(z) := d(z, P )− d(z, A) for all z ∈ X
is continuous (even Lipschitz continuous) and B is its 0-level-set, it follows that
B is closed and hence weakly sequentially closed since X is finite dimensional.
We also observe that since d(z, P ) = d(z, P ) for every z ∈ X (as follows, from
instance, from Lemma 3.1), we have B = {z ∈ X | d(z, P ) ≤ d(z, A)}.
If B is bounded, then the assertion follows from Part (xiii) (where B and

A are interchanged there). Otherwise, B is unbounded and so is A ∪ B. We
claim that (2.2) holds. Indeed, let µ > 0 be arbitrary. Since P is bounded, so
is P , and there is some r > 0 such that P is contained in the ball of radius r
about the origin. Denote ρ := 3(µ + r) and let (x, y) be an arbitrary pair in
A×B which satisfies ∥(x, y)∥ > ρ. Either ∥y∥ > µ+ r or ∥y∥ ≤ µ+ r. Suppose
that the first case holds. Since P is closed and X is finite dimensional, there
is some p ∈ P (hence ∥p∥ ≤ r) such that ∥y − p∥ = d(y, P ) (this also follows
from Part (xiii), where A there is replaced by {y} and B there is replaced by
P ). These facts, as well as the triangle inequality and the fact that y ∈ B, all
imply that µ < ∥y∥ − r ≤ ∥y∥ − ∥p∥ ≤ ∥y − p∥ = d(y, P ) ≤ d(y, A) ≤ ∥y − x∥.
Now suppose that the second case holds, that is, ∥y∥ ≤ µ + r. It must be that
∥x∥ > 2(µ + r) because otherwise ∥(x, y)∥2 = ∥x∥2 + ∥y∥2 ≤ 5(µ + r)2 < ρ2

by the definition of ρ, a contradiction to what we assumed on (x, y). Hence the
inequalities ∥y∥ ≤ µ + r and ∥x∥ > 2(µ + r), as well as the triangle inequality,
imply that µ < µ + r < ∥x∥ − ∥y∥ ≤ ∥y − x∥. Thus µ < ∥x − y∥ for all
(x, y) ∈ A × B which satisfies ∥(x, y)∥ > ρ. Since ρ was an arbitrary positive
number, the definition of the limit implies that (2.2) holds. Hence Part (xvi)
implies that there is a BAP relative to (A,B).

(xxxiii) This is just a particular case of Part (xxvi). Alternatively, since B is polyhedral,
also −B is polyhedral, and since the sum of finite-dimensional polyhedral sets
is polyhedral by [61, Corollary 19.3.2] (see also [70, Lemma 2]), it follows that
A − B is polyhedral and hence closed because a polyhedral set is closed as an
intersection of closed sets. The assertion now follows from Part (xix).

□

Remark 5.2. Here are a few comments related to Theorem 5.1:

(i) In general, existence of a BAP might not hold even in very simple settings.
Indeed, let X be the Euclidean plane, A := {(x1, x2) ∈ R2 |x2 ≥ ex1 + 1} and
B := {(x1, x2) ∈ R2 |x2 ≤ −ex1 − 1}. Then A and B are closed, strictly convex
and boundedly compact, but any (a, b) ∈ A×B satisfies ∥a−b∥ > 2 = dist(A,B),
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and so there is no BAP relative to (A,B). Of course, in this case the coercivity
condition (2.2) does not hold. This example shows that [65, Theorem 2.3, p.
385], which claims that there is a BAP relative to (A,B) whenever A and B are
boundedly compact and closed, is incorrect, as observed before in [71, p. 322]
using a different (counter)example. Nevertheless, by adding to [65, Theorem 2.3,
p. 385] the assumption that either A or B is bounded, the assertion becomes
correct, as claimed without a proof in [71, p. 322] and proved in Part (viii).

(ii) Part (i) is, of course, well known and is mentioned in [6, p. 434 in Section 5]
and [9, Fact 2.3(v)], in the context of Hilbert spaces. Part (iv) generalizes [71,
the assertion after Theorem 3] (which by itself generalizes a result from [64]),
where there X is restricted to be a Banach space and A (denoted by G there)
is also assumed to be convex (the proof of this assertion suffers from a gap,
namely the convexity of F there - denoted by B in Part (iv) - is crucial for
the existence of a convergent subsequence in F , but is omitted from the proof).
Part (v) generalizes [54, Theorem 3.1]. Part (ix) generalizes an assertion made
in [32, between Theorem 2.4 and Definition 2.5] in a Banash space setting.
Part (xix) generalizes [6, Lemma 2.1(ii) and p. 434 in Section 5] (see also [4,
Theorem 5.4.3]) from the case where X is a real Hilbert spaces and A and B are
closed and convex. Parts (xxii)–(xxiii) combined generalize [6, Facts 5.1(iii)]
from the case where X is a real Hilbert spaces and A and B are closed and
convex. Part (xxiv) is essentially mentioned in a real Hilbert setting in [6, Facts
5.1(iv)], which refers to the lemma in [45, Section 15] for the proof, as in we
did; however, while [6, Facts 5.1(iv)] says that the intersection of the recessions
cones can be linear, [45, Lemma 15D, p. 104] says that this intersection should
be {0}. Part (xxxi) extends related existence results in the Euclidean case, such
as [15, Corollary 4.16], [36, Proposition 2.2, Corollary 2.3], [41, Proposition 2.3]
(without giving explicit formulae as done there; note that there a BAP is referred
to as “the” BAP, although there can be several other BAPs).

