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Quantum entanglement is one of the primary features which distinguishes quantum computers
from classical computers. In gate-based quantum computing, the creation of entangled states or
the distribution of entanglement across a quantum processor often requires circuit depths which
grow with the number of entangled qubits. However, in teleportation-based quantum comput-
ing, one can deterministically generate entangled states with a circuit depth that is constant in
the number of qubits, provided that one has access to an entangled resource state, the ability to
perform mid-circuit measurements, and can rapidly transmit classical information. In this work,
aided by fast classical FPGA-based control hardware with a feedback latency of only 150 ns, we
explore the utility of teleportation-based protocols for generating non-local, multi-partite entangle-
ment between superconducting qubits. First, we demonstrate well-known protocols for generating
Greenberger–Horne–Zeilinger (GHZ) states and non-local CNOT gates in constant depth. Next, we
utilize both protocols for implementing an unbounded fan-out (i.e., controlled-NOT-NOT) gate in
constant depth between three non-local qubits. Finally, we demonstrate deterministic state telepor-
tation and entanglement swapping between qubits on opposite side of our quantum processor.

Keywords: Quantum Entanglement, Quantum Teleportation, Adaptive Circuits, Mid-Circuit Measurement,
Classical Feedback

I. INTRODUCTION

Quantum entanglement plays a central role in nearly
all quantum applications. In gate-based quantum com-
puting, entanglement is generated by multi-qubit uni-
tary operations (i.e., gates), which can be used to pre-
pare multi-partite entangled states. In systems with
all-to-all connectivity, generating multi-partite entan-
glement can be trivially accomplished by means of two-
qubit gates [1]. However, in systems with limited con-
nectivity (e.g., superconducting circuits), generating
non-local multi-partite entanglement by unitary oper-
ators can be costly due to the need for SWAP networks
for swapping states between neighboring qubits [2, 3].
However, long-range entangled states can be efficiently
prepared using quantum teleportation-based protocols
[4, 5] in a hardware agnostic manner. Quantum tele-
portation is a method for transmitting a quantum state
from one qubit to another, provided that they each
share half of a Bell state and can transmit classical in-
formation. When embedded within a larger (unitary)
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quantum circuit for performing adaptive control of en-
tangled states, teleportation protocols necessitate the
use of mid-circuit measurements (MCMs) and fast clas-
sical feed-forward operations conditioned on the results
of the measured outcomes. Using adaptive circuits, it
has been shown that no purely unitary circuit can pre-
pare the same entangled state for the same circuit depth
and connectivity [6]. Moreover, these adaptive circuits
have been proposed for simulating exotic phases of mat-
ter with non-Abelian anyons [7–9], long-range interact-
ing quantum matter [10, 11], and for preparing topolog-
ically ordered states [12]. Finally, as the size of quan-
tum quantum computers continues to grow, adopting
modular computing architectures [13] will be necessary.
In such architectures, quantum teleportation protocols
[4, 5, 14] will be useful tool for transmitting quantum
information from one system to another.

In the noisy intermediate-scale quantum (NISQ) era
[15], qubit coherence times and gate fidelities limit
the circuit depth with which we can perform useful
computations. For superconducting qubits, if long-
range entanglement is needed between qubits which
are not physically connected, swapping information re-
quires O(n) circuit depth for n qubits [3]. There-
fore, generating multi-partite entanglement between
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non-local qubits becomes intractable if the available
size of contemporary systems grows faster than the fi-
delity of multi-qubit gates can be improved. However, it
has been shown that non-local, multi-partite entangled
states can be prepared in constant depth [1, 6, 16, 17]
using teleportation-based protocols, as long as one has
access to mid-circuit measurements and adaptive feed-
back. These entangled states can further be used as
a resource for other teleportation-based protocols (e.g.,
generating non-local entangling gates).

In this work, we utilize open source FPGA-based
control hardware with low feedback latency (∼150
ns) [18, 19] for exploring the utility of teleportation-
based protocols on an eight-qubit superconducting
quantum processor (see Appendix). We first demon-
strate well-known procedures for preparing Green-
berger–Horne–Zeilinger (GHZ) states and implement-
ing non-local teleportation-based CNOT gates in con-
stant depth. Then, we show how one can utilize both
protocols to implement an unbounded fan-out gate in
constant depth, which we use to create a controlled-
NOT-NOT gate between three unconnected qubits. Fi-
nally, we show how one can deterministically teleport
quantum states or generate Bell pairs between distant
qubits in constant-depth, and demonstrate these proto-
cols between qubits on opposite sides of our quantum
processor. Throughout this work, we explore the ex-
tent to which MCMs dephase idling spectator qubits,
and find that the measurement-induced dephasing [20]
strongly depends on the spectral resolution of the read-
out resonators coupled to each qubit. This work serves
as a useful study for understanding how teleportation-
based protocols can be utilized as a resource within
larger (unitary-based) quantum circuits, and what limi-
tations need to be overcome for utilizing such protocols
for superconducting qubits at scale.

