
ar
X

iv
:2

40
3.

18
77

3v
1 

 [
m

at
h.

O
A

] 
 2

7 
M

ar
 2

02
4

ON THE EQUIVALENCE OF ALL NOTIONS OF GENERALIZED DERIVATIONS

WHOSE DOMAIN IS A C∗-ALGEBRA

AMIN HOSSEINI, ANTONIO M. PERALTA, AND SHANSHAN SU

ABSTRACT. Let M be a Banach bimodule over an associative Banach algebra A , and let F :
A → M be a linear mapping. Three main uses of the term generalized derivation are identified
in the available literature, namely,
(X) F is a generalized derivation of the first type if there exists a derivation d : A → M satis-

fying F(ab) = F(a)b+ ad(b) for all a,b ∈ A .
(X) F is a generalized derivation of the second type if there exists an element ξ ∈ M ∗∗ satis-

fying F(ab) = F(a)b+ aF(b)− aξ b for all a,b ∈ A .
(X) F is a generalized derivation of the third type if there exist two (non-necessarily linear)

mappings G,H : A → M satisfying F(ab) = G(a)b+ aH(b) for all a,b ∈ A .
There are examples showing that these three definitions are not, in general, equivalent. Despite
that the first two notions are well studied when A is a C∗-algebra, it is not known if the three no-
tions are equivalent under these special assumptions. In this note we prove that every generalized
derivation of the third type whose domain is a C∗-algebra is automatically continuous. We also
prove that every (continuous) generalized derivation of the third type from a C∗-algebra A into
a general Banach A -bimodule is a generalized derivation of the first and second type. In partic-
ular, the three notions coincide in this case. We also explore the possible notions of generalized
Jordan derivations on a C∗-algebra and establish some continuity properties for them.

1. INTRODUCTION

Since early nineties, several notions of generalized derivations from an algebra to a bimodule
have been considered in the literature, all of them built on an appropriate weak version of the
proper definition of derivation. Derivations are among the most studied maps in the literature.
Recall that a linear mappings d from an associative algebra A to an A -bimodule M is called
a derivation (respectively, a Jordan derivation) if it satisfies Leibniz’ rule

d(ab) = d(a)b+ad(b) (respectively, d(a2) = d(a)a+ad(a)), (∀a,b ∈ A ).

A simple example of derivation can be given by fixing an element x0 ∈ M and defining the
mapping dx0 : A → M given by the commutator associated with x0, that is, dx0(a) = [a,x0] =
ax0 − x0a. Such a derivation is called inner derivation.

The available literature contains at least three different uses of the term “generalized deriva-

tion”. The first one, in chronological order, appears in a paper by Brešar published in 1991 [4].
Keeping the notation above, a linear mapping G : A → M is a generalized derivation of the

first type if there exists a derivation d : A → M such that the identity

G(ab) = G(a)b+ad(b) (1.1)
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holds for all a,b ∈ A . In the original definition, G is only assumed to be additive. Note that
(1.1) is equivalent to say that G−d is a left multiplier, that is,

(G−d)(ab) = G(a)b+ad(b)−d(a)b−ad(b) = (G−d)(a)b (a,b ∈ A ).

In this case, the structure of a right A -ideal on M is sufficient. Right multipliers can be simi-
larly defined. This first notion is the one employed, for example, in the study by Heller, Miller,
Pysiak and Sasin connecting differential geometry (connection, curvature, etc.), generalized
derivations, and general relativity [18].

Keeping the chronological order, the second notion of generalized derivation was introduced
by Nakajima in 1999 (cf. [36, (1.3)]). A reformulation of this notion was considered by Leger
and Luks in [32]. This is the notion employed by Alaminos, Brešar, Extremera and Villena in
the study of bounded linear operators preserving zero products (see [1, Definition 4.1]), and for
example in [2, 11, 34, 35] and [40]. A generalized derivation of the second type from a Banach
algebra A into a Banach A -bimodule M is a linear mapping G : A → M for which there
exists ξ ∈ M ∗∗ satisfying

G(ab) = G(a)b+aG(b)−aξ b (a,b ∈ A). (1.2)

Every derivation is a generalized derivation, though the class of generalized derivations is
strictly wider than the set of derivations (e.g. for each a∈A , the mapping x 7→ x◦a= 1

2(ax+xa)
is a generalized derivation which is not a derivation). Let us observe that if A and M are unital
with unit 1, module products of the from aξ 1 and 1ξ b lie in M for all a,b ∈ A , and hence
the left and right multiplication operators L1ξ ,Rξ1 : a 7→ ξ a,aξ define two bounded linear op-
erators from A to M (i.e., 1ξ and ξ 1 behave like a multiplier). In this case, the mapping
d = G−L1ξ : A → M is a derivation and G(ab) = G(a)b+ad(b) for all a,b ∈ A . Therefore,
every generalized derivation of the second type is generalized derivation of the first type.

If A is a unital algebra, and G : A → M is a generalized derivation of the first type with
associated derivation d. Since G−d is a left multiplier, we have (G−d)(a) = (G−d)(1)a for
all a ∈ A , and thus

G(ab) = G(a)b+aG(b)−a(G−d)(b) = G(a)b+aG(b)−a(G−d)(1)b (a,b ∈ A ),

which shows that generalized derivations of the first and second type coincide in this case.

Furthermore, every bounded left multiplier L from a general C∗-algebra A to a Banach A -
bimodule M , is of the form L(a)= ξ a, where ξ ∈M∗∗ satisfies ξA ⊆A (cf. [1, 2]). As before,
we see that in this case, continuous generalized derivations of the first and second types from
A to M coincide, thanks to the existence of bounded approximate units. It is important to note
that continutiy has been assumed to establish the equivalence between generalized derivations
of the first two types from a general C∗-algebra A to a Banach A -bimodule. It should be also
mentioned that every generalized derivation of the second type from a C∗-algebra into a Banach
bimodule is automatically continuous (cf. [25, Proposition 2.1]). Hence, when the domain is a
C∗-algebra A , the first two types of (continuous) generalized derivations agree.