(iii) Part (vii) is stated without a proof in [71, Corollary 1]. It is claimed there that
the proof can be obtained from [71, The proof of Theorem 4], but this is not
very clear since [71, The proof of Theorem 4] is based on the convexity of B
(denoted by G there), which is not assumed in [71, Corollary 1].

(iv) A more general version of Part (vii) is claimed in [71, Corollary 1], again without
a proof: that A is locally compact instead of being boundedly compact (the rest
of the assumptions are the same as in Part (vii)). It is not clear to us whether
this statement is correct, and it might be that the author of [71] actually meant
“boundedly compact” instead of “locally compact”.

(v) Part (xxvi) is claimed without a proof in [6, Fact 5.1(ii)]. It is said there that
a proof will appear in a certain future work, but eventually that specific work
neither presented the claim nor presented the proof.

(vi) One might wonder regarding possible extensions of Theorem 5.1. This is defi-
nitely possible. For example, consider the case where X is the dual of a Banach
space Y (e.g., X = L∞, Y = L1). This case allows the use of well known prop-
erties of the dual space such as the compactness of the unit ball in the weak-star



24 DANIEL REEM AND YAIR CENSOR

topology (the Banach-Alaoglu theorem [34, Theorem V.4.2, p. 424]), the fact
that every bounded sequence has a weak-star convergent subsequence [12, Corol-
lary 3.30, p. 76], and - if Y is also separable - the weak-star sequential lower
semiontinuity of the (dual) norm [12, Proposition 3.13(iii), p. 63], in order to
get corresponding existence results, such as the following modification of Part
(xiii): “X is the dual of a separable Banach space, A is weak-star sequentially
compact, and B is weak-star sequentially closed.”

(vii) Some of the assertions formulated in Theorem 5.1 hold, with essentially the
same proofs, in metric spaces: these are Parts (i), (vi), (vii), (viii) and (x).

(viii) Given a collection (Pk)k∈K of nonempty subsets of the ambient space X, called
sites or generators, the Voronoi cell Vk of Pk is the set Vk := {x ∈ X | d(x, Pk) ≤
d(x,Ak)}, where Ak := ∪j∈K\{k}Pj. The collection (Vk)k∈K is the so-called
Voronoi diagram of the given sites. Voronoi diagrams have numerous applica-
tions in science and technology: see, for example, [2,23,29,33,43,53,58–60] and
the references therein. If all the sites are closed and either K is finite or K is infi-
nite and the gap between the sites is positive (namely 0 < inf{dist(Pi, Pj) | i, j ∈
K, i ̸= j}, as happens, e.g., if each site is a lattice point or a subset located in
a small neighborhood of a lattice point), then Ak is closed for all k ∈ K (in the
first case this is obvious, and in the second case this follows from the fact that
any sequence in Ak, which converges to some point in X, must belong to the
same site Pj starting from some place because of the positive gap between the
sites). Therefore, if, in addition, X is finite dimensional and all the sites are
bounded, then Theorem 5.1(xxxii) ensures that for every k ∈ K the distance
between the Voronoi cell of Pk and the union Ak of the other sites is attained.

6. Examples

This section presents several examples and counterexamples which illustrate some
of the results established earlier.

Example 6.1. Let (X, ∥ · ∥) be the Euclidean plane, A := [−2, 2] × [−2, 0] be a

rectangle, and B := {(x1, x2) ∈ X | x2
1

4
+ (x2 − 2)2 ≤ 1} be an ellipse. See Figure 1.

Then (X, ∥ · ∥) is strictly convex, both A and B are nonempty, convex and compact,
and B is actually strictly convex, and so, according to Corollary 4.6, there is a unique
BAP (a0, b0) with respect to (A,B). In fact, a0 = (0, 0) and b0 = (0, 1).

Example 6.2. Let X := R2 be the plane with the ∥ · ∥∞ norm ∥(x1, x2)∥∞ :=
max{|x1|, |x2|}, (x1, x2) ∈ X, and let A and B be defined as in Example 6.1. See
Figure 2. Since (X, ∥ · ∥∞) is not strictly convex, the existence of a unique BAP with
respect to (A,B) is not guaranteed. Indeed, now ([a0, a1], [b0, b1]) is a nondegenerate
(but not a strictly nondegenerate) BAP of intervals with respect to (∂A, ∂B), where
a0 := (−1, 0), a1 := (1, 0), and b0 := (0, 1) =: b1, because ∥a(t) − b0∥∞ = 1 =
dist(A,B) for all t ∈ [0, 1].