II. GHZ STATE PREPARATION

The first task we demonstrate here is the preparation
of a GHZ state between non-nearest neighbor qubits in
constant depth. GHZ states are highly entangled states
that play an important role in quantum foundations
[21–23], quantum metrology [24], and fault-tolerant
quantum computation [25]. To prepare an n-qubit GHZ
state with one- and two-qubit gates requires at least
O(log n) circuit depth even with all-to-all connectivity
[26]. However, if we are allowed to perform mid-circuit
measurements and perform gate operations on the un-
measured qubits based on the classical outcomes, the
depth can be reduced to constant regardless of the size
of the GHZ state. The idea for constant depth GHZ
state preparation can be easily understood via the sta-
bilizer formalism. The GHZ state |GHZ⟩ = 1√

2
(|0⟩⊗n

+

|1⟩⊗n
) is the eigenstate for a set of stabilizer gen-

erators ⟨X1X2 . . . Xn, Z1Z2, . . . , ZjZj+1, . . . , Zn−1Zn⟩
with eigenvalue +1. Therefore, one can initialize all
data qubits in |+⟩⊗n state and use ancillae qubits in
the middle of two data qubits to measure ZZ type sta-
bilizers in parallel. If all the measurement outcomes are
+1, then the state among those data qubits should be
in the standard form of the GHZ state, provided that
there is no readout error. On the other hand, if some of
the measurement outcomes are −1, this indicates that
there exist some “domain walls” between adjacent data
qubits and therefore we need an extra layer of single-
qubit X gates acting on certain qubits to recover the
standard GHZ state. While this protocol has already
been demonstrated in trapped ions [1], cold atoms [27],
and superconducting qubits [17], we similarly show it
here as it not only serves as the backbone for other tasks
like the constant-depth fan-out gate implementation,
but also provides one figure of merit to benchmark the
performance of measurement- and teleportation-based
protocols in our platform.

The circuit schematic for preparing a four-qubit GHZ
state in constant depth on our eight-qubit processor is
shown in Fig. 1a. Here, four “data” qubits (black) are
entangled with three ancillae qubits (red) in an alter-
nating fashion. By performing mid-circuit measurement
(MCM) of the ancillae qubits, we can learn about the
parity of each pair of data qubits, and the results of
the parity measurements can be decoded in real-time
to determine which data qubit(s) experienced a bit-flip.
In Figs. 1b–d, we plot the raw (marginalized) outputs
of measurements made in the computational basis for
two-, three-, and four-qubit GHZ states prepared among
data qubits. While the classical outputs resemble GHZ
states (albeit very noisy in the four-qubit case), we use
parity oscillations [28–30] to verify whether or not we
have generated genuine entanglement among our data
qubits. The fidelity of an n-qubit GHZ state state can
subsequently be computed via

F|GHZn⟩ =
1

2

(
P|0⟩⊗n + P|1⟩⊗n + C

)
, (1)

where P|0⟩⊗n is the population of the |0⟩⊗n state, P|1⟩⊗n

is the population of the |1⟩⊗n state, and C is the am-
plitude of oscillations of the measured parity (i.e., the
coherence of the state). If F|GHZn⟩ > 0.5, this repre-
sents a case of genuine entanglement between n-qubits
[29, 31, 32]. For our constant-depth creation of GHZ
states, we measure a fidelity of F|GHZ2⟩ = 0.92(1),
F|GHZ3⟩ = 0.67(2), and F|GHZ4⟩ = 0.32(3) for the two-,
three-, and four-qubit GHZ states, respectively. There-
fore, while we observe genuine entanglement for the two-
and three-qubit GHZ states, the four-qubit GHZ fails
the above criteria.

In general, the fidelity of states prepared via
measurement-based protocols can be limited by many
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Figure 1. GHZ State Preparation in Constant Depth. (a) Adaptive circuit for preparing a four-qubit GHZ state
on non-local qubits. Data qubits (black) are entangled with ancillae qubits (red) in a pair-wise fashion. Mid-circuit
measurements of the ancillae qubits can be used to determine the parity of the data qubits, which can be decoded to
determine which data qubits should be flipped to prepare all four in a GHZ state. Measurements of the GHZ state in
the computational basis for (b) two qubits, (c) three qubits, and (d) four qubits. Parity oscillations of the GHZ state
for (e) two qubits, (f) three qubits, and (g) four qubits. From these results we calculate a GHZ state prep fidelity of
F|GHZ2⟩ = 0.92(1), F|GHZ3⟩ = 0.67(2), and F|GHZ4⟩ = 0.32(3).

sources of errors, including readout errors (T1 decay,
crosstalk, etc.), noise on idling spectator qubits, gate
errors, etc. In our case, the errors are likely due
to measurement-induced dephasing on spectator qubits
(see Appendix). Because superconducting qubits are
measured via dispersive coupling to a readout resonator,
depending on the frequency separation of the resonators
of neighboring qubits and the static coupling between
nearest neighbors, the measurement of an ancilla qubit
can result in the dephasing of a spectator qubit. If
the dephasing is weak, it can be mitigated via dynam-
ical decoupling. However, if the readout resonator of
the ancilla qubit is close in frequency to the readout
resonator of the data qubit, then measurement of the
ancilla qubit can indirectly measure the data qubit, in
which case phase coherence of the data qubit is com-
pletely lost after the MCM (we discuss this in detail
in Appendix D). This dephasing can be mitigated by
ensuring that ancilla qubits are always those whose res-
onators are spectrally well-resolved from the resonators
of the data qubits, but this can sometimes necessitate
SWAP gates between qubits, which increases the con-
tribution from gate errors in the preparation circuit.

