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Quantum error mitigation techniques mimic noiseless quantum circuits by running several related
noisy circuits and combining their outputs in particular ways. How well such techniques work is
thought to depend strongly on how noisy the underlying gates are. Weakly-entangling gates, like
RZZ(θ) for small angles θ, can be much less noisy than entangling Clifford gates, like CNOT and
CZ, and they arise naturally in circuits used to simulate quantum dynamics. However, such weakly-
entangling gates are non-Clifford, and are therefore incompatible with two of the most prominent
error mitigation techniques to date: probabilistic error cancellation (PEC) and the related form
of zero-noise extrapolation (ZNE). This paper generalizes these techniques to non-Clifford gates,
and comprises two complementary parts. The first part shows how to effectively transform any
given quantum channel into (almost) any desired channel, at the cost of a sampling overhead, by
adding random Pauli gates and processing the measurement outcomes. This enables us to cancel or
properly amplify noise in non-Clifford gates, provided we can first characterize such gates in detail.
The second part therefore introduces techniques to do so for noisy RZZ(θ) gates. These techniques
are robust to state preparation and measurement (SPAM) errors, and exhibit concentration and
sensitivity—crucial features in many experiments. They are related to randomized benchmarking,
and may also be of interest beyond the context of error mitigation. We find that while non-Clifford
gates can be less noisy than related Cliffords, their noise is fundamentally more complex, which can
lead to surprising and sometimes unwanted effects in error mitigation. Whether this trade-off can
be broadly advantageous remains to be seen.

I. INTRODUCTION

While fault tolerance is essential for realizing the full
potential of quantum computing, error mitigation may
unlock some of this potential before the advent of large-
scale fault tolerance [1]. The most prominent error miti-
gation techniques seek to compute noiseless expectation
values for a given quantum circuit by running several
related circuits on a noisy quantum computer, then com-
bining their measurement outcomes in nontrivial ways
[2, 3]. The resulting precision and/or accuracy (within
a fixed running time) typically improves with increasing
gate quality, but declines—often exponentially—with the
size of the target circuit. In other words, better gates can
enable these techniques on bigger circuits—a dynamic
that may provide a continuous path towards fault toler-
ance [4].

Due to its strong dependence on circuit size, error
mitigation is most promising for problems which ad-
mit an exponential quantum speedup in computing ex-
pectation values, and where the required gates closely
match the connectivity between qubits in hardware.
The most evident example is quantum simulation using
Trotter/Floquet-type circuits [5, 6]. Such circuits imple-
ment repeated unitaries of the form Uj = exp(−iHj δt)
using one- and two-qubit gates, where {Hj} are com-
ponents of the Hamiltonian being simulated and δt rep-
resents a timestep. One typically wants a small δt to
reduce Trotter error, which makes each Uj (at most)
weakly entangling [7]. For example, alternating between
U1 and U2 layers, generated by H1 = g

∑
iXi and

H2 = −J
∑

⟨i,j⟩ ZiZj respectively, approximates evolu-

tion by the transverse-field Ising model H1 +H2. Using

the notation

RP (θ) = e−iPθ/2 (1)

where P denotes a Pauli operator, U1 comprises only
single-qubit unitaries RX(ϕ) with ϕ = 2g δt, while U2

comprises two-qubit unitaries RZZ(θ) with θ = −2J δt,
which generate little entanglement per layer when δt is
small enough to give a reasonable Trotter error.
Such weakly-entangling unitaries can be realized

through two main strategies, which use qualitatively dif-
ferent two-qubit gates [8]. The first uses fixed two-qubit
Clifford gates, like CNOTs, regardless of δt, while the sec-
ond uses weakly-entangling, non-Clifford two-qubit gates
that approach I as δt→ 0. (Both strategies can also use
arbitrary single-qubit gates as needed.) Following the
first strategy, for example, one might compile RZZ(θ)
into two CNOTs and a single-qubit RZ(θ) gate, where
each CNOT is locally equivalent to RZZ(π/2). Follow-
ing the second strategy, one would instead implement
RZZ(θ) directly, up to single-qubit gates, by shortening
the control sequence used to perform CNOTs—effectively
doing a fraction of a CNOT rather than two. We will call
these two strategies digital and semi-analog, respectively.
(The latter is not fully analog as it still discretizes the
quantum dynamics of interest into circuits.) Since two-
qubit gates are the dominant source of errors in most
pre-fault-tolerant devices, these two strategies offer very
different advantages. The digital strategy is manifestly
compatible with the most prominent error mitigation
techniques, which handle errors on two-qubit Clifford
gates [9, 10]. On the other hand, the semi-analog strat-
egy can incur substantially fewer errors to begin with,
by virtue of having faster, and sometimes also fewer,
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two-qubit gates [11, 12]. However, because these latter
gates are non-Clifford, they have been largely incompat-
ible with error mitigation to date.