To introduce the third notion of generalized derivation, it is necessary to revisit the definition
of a ternary derivation or a 3-tuple behaving like a derivation, introduced by Jimenéz-Gestal
and Pérez-Izquierdo in [26] and Shestakov in [40, 41]. However, here we relax the linearity
assumptions on the last two maps in the 3-tuple.
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Definition 1.1. Let A be an algebra, and let M be an A -bimodule. A ternary derivation
from A to M is a 3-tuple (F,G,H), where G,H : A → M are two (non-necessarily linear)
mappings, and F : A →M is a linear map satisfying F(ab) = G(a)b+aH(b) for all a,b ∈A .
We shall also say that F : A →M is a ternary derivation with associated mappings G,H : A →
M . Since the term “ternary derivation” is also employed in another settings (like in the case of
JB∗-triples) with another meaning, we shall better say that the triplet (F,G,H) behaves like a
derivation. In this case the mapping F is called a generalized derivation of the third type.

There exist examples of 3-tuples (F,G,H) : A →M behaving like a derivation where G and
H are not necessarily linear (see Example 2.1).

If D is a derivation from an algebra A to an A -bimodule M , the triplet (D,D,D) behaves
like a derivation. Therefore every derivation is a generalized derivation of the third type.

Komatsu and Nakajima presented in [31] a detailed study on the relations among the no-
tions of generalized derivations of first, second and third type and their other formal properties,
mainly in the unital case and from an algebraic perspective. It is perhaps worth to recall some
basic connections. Suppose F : A → M is a generalized derivation of the second type satisfy-
ing (1.2). The expression

F(ab) = (F −Rξ )(a)b+aF(b) = F(a)b+a(F −Lξ )(b),

is valid for all a,b ∈ A , and hence (F,F −Rξ ,F) and (F,F,F −Lξ ) behave like derivations.
That is, every generalized derivation of the second type is a generalized derivation of the third
type. Conversely, it was already observed by Shestakov in [40, Lemma 1] that if A is a unital
associate algebra, every generalized derivation of the third type F : A → A is generalized
derivation of the second type (see also [31, Lemma 4.1 and Corollary 4.5]). The argument works
in our general setting. Suppose (F,G,H) is a 3-tuple of mappings from a unital associative
algebra A into a unital A -bimodule behaving like a derivation, with F being linear. As we
shall see in Lemma 2.2, both maps G and H are linear and satisfy G(a) = F(a)− aH(1) and
H(a) = F(a)−G(1)a for all a ∈ A . Therefore it follows that

F(ab) = F(a)b+aF(b)−a
(

H(1)+G(1)
)

b, for all a,b ∈ A ,

which shows that F is a generalized derivation of the second type.

However, if we relax the assumptions that A and the A -bimodule are both unital, it is not
clear whether every generalized derivation of the third type is of the second type. This natu-
rally gives rise to a question: are these three notions of generalized derivation defined from a
nonunital algebra A into a A -bimodule equivalent with each other? In this paper, we shall give
an affirmative answer to this question when A is a general C∗-algebra. In fact, this problem is
equivalent to a question on automatic continuity.

Bounded linear operators which are generalized derivations admit a useful algebraic charac-
terization.

Theorem 1.2. ([1, Theorem 4.5], [7, Proposition 4.3], [2, Theorem 2.11]) Let T : A → X be

a bounded linear operator from a C∗-algebra to an essential Banach A -bimodule. Then the

following statements are equivalent:

(a) T is a generalized derivation (of the second type).
(b) aT (b)c = 0, whenever ab = bc = 0 in A .
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(c) aT (b)c = 0, whenever ab = bc = 0 in Asa.

In case of a linear mapping acting on a von Neumann algebra W and behaving like a gen-
eralized derivations at certain points of the domain, continuity becomes an inherent property.
More concretely, let T : W → W be a linear mapping on a von Neumann algebra. Suppose
that for each a,b,c in any commutative von Neumann subalgebra B ⊆W with ab = bc = 0 we
have aT (b)c = 0. Then T is automatically continuous [11, Theorem 2.12 and Corollary 2.15].
Furthermore, the above statements (a)–(c) are also equivalent to the next:

(d) aT (b)c+ cT (b)a = 0, whenever ab = bc = 0 in Wsa.
(e) aT (b)a = 0, whenever ab = 0 in Wsa.

Every von Neumann algebra is unital, and hence every generalized derivation of the third
type on a von Neuman algebra is a generalized derivation of the first and second type.

The list of studies exploring the automatic continuity of derivations and related operators
is quite wide. The pioneering theorems by Sakai [43] and Ringrose [38] prove that every
derivation on a C∗-algebra or from a C∗-algebra A into a Banach A -bimodule is automati-
cally continuous, respectively. Hou and Ming [24] proved that if X is a simple Banach space,
and σ ,τ : B(X )→ B(X ) are surjective and continuous at 0, then every (σ ,τ)-derivation from
B(X ) into itself is continuous. Recall that, if A in an algebra and σ ,τ : A → A are two
mappings, a (σ ,τ)-derivation on A is a linear mapping d : A → A satisfying

d(ab) = d(a)σ(b)+ τ(a)d(b), for all a,b ∈ A .

More results on automatic continuity can be found in [11, 13, 15, 21, 22, 23, 29, 28, 37, 42].

Let us explain how, in the setting of C∗-algebras and essential Banach bimodules, the problem
of determining whether every generalized derivation of the third type is of the second type is
a problem of automatic continuity. Suppose F,G,H are three mappings from a C∗-algebra A
to an essential A -bimodule M , such that the triplet (F,G,H) behaves like a derivation, and
let us assume that F is continuous. For arbitrary a,b,c ∈ Asa with ab = bc = 0. Choose, via
functional calculus, a decomposition of b in the form b = b+−b−, with b+,b− ≥ 0, b+b− = 0,

ab+ = ab− = 0, b+c = 0, and b−c = 0. By taking d = (b+)
1
2 + i(b−)

1
2 , we have ad = dc = 0,

d2 = b and

aF(b)c = aF(d2)c = aG(d)dc+adH(d)c = 0.

Theorem 1.2 implies that F is a generalized derivation of the second type. So it suffices to prove
that every generalized of the third type from a C∗-algebra into an essential Banach bimodule
is continuous automatically. In Proposition 2.5 we prove that every continuous generalized
derivation of the third type from a C∗-algebra A to a Banach A -bimodule is a generalized
derivation of the first and second type, that is, we do not need to assume that the bimodule is
essential. Theorem 2.8 completes the picture by showing that every generalized derivation of
the third type from a C∗-algebra A to a Banach A -bimodule M is continuous. Consequently,
every generalized derivation of the third type from A to M is a generalized derivation of the
second type (and of course, of the first type).