III. TELEPORTATION-BASED CNOT

Teleportation-based quantum gates are an important
component of quantum internet and networking proto-
cols [33–35]. Moreover, such gates enable entanglement
between non-local qubits on systems with sparse con-
nectivity, which can ease topology constraints when fre-

quency crowding is an issue [36]. It is also beneficial in
the realm of quantum error correction. In contrast to
the standard surface code [37] where only one logical
qubit is encoded in each patch, quantum low-density
parity check (QLDPC) codes [38] benefit from higher
encoding rates, but come at the expense of non-local
stabilizer checks. Therefore, it becomes difficult to per-
form stabilizer measurement for QLDPC codes when
the connectivity of the qubit layout is limited by lo-
cality. Several hardware-efficient protocols have been
proposed to tackle this problem. For example, neu-
tral atoms trapped in optical tweezers can be moved
around to perform entangling gates with other atoms
far from each other [27, 39]. On the other hand, for
systems without all-to-all coupling (e.g., superconduct-
ing circuits), a teleportation-based CNOT is another
option if entanglement is shared between two separate
parties, where the long range GHZ states may serve
as the desired entanglement resource. Teleportation-
based CNOT gates have been previously demonstrated
in optical systems [40], trapped ions [41], superconduct-
ing cavities [42], and superconducting qubits [17]. In
our work, we demonstrate a teleportation-based CNOT
gate as it serves as a precursor to the more expressive
gate, the unbounded fan-out (see next section), which
can also be demonstrated in constant depth using sim-
ilar methods.

The circuit diagram for the teleportation-based
CNOT is shown in Fig. 2a, where it can be seen that
a CNOT between distant qubits (blue) can be imple-
mented by means of two MCMs with feed-forward, as
long as the two ancillae qubits (black) are prepared in
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Figure 2. Teleportation-based CNOT. (a) A CNOT be-
tween non-local qubits (blue) can be implemented via gate
teleportation as long as the ancillae qubits (black) are pre-
pared in a Bell state. (b) When the ancillae qubits are
also non-local, they can first be prepared in a Bell state
using the constant depth GHZ state preparation protocol
which utilizes additional ancillae (red). (c) Truth table for
a teleportation-based CNOT between qubits 1 and 4. Here,
the Bell state between ancillae qubits is prepared using only
unitary operators. The measured fidelity is Ftt = 0.90(1).
(d) Truth table for a teleportation-based CNOT between
qubits 0 and 4. Here, the Bell state between ancillae qubits
is prepared using the procedure shown in (b). The measured
fidelity is Ftt = 0.75(1).

a Bell state. If the ancillae qubits themselves are non-
local, then we may first prepare them in a Bell state
using the same procedure introduced in the previous
section for the constant-depth GHZ state preparation
(Fig. 2b). As a result, the ability to perform con-
stant depth long-range GHZ preparation provides the
opportunity to execute constant depth teleportation-
based CNOT, regardless of the distance between two
data qubits. In Figs. 2c–d, we plot the truth table for
performing a CNOT between qubits on opposite sides
of our eight-qubit quantum processor, which is arranged
in a ring geometry (and thus has only linear connectiv-

ity to nearest neighbors). We calculate a truth table
fidelity for each pair of gates,

Ftt =
1

d
Tr(ST

expSideal) , (2)

where d = 2n is the Hilbert space dimension for n
qubits, Sexp is the experimental truth table, and Sideal

is the ideal truth table. For a CNOT between qubits
1 and 4 (which are only separated by two ancillae, and
thus only require unitary preparation of a Bell state),
we find a truth table fidelity of Ftt = 0.90(1). For a
CNOT between qubits 0 and 4 (which are separated by
three ancillae, and thus can utilize the constant depth
GHZ state prep shown in Fig. 2b), we find a truth table
fidelity of Ftt = 0.75(1).

IV. QUANTUM FAN-OUT GATE

With slight modifications of the teleportation-based
CNOT, it is possible to construct another quantum gate
— the unbounded quantum fan-out operation [43] — in
constant depth with the help of MCM and feed-forward
control. The unbounded quantum fan-out (see Fig. 3a)
is a powerful multi-qubit gate that enables constant
depth circuits to approximate various operations with
a polynomially small error [43], and it attracts interest
in the study of quantum circuit complexity [43]. More-
over, it can help reduce circuit depth for many different
tasks if it can be implemented natively, and in gen-
eral gives a linear speedup over serialized instructions
[44]. For example, the Quantum Fourier Transforma-
tion (QFT) — a central component of algorithms for
performing discrete logarithms and factoring of inte-
gers [45] — is typically performed in quadratic depth
[46], but can be approximately performed in constant
depth and polynomial size using the fan-out gate [43].
Other gates like n-qubit generalized Toffoli can also be
implemented exactly in constant depth with the fan-
out gate [47], which enables the possibility for arbitrary
state preparation in constant depth together with one-
and two-qubit operations (at the expense of exponen-
tial ancillae overhead) [48]. For certain states like W-
state or low-Hamming-weight Dicke states, constant-
depth polynomial-size preparation can be performed
with mid-circuit measurement even when the locality
constraint on two-qubit gates is considered [49].