Motivated by this semi-analog strategy for quantum
simulation, we introduce a broad error mitigation tech-
nique for non-Clifford gates. In Section II we describe
a general approach that extends two prominent exist-
ing techniques, namely probabilistic error cancellation
(PEC) and zero-noise extrapolation (ZNE), to non-Pauli
noise associated with non-Clifford gates. Like its pre-
decessors, our approach requires detailed knowledge of
the noisy gate(s) in question. In Section III we there-
fore introduce learning schemes for noisy non-Clifford
gates, which are robust against state preparation and
measurement (SPAM) errors, focusing for concreteness
on RZZ(θ) gates. These mitigation and learning tech-
niques both mark significant departures from the existing
formalisms of PEC and ZNE.

II. ERROR MITIGATION

A. Mathematical background

A generic operation on n qubits, unitary or not, can
be described by a completely positive trace-preserving
(CPTP) map G [13], also called a quantum channel,
which maps an input state ρ to an output state ρ′ = G(ρ).
There are several distinct matrix representations for a
given quantum channel, but it will be convenient here
to describe G by its Pauli transfer matrix (PTM) G, a
4n × 4n real matrix with elements

Gij = tr
[
Pi G(Pj)

]
/2n (2)

between −1 and 1, where Pi and Pj are n-qubit Paulis
[14]. (G is also known as a Liouville representation of
G.) We will denote PTMs and other matrices of the same
size in bold to distinguish them from 2n×2n-dimensional
unitaries like Pi. Writing the input/output states above
in the Pauli basis, ρ = 2−n

∑
i siPi and ρ

′ = 2−n
∑

i s
′
iPi,

the PTM of G is the matrix relating their generalized
Bloch vectors as s⃗ ′ = G s⃗. For any two channels G(1)

and G(2) with PTMs G(1) and G(2), the PTM of G(1)

followed by G(2) is simply G(2)G(1), and performing G(1)

or G(2) with respective probabilities p and 1 − p gives a

PTM of pG(1) + (1− p)G(2).

A channel P is said to be a Pauli channel if it acts
as P(ρ) =

∑
i piPiρPi for some probability distribution

p⃗ = (pi)
4n−1
i=0 , meaning that it can be understood as a

process where Pauli errors Pi occur with probabilities pi.
Equivalently, a Pauli channel is one whose PTM is diag-

onal, P = diag(f⃗ ), with elements fi that are sometimes
called Pauli eigenvalues [15] or Pauli fidelities [9]. These

are related to the error probabilities pi by f⃗ = W p⃗, where

W is a 4n × 4n Walsh matrix with elements

W ij =

{
+1, [Pi, Pj ] = 0

−1, {Pi, Pj} = 0,
(3)

that describes a type of discrete Fourier transform and
obeys W = W⊤ = 4n W−1.
Finally, a generic channel G can be transformed into a

Pauli channel through Pauli-twirling [16, 17]. Twirling
means sampling a random unitary V uniformly from
some given set each time G is implemented, and applying
V and V † before and after G, respectively. When V is
sampled from

P =
{
P (1) ⊗ · · · ⊗ P (n)

∣∣∣P (i) ∈ {I,X, Y, Z}
}
, (4)

the set of all n-qubit Paulis, i.e., when V ∼ unif(P), the
process is called Pauli-twirling. For any G, the resulting,
overall channel

Ḡ(ρ) = 1

4n

∑
Pi∈P

Pi G
(
Pi ρPi

)
Pi (5)

is a Pauli channel, with Pauli fidelities fi = Gii. All off-
diagonal elements ofG are averaged away by the twirling.