Generalized Jordan derivations of the second type from a C∗-algebra A into a Banach A -
bimodule M have been already considered, for example, in [2, 6, 7]. A linear mapping F : A →
M is a generalized Jordan derivation of the second type if there exists an element ξ ∈ M ∗∗
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satisfying

F(a◦b) = F(a)◦b+a◦F(b)−Ua,b(ξ ), for all a,b ∈ A ,

where a◦b= 1
2(ab+ba) and Ua,b(ξ ) =

1
2(aξ b+bξ a). Here, we shall say that a linear mapping

F : A → M is a generalized Jordan derivation of the third type if there exist (non-necessarily
linear) maps G,H : A → M such that

F(a◦b) = G(a)◦b+a◦H(b), for all a,b ∈ A .

Theorem 3.1 shows that if A is a C∗-algebra, every generalized Jordan derivation of the third
type F from A into a Banach A -bimodule M is continuous. Moreover, if M is essential, F is a
generalized derivation of the second type; and, in certain cases (for example, when M =A ∗ or
M =A ∗), generalized Jordan derivations of the third type will be generalized Jordan derivation
of the second type whose associated element in M ∗∗ will commute with all elements in A (see
Proposition 3.2).

2. AUTOMATIC CONTINUITY OF GENERALIZED DERIVATIONS OF THE THIRD TYPE

The main goal of this section is to get a result on the automatic continuity of generalized
derivation of the third type from a C∗-algebra A to a Banach A -bimodule. We begin with an
example of a 3-tuple of maps behaving like a derivation in which one or two of the last two
maps is not linear.

Example 2.1. Let A be an algebra, and let

A=

{





a b c

0 0 0
0 0 e



 : a,b,c,e ∈ A

}

.

Clearly, A is an algebra with respect to the natural matrix product. Let f : A → A be a (non-
necessarily linear) mapping. Define mappings F,G,H : A→ A by

F

(





a b c

0 0 0
0 0 e





)

=





0 a b

0 0 0
0 0 0



 , G

(





a b c

0 0 0
0 0 e





)

=





−a f (b) −c

0 0 0
0 0 −e



 ,

and H

(





a b c

0 0 0
0 0 e





)

=





a a+b b+ c

0 0 0
0 0 e



 .

Observe that F,H is linear while G is non-necessarily linear. A straightforward verification
shows that F(AB) = G(A)B+AH(B), for all A,B ∈ A, which means that (F,G,H) behaves like
a ternary derivation on A, and hence F is a generalized derivation of the third type on A .

Let D be a derivation on A . Consider the Banach algebra B=

{(

a 0
0 0

)

: a ∈ A

}

and the

B-bimodule M = M2(A ) =

{(

a b

c d

)

: a,b,c,d ∈ A

}

, with the obvious operations. De-

fine F,G,H : B→M2(A ), by F

(

a 0
0 0

)

:=

(

D(a) 0
0 0

)

,G

(

a 0
0 0

)

:=

(

D(a) f (a)
0 0

)

,
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and H

(

a 0
0 0

)

:=

(

D(a) 0
f (a) 0

)

. Clearly, G and H are non-necessarily linear, and is easy to

see that (F,G,H) behaves like a derivation.

It follows from the previous counterexample that if the triplet (F,G,H) behaves like a deriva-
tion, the mappings G and H need not be, in general, linear. The existence of a unit element in
A forces the linearity of these maps, up to an appropriate change on the module.

Lemma 2.2. Let (F,G,H) behaves like a derivation from an algebra A to an A -bimodule

M . Suppose A is unital with unit 1. Then the mappings G · 1,1 ·H : A → M , x 7→ G(x)1,

x 7→ 1H(x) are linear, and the 3-tuple (F,G ·1,1 ·H) behaves like a derivation. If M is unital,

the mappings G and H are linear.

Proof. The conclusion is clear from the identities (G · 1)(a) = F(a)− aH(1), (1 · H)(a) =
F(a)−G(1)a (a ∈ A ) and the linearity of F . Observe that

F(ab) = G(a)b+aH(b) = G(a)1b+a1H(b) = (G ·1)(a) b+a (1 ·H)(b) (∀a,b ∈ A ).

�

Let us recall some well known concepts. Let A be an algebra and let M be an A -bimodule.
The modular left annihilator of A is the set lann(A )M := {m0 ∈M | m0A = {0}}. Similarly,
the modular right annihilator of A defined by rann(A )M := {m0 ∈ M | A m0 = {0}}. The
modular annihilator of A is ann(A )M := rann(A )M ∩ lann(A )M . In particular, if A =M ,
then we reach the usual notions of left annihilator, right annihilator and annihilator of the algebra
A which are denoted by lann(A ), rann(A ) and ann(A ), respectively.

Along this section, the left and right multiplication operators by an element a in an associative
algebra A will be denoted by La and Ra, respectively. If M is an A -bimodule, the mappings
La and Ra will also stand for the corresponding left and right multiplication operators on M .

The next auxiliary lemma will be used in our arguments.

Lemma 2.3. Let A be an algebra, let M be an A -bimodule. Suppose (F,G,H) is a 3-tuple of

mappings from A to M behaving like a derivation. Then the following statements hold:

(i) The mappings Ψa : A → M , Ψa(b) = aH(b) = LaH(b) and Γa : A → M , Γa(b) =
G(b)a = RaG(b) are linear for every a ∈ A .

(ii) If rann(A )M = {0} (respectively, lann(A )M = {0}), then the mapping G (respectively,

the mapping H) is linear.

Proof. (i) We show that the mapping Ψa is a linear mapping for every a ∈A . Given a,b,c ∈A
and λ ∈ C, we have

F(aλ (b+ c)) = G(a)(λb+λc)+aH(λ (b+ c))

= λG(a)b+λG(a)c+aH(λ (b+ c)).

On the other hand, since F is a linear mapping, we have the following expressions:

F(aλ (b+ c)) = λF(ab)+λF(ac)

= λG(a)b+λaH(b)+λG(a)c+λaH(c),
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for all a,b,c ∈ A . Comparing the previous two equations we get that

aH(λ (b+ c))−λaH(b)−λaH(c) = 0, (2.1)

which yields
Ψa(λ (b+ c)) = λΨa(b)+λΨa(c).

Hence, Ψa is a linear mapping for any a ∈ A . Similarly, one can show that the mapping
Γa : A → M , Γa(t) = G(t)a is a linear mapping.

(ii) Assuming that rann(A )M = {0}, it follows from (2.1) that

H(λ (b+ c)) = λH(b)+λH(c)

for all b,c ∈A and all λ ∈C, and thus H(a+b) = H(a)+H(b) for all a,b ∈A , H(0) = 0 and
H(λa) = λH(a) for all λ ∈ C. The other statement can be similarly obtained. �

Example 2.4. Let Z be the set of all integers. Set

A =

{[

2n 0
0 2n

]

: n ∈ Z

}

.