The quantum fan-out gate is equivalent to perform-
ing a set of serialized controlled-NOTs with one con-
trol qubit and N target qubits (see Fig. 3a). However,
similar to the teleportation-based CNOT introduced in
the previous section, this can be implemented in con-
stant depth by means of MCM and feed-forward con-
trol. Our circuit for constant-depth implementation of
quantum fan-out gate is shown in Fig. 3b. We first pre-
pare a three-qubit GHZ state in constant depth as the
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Figure 3. Unbounded Fan-Out Gate. (a) The quantum fan-out gate is equivalent to performing a control-NOTN on
N target qubits (black). Similar to the teleportation-based CNOT gate, this can be implemented in constant depth by
means of MCM and feed-forward control, provided one can use N ancillae qubits (red) prepared in a GHZ state as an
entanglement resource. (b) We implement a controlled-NOT-NOT gate between three non-local qubits using the protocol
shown in (a). We first use two ancillae qubits to prepare three other qubits in a GHZ state using the protocol shown in
Fig. 1a. Next, the ancillae qubits are actively reset (AR) as data qubits, and the GHZ qubits are used as ancillae for the
fan-out gate. We perform computational basis rotations (B) on data qubits prior to the fan-out gate, and measure the data
qubits in the computational basis after the fan-out gate to perform truth table tomography. (c) Experimental results for
truth table tomography performed on the controlled-NOT-NOT gate. We measure a truth table fidelity of Ftt = 0.68(2).

entanglement resource (we are limited to three ancil-
lae qubits, because at four qubits we cannot maintain
phase coherence; see Fig. 1). Next, we entangle the con-
trol and all of the target qubits with the GHZ state in
a single layer of CNOT gates. We then measure each
ancilla qubit along the X or Z. Finally, based on the
measurement results, if the Z outcome is −1 we apply a
conditional X operation to all of the target qubits, and
if there are an odd number of −1 outcomes in Z mea-
surement we apply a conditional Z gate on the control
qubit. Due to the limited number of qubits, we first use
two qubits as the ancillae in the constant-depth prepa-
ration of GHZ state and then re-initialize them (using
active reset) as the data qubits for the fan-out gate.
In principle, with more qubits and better connectivity,
we may choose two separate sets of ancillae qubits that
each serve only one purpose.

To demonstrate the feasibility of the fan-out gate,
we implement a controlled-NOT-NOT (CXX) between
three non-local qubits in constant depth. In Fig. 3c, we
benchmark the CXX gate using truth table tomogra-
phy and measure a truth table fidelity of Ftt = 0.68(2).
As we have previously pointed out, our qubits suffer
from measurement-induced dephasing (see Appendix).
Performing truth table tomography to some degree is
immune to this effect, since the data qubits are initial-

ized and measured in computational basis (after being
used to prepare ancillae qubits in a GHZ state). How-
ever, future work will explore to what extent we can
successfully prepare and measure in non-computational
basis states (e.g., performing a controlled-Z-Z gate), as
phase coherence will be important when utilizing this
gate within a larger quantum computation.

V. ENTANGLEMENT SWAPPING AND
TELEPORTATION

Similar to the teleportation-based CNOT protocol,
long-distance state teleportation itself can also be im-
plemented in constant depth. In Fig. 4, we outline
a state-teleportation protocol from the perspective of
quantum repeaters [35, 50], which serve as a helpful
design to tackle imperfections during long-distance en-
tanglement distribution in quantum networks [51]. In
a purely unitary circuit, swapping states between two
ends of a register is performed by means of a cascade
of SWAP gates (or alternatively, two unbounded fan-
out gates; see Fig. 4a). However, by utilizing MCMs
and feed-forward control, it is possible to instead tele-
port the state from one end of a register to another in
constant depth by a quantum repeater protocol with
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Figure 4. Entanglement Swapping and Teleportation. (a) In a unitary circuit, swapping a state |ψ⟩ between two
ends of a register is achieved with a cascade of SWAP gates (the first CNOT gate in each SWAP can be omitted because
the ancillae qubits start in |0⟩). This is equivalent to two unbounded fan-out gates with the opposite orientation. (b) In
measurement-based circuits, the state |ψ⟩ can be teleported from one end of a register to another using a quantum repeater
protocol with simultaneous entanglement swapping, whereby a series of Bell state preparations and Bell measurements are
performed in an alternating manner, and the outcome of each MCM is used to perform a conditional operation (Xc or Zc, if
measured in the Z or X basis, respectively) on the final qubit. (c) A related procedure, known as entanglement swapping,
can be used to deterministically prepare a Bell state between the two end qubits in a register. If the input state is |00⟩,
the output state is |Φ+⟩. (d) Classical outcomes for the teleportation of |0⟩, |+⟩, and |1⟩ from one side of our quantum
processor to the other. The probabilities of successful teleportation (measured via 1 - the total variational distance to the
ideal distribution) are 88.1%, 99.4%, and 94.4% respectively. (e) The Pauli transfer matrix (PTM) for the teleportation
protocol in (b). The ideal matrix should be diag(1, 1, 1, 1), since the input and output states should be identical. The low
X and Y eigenvalues of the PTM (∼ 0.5) suggest there is strong (measurement-induced) dephasing. (f) Parity oscillations
for the deterministic preparation of |Φ+⟩ and |Φ−⟩ using the protocol in (c), giving Bell state fidelities of F|Φ+⟩ = 0.57(1)
and F|Φ−⟩ = 0.55(1). The small contrast in the oscillations additionally suggests a loss of phase coherence during the
MCMs.

