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We consider a class of percolation models where the local occupation variables have long-range
correlations decaying as a power law ∼ r−a at large distances r, for some 0 < a < d where d is
the underlying spatial dimension. For several of these models, we present both, rigorous analytical
results and matching simulations that determine the critical exponents characterizing the fixed point
associated to their phase transition, which is of second order. The exact values we obtain are rational
functions of the two parameters a and d alone, and do not depend on the specifics of the model.

Introduction.– Due to the fundamental role that
phase transitions and spontaneous symmetry breaking
play in physics, a significant amount of work has been
devoted to the analysis of these phenomena near their
critical points, both by exact as well as computational
methods [1]. In this Letter we present both rigorous and
numerical results that unveil the universality classes of
percolation models in the presence of long-range corre-
lations [2, 3]. Our results determine the full set of as-
sociated critical exponents, which are explicit algebraic
functions of two parameters alone, the spatial dimension
d of the system and the roughness exponent a governing
the strength of interactions, see Table I for a summary.
These values rigorously confirm various classical predic-
tions from the physics literature, notably a criterion by
Weinrib-Halperin [4] that forecasts the value of the corre-
lation length exponent ν for such systems; see also [5, 6]
for related (partial) rigorous results in the short-range
case. As further discussed below, the values we obtain are
in accordance with those of the spherical model derived
by Joyce [6], and thus also correspond to the heuristics by
Fisher-Ma-Nickel [7] for n-component spin systems. Fur-
thermore, they certify a number of numerical results (see
below for a full list), including for instance more recent
simulations by Abete-de Candia-Lairez-Coniglio [8].

Our rigorous analysis is driven by the identification
of a specific model, the M-GFF, which enjoys certain
integrability properties and is amenable to a rigorous
study. Subsequent simulations for other models with
different microscopic occupation rules but similar corre-
lation structure provide us with critical exponents that
coincide with our rigorous findings for M-GFF. This
strongly suggests that our rigorous results also apply to
these other models, and hence represents a substantive
indicator of universality.

The models.– We now introduce three models which
exhibit a percolation phase transition driven by a ‘tem-
perature’ parameter u. In analogy with ferromagnetic
(e.g. Ising-type) spin systems, the onset of a magnetized
phase across the Curie temperature corresponds in the
present context to the emergence of an infinite cluster

when u crosses a critical threshold u∗.
The three models we consider are all defined on the

sites of an infinite regular lattice of dimension d >
2 in terms of occupation variables Ψu(x) with values
in {0, 1} = {closed, open} that depend monotonically
on the parameter u which regulates the local density
Prob(Ψu(x) = 1).We write Cu for the open cluster of the
origin in the resulting percolation configuration (Cu may
well be empty in case the origin is closed, i.e. Ψu(0) = 0).
Percolation studies whether or not Cu is infinite or not.
The corresponding order parameter is

θ(u) = Prob(Cu is infinite) (1)

(it is the analogue of the average magnetization for spin
systems). Our models will be defined in such a way that
θ(u) is decreasing in u. The associated critical point is
therefore

u∗ = inf{u : θ(u) = 0}. (2)

In words, (2) implies that for u > u∗ (the sub-
critical/disordered phase), the cluster Cu of the origin
is finite with probability one. On the contrary for u < u∗
(the super-critical/ordered phase), Cu is infinite with
positive probability; equivalently, an infinite cluster is
present somewhere on the lattice (not necessarily at the
origin) with probability one.

The microscopic descriptions of the models provided
below will all lead to an asymptotic long-range (LR) de-
cay of the correlation function of the occupation variables
having the form

⟨Ψu(x)Ψu(y)⟩ − ⟨Ψu(x)⟩⟨Ψu(y)⟩ ∼ |x− y|−a, (LRa)

for some exponent a satisfying 0 < a < d. The correla-
tions (LRa) are present for all values of the parameter
u and not specific to the (near-)critical regime u ≈ u∗.
Their presence characterizes the long-range class (LRa).

Model 1: Vacant set of random walk (RW). This
model was introduced in [8] to study enzyme gel degra-
dation. It is best explained in its finite-volume version,
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TABLE I. Critical exponents as a function of the roughness parameter a (≤ d− 2) and the dimension d.