Example 6.3. LetX := R3 with the ∥·∥∞ norm ∥(x1, x2, x3)∥∞ := max{|x1|, |x2|, |x3|},
(x1, x2, x3) ∈ X. Let A := {(x1, x2, x3) ∈ X |x1 ∈ [−1, 1], x2 = 0, x3 = 0} and
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Figure 1. An ellipse
and a rectangle in the
Euclidean plane (Exam-
ple 6.1): a unique BAP.

 
 

 
 

 
 
 
 
 
 
 

B 

a1 a0 a0.5 
b0 = b1 

A 

Figure 2. An ellipse
and a rectangle in the
plane with the ∥·∥∞ norm
(Example 6.2): many
BAPs.

B := {(x1, x2, x3) ∈ X |x1 = 0, x2 ∈ [−1, 1], x3 = h} for some fixed h ≥ 1. Then A and
B are nondegenerate intervals. Since any x = (x1, x2, x2) ∈ A and y = (y1, y2, y3) ∈ B
satisfy |x1 − y1| = |x1| ≤ 1, |x2 − y2| = |y2| ≤ 1 and |x3 − y3| = h ≥ 1, we have
∥x − y∥∞ = h and dist(A,B) = h, namely (x, y) is a BAP relative to (A,B) for all
(x, y) ∈ A × B. Moreover, (A,B) is a strictly nondegenerate BAP of intervals with
respect to (A,B) although A and B are not parallel.

Example 6.4. Let X := R3 with the Euclidean norm. Fix σ1, σ2, h1, h2 ∈ (0,∞) and
let A be the elliptical cylinder defined by A := {(x1, x2, x3) ∈ X | (x2

1/σ
2
1)+ (x2

2/σ
2
2) ≤

1, x3 ∈ [−h1, 0]}. Let B be the ellipse defined by B := {(x1, x2, x3) ∈ X | (x2
1/σ

2
1) +

((x2 − σ2)
2/σ2

2) ≤ 1, x3 = h2}, namely B is a translated copy of the ellipse which
generates A. See Figure 3. Here (X, ∥ · ∥) is strictly convex but both A and B are
not (even though B is strictly convex in the affine hull that it spans, namely when

restricted to the plane {(x1, x2, x3) ∈ X : x3 = h2}) and indeed, (S1, S̃1) and (S2, S̃2)
(see Figure 3) are strictly nondegenerate BAPs of intervals with respect to (A,B).
Of course, there are infinitely many other such pairs.

Example 6.5. Figure 4 presents a two-dimensional example in which there exists at
least one BAP with respect to (A,B) because of Theorem 5.1(x), and this pair is
unique because of Theorem 4.1 since there does not exist a nondegenerate BAP of
intervals with respect to (∂A, ∂B). Nevertheless, there does exist an interval contained
in ∂A which is parallel to an interval which is contained in ∂B.

Example 6.6. Figure 5 presents two compact shapes in the Euclidean plane whose
boundaries contain intervals, but no interval contained in the boundary of one shape
is parallel to an interval contained in the boundary of the other shape. Hence the
conditions of Corollary 4.6 and of Theorem 5.1(x) are satisfied, and thus there exists
a unique BAP relative to (A,B).

Example 6.7. Figure 6 presents two disjoint and unbounded cylinders in the Eu-
clidean space R3 whose main axes are not parallel. Therefore, despite the fact that
the boundary of each cylinder contains intervals, no interval from one boundary is
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Figure 3. An ellipse and
a cylinder in the Eu-
clidean space R3 (Exam-
ple 6.4): two strictly non-
degenerate BAPs of in-

tervals (i.e., (S1, S̃1) and

(S2, S̃2)) are presented.
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Figure 4. Two shapes in the
Euclidean plane whose bound-
aries contain parallel intervals
which satisfy the conditions of
Theorem 4.1, and hence in-
duce a unique BAP (Example
6.5).
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Figure 5. Two shapes
in the Euclidean plane
for which the conditions
of Corollary 4.6 are sat-
isfied (Example 6.6).
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Figure 6. Two non-parallel
unbounded cylinders (partly
shown) in the Euclidean space
R3 for which the conditions
of Corollary 4.6 are satisfied
(Example 6.7).

parallel to an interval from the other boundary. Hence Corollary 4.6 ensures that
there exists at most one BAP relative to (A,B), and Theorem 5.1(xxix) ensures the
existence of at least one BAP relative to (A,B), namely the pair is unique.

Example 6.8. An illustration of Theorem 4.2 in the plane, with any norm, is pre-
sented in Figure 7. This theorem and Theorem 5.1(x) imply that there is a unique
BAP relative to (A,B).

Example 6.9. An illustration of Theorem 4.5 in the plane, with any strictly convex
norm, is presented in Figure 8. This theorem, as well as Theorem 5.1(x), ensure that
there is a unique BAP relative to (A,B).
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