B. Clifford gates

Suppose we want to implement a Clifford gate, or a
layer of simultaneous Clifford gates, described by an n-
qubit unitary U and a corresponding quantum channel
U(ρ) = UρU†, but we instead implement a slightly dif-
ferent channel G due to experimental imperfections. It is
customary to factor this noisy gate into G = UN , where
N = U−1G describes the noise and U−1(ρ) = U†ρU .
(We could equivalently factor it into G = N ′ U for noise
N ′ = G U−1. Generically N ̸= N ′, although the choice
of order is inconsequential, at least for PEC, as long as
we are consistent.) PEC, and the related version of ZNE,
both have two conceptual steps in terms of this factor-
ization, as depicted in Fig. 1:
Step 1: Pauli-twirl the noise channel N to simplify it,

using only single-qubit gates.

Step 2: Transform (i.e., cancel for PEC, or amplify for
ZNE) the resulting Pauli noise channel N̄ .

The noise N will not typically be a Pauli channel, but
we can transform it into one through Pauli-twirling in
Step 1. To do so while leaving U intact, we must apply
a random Pauli Pj ∼ unif(P) before G and a correspond-
ing unitary UPjU

† after, in order to reach N with Pj

from both sides [18, 19]. It is essential that UPjU
† com-

prise only single-qubit gates, which are typically much
less noisy than multi-qubit gates, so as not to introduce
more noise comparable to N while trying to twirl N .
This locality is guaranteed when U is Clifford, in which
case UPjU

† ∝ Pi is an n-qubit Pauli (up to a global
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G = N U

Step 1 ↓ (Pauli-twirl N into N̄ )

Pj N U Pi = Pj N Pj U = N̄ U

∼ unif(P) ∝UPjU
† ∼ unif(P) Ḡ

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Step 2 ↓ (cancel or amplify N̄ )

Pk Ḡ avg
= M N̄ U = N̄ 1+α U

∼ q⃗ A
︸ ︷︷ ︸

FIG. 1. The two conceptual steps of PEC, and the related
form of ZNE, for a noisy Clifford gate G. Any G can described
as a noise channel N followed by an ideal gate U . (We write
the unitary U in place of the channel U in the circuit above,
and likewise for other noiseless gates, for simplicity.) In Step
1, one adds random Pauli gates on both sides of G, chosen
so as to twirl N into a Pauli channel N̄ . We denote the
resulting average channel as Ḡ. In Step 2, one then adds a
random Pauli gate Pk before Ḡ, sampled from a probability
(for ZNE) or quasi-probability (for PEC) distribution q⃗, which
is chosen to correctly amplify (α > 0) or invert (α = −1) N̄ ,
respectively. We denote the resulting aggregate channel as

A, and use the notation
avg
= to indicated that, for PEC, the

relation only holds for expectation values.

phase) for every Pj ∈ P, by definition. Step 1 therefore
consists of applying random Paulis Pj and Pi on either
side of G according to the distribution described above.
Under the approximation that Pauli gates are noiseless
compared to multi-qubit gates, which we will make from
now on, the resulting overall channel is Ḡ = UN̄ , where
N̄ is a Pauli channel. Thus simplified, the noise is easily
amenable to mitigation.

In Step 2, both PEC and the related version of ZNE
perform operations of the form

M(ρ) =
∑
k

qkPkρPk (6)

before Ḡ, leading to an aggregate channel of

A = ḠM = U N̄M (7)

with a PTM of

A = U

N̄=diag(f⃗ )︷ ︸︸ ︷
. . . 0

f⃗

0
. . .


M=diag(W q⃗ )︷ ︸︸ ︷
. . . 0

W q⃗

0
. . .

, (8)

expressed in terms of the PTMs for A, U , N̄ and M re-
spectively, where fi = tr[Pi N (Pi)]/2

n. In other words,
the aggregate channel behaves like an ideal gate U pre-
ceded by an adjustable Pauli noise channel N̄M, which

depends on q⃗ = (qk)
4n−1
k=0 via M. We now address ZNE

and PEC in turn, which differ in their choice and their
implementation of M.