Exponent α βa γ δ ∆ ρ ν ηa κa,b

Value 2− 2d
a

1 2(d−a)
a

2d
a

− 1 2d
a

− 1 2
a

2
a

a− d+ 2 1
2

a Exponents without this superscript hold for small enough a, in particular for a ≤ d
2
.

b The capacity exponent κ is introduced below (8).

on a d-dimensional torus TN of side length N ≫ 1. Con-
sider X = (Xn)n≥0 the random walk with usual nearest-
neighbor hopping on TN , started from a uniformly cho-
sen point. The walk evolves until time tu = uNd and
perforates the lattice, i.e. one sets

Ψu(x) =

{
1, if x is not visited by X until time tu,

0, otherwise.

(3)
Thus Cu corresponds to the cluster of the origin in the
vacant set of the walk. As N → ∞, this model has a
local limit which is defined on the infinite lattice, the
vacant set of random interlacements [9]. The threshold
u∗ in (2) is defined as the transition point in this infinite
model, and corresponds [10] to the emergence of a giant
component in Cu on TN that scales linearly with the
system size.

Model 2: Gaussian free field (GFF). One consid-
ers the massless free field ϕ on the Euclidean lattice, that
is, the mean zero scalar Gaussian field ϕ = (ϕ(x)) with
covariance ⟨ϕ(x)ϕ(y)⟩ = (−∆)−1(x, y), where ∆ denotes
the lattice Laplacian. Flooding the landscape ϕ from be-
low up to height u induces a natural percolation problem
for its remaining dry parts, i.e. its excursion sets above
height u ∈ R, which corresponds to setting

Ψu(x) =

{
1, if ϕ(x) ≥ u,

0, otherwise.
(4)

The occupation variables in (4) inherit the LR-
dependence from ϕ. The study of this model was
initiated in [11], and more recently re-instigated in [12];
it has since then received considerable attention, in
particular in the mathematics community, see [13].

Model 3: Metric graph GFF (M-GFF). Model 3
is a variation of Model 2 introduced in [14]. Albeit
slightly harder to define, it enjoys greater integrability
properties, as will become clear in the next section. The
M-GFF is naturally defined as a bond percolation model.
The starting point is still the massless free field ϕ, but
one now superimposes the following (quenched) bond dis-
order: given ϕ, each bond e = {x, y} of the lattice is
declared open independently with probability

1− exp
{
− (ϕ(x)− u)+(ϕ(y)− u)+

}
, (5)

where again u is interpreted as a varying real height
parameter and v+ = max{v, 0}. Thus, e can only
possibly be opened if ϕ exceeds the value u at both its
endpoints, and then it does so with probability given
by (5). Incidentally, the additional disorder (5) actually
corresponds to replacing the bond {x, y} by a continuous
line segment of length 1, and asking that a Brownian
bridge on this line segment with values ϕ(x) and ϕ(y)
at the endpoints always stays above a horizontal barrier
placed at height u. The cluster Cu is then defined as the
set of vertices connected to the origin by open edges.

Rigorous results for M-GFF.– The M-GFF allows to
determine various critical exponents rigorously below the
upper critical dimension, which is remarkable given that
it is a non-planar model. We return to this below, and
start by summarizing some of the results in the following
theorem; we refer to [14, 15] for full accompanying
mathematical results and proofs. Below, the truncated
two-point function τ tru (x, y) refers to the probability
that x and y are connected by a finite open cluster.
The following results hold in fact on any graph with
volume growth of balls of the form Br ∼ rd, for (not
necessarily integer-valued) dimension d > 2. Regarding
the following result, we observe that for any such d,
any a with 0 < a ≤ d − 2 can actually be realized by
choosing the underlying graph adequately [16].

Theorem– For M-GFF, if ϕ is of class (LRa) for some
0 < a ≤ d

2 , one has:
(a) For all u and all points x, y,

τ tru (x, y) = |x− y|−aGa
(
|x− y|/|u− u∗|−

2
a

)
, (6)

where

− log(Ga(t)) ∝


t, if a > 1,

t
log(1+t) , if a = 1,

ta, if a < 1.