simultaneous entanglement swapping [35]. The struc-
ture of quantum repeaters is simple: ancillae qubits
are prepared in a Bell state in an alternating manner,
and Bell measurements are performed on overlapping
qubits from each Bell state (see Fig. 4b). The measure-

ment of each repeater can be executed in parallel, after
which conditional feed-forward operations are applied
to the qubit on the opposite side of the register from
the qubit whose state we wish to teleport. Throughout
this process, the ancillae qubits are involved in a process
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known as “entanglement swapping” [52–54], since we
get a long-distance entangled state from several short-
distance ones. In fact, entanglement swapping gener-
ates a Bell pair distributed on two ends of the line of
ancillae qubits (see Fig. 4c), and we can then use this
Bell pair for teleportation task and other teleportation-
based operations like CNOT we showed previously.

Historically, entanglement swapping and teleporta-
tion were performed on photonic systems [55–57], NMR
[58], and atomic systems [59, 60]. Deterministic tele-
portation has also been demonstrated on superconduct-
ing [61], but previous demonstrations of entanglement
swapping on superconducting qubits [62] were not de-
terministic.1 Here, we demonstrate both determinis-
tic state teleportation and deterministic remote entan-
glement generation via MCMs and feed-forward opera-
tions. In Fig. 4d, we plot the raw outputs for teleport-
ing |0⟩, |+⟩, and |1⟩ states from one side of our quan-
tum processor to the other. The probability of mea-
suring the incorrect state (calculated via the total vari-
ational distance to the ideal outcome) is 11.9%, 0.6%,
and 5.6% for |0⟩, |+⟩, and |1⟩, respectively. However,
measuring the classical outputs of our teleportation pro-
tocol is not sufficient when the desire is to embed this
sub-circuit within a larger unitary circuit, where main-
taining coherence is important. For this purpose, in
Fig. 4e we plot the Pauli transfer matrix (PTM) mea-
sured via quantum process tomography (QPT) for the
state teleportation protocol. Ideally, the PTM should
reflect the identity operation. While we measure a
process fidelity of 0.67(1) — which is well above the
classical threshold of 1/2 — the Pauli-X and Pauli-
Y operators are not well-preserved by the process. In
the PTM formalism, the preservation of a given Pauli
eigenvalue is directly affected by non-commuting errors.
Therefore, this is further evidence that our data qubits
undergo strong measurement-induced dephasing during
our MCMs, even with dynamical decoupling (see Ap-
pendix). Ultimately, this will limit the utility of the
protocol within larger adaptive circuits.

As previously stated, when performing state tele-
portation, we in fact entangle the two end ancillae
qubits in a Bell state via entanglement swapping. We
can therefore use this procedure as an alternative to
the constant-depth GHZ state introduced in Sec. II,
if entanglement is only desired between two non-local
qubits. By varying the input state,2 we can determin-
istically generate any Bell state between the two end

1 While Ref. [62] claimed “deterministic” entanglement swapping,
their protocol did not implement any feed-forward operations.
Therefore, they were only able to deterministically prepare an
entangled Bell state, without any active control over which
state they prepared.

2 The input to output mapping is: |00⟩ 7→ |Φ+⟩, |10⟩ 7→ |Φ−⟩,
|01⟩ 7→ |Ψ+⟩, |11⟩ 7→ |Ψ−⟩.

ancillae. To demonstrate this, we deterministically pre-
pare |Φ+⟩ = 1√

2
(|00⟩+|11⟩) and |Φ−⟩ = 1√

2
(|00⟩−|11⟩),

and once again measure their coherences via parity os-
cillations (shown in Fig. 4f). We measure Bell state fi-
delities of F|Φ+⟩ = 0.57(1) and F|Φ−⟩ = 0.55(1). While
both of these are above the required threshold of 1/2
for genuine entanglement, it is clear from the contrast
in the parity oscillations that a significant amount of
phase coherence is lost in the process.

VI. OUTLOOK

In this work, we have demonstrated a variety of pro-
tocols for generating non-local entangled states and
entangling gates in constant depth. These protocols
are based on teleportation-based quantum computing,
whereby one has access to an entangled resource state
which can be measured in the middle of a circuit, and
whose classical outcomes can be rapidly analyzed in
real-time to determine which conditional feed-forward
operations to apply to the unmeasured qubits. For su-
perconducting qubits, which have relatively fast gate
times and relatively short coherence times compared
to other hardware platforms, the utility of such pro-
tocols depends on the ability to perform MCMs and
implement real-time feedback well within the coher-
ence times of the qubits. With access to MCMs and
fast classical feedback, teleportation-based protocols en-
able one to greatly reduce the circuit depth of many
common tasks in quantum computing. This is partic-
ularly beneficial in the NISQ era, because it enables
longer circuit depths to be performed within the co-
herence time of the qubits. Moreover, such protocols
have similar requirements as quantum error correction
(mid-circuit measurement, real-time syndrome decod-
ing, etc.); therefore, developing the capabilities to im-
plement teleportation-based protocols will be beneficial
to the advancement of real-time quantum error correc-
tion.