The idea of ZNE is to purposely increase the effective
strength of gate noise so as to measure an expectation
value of interest at multiple noise levels, then predict its
zero-noise value by extrapolation. It is a heuristic tech-
nique whose performance depends on how exactly one
increases the noise level. The most successful approach
to date (sometimes called probabilistic error amplifica-
tion, or PEA) seeks to effectively replace N̄ with N̄ 1+α

for different noise levels 1 + α ≥ 1 by picking M = N̄α

[10]. As Eq. (8) shows, this can be done by applying ran-
dom Paulis Pk before Ḡ with probabilities qk chosen so

that W q⃗ = f⃗ α, where f⃗ α is defined element-wise. The
net effect is to amplify the twirled noise by a tunable
amount 1 + α while preserving its structure.

Rather than amplify the twirled noise, PEC seeks to
cancel it by picking α = −1 so that M = N̄−1 and there-
fore A = U . As per Eq. (8), this can be done by picking

q⃗ such that W q⃗ = f⃗ −1, where (f⃗ −1)i = 1/fi. This
q⃗, however, generally contains negative elements and is
therefore not a valid probability distribution. In turn,
M = N̄−1 is not a valid quantum channel, and can-
not be implemented as described above in the context
of ZNE. It is nonetheless possible to realize this M in
effect, when measuring expectation values, by treating
q⃗ as a quasi-probability distribution. That is, suppose
we aim to measure ⟨Pm⟩ = tr[Pm U(ρ)] for some n-qubit
Pauli Pm, but can only implement the noisy gate Ḡ (with
twirled noise) in place of U . PEC provably recovers the
noiseless expectation value, on average, by applying ran-
dom Paulis Pk before Ḡ with probabilities |qk|/γ, where
γ =

∑
k |qk|, then multiplying the ±1 measurement out-

comes (corresponding to eigenspaces of Pm) by γ sgn(qk)
[2]. Assuming noiseless readout, the expected value of
these scaled outcomes is

∑
k

|qk|
γ

γ sgn(qk) tr
[
Pm Ḡ(PkρPk)

]
= tr

{
Pm Ḡ

[
N−1(ρ)

]}
,

(9)
which equals ⟨Pm⟩ as desired. However, because each
shot returns ±γ rather than ±1, and γ ≥ 1, one typically
needs γ2 times more shots to estimate ⟨Pm⟩ with a given
precision than if the gate were noiseless [2, 9]. Moreover,
the γ factors multiply when one does PEC for multiple
gate layers within a circuit, resulting in a sampling over-
head that (typically) grows exponentially in the number
of noisy gates. The silver lining, however, is that γ ap-
proaches 1 here as gate noise decreases, so PEC could be
compatible with classically hard circuits despite this ex-
ponential overhead, provided the gate noise is sufficiently
weak.
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G := U N ′ = N U

Pauli channel
by definition

not generally a
Pauli channel

︸ ︷︷ ︸ ︸ ︷︷ ︸
FIG. 2. A thought-experiment where a noisy non-Clifford gate
G happens to factorize into an ideal gate U followed by a Pauli
noise channel N ′, as in the middle circuit. N ′ can therefore
be amplified or inverted by inserting random Paulis after the
noisy gate. However, if we factorized G as shown on the right,
the resulting noise channel N would generally be non-Pauli,
and could not be amplified or inverted by inserting random
Paulis before G. This is a fundamental difference between
Clifford and non-Clifford gates.

C. Non-Clifford gates

The error mitigation schemes described above, which
we will call Clifford PEC and ZNE, rely critically on N̄
being a Pauli channel due to the Pauli-twirling in Step
1. In terms of PTMs, as in Eq. (8), both techniques en-
act a diagonal matrix M before the noisy gate in Step
2. This suffices to amplify or cancel the twirled noise
because the latter’s PTM, N̄ , is also diagonal, so we can
set M = N̄

α
for any α. (We could equally well per-

form M after the noisy gate instead, with minor adjust-
ments, following the alternate factorization G = N ′ U .)
When U is non-Clifford, however, it is not generally pos-
sible to Pauli-twirl the associated noise using only single-
qubit gates since UPjU

† can be entangling, meaning Step
1 breaks down. More colloquially, there is no way to
reach N from both sides with arbitrary Paulis without
introducing more entangling gates, which are themselves
noisy. Or alternatively, in terms of PTMs, there is no
apparent way to twirl N into a diagonal matrix which
can, in turn, be amplified or inverted by a diagonal M .
That means that Clifford PEC and ZNE cannot correctly
amplify or cancel noise on non-Clifford gates, in general.