It is evident that A is a nonunital ring. Let

M =

{[

i j

0 k

]

: i, j,k ∈ Z

}

.

A straightforward verification shows that lann(A )M = {0}= rann(A )M .

If A is unital, lann(A ) = {0} = rann(A ). Also, if A is a semiprime algebra, then it is
clear that lann(A ) = rann(A ) = {0}. If A satisfies Condition (P) in [12], then it is routine
to see that lann(A ) = rann(A ) = {0}, where an algebra or a ring A satisfies Condition (P) if
aa0a = {0} for any a ∈ A implies that a0 = 0.

The dual space, A ∗, of a Banach algebra A is a Banach A -bimodule with the module oper-
ation given by (ϕa)(b) = ϕ(ab) and (aϕ)(b) = ϕ(ba), for all a,b ∈ A , ϕ ∈ A ∗. If A satisfies
a kind of Cohen factorization property (i.e. for every c ∈ A there exists a,b ∈ A with c = ab),
we have lannA ∗(A ) = {0}= rannA ∗(A ). Recall that, by Cohen’s factorization theorem [19,
Corollary 2.26], every Banach algebra with a bounded left approximate unit satisfies such a fac-
torization property. To see the statement concerning modular annihilators, if ϕ ∈ lannA ∗(A ),
we have ϕ(ab) = 0 for all a,b ∈ A , the factorization property implies that ϕ = 0.

Our next proposition shows that continuity is the essential property to conclude that a gener-
alized derivation of the third type from a C∗-algebra A into a general Banach A -bimodule is a
generalized derivation of the first and second type, improving in this way what we commented
at the introduction.

Proposition 2.5. Let A be a C∗-algebra and let F : A → M be a continuous generalized

derivation of the third type from A into a Banach A -bimodule. Then F is a generalized deriva-

tion of the first and second type.

Proof. It is known that the product of A and the module products on M can be extended to
a product on A ∗∗ and A ∗∗-bimodule operations on M ∗∗ via the first Arens extensions [10,
Theorem 2.6.15(iii)], respectively –the second Arens extension is also valid. Since A is a
C∗-algebra, its product is Arens regular, that is, the first and second Arens products on A ∗∗
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coincide, and make the latter a von Neumann algebra (cf. [10, Corollary 3.2.37]). It is also
known that the following properties holds: for each a ∈ A , ã ∈ A ∗∗, x ∈ M and z ∈ M ∗∗, the
mappings y 7→ ay, y 7→ yã (respectively, b 7→ xb, b 7→ bz) are weak∗ continuous maps on M ∗∗

(respectively, from A ∗∗ to M ∗∗) [10, Proposition A.3.52]; if (aλ ) and (xµ) are nets in A and
X , respectively, such that aλ → a ∈ A∗∗ in the weak∗ topology of A∗∗ and xµ → x ∈ X∗∗ in the
weak∗ topology of X∗∗, then

ax = lim
λ

lim
µ

aλ xµ and xa = lim
µ

lim
λ

xµaλ (2.2)

in the weak∗ topology of X∗∗ (cf. [10, (2.6.26)]).

As observed in Lemma 2.3, for each a,b ∈ A , the maps Ψa(·) = aH(·) = F(a·)−LG(a) and
Γb(·) = G(·)b = F(·b)−RH(b) are linear, and in this case continuous by the assumptions on F .
Let us consider the following sets of operators

Γ = {G(·)b : b ∈ A , ‖b‖ ≤ 1} , and Ψ = {aH(·) : a ∈ A , ‖a‖ ≤ 1} .

For each a ∈ A we have

‖(G(·)b)(a)‖= ‖G(a)b‖ ≤ ‖F‖‖a‖‖b‖+‖aH(·)‖‖b‖ ≤ ‖F‖‖a‖+‖aH(·)‖,

and hence the uniform boundedness principle assures the existence of a positive K1 satisfying
‖G(·)b‖ ≤ K1 for all b ∈ A with ‖b‖ ≤ 1. Similarly, there exists of a positive K2 satisfying
‖aH(·)‖ ≤ K2 for all a ∈ A with ‖a‖ ≤ 1.

Let us take an approximate unit (u j) j in A . If we fix an element a ∈ A the net (au j) j

converges in norm to a, and hence by the continuity of F , F(au j) tends to F(a) in norm. It is
also know that (u j) j → 1 in the weak∗-topology of A ∗∗, where 1 stands for the unit in A ∗∗.
We therefore deduce from (2.2) that (G(a)u j) j → G(a)1 in the weak∗-topology of M ∗∗. Thus,
the identity F(au j) = G(a)u j +aH(u j) implies that

the net (aH(u j)) j converges in the weak∗-topology of M ∗∗

to some R(a) ∈ M ∗∗ and F(a) = G(a)1+R(a).
(2.3)

It is easy to check that the mapping R : A → M ∗∗, a 7→ R(a) is linear. Moreover, since by
the properties shown above ‖aH(u j)‖ ≤ K2‖a‖ for all j, we obtain that ‖R(a)‖ ≤ K2‖a‖ for all
a ∈ A , and hence R is continuous.

Let us see another interesting property of the operator R. By definition and (2.2) we get

R(ab) = w∗- lim
j

abH(u j) = aw∗- lim
j

bH(u j) = aR(b),

which guarantees that R is a right multiplier from A to M ∗∗. Furthermore, ‖H(u j)‖ ≤ K2 for
all j, and hence, by the weak∗-compactness of the closed unit ball of M ∗∗, there exists a subnet,
denoted again by (u j) j, such that lim j H(u j) = ξ ∈ M ∗∗ in the weak∗-topology of M ∗∗. Since
R(au j) = aR(u j) for all j, and (au j) j → a in norm, the continuity properties of the module
operations on M ∗∗ and R give R(a) = aξ for all a ∈ A .

Similar arguments show the existence of a left multiplier L : A → M ∗∗ and η ∈ M ∗∗ satis-
fying L(a) = ηa and F(a) = L(a)+1H(a) for all a ∈ A .
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Finally, we have

F(ab) = G(a)b+aH(b) = G(a)1b+a1H(b)

= (F(a)−R(a))b+a(F(b)−L(b)) = F(a)b+bF(a)−a(ξ +η)b,

for all a,b ∈ A . �

We shall next state two classical arguments in results on automatic continuity which are
considered here under a more general point of view.