Nevertheless, the utility of such protocols for super-
conducting qubits is severely limited by the dephas-
ing on idling spectator qubits during MCMs. This
dephasing can result from the static ZZ coupling be-
tween neighboring qubits [63] during the measurement
of one qubit, or it can result from any unintentional
direct measurement of a qubit (e.g., due to frequency
crowding of the readout resonators). Depending on the
strength of the dephasing, methods such as dynamical
decoupling may or may not help (see Appendix). In fu-
ture work, we plan to explore ways to protect spectator
qubits during MCMs. For example, in fixed-frequency
systems, the static ZZ coupling can be nulled by means
of simultaneous off-resonant drives on both qubits [63];
or, in systems with tunable couplers, this term can be
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turned off entirely during measurement. To combat
the unintentional (direct) measurement of a spectator
qubit, we plan to explore the degree to which one can
“cloak” the qubit from the readout cavity [64]. Finally,
because measurement- and teleportation-based proto-
cols are fundamentally limited by the readout fidelity
of MCMs, combining them with methods of performing
readout correction of MCMs [65] would be an interest-
ing avenue of exploration.
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Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

T1 (µs) 96.6(2.6) 130.0(2.7) 142.0(3.0) 140.0(6.3) 77.0(5.2) 30.4(0.95) 55.6(1.3) 22.5(0.32)

T ∗
2 (µs) 120.0(14.0) 41.0(7.2) 92.0(16.0) 61.0(6.1) 38.0(5.4) 8.5(1.3) 26.0(3.7) 39.0(1.7)

T2E (µs) 120.0(8.3) 130.0(7.5) 140.0(12.0) 90.0(13.0) 110.0(11.0) 33.0(3.6) 90.0(14.0) 43.0(2.2)

Table A1. Qubit Coherences. Qubit coherence times (T1,
T ∗
2 , T2E) are listed above.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

P (0|0) 0.995(1) 0.995(1) 0.995(1) 0.992(2) 0.998(1) 0.991(1) 0.997(1) 0.987(3)

P (1|1) 0.983(2) 0.962(7) 0.994(2) 0.986(2) 0.984(5) 0.986(2) 0.994(2) 0.986(2)

Table A2. Readout Fidelities. Simultaneous readout fi-
delities for all qubits with excited state promotion.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

RB iso. (10−3) 1.5(1) 0.33(2) 0.54(3) 1.0(1) 3.2(1) 1.92(9) 2.4(3) 2.58(9)

RB sim. (10−3) 2.1(2) 3.1(2) 2.0(3) 1.9(2) 6.1(7) 5.7(3) 3.4(3) 7.6(9)

Table A3. Single-qubit Gate Infidelities. The process
infidelities for isolated and simultaneous single-qubit gates
measured via RB for each qubit are listed above.

(Q0, Q1) (Q1, Q2) (Q2, Q3) (Q3, Q4) (Q4, Q5) (Q5, Q6) (Q6, Q7) (Q7, Q0)

RB iso. (10−2) 5.0(5) 1.62(7) 1.64(8) 2.6(2) 3.8(2) 4.6(2) 6.7(6) 3.8(3)

CB (CZ) (10−2) 1.4(1) 0.57(1) 0.41(1) 0.81(4) 1.80(8) 2.08(3) 2.77(8) 1.40(7)

Table A4. Two-qubit Gate Infidelities. The process infi-
delities for two-qubit RB are listed above for each qubit pair
used in this work. Native (CZ) gate fidelities are measured
via CB.

Appendix A: Qubit & Readout Characterization

The quantum processing unit (QPU) used in this
work consists of eight superconducting transmon qubits
arranged in a ring geometry (Fig. A1a). All of the
qubits on the QPU can also be operated as qutrits.
The GE and EF transition frequencies of each qutrit is
plotted in Fig. A1b. Regions with frequency crowding
can lead to microwave line crosstalk between transitions
within the same subspace, or coherent leakage between
transitions in different subspaces. For example, the EF
transitions of Q0 and Q4 are close in frequency to the
GE transition of GE; thus, driving Q2 and result in
leakage on Q0 or Q4. A similar effect can occur be-
tween the GE transition of Q5 and the EF transition of
Q6, which is spectrally far from the rest of the qubits
on the QPU due to fabrication inaccuracies. The GE
coherence times of each qubit is listed in Table A1.