1. Formalism of Pauli shaping

We propose a simple generalization of these techniques
that applies to both Clifford and non-Clifford gates. To
motivate it, we begin with a thought-experiment: con-
sider a noisy non-Clifford gate G = N ′ U shown in Fig. 2,
where U(ρ) = UρU† is the intended (non-Clifford) uni-
tary and N ′ happens to be a Pauli noise channel from
the outset. Since there is no need to twirl such noise,
we could still do Clifford PEC or ZNE (skipping Step 1)
by inserting M = (N ′)α, as in Eq. (6), after G. No-
tice, however, that if we factored the same noisy gate in
the order G = UN instead, the resulting noise channel
N = U−1N ′ U would generally be non-Pauli (since U is
non-Clifford), and could not be amplified or inverted by
inserting an M before G, as described in the previous
section. Moreover, there is no apparent way to twirl N
into a Pauli channel using single-qubit gates since U is

not Clifford. This thought-experiment suggests two con-
clusions about mitigating errors on non-Clifford gates.
First, whether we insert M before or after G can make a
critical difference for PEC and ZNE, unlike in the Clif-
ford case. We should therefore seek a formalism that
finds the right placement automatically. Second, while
it is always possible to factor a noisy gate G into noise
and an ideal gate, doing so for non-Clifford gates can
give qualitatively different noise channels (e.g., Pauli or
non-Pauli) depending on the factorization order, which
is an arbitrary mathematical choice of no physical signif-
icance. It can therefore be more informative to think in
terms of the noisy gate G directly, rather than factoring
out a noise channel.
In light of these conclusions, consider performing Pj ,

then a noisy gate G, then Pi, as shown in Fig. 3, where
Pi and Pj are arbitrary n-qubit Paulis. The resulting
channel

A(ij)(ρ) = Pi G(PjρPj)Pi (10)

has a PTM A(ij) whose (k, ℓ)th element is

A
(ij)
kℓ = tr

[
Pk A(ij)(Pℓ)

]
/2n = W kiW jℓ Gkℓ, (11)

where we have used the trace’s cyclic property, the fact
that PaPbPa = W ab Pb for all Pa, Pb ∈ P, and the defi-
nition of the PTM elements Gkℓ of G from Eq. (2). Now
consider the aggregate channel A that is a linear combi-
nation of A(ij), weighted by real coefficients Qij forming
a 4n × 4n matrix Q of our choice:

A(ρ) =
∑
ij

Qij A(ij)(ρ) =
∑
ij

QijPi G(PjρPj)Pi. (12)

Using Eq. (11), the (k, ℓ)th PTM element of A is

Akℓ =
∑
ij

W ki QijW jℓ Gkℓ, (13)

so its PTM, in matrix form, is

A = (WQW )⊙G = C ⊙G, (14)

where ⊙ denotes an element-wise (i.e., Hadamard) prod-
uct. It is convenient to define C = WQW in Eq. (14),
which we call a characteristic matrix in analogy to char-
acteristic functions from probability theory, which are
Fourier transforms of probability density functions [20].
Intuitively, Q and C can be understood as Fourier trans-
forms of one another (since W describes a type of dis-
crete Fourier transform), so the element-wise product in
Eq. (14) is reminiscent of a convolution in some “fre-
quency domain.”
More concretely, Eq. (14) shows that through an ap-

propriate choice of Q, the aggregate channel A can be
chosen almost arbitrarily, at least in terms of expecta-
tion values, at the cost of a potential sampling over-
head. That is, to realize a desired A with PTM ele-
ments Aij , it suffices to pick characteristic matrix el-
ements Cij = Aij/Gij . (Anytime Aij = Gij = 0, the
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A(ij)

Pj G Pi
avg
= A︸︷︷︸

jointly ∼Q

︸︷︷︸
FIG. 3. A circuit description of Pauli shaping. To shape a
given channel G into a desired channel A, one can insert ran-
dom n-qubit Paulis Pj and Pi before and after G, respectively,
to form a channel A(ij). One picks Pi and Pj randomly with
probability |Qij |/γ in each shot, then multiplies the measure-
ment outcomes by γ sgn(Qij) to realize A, for Q and γ from
Eqs. (14) and (15) respectively. When all Qij ≥ 0, i.e., when
Q is a valid probability distribution of pairs of Paulis, the last
step is trivial and the channel A is actually realized. When
some Qij < 0, Q is instead a quasi-probability distribution,
and A is only realized in terms of expectation values, as indi-

cated by the notation
avg
= .