Lemma 2.6. Let Z be a closed subspace of a Banach space X such that X/Z is finite dimen-

sional, and let Y be a normed space. Suppose F : X → Y is a linear mapping whose restriction

to Z is continuous. Then F is continuous.

Proof. Since the quotient X/Z is finite dimensional, the subspace Z is topologically comple-
mented in X , that is, there exists a continuous linear projection P : X → X whose image is Z

and Z′ = (Id −P)(X) is finite dimensional (cf. [39, Lemma 2.21]). Clearly, by the finite di-
mensionality of Z′, F|Z′ : Z′ → Y is continuous. Since F|Z is continuous by hypothesis, and
F(x) = F(P(x))+F((Id−P)(x)) = F|Z(x)+F|Z′(x) for all x ∈ X , the conclusion is clear. �

The next lemma is a consequence of the uniform boundedness principle.

Lemma 2.7. Let F : A → X be a linear mapping from a C∗-algebra into a normed space.

Suppose that for each a ∈ A the mappings FLa,FRa : A → X, x 7→ F(ax) and x 7→ F(xa) are

continuous. Then F is continuous.

Proof. The desired conclusion is clear when A is unital, since in that case F(a) = FL1(a). In
the general case, we observe that the bilinear mapping (a,b) 7→ V (a,b) := F(ab) is separately
continuous by hypothesis, so by the uniform boundedness principle, V is jointly continuous.
Hence, there exists a positive K such that ‖F(ab)‖ ≤ K ‖a‖ ‖b‖ for all a,b ∈ A . For each
positive element c ∈ A with ‖c‖ ≤ 1 there exists a positive d with d2 = c, ‖d‖2 = ‖d2‖ =
‖c‖ ≤ 1. Therefore ‖F(c)‖ = ‖F(d2)‖ ≤ K‖d‖2 = K‖c‖ ≤ K. In particular, F is bounded on
the closed unit ball of A . �

A cornerstone result in the theory of C∗-algebras, obtained by Cuntz in [9], asserts that a
semi-norm p on a C∗-algebra A which is bounded on each commutative self-adjoint subalgebra
of A , is bounded on the whole of A . Cuntz’ theorem has been employed in results on auto-
matic continuity of derivations, for example, in [37], Russo and the second author of this note
apply it to prove that every Jordan derivation from a C∗-algebra A to a Banach A -bimodule is
continuous and an associative derivation. More recently, An and He employed Cuntz theorem
to prove that if n 6= m, then zero is the only (m,n)-Jordan derivation from a C∗-algebra into a
Banach bimodule (cf. [3]). We give another application next by adapting the arguments in the
proof of Theorem 2.8.

We are now ready to prove one of the main results of this section, which confirm that every
generalized derivation of the third type from a general C∗-algebra A into a Banach A -bimodule
is continuous.

Theorem 2.8. Let A be a C∗-algebra, let M be a Banach A -bimodule, and let F be a gen-

eralized derivation of the third type from A to M . Then F is continuous. Consequently, every
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generalized derivation of the third type from A to M is a generalized derivation of the second

type.

Proof. By the previously commented theorem of Cuntz (see [9, Theorem 1.1 or Corollary 1.2]),
there is no loss of generality in assuming that A is commutative.

The proof will be presented in several steps. Let us begin by setting

I = {a ∈ A : FLa is continuous} and J = {a ∈ A : LaH is continuous}.

The identity F(ab) = aH(b)+G(a)b (a,b ∈A ) implies that FLa(·) is continuous if and only
if LaH(·) is a bounded linear operator, and thus I = J. Since A is commutative we also have

I = {a ∈ A : FLa = FRa is continuous}.

We shall next show that I is a closed ideal of A . Namely, take a ∈ I and b ∈ A . Clearly, the
mapping FLaLb : A → M , c 7→ F(abc) is continuous, and so ab = ba ∈ I. This means that I is
an ideal of A (recall that A is commutative). It is well known that I must be self-adjoint [30,
Corollary 4.2.10].

Next we show that I is norm-closed. Let a ∈ I. Then there exists a sequence (an)n ⊆ I

such that limn→∞ an = a. By the equality I = J, in order to show that a ∈ I, it suffices to
show that the mapping LaH : A → M is continuous. It follows from Lemma 2.3(i) and the
assumptions that the mapping Lan

H =: A → M is linear for every c ∈ A . Since (an) is a
sequence in I, the linear mapping Lan

H : A → M is continuous for all n ∈ N. It is clear
that limn→∞ Lan

H(c) = limn→∞ anH(c) = aH(c) = LaH(c), for every c ∈ A , and hence, by
the uniform boundedness principle, we obtain that LaH is a continuous linear mapping, and so
a ∈ J = I.

It follows from the above arguments that the restricted mapping F|I : I → M satisfies the
following property: for each a ∈ I, the mapping F|ILa = F|IRa : I → M , x 7→ F(ax) = F(xa)
is continuous. Lemma 2.7 assures that F|I : I → M is continuous.

We shall next show that

A /I is a finite-dimensional C∗-algebra. (2.4)

Suppose, on the contrary, that A /I is an infinite-dimensional C∗-algebra. Another classical
result in C∗-algebra theory (see [30, Exercise 4.6.13]) proves that in such a case there exists
an infinite sequence (bn + I)n of mutually orthogonal non-zero positive elements in A /I, that
is, (bn + I)(bk + I) = 0, for all n 6= k, bn ≥ 0 and bn 6= 0 for all n. By [30, Exercise 4.6.20]
we can always lift the sequence (bn + I)n to a sequence (cn)n of mutually orthogonal non-
zero positive elements in A satisfying π(cn) = bn + I, for all n, where π : A → A /I is the
canonical projection. It follows from the fact that π is a ∗-homomorphism that π(c2

n)= π(cn)
2 =

(bn + I)2 6= 0 (observe that ‖(bn + I)2‖ = ‖bn + I‖2), and thus c2
n /∈ I for all n. Therefore the

mapping FLc2
n

: A → M must be unbounded. By replacing cn with cn

‖cn‖
, we can assume that

‖cn‖= 1 for all n. By the unboundedness of the mapping FLc2
n
, there exists dn ∈ A satisfying

‖dn‖ ≤ 2−n, and ‖F(c2
ndn)‖ = ‖FLc2

n
(dn)‖ > ‖G(cn)‖+ n for all natural n –observe that the

sequence (‖G(cn)‖)n does not produce any obstacle here–. The elements cn and dn have been
chosen to guarantee that the series ∑n≥1 cndn is (absolutely) convergent, and its limit a0 =
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∑∞
n=1 cndn satisfies ‖a0‖ ≤ 1 and cma0 = c2

mdm for all m ∈ N. By the hypotheses on (F,G,H)
we deduce that

∞ > ‖H(a0)‖ ≥ ‖cmH(a0)‖= ‖F(cma0)−G(cm)a0‖ ≥ ‖F(cma0)‖−‖G(cm)a0‖

= ‖F(c2
mdm)‖−‖G(cm)a0‖ ≥ m+‖G(cm)‖−‖G(cm)‖= m,

for all natural m, which is impossible.