The readout calibration for all eight qutrits is plotted
in Fig. A2, which displays the discrimination boundaries
used to classify all results in this work. Qutrit state dis-
crimination can be used to monitor leakage rates out-
side of the {|0⟩ , |1⟩} computational basis; however, this

Figure A1. Quantum Processing Unit & Frequen-
cies. (a) Eight-qubit superconducting transmon processor.
Qubits are labeled in green, individual drive lines are labeled
in blue, individual readout resonators (RO) are labeled in
red, and the multiplexed readout bus (MRB) is labeled in
cyan. The qubits are coupled to nearest neighbors in a ring
geometry via coupling resonators (CR, purple). (b) Qutrit
frequency spectrum. The solid lines and dashed lines denote
the GE and EF transition of each qutrit, respectively. (b)
Readout resonator frequency spectrum. The frequency of
the readout resonator coupled to each qubit is shown by a
dashed line.

is currently limited to final measurements, not MCMs
(see Sec. C and Fig. A2). Alternatively, qutrit state
discrimination can be used for improving qubit read-
out fidelities via excited state promotion (ESP) [66],
whereby an π1→2 pulse is applied to each qubit before
readout, after which all |2⟩ state results are reclassi-
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Figure A2. Readout Calibration. Qutrit state discrimination is supported for all qubits on the quantum processor.
MCM classification is determined by the in-phase (I) component of the readout signal. If I > 0, the discriminator returns a
0; if I < 0, the discriminator returns a 1. Therefore, MCMs cannot currently distinguish 1 from 2, and thus cannot capture
leakage.

fied as |1⟩ in post-processing. ESP can protect qubits
against T1 decay or readout-induced decay during read-
out. We utilize ESP to improve qubit readout both in
MCMs and final measurements. The readout fidelities
with ESP are listed in Table A2.

Appendix B: Gate Benchmarking

The single-qubit and two-qubit gates used in this
worked are benchmarked using randomized benchmark-
ing (RB) and cycle benchmarking (CB) [67]. Single-
qubit Clifford infidelities measured via RB are listed in
Table A3. Two-qubit Clifford and CZ gate infidelities
— measured via RB and CB, respectively — are listed
in Table A4. All quoted infidelities are given in terms of
the process infidelity eF , not the average gate infidelity
r. These two are equal up to a simple dimensionality
factor:

eF =
d+ 1

d
r , (B1)

where d = 2n for n qubits.

Appendix C: Classical Control Hardware

All experiments in this work were performed using
the open-source control system QubiC [18, 19]. QubiC
is an FPGA-based control system for superconducting
qubits developed at Lawrence Berkeley National Lab.

The QubiC system used for these experiments was im-
plemented on the Xilinx ZCU216 RFSoC (RF system-
on-chip) evaluation board, and uses custom gateware
for real-time pulse sequencing and synthesis.

The QubiC gateware has a bank of distributed proces-
sor cores for performing pulse sequencing, parameteriza-
tion, and conditional execution (i.e., control flow). The
QubiC readout DSP (digital signal processing) chain
includes on-FPGA demodulation and qubit state dis-
crimination using a threshold mechanism. Currently,
the discrimination is performed for MCMs using the in-
phase (I) component of the integrated readout pulse.
If I > 0, the discriminator returns a 0; if I < 0, the
discriminator returns a 1. For this reason, all of the |0⟩
states are calibrated to be on the right side of I = 0,
and all of the |1⟩ and |2⟩ states are calibrated to be
on the left side of I = 0 (see Fig. A1c). These state-
discriminated results can then be requested by any pro-
cessor core (using a special instruction) and used as in-
puts to arbitrary control flow/branching decisions (e.g.,
a while loop or if/else code block). The total feed-
back latency (not including readout time) is 150 ns.
In the future, more sophisticated discrimination will be
available for MCMs capable of distinguishing |1⟩ from
|2⟩.

Appendix D: Measurement-Induced Dephasing

Mid-circuit measurements (MCMs) can lead to un-
wanted dephasing on nearby idling spectator qubits.
This can happen in two different ways: firstly, when
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Figure A3. Benchmarking the Impact of Mid-Circuit
Measurements. To measure the impact of MCMs on idling
spectator qubits, we perform CB on the spectator qubits
with an interleaved layer consisting of a MCM on another
qubit. Here, BP is rotation to +1 eigenstate of the basis of
the Pauli P , P is a randomly sampled Pauli gate, m is the
number of interleaved cycles, and B†

C(P ) rotates the system
back to the original basis state.

an ancilla qubits is measured, the static ZZ coupling
[63] between coupled qubits can dephase the spectator
qubit during the measurement process. In other words,
because measurement dephases the ancilla qubit, the
coupled data qubit similarly sees a Z-type error medi-
ated via the ZZ coupling. This only results in dephasing
between qubits that are directly coupled, and assumes
that the ZZ coupling cannot be turned off during the
MCM. This is the case for the qubits used in this exper-
iment, as they are coupled via fix-frequency resonators
in a ring geometry (see Fig. A1a). However in systems
with tunable couplers, this ZZ coupling can be largely
suppressed, which would help alleviate the dephasing
seen by the spectator qubit.

The other way in which MCMs can dephase specta-
tor qubits is via unintentional direct measurement, i.e.,
measurement-induced dephasing [20]. When the read-
out resonator frequencies of nearby qubits are not well-
resolved spectrally, the measurement of one qubit can
inadvertently result in the measurement of other qubits.
This is the case for multiple pairs of qubits on the cur-
rent device (see Fig. A1c). For example, the readout
resonators coupled to Q0 and Q1 are within ∼4 MHz
of each other, and the readout resonators coupled to
Q3, Q4, and Q5 are within ∼11 MHz of each other.
This is not done intentionally; rather, it is the result
of inaccuracies in the fabrication process. This directly
limits which qubits can be used as ancillas for MCMs
and which can be used as data qubits, because the mea-
surement of the ancilla qubit can result in a complete
loss of phase coherence on data qubit.