(b) For all r ≥ 1, with ψ(r) denoting the probability
that a point is connected to distance r at the critical
point u = u∗,

ψ(r) ∝ r−
a
2 as r → ∞, (7)

and ψ exhibits the same off-critical scaling as in (a).
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The above Theorem entails key information on the
critical exponents associated to the M-GFF. From the
bounds derived in (a), the correlation length of the model

can be read off as ξ = |u−u∗|−
2
a , and this determines the

corresponding exponent ν
def.
= − limu→u∗

log ξ
log |u−u∗| = 2

a .

These findings are in line with the extension of the Har-
ris criterion to the class (LRa) advocated by Weinrib-
Halperin in [4] and establish its rigorous justification.
Similarly, at criticality, (b) yields the critical exponent
1
ρ

def.
= − limr→∞

logψ(r)
log r = a

2 . Moreover, by integrating

(6) over y, one further deduces for a < d/2 that the limit

γ
def.
= − lim

u→u∗

log(⟨|Cu|1{|Cu| <∞}⟩)
log |u− u∗|

(
=

2d

a
− 2

)
exists (some additional log corrections when a = d/2 pre-
vent to draw this conclusion in this case). In particular,
it follows that Fisher’s relation γ = ν(2− η) is satisfied,
where η describes the deviation of the two-point function
exponent from the exponent of Green’s function decay.
We emphasize that such scaling relations, let alone the
values of the exponent they relate, are notoriously hard
to establish rigorously.

The proof of the Theorem exhibits an integrable quan-
tity for the M-GFF, the electrostatic capacity of the clus-
ter Cu, which is denoted by cap(Cu) in the sequel. This
quantity is defined through the variational principle

cap(Cu) =
(
inf
µ

∑
x,y∈Cu

(−∆)−1(x, y)µ(x)µ(y)
)−1

,

where the infimum ranges over probability measures µ on
Cu and ∆ denotes the lattice Laplacian. The particular
role of this observable originates in the deep connections
linking ϕ and potential theory through the energy func-
tional

∑
e={x,y} |∇ϕ(e)|2 defining the Boltzmann weight.

The observable cap(Cu) is integrable in the sense that its
probability density f has an explicit form and satisfies

f(t) ∝ t−3/2e−(u−u∗)
2t/2, as t→ ∞. (8)

In particular, the critical capacity satisfies
Prob(cap(Cu∗) ≥ t) ∝ t−κ with κ = 1/2. Further-
more, the explicit formula for f derived in [15] yields
that θ(u) = Prob(cap(Cu) = ∞) ∝ |u − u∗|β for u ↑ u∗
with β = 1. One can now feed the values of exponents
into the usual scaling and hyperscaling relations, which
leads to a vastly overdetermined system. Yet, this
system has a unique solution, summarized in Table I. If
the random walk is diffusive—that is a = d − 2—then
a can be eliminated, and the values in Table I converge
towards the expected mean-field values as d ↑ 6. It was
recently proved [17] that (7) does in fact saturate in high
dimensions, in that the mean-field scaling ψ(r) ∝ r−2

holds for all d > 6.
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FIG. 1. RN vs. u. The critical value u = u∗ corresponds
to the point of intersection. For RW (depicted), one obtains
u∗ = 3.15± 0.015 and consequently γ

ν
= 2.05± 0.07.

Numerical results for RW and GFF.– We now com-
pare the above rigorous findings, which Table I summa-
rizes, with numerical results (both existing and new).
We have run Monte-Carlo simulations for both RW and
GFF on the torus TN in d = 3, on which a = 1, for
various length scales N of the torus with 50 ≤ N ≤ 600
and varying values of u within the critical window. For
N ≥ 250, we simulated 6,000 runs for each point; for
150 ≤ N < 250, there were 15,000 runs and for N < 150
we performed 50,000 runs. On the torus, the quantity
θ(u) in (1) is replaced by θN (u), obtained by modifying
the condition that Cu is infinite to the requirement that
Cu spans the torus, that is, its projection on the first co-
ordinate equals all of {1, . . . , N}. The simulations were
used in combination with scaling arguments to compute
the critical exponents β, γ and ν. We now present these
findings.