Since F|I is continuous and A /I is finite dimensional, we deduce from Lemma 2.6 that F is
continuous.

The final statement of the theorem is a consequence of Proposition 2.5. �

The previous theorem generalizes the classical results by Ringrose [38, Theorem 2] and Sakai
[43]. The following corollary summarizes some of the conclusions obtained up to now.

Corollary 2.9. Let F : A → M be a linear mapping from a C∗-algebra to a Banach A -

bimodule. Then the following statements are equivalent:

(a) F is a generalized derivation of the first type, i.e., there is a derivation d : A → M such

that F(ab) = F(a)b+ad(b) ∀a,b ∈ A .
(b) F is a generalized derivation of the second type, i.e., there is an element ξ ∈M ∗∗ such that

F(ab) = F(a)b+aF(b)−aξ b ∀a,b ∈ A .
(c) F is a generalized derivation of the third type, i.e., there are two (non-necessarily linear)

maps G,H : A → M such that F(ab) = G(a)b+aH(b) ∀a,b ∈ A .

Furthermore, if any of the equivalent statements holds the mapping F is automatically continu-

ous.

Let Y and Z be Banach spaces and let T : Y→ Z be a linear mapping. The separating space

of T is the set

S(T ) =
{

z ∈ Z : ∃ {yn} ⊆Y such that yn → 0, and T (yn)→ z
}

.

By the closed graph theorem, T is continuous if and only if S(T ) = {0}. For additional infor-
mation about separating spaces, the reader is referred to [10].

We establish next some consequences of Theorem 2.8 and deduce some properties of the
mappings appearing in a triplet behaving like a derivation.

Corollary 2.10. Let A be a C∗-algebra and let M be a Banach A -bimodule. Suppose that

F,G,H : A → M are three mappings, with F linear, such that (F,G,H) behaves like a deriva-

tion. The the following statements hold:

(i) If rann(A )M = {0}= lann(A )M , the maps F,G and H are linear and continuous.

(ii) If M = A , then F,G and H are bounded linear maps.

(iii) If M = A , then F,G and H are bounded linear maps.

Proof. (i) According to Theorem 2.8, F is a continuous generalized derivation of the second
type, and it follows from Lemma 2.3(ii) that the mappings G and H are linear. We shall show
that G and H are continuous. Let m0 ∈S(H) ⊆ M . Then there exists a sequence {bn} ⊆ A
such that limn→∞ bn = 0 and limn→∞ H(bn) = m0. For any arbitrary element a ∈ A , we have

0 = lim
n→∞

F(abn) = lim
n→∞

(G(a)bn+aH(bn)) = am0,
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which means that m0 ∈ rann(A )M . By hypothesis m0 = 0, and this implies that H is continu-
ous. Similarly arguments show that G is continuous.

(ii) and (iii) are straightforward consequences of (i). �

Let A be an algebra and let M be an A -bimodule. We recall that a linear mapping F :
A → M is called an l-generalized derivation if there exists a mapping dl : A → M (called
an associated mapping with F) such that F(ab) = F(a)b+ adl(b) for all a,b ∈ A . Simi-
larly, F is called an r-generalized derivation if there exists a mapping dr : A → M such that
F(ab) = dr(a)b+aF(b) for all a,b ∈ A . In [20, Example 2.6], we can find an example of an
r-generalized derivation that is not an l-generalized derivation. Clearly, l- and r-generalized
derivations are generalized derivations of the third type.

The next result is therefore a straight consequence of Theorem 2.8 and Corollary 2.10.

Corollary 2.11. Let A be a C∗-algebra and let M be a Banach A -bimodule. Then the follow-

ing statements hold:

(i) Every l-generalized derivation (respectively, r-generalized derivation) F : A →M is con-

tinuous.

(ii) Suppose that rann(A )M = {0} = lann(A )M . If F : A → M is an l- or r-generalized

derivation with an associated mapping d : A → M , then F and d are continuous linear

mappings.

3. AUTOMATIC CONTINUITY OF GENERALIZED JORDAN DERIVATION OF THE THIRD TYPE

Appropriate types of generalized Jordan derivations whose domain is a C∗-algebra are stud-
ied in this section. We shall mainly focus on the automatic continuity and the relationships
between the different types. Contrary to the conclusions in the previous section, generalized
Jordan derivations of the third type constitute a strict subclass of the set of generalized Jordan
derivations of the third type (cf. Proposition 3.2 and Remark 3.3). Generalized Jordan deriva-
tions of the second type have been considered in [6, 7, 25]. Recall that a linear mapping F

from a Banach algebra A to a Banach A -bimodule M is a generalized Jordan derivation of

the second type if there exists ξ ∈ M ∗∗ such that

F(a◦b) = F(a)◦b+a◦F(b)−Ua,b(ξ ), for all a,b ∈ A ,

where a◦b = 1
2(ab+ba). If ξ = 0 we find the usual notion of Jordan derivation. Classic results

by Ringrose and Johnson assure that every Jordan derivation from a C∗-algebra to a Banach
bimodule is a derivation.

There are some other attempts to defined generalized Jordan derivations in the literature,
According to [5], an additive (in this note we shall assume linearity) mapping T from a Banach
algebra A into a left A-module M is called a Jordan left derivation if T (a2) = 2aT (a) for
every a ∈ A . It is shown in [5] that the existence of non-zero Jordan left derivations from a
prime ring R into a 6-torsion free left R-module implies that R is a commutative ring. Vukman
introduced in [44] the notion of (m,n)-Jordan derivation. Let m,n be two non-negative integers
with m+ n 6= 0. An additive (along this note linear) mapping T from A into M is called an
(m,n)-Jordan derivation if the identity

(m+n)T (a2) = 2maT (a)+2nT (a)a



ON THE EQUIVALENCE OF ALL NOTIONS OF GENERALIZED DERIVATIONS WHOSE DOMAIN IS A C∗-ALGEBRA13

holds for all a ∈ A .