corresponding Cij can be chosen arbitrarily.) The result-
ing C then corresponds to a unique Q = WCW /24n. If
allQij ≥ 0 thenQ can be interpreted as a probability dis-
tribution over pairs of Paulis (Pj , Pi) ∈ P×P, rather than
over individual Paulis like q⃗ in Eq. (6). In other words,
the corresponding A can be realized, with no sampling
overhead, by performing Pj , then G, then Pi with prob-
ability Qij , as in Fig. 3. (Normalization,

∑
ij Qij = 1, is

guaranteed if A and G are both trace-preserving.) Much
like in the Clifford case, we can still realize a desired A in
expectation when the corresponding Q contains negative
elements by treating Q as a quasi-probability distribu-
tion. That is, we can insert Pj and Pi before and after G
respectively with probability |Qij |/γ, where

γ =
∑
ij

|Qij |, (15)

then multiply the measurement outcomes (the measured
eigenvalue of the observable in question) by γ sgn(Qij).
The proof is almost identical to that of the Clifford case
(see Appendix A in [21]), and the meaning of γ is the
same: γ2 is a sampling overhead that combines mul-
tiplicatively with that from other gate layers, leading
to an exponential overhead. We are not aware of any
prior name for this technique, which is encapsulated by
Eq. (14) and Fig. 3, so we will refer to it here as Pauli
shaping. Moreover, we will generally refer to Q as a
quasi-probability matrix, and similarly for its elements,
even though it can also describe a true probability dis-
tribution.

Rather than just invert or amplify Pauli noise, Pauli
shaping effectively transforms any implemented channel
G into (almost) any desired channel A. It applies to both
Clifford and non-Clifford gates. (The only minor limita-
tion is that it requiresGij ̸= 0 in order to achieveAij ̸= 0
for any Paulis Pi, Pj ∈ P, otherwise no choice of charac-
teristic matrix will satisfy Aij = Cij Gij . This condition
should be easily satisfied in practice for any G that is
reasonably close to A.) For instance, one can use Pauli

G

Pk Pj N U Pi = Pk⊕σ(i) G Pi

Step 2 Step 1
︸ ︷︷ ︸ ︸ ︷︷ ︸

FIG. 4. Two equivalent ways to view Clifford PEC/ZNE.
Left: the conceptual steps are shown separately, where the
random Paulis Pi ∼ unif(P) and Pj = Pσ(i) ∝ U†PiU serve to
twirl the factored noise channel N , then a random Pauli Pk

is added with quasi-probability k ∼ q⃗ to amplify or invert the
twirled noise. Right: Pk and Pj are combined into a single
Pauli Pℓ = Pk⊕σ(i), so Pℓ and Pi are added before and after

G, respectively, with quasi-probability qk/|P| = 4−n qσ(i)⊕ℓ.

shaping to do PEC for arbitrary gates by choosing C so
that A = U , i.e., by demanding Aij = U ij . Similarly,
one could do several forms of ZNE for different notions
of noise amplification. One possibility would be to mimic
the Clifford case by picking C such that A = UN 1+α for
different noise levels 1 + α ≥ 1, even though N = U−1G
need not be a Pauli channel. (The other noise factor-
ization order works too.) Alternatively, one could aim
to find a Lindbladian L such that G = exp(−iH + L),
where H = [H, · ] is an effective Hamiltonian superop-
erator (with H = H†) that generates the intended gate
U = e−iH, then similarly implement A = exp(−iH+αL)
for different α. Variants of these schemes where the noise
is twirled over a subset of P, depending on the intended
gate, are also possible.