Fig. 1 shows the ratio RN = RN (u) = Γ2N (u)/ΓN (u)
as a function of u for RW, where ΓN is the second mo-
ment of the cluster size distribution for TN . With a scal-
ing ansatz, the parameter u∗ is inferred as the point at
which RN is independent of N ; see Fig. 1. This yields
u∗ = 0.315 ± 0.015 for RW and u∗ = 0.865 ± 0.005 for
GFF. Considering the intersection point of the curves
mapping u to θN (u) for different values N further con-
firms this prediction, see Fig. 2 for GFF. The ratio
γ
ν = log2RN (u∗)− d can then be directly computed and
gives γ

ν = 2.05 ± 0.07 for RW and γ
ν = 1.99 ± 0.06 for

GFF. Let Pmax(N) = Pmax(u∗, N) denote the empirical
density of the largest cluster in TN at u∗. Again by scal-

ing one finds − logPmax(N)
logN = β

ν yielding β
ν = 0.49 ± 0.07

for RW and β
ν = 0.5±0.08 for GFF, see Fig 3 for RW. An

alternative method consists of plotting Pmax(u,N)N
β
ν

as a function of ρ = ξ(u)N = |u − u∗|−
1
νN by which

Pmax(u,N)N
β
ν = Ga(ρ). One then fits the parameters
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such that the functions Ga(·) obtained for different val-
ues of N collapse, i.e. do not depend on N , see Fig 4 for
RW. This gives β

ν = 0.485±0.02, ν = 2.02±0.08 for RW

and β
ν = 0.505±0.02, ν = 1.99±0.09 for GFF. A similar

method applies to (Prob(Ψu(0) = 1)Nd)−1ΓN (u) as a
function of ρ and yields γ

ν = 2.05± 0.07, ν = 1.95± 0.11,
for RW and γ

ν = 2.01 ± 0.05, ν = 1.94 ± 0.1 for GFF.
All these simulated values are in accordance with those
of Table I.

The RW model has first been studied in [8], where
the numerical results ν = 1.8 ± 0.1, β = 1.0 ± 0.1 and
γ = 3.4 ± 0.2 were obtained. Although some of these
values first seem far off from the ones from Table I when
d = 3 and a = 1, they are in fact in accordance with
the simulated value of a = 1.15± 0.05 from [8], which is
due to the small size N = 60 of the lattice therein. More
recent simulations [18] find values of ν in accordance with
[4] when d ∈ {3, 4, 5}, which corresponds to a ∈ {1, 2, 3}.
Some simulations for the GFF model have also been

conducted in [19], and they also find values of ν in accor-
dance with [4]. However the value of β/ν = 0.60 ± 0.01
and γ/ν = 1.8 ± 0.1 when a = 1 obtained therein seem
to differ from the one indicated by both Table I and our
simulations. It would however be rather surprising that
β is larger than its mean-field value (for instance the
curve θ(u) for the order parameter in (1) would fail to
be convex); this partially motivated the new simulations
for GFF in the current work. We also refer to [20] for
rigorous results which suggest that ν = 2 in dimension
three. Finally in [21] a RW model slightly different from
Model 1 was studied, where the RW moves at random us-
ing the same moves as a knight in chess (in particular, its
trajectory is not necessarily connected), and one studies
percolation for the set of points visited by the random
walk, instead of the vacant set. In dimension three, the
values β/ν = 0.498 ± 0.005 and ν = 1.99 ± 0.01 are ob-
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FIG. 2. θN vs. u for GFF. The intersection of the lines for
different values of N confirms the value u∗ = 0.865± 0.005.
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FIG. 3. Pmax(N), the density of the largest cluster at crit-
icality, as a function of the box size N for RW. By scal-
ing Pmax(N) ∼ θ(u) ∝ |u − u∗|β where u is s.t. ξ(u) =

|u− u∗|−1/ν = N . Overall, this yields β
ν
= 0.49± 0.07.

1.0 0.5 0.0 0.5 1.0
N1/

0.1

0.2

0.3

0.4

0.5
P m

ax
N

/
N= 50
N= 100
N= 150
N= 200
N= 250
N= 300
N= 400
N= 500
N= 600

FIG. 4. Collapse for RW: Pmax(u,N)N
β
ν as a function of

δNν , with δ = |u − u∗|, becomes independent of N for β
ν
=

0.485± 0.02, ν = 2.02± 0.08.

.

tained numerically and the authors conjecture that the
exact values for β and ν are in fact the ones from Table I.
We also refer to [22] for results on general Gaussian fields
which suggest that ν = 2/a for a ≤ 1.