Jing and Lu coined for first time the term generalized Jordan derivations in [27]. We shall say
that a linear mapping F from a Banach algebra A to a Banach A -bimodule M is a generalized

Jordan derivation in the sense of Jing and Lu if there exists a (linear) Jordan derivation τ : A →
M satisfying

F(a2) = F(a)a+aτ(a), for all a ∈ A .

By polarizing we get

F(a◦b) =
1
2

(

F(a)b+F(b)a+aτ(b)+bτ(a)
)

, for all a,b ∈ A .

In this definition the Jordan structure is only considered on the domain algebra. It is worthwhile
to mention that if A and M are both unital, by taking b = 1 in the previous identity we get
F(a) = F(1)a+ τ(a) (a ∈ A ), and if τ is in fact a derivation (as in the case of C∗-algebras), F

is a generalized derivation of the first type.

Motivated by the results in the previous section, we shall say that a linear mapping F : A →
M is a generalized Jordan derivation of the third type if there exist (non-necessarily linear)
maps G,H : A → M such that

F(a◦b) = G(a)◦b+a◦H(b), for all a,b ∈ A .

The following theorem prove the automatic continuity of every generalized Jordan derivation
of the third type when the domain is a C∗-algebra by adapting the proof of Theorem 2.8.

Theorem 3.1. Let A be a C∗-algebra and let M be a Banach A -bimodule. Then every gener-

alized Jordan derivation of the third type F : A → M is continuous.

Proof. Let G,H : A → M be two (non-necessarily linear) maps satisfying

F(a◦b) = G(a)◦b+a◦H(b), for all a,b ∈ A .

Since the Jordan product is commutative, up to replacing G and H by 1
2(G+H) we can assume

that G = H. By a new application of Cuntz’ theorem [9, Theorem 1.1 or Corollary 1.2], we may
also assume in the argument concerning the continuity of F that A is commutative.

Set
I = {a ∈ A : the mapping x 7→ F(ax) = F(a◦ x) is continuous},

and J = {a ∈ A : the mapping x 7→ a◦G(x) is continuous}.

The identity F(ax) = F(a ◦ x) = G(a) ◦ x+a ◦G(x), shows that I = J. If a ∈ I and b ∈ A, the
mapping x 7→ F((ab)x) = F((ba)x) = F(b(ax)) = F(a(bx)) is clearly continuous. Therefore
ab = ba ∈ I, which shows that I is an ideal of A .

To show that I is norm-closed, we take (an)n ⊂ I converging to some a ∈ A in norm. Since
by assumptions an ◦G(·) is a bounded linear operator from A to M which converges pointwise
to the linear mapping a◦G(·), the latter must be bounded by the uniform boundedness principle,
and hence a ∈ I.

We are now in a position to apply Lemma 2.7 to guarantee that F|I : I → M is continuous.
The continuity of F will follow from Lemma 2.6 if we show that A /I is finite-dimensional.
Otherwise, as in the proof of Theorem 2.8, there exists an infinite sequence (bn+I)n of mutually
orthogonal non-zero positive elements in A /I, that is, (bn+ I)(bk+ I) = 0, for all n 6= k, bn ≥ 0
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and bn 6= 0 for all n (see [30, Exercise 4.6.13]). Choose, a sequence (cn)n of mutually orthogonal
norm-one positive elements in A satisfying cn+I = bn+I, ‖c2

n+I‖= ‖(bn+I)2‖= ‖bn+I‖2 6=
0, for all n (cf. [30, Exercise 4.6.20]). Clearly, the element c2

n does not belong to I, and hence the
mapping x 7→ F(c2

nx) is unbounded. We can therefore pick dn ∈ A satisfying ‖dn‖ ≤ 2−n, and
‖F(c2

ndn)‖ > ‖G(cn)‖+n for all natural n. By assumptions, the limit a0 = ∑n≥1 cndn belongs
to A , ‖a0‖ ≤ 1, and a0cm = cma0 = c2

mdm for all m ∈ N. Our hypotheses give

∞ > 2‖G(a0)‖ ≥ ‖cm ◦G(a0)‖= ‖F(cma0)−G(cm)◦a0‖ ≥ ‖F(cma0)‖−‖G(cm)◦a0‖

= ‖F(c2
mdm)‖−‖G(cm)a0‖ ≥ m+‖G(cm)‖−‖G(cm)‖= m,

for all natural m, which is impossible. �

Under some extra hypotheses on the bimodule, we conclude that the class of generalized
Jordan derivations of the third type are in fact generalized derivation of first/second/third type.

Proposition 3.2. Let A be a C∗-algebra and let M be an essential Banach A -bimodule. Then

every generalized Jordan derivation of the third type F : A → M is a generalized derivation

of the second type (and of course the first and third type), that is, there exist ξ ∈ M ∗∗ such that

F(ab) = F(a)b+aF(b)−aξ b (∀a,b ∈ A ).

Furthermore, if M coincides with A or A ∗, then ξ actually commutes all elements in A .

Proof. Since M is assumed to be essential, we can prove that F is a generalized derivation of
the second type by combining that F is continuous (cf. Theorem 3.1) and Theorem 1.2. Namely,
just observe that given a,b ∈Asa with ab = 0, we can take d ∈A with d2 = a and db = bd = 0.
Then

bF(a)b = bF(d2)b = b(2d ◦G(d))b = 0.

We can assume, without loss of generality, that there is a (non-necessarily linear) mapping
G : A → M such that

F(a◦b) = G(a)◦b+a◦G(b), (3.1)

for all a,b ∈A (compare the proof of Theorem 3.1). Then, in this case, G is actually linear and
continuous. Namely, we can apply similar ideas to those in the proof of Proposition 2.5, to see
that the mappings of the form x 7→ (G(·)◦b)(x) = G(x)◦b = F(x◦b)− x◦G(b) are linear and
continuous on A . Since for every a,b ∈ A with ‖b‖ ≤ 1 we have ‖G(a)◦b‖= ‖F(a◦b)−a◦
G(b)‖ ≤ ‖F‖‖a‖+‖G(·)◦a‖, the family {G(·)◦b : ‖b‖ ≤ 1} is pointwise bounded, and hence
uniformly bounded by the uniform boundedness principle. Thus there exists K > 0 such that
‖G(·)◦b‖≤ K for all ‖b‖ ≤ 1. Let (u j) j be a bounded approximate unit in A . For each a ∈A ,
the net F(a◦u j) converges to F(a) in norm by the continuity of F , and the net G(a)◦u j tends to
G(a) in norm. Consequently G is linear. We also know that ‖G(a)‖= lim j ‖G(a)◦u j‖ ≤ K‖a‖,
note that the first equality holds because M is essential (see, for example, [8, Theorem 1.15]).
Thus, G is continuous.