Pauli shaping reduces to Clifford PEC/ZNE when the
target gate U is Clifford. This may not be obvious since
the latter is typically broken into two conceptual steps
(as in Sec. II B), which can obscure the full picture: while
Step 2 only adds random Paulis on one side of the noisy
gate G, Step 1 adds them on both sides to twirl the noise.
By combining any adjacent Paulis as shown in Fig. 4,
these two steps can be jointly described as inserting ran-
dom Paulis Pj and Pi before and after a noisy gate G,
respectively, with quasi-probability

Qij = 4−n qσ(i)⊕j , (16)

where q⃗ = (qk)
4n−1
k=0 are the coefficients appearing

throughout Sec. II B, the function σ is defined by Pσ(i) ∝
U†PiU , and we write k = i ⊕ j when Pk ∝ PiPj . These
are the same probabilities, or quasi-probabilities, as one
gets by starting with the formalism of Pauli shaping (see
Appendix B in [21]). The key difference between Pauli
shaping and Clifford PEC/ZNE, then, is that the for-
mer allows more general correlations between the random
Paulis flanking G, giving it a much broader scope with-
out requiring deeper circuits. More precisely, Pauli shap-
ing uses a quasi-probability matrix Q with up to O(42n)
distinct elements, whereas Clifford PEC/ZNE implicitly
uses a Q with only O(4n) distinct elements, repeated ac-
cording to Eq. (16). Of course, it is not feasible to com-
pute 2O(n) quasi-probabilities in either case for modern
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quantum devices. In Clifford PEC/ZNE, “sparse” noise
models, which approximate N̄ , or equivalently Ḡ, using
only poly(n) parameters based on hardware connectivity,
have been empirically successful [9, 10]. (See also [15, 22]
for related theoretical results.) We expect a similar ap-
proach to be possible for non-Clifford gates, on similar
grounds, but we leave such modeling to follow-up work.

2. Examples of Pauli shaping

To illustrate the scope and behavior of Pauli shaping
more broadly, consider applying it to a 2-qubit gate that
is common in many experiments [23–25]:

U = RZZ(θ), (17)

with a generic angle θ /∈ {0, ±π/2, π} for which the gate
is non-Clifford. When constructing PTMs and the like
related to this gate, it will be convenient to order the
2-qubit Paulis as

P =
(
II, ZZ, XX, Y Y, IZ, ZI, Y X, XY, (18)

XI, Y Z, XZ, Y I, IX, ZY, ZX, IY
)
,

so that those in the first/second half commute/anti-
commute with ZZ, and each Pauli is related to one of its
neighbors through multiplication by ZZ. (Of course, the
choice of basis ordering is arbitrary and has no impact on
the results that follow.) Expressed in the ordered basis
(18), the PTM of the channel U(ρ) = UρU† describing
the ideal gate is block-diagonal:

U =



I 0
I

I
I

R(2)

R(2)

R(2)

0 R(2)


,

(19)
with 2 × 2 identity matrices I in the upper-left (acting
trivially on Paulis that commute with ZZ) and 2 × 2

rotation matrices

R(2) =

(
cos θ − sin θ
sin θ cos θ

)
(20)

in the lower-right (mixing together Paulis that anti-
commute with ZZ).
To illustrate the enhanced scope of Pauli shaping, sup-

pose the only error in implementing U is a coherent over-
or under-rotation by an angle ϵ ∈ R, that is:

G(ρ) = RZZ(θ + ϵ) ρRZZ(θ + ϵ)†. (21)

This is a paradigmatic non-Pauli error, which cannot
be twirled into a Pauli error channel because U is non-
Clifford. Pauli shaping lets us recover the ideal gate, in
terms of expectation values, by using a block-diagonal
characteristic matrix (also expressed in the ordered basis
(18)):

C = diag(C1, C1, C1, C1, C2, C2, C2, C2), (22)

where the four bottom blocks must be

C2 =

( cos(θ)
cos(θ+ϵ)

sin(θ)
sin(θ+ϵ)

sin(θ)
sin(θ+ϵ)

cos(θ)
cos(θ+ϵ)

)
(23)

in order to satisfy Eq. (14). Similarly, the four top blocks
of C must have the form

C1 =

(
1 x
y 1

)
, (24)

where the parameters x and y can be chosen arbitrarily
since both get multiplied by zero in Eq. (14), so their val-
ues do not affect the resulting aggregate channel. They
do, however, generally affect the required sampling over-
head, in potentially complicated ways. A judicious choice
of x and y (see Appendix C in [21] for details) cancels
the coherent error, in expectation, at the cost of a γ2

sampling overhead, where

γ = max

{∣∣∣∣ cos(θ)

cos(θ + ϵ)

∣∣∣∣ , ∣∣∣∣ sin(θ)

sin(θ + ϵ)

∣∣∣∣} = 1 +O(ϵ). (25)