Discussion.– As explained in [4], see also [23] for
some simulations, it is expected that the equality ν = 2

a
holds until ν reaches its short range value and then re-
mains constant. This sticking phenomenon is reminis-
cent of the one for η for n-component spin systems of
LR-type, as first observed by Sak [24], see also Fisher
et al. [7]. Their predicted value η = a − d + 2 (for
long-range interactions decaying as r−2d+a, so that the
associated GFF satisfies (LRa)) matches the value of
Table I. Feeding it alone into the hyperscaling relation
(2 − η)(δ + 1) = d(δ − 1) yields the value of δ = 2d

a − 1
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from Table I, and we refer to [25] for similar results in the
context of independent long-range percolation. Letting
n→ ∞, one recovers the spherical model [26], whose ex-
ponents [6, 27] all coincide with the ones from Table I for
a certain regime of parameters (up to the usual rescaling
of the exponents when passing from spin systems to per-
colation). It would be interesting to understand whether
there are deeper links between these models and the M-
GFF, as well as whether all long-range models share a
similar behavior.

Conclusion– Our main contribution is the combina-
tion of our rigorous results for M-GFF with numerical
simulations for RW and GFF. This strongly suggests that
all these models lie in the same universality class and that
the exact critical exponents of M-GFF from Table I also
apply to the other models. With the help of the inte-
grable observable of the cluster capacity, we rigorously
derived that M-GFF for 0 < a ≤ min(d2 , (d − 2)) under-
goes a continuous phase transition with critical exponents
summarized in Table I. Moreover, we showed numerically
that both the RW and GFF model on the cubic lattice
have the same exponents β, γ and ν as M-GFF. Taking
advantage of scaling and hyperscaling, we inferred that
they are in the same universality class, which essentially
coincides in the long-range regime with the universal-
ity class of the spherical model. Recent progress [21]
provides numerical evidence for further models satisfy-
ing (LRa) with small enough a to belong to this univer-
sality class. Intriguing challenges in understanding this
universality class remain open, numerically as well as rig-
orously. One very interesting question is to improve our
understanding of the crossover to short range universality
classes. That is, to assess how far the above set of ex-
ponents describes the truth for larger values of a, which
depends on the underlying lattice through the values of
its associated short-range exponents. One case in point is
to show that the exponents for any of Models 1-3 on the
hypercubic lattice in d = 5 are described by the values
in Table I for a = d− 2 = 3.

Acknowledgments– The authors would like to thank
Sebastian Diehl and Joachim Krug for valuable com-
ments on a first draft of the paper. The research of
AD has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) grant DR 1096/2-1. AP was sup-
ported by the Swiss NSF. CC was supported by the
EPSRC Centre for Doctoral Training in Mathematics of
Random Systems: Analysis, Modelling and Simulation
(EP/S023925/1).

∗ christopher.chalhoub21@imperial.ac.uk
p.rodriguez@imperial.ac.uk

† adrewitz@uni-koeln.de
‡ alexis.prevost@unige.ch

[1] These include (among others): renormalization group
methods, see [28] for a review, see also [29]; CFT tech-
niques, notably in three dimensions, see the review [30]
and refs. therein; exactly solvable models [27]; recent rig-
orous progress on conformal invariance and universality
in two dimensions [31].

[2] M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).
[3] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[4] A. Weinrib and B. I. Halperin, Phys. Rev. B 27, 413

(1983); A. Weinrib, Phys. Rev. B 29, 387 (1984).
[5] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,

Phys. Rev. Lett. 57, 2999 (1986).
[6] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,

Commun. Math. Phys. 120, 501 (1989); G. S. Joyce,
Phys. Rev. 146, 349 (1966).

[7] M. E. Fisher, S.-k. Ma, and B. G. Nickel, Phys. Rev. Lett.
29, 917 (1972).

[8] T. Abete, A. de Candia, D. Lairez, and A. Coniglio, Phys.
Rev. Lett. 93, 228301 (2004).

[9] A.-S. Sznitman, Ann. Math. (2) 171, 2039 (2010).
[10] D. Windisch, Electron. Commun. Probab. 13, 140 (2008);

A. Teixeira and D. Windisch, Comm. Pure Appl. Math.
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