Having in mind that F is a continuous generalized derivation on A , and by the weak∗-density
of A in A ∗∗ and the separate weak∗-continuity of the product of the latter von Neumann alge-
bra, F∗∗ is a generalized derivation on A ∗∗, and thus there exists ξ ∈ M ∗∗ satisfying

F∗∗(a◦b) = F∗∗(a)◦b+a◦F∗∗(b)−
1
2
(aξ b+bξ a), for all a,b ∈ A ∗∗. (3.2)



ON THE EQUIVALENCE OF ALL NOTIONS OF GENERALIZED DERIVATIONS WHOSE DOMAIN IS A C∗-ALGEBRA15

Let us prove the final statement. Assume first that M = A , then a similar argument, via
weak∗-density of A in A ∗∗ and separate weak∗-continuity of the product in A ∗∗ and the iden-
tity in (3.1), shows that

F∗∗(a◦b) = G∗∗(a)◦b+a◦G∗∗(b), for all a,b ∈ A ∗∗. (3.3)

Assume next that M = A ∗. A consequence of the Grothendieck’s inequality established by
Haagerup in [16] asserts that every bounded linear mapping from a C∗-algebra to the dual space
of another C∗-algebra factors through a Hilbert space, and thus it is weakly compact. Therefore,
by Gantmacher’s theorem [14], F∗∗ (A ∗∗)⊆ M ∗ and G∗∗ (A ∗∗)⊆ M ∗. We claim that

F∗∗(a◦b) = G∗∗(a)◦b+a◦G∗∗(b) (3.4)

for all a,b ∈ A ∗∗. We just need to extend (3.1) to A ∗∗. The left hand side can be treated by a
standard argument, since F∗∗(a◦b) can be approached by a double weak∗-limit via the weak∗-
continuity of F∗∗ and the separate weak∗-continuity of the product of A ∗∗. Given b ∈ A ∗∗,
we can find a net (b j) j ⊆ A such that G(b j)→ G∗∗(b) ∈ A ∗ in the weak∗-topology of A ∗∗∗.
Thanks to this, we shall handle the summands on the right hand side with the next property: if
(a j) j and (φi) are two nets in A and A ∗ converging to a ∈A ∗∗ and φ ∈A ∗ in the σ(A ∗∗,A ∗)
and the σ(A ∗∗∗,A ∗∗) topologies, respectively, we have

1
2

lim
j

lim
i
(a jφi +φia j) = lim

j
lim

i
(a j ◦φi) = a◦φ =

1
2
(aφ +φa) in the σ(A ∗∗∗,A ∗∗) topology.

The basic properties of the module operations in A ∗∗∗ assure that lim j limi a jφi = aφ in the
σ(A ∗∗∗,A ∗∗) topology, and w∗- limi φia j = φa j for all j. Fix now c ∈ A ∗∗. The net (a jc) j

converges to ac in the weak∗-topology of A ∗∗. By applying that φ ∈ A ∗, we deduce that

lim
j
(φa j)(c) = lim

j
φ(a jc) = φ(ac) = (φa)(c),

and thus w∗- lim j φa j = φa, which finishes the proof of (3.4).

Summarizing, by (3.2), (3.3), and (3.4) we arrive to G∗∗(a) = F∗∗(a)−a◦G∗∗(1), G∗∗(1) =
1
2F∗∗(1) = 1

2ξ ,

F∗∗(a)◦b+a◦F∗∗(b)−
1
2
(aξ b+bξ a) = F∗∗(a◦b)

= F∗∗(a)◦b+a◦F∗∗(b)− (a◦G∗∗(1))◦b− (b◦G∗∗(1))◦a,

equivalently,

aξ b+bξ a = (a◦ξ )◦b+(b◦ξ )◦a⇔ ξ ab+baξ −2bξ a+ξ ba+abξ −2aξ b = 0,

for all a,b ∈ A ∗∗. In particular, ξ p+ pξ = 2pξ p, for every projection p ∈ A ∗∗, which proves
that ξ p = pξ p = pξ , and hence ξ commutes with all elements in A ∗∗. �

Remark 3.3. We can conclude now that for a non-commutative C∗-algebra A , the class of
generalized Jordan derivations of the third type on A is strictly included in the class of gener-
alized Jordan derivation of the second type. Consider, for example, an element ζ which is not
in the centre of A and the mapping F : A → A , F(a) = a ◦ ζ which is a generalized Jordan
derivation of the second type but not of the third type.
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Finally, it is worth to say a few words about what could be the Jordan version of general-
ized derivations of the first type. Let M be a Banach A -bimodule on a Banach algebra A . A
generalized Jordan derivation of the first type is a linear mapping F : A →M , for which there
exists a Jordan derivation D : A →M satisfying F(a◦b) = F(a)◦b+a◦D(b) for all a,b∈A .
Indeed some algebraists defined the so-called “Jordan generalized derivation" by letting D to
be just a linear map. That is the case in the paper by Li and Benkovič [33], where it is shown
that any generalized Jordan derivation of the first type on a triangular algebra is a kind of gen-
eralized derivation of the third type. Every Jordan derivation of the first type is automatically
a generalized Jordan derivation of the third type, and thus continuous by Theorem 3.1 when
A is a C∗-algebra. Furthermore, if M is essential, the sets of all generalized Jordan deriva-
tions of the first and third type, respectively, are strictly included in the set of all generalized
Jordan derivation of the second type, and actually they are all generalized derivations of the
first/second/third type.

Despite we have tried to clarify the relationships between the different notions of “generalized
derivations”, several interesting questions remain open after our study. Can we remove the
hypothesis M being essential in Proposition 3.2? Is the final conclusion in the same proposition
true for other Banach bimodules appart from A and A ∗?

It is also natural to expect that the notions of generalized derivations of the third type studied
in this note give rise to appropriate concepts in the setting of JB∗-algebras and JB∗-triples. In
the case of a unital JB∗-algebra J ,the techniques and arguments in [17] can be appropriately
modified to prove that every generalized Jordan derivation of the third type on J or from J
to J ∗ is automatically continuous. However, under more general hypotheses the answer is not
clear.
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