To measure the impact of MCMs on neighboring spec-
tator qubits, we utilize cycle benchmarking (CB) with a
slight variation (see Fig. A3). Here, the interleaved cy-
cle is a MCM on one qubit, with all of the other qubits
left idling. However, because the goal is to quantify

the impact of MCMs on spectator qubits, we only twirl
on the spectator qubits, we do not twirl the qubit be-
ing measured. A similar strategy was done in Ref. [68]
using RB, but RB cannot distinguish the impact of er-
rors along different measurement axes. The utility of
CB is that it enables to quantify how a MCM affects
other qubits along X, Y , and Z. Moreover, we can
glean information from both the state-preparation and
measurement (SPAM) constant AP for the exponential
decay of each Pauli operator P (termed “Pauli decays”),
as well as from the exponential fit parameter pP . If the
effect of a MCM on an idle qubit is small, then one
should be able to accurately fit AP and pP . However, if
the effect of a MCM is large enough such that no useable
information can be gleaned for a given P , then AP will
be small (close to zero) and pP cannot be trust (assum-
ing an exponential can even be fit to the data, which
is not always the case). This is the case if the MCM
completely dephases the idle qubit, for which AX ≈ 0
and AY ≈ 0 (see, e.g., the bottom row of Fig. A5).
When an exponential can be fit to the data, pP gives
the probability with which P is preserved by the error
process. More generally, any Pauli error Q will reduce
the probability pP for any non-commuting Pauli oper-
ator P . Thus, if a MCM causes a spectator qubit to
dephase (which is a Z-type error), this will affect pX
and pY (but will not affect pZ). Therefore, we often
observe that pZ > pX , pY , which is a strong indication
of measurement-induced dephasing.

Using CB, we systematically characterize the effect
of MCMs on all nearest-neighbor idling qubits across
our full device (see Figs. A4–A7). We compare the ef-
fect of MCMs to the case when the spectator qubits
idle (with no MCM) for the duration of the measure-
ment, as well as the case when dynamically decoupling
(DD; specifically, an XY8 sequence [69, 70]) is applied
to the spectator qubits during the MCM. In all cases,
we observe that the MCM has at least some effect on
the spectator qubits. If the effect is small, we observe
that DD helps reduce the dephasing (i.e., increase pX
and pY ). However, if the effect is large, DD does not
help and can even impact the Pauli Z decay adversely
(see, e.g., the bottom row of Fig. A5). This is because
DD relies on the assumption that the dephasing noise is
quasi-static (i.e., slowly varying) over the course of an
experiment, such that one can “echo away” the phase
error. However, when a MCM is strong enough to inad-
vertently measure a nearby qubit, this breaks the un-
derlying assumption of DD, as measurement back ac-
tion introduces strong stochastic phase rotations [71].
In such cases, a DD sequence like XY8 will not return
to the qubit to the original state, inevitably introducing
X- and Y -type errors (and thus affecting the Pauli-Z
decays).
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Figure A4. Measurement-Induced Dephasing. We observe that the measurement of Q1 almost completely dephases
Q0; this is expected, because the readout resonator frequencies of Q0 and Q1 are only separated by ∼4 MHz (see Fig. A1c).
In this case, DD applied to Q0 has an adverse effect on the Pauli-Z decay. However, the measurement of Q1 has a much
smaller effect on Q2, and DD applied to Q2 helps mitigate the dephasing. In contrast, the measurement of Q2 has a small
effect on both Q1 and Q3. DD applied to both qubits helps mitigate the dephasing.
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Figure A5. Measurement-Induced Dephasing. We observe that the measurement of Q3 has a small effect on Q2, but
almost completely dephases Q4 and Q5 (note that the Pauli-X and Pauli-Y decays for Q4 could not even be properly fit).
This is not surprisingly, because the readout frequencies of Q3, Q4, and Q5, are only separated by ∼11 MHz (see Fig. A1c).
While DD does help with the dephasing on Q2, it has minimal impact on Q4 and Q5. Similarly, we observe that the
measurement of Q4 strongly affects Q3, and completely dephases Q5. DD helps Q3, but completely decoheres Q5.
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Figure A6. Measurement-Induced Dephasing. Similar to what we observed in Fig. A5, the measurement of Q5
completely dephases Q4, and DD has an adverse effect. However, Q6 is only marginally affected by Q5, and DD does
indeed help. However, on the contrary, the measurement of Q5 seems to mildly dephase Q5, and DD does not appear to
help. This is surprising, because the qubit and readout frequencies spectrally well-resolved. The measurement of Q6 has a
smaller effect on Q7, and DD only marginally helps.
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Figure A7. Measurement-Induced Dephasing. We observe that the measurement of Q7 has a small effect on Q7 and
that DD helps mitigate the dephasing. Q7 has a much larger effect on Q6, but DD mitigates most of the effect. In contrast,
the measurement of Q0 completely dephases Q1 and completely decoheres Q7. DD has an adverse effect on Q1 and no
effect on Q7.
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