In other words, the sampling overhead (per gate) vanishes
linearly as the calibration error goes to zero.
Unfortunately, while Pauli shaping applies to arbitrary

gates, it can be prohibitively expensive on non-Clifford
gates depending on the noise in question. To illustrate
the issue, consider a different noisy implementation of
U = RZZ(θ) with a block-diagonal PTM of
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G =



(
1 0
2ϵ 1− 2ϵ

)
0(

1− ϵ −ϵ
−ϵ 1− ϵ

)
(
1− ϵ ϵ
ϵ 1− ϵ

)
(
1− ϵ ϵ
ϵ 1− ϵ

)
√
1−2ϵR(2)

√
1−2ϵR(2)

√
1−2ϵR(2)

0
√
1−2ϵR(2)



,

(26)

where ϵ ∈ [0, 12 ) describes the noise strength (ϵ = 0 for

the ideal gate) and R(2) is the 2×2 rotation matrix from
Eq. (20). The optimal characteristic matrix (in terms of
γ) that recovers the ideal gate, in expectation, is similarly
block-diagonal (see Appendix C in [21]). To satisfy U =
C ⊙G, it must equal

C = diag(C1, C2, C2, C2, C3, C3, C3, C3), (27)

where

C1 =

(
1 x
0 (1− 2ϵ)−1

)
(28)

for some parameter x that we are free to choose, and

C2 =
1

1− ϵ

(
1 0
0 1

)
C3 =

1√
1− 2ϵ

(
1 1
1 1

)
. (29)

The resulting γ is a complicated function of ϵ and x in
general [21], but its weak-noise limit is

lim
ϵ→0

γ =
1

32

(
28 |x|+ 3 |x− 8|+ |x+ 24|

)
, (30)

which attains a minimum value of γ = 1.5 at x = 0.
While contrived, this latter example illustrates a stark

difference between Pauli shaping on Clifford and non-
Clifford gates. With Clifford gates, the sampling over-
head required to cancel any (twirled) noise, in expecta-
tion, approaches 1 in the limit of weak noise. The same
is not true, in general, for non-Clifford gates, where can-
celling certain types of noise can require a large sampling
overhead, regardless of how weak the noise is. (Since the
overheads from different gates combine multiplicatively,
γ ≈ 1.5 is effectively much larger than γ ≈ 1 since it leads
to a total overhead that grows much faster with circuit
size.) In the case of Eq. (26), the issue, mathematically,
comes from the O(ϵ) off-diagonal elements in the upper-
left part of G, which cannot be twirled away without
spoiling the action of the gate. Clifford gates have no
such elements—rather, all elements of their PTMs that
should be zero (for noiseless gates) can be twirled away in
noisy gates. In this second non-Clifford examples, how-
ever, the only way to suppress the aforementioned PTM

elements is to set the corresponding elements of C to
zero, leading to a large γ. (This is true whenever these
PTM elements are nonzero, regardless of their exact val-
ues, i.e., even if they did not all equal ±ϵ as in Eq. (26).)
Because Eq. (14) involves an element-wise product of C
and G, instead of a typical matrix multiplication, this
holds true even for arbitrarily small ϵ > 0. In other
words, the only number Cij for which Cij × ϵ = 0 is
Cij = 0, no matter how small ϵ might be, which can im-
pose a prohibitive lower bound on γ even when the noise
is weak.
We will discuss this phenomenon more broadly in

Sec. IV. For now, however, we turn our attention to the
challenge of accurately measuring the PTM G of a noisy
non-Clifford gate. Since the characteristic matrix C, and
ultimately, the quasi-probability matrix Q in Eq. (14),
depend on G, addressing this challenge is essential for
Pauli shaping.

III. CHARACTERIZING NOISY GATES

The performance of both PEC and ZNE depends on
how accurately one can characterize, or “learn,” the noisy
gate in question, or equivalently, the factored noise chan-
nel. This is true for both Clifford and non-Clifford gates.
A notable obstacle, however, is that the measurement
outcomes from any circuit meant to characterize a noisy
gate will also depend on state preparation and measure-
ment (SPAM) errors, which can be significant [26]. It is
therefore desirable to use learning schemes that can dis-
tinguish gate and SPAM errors as much as possible, so as
to accurately isolate the former. In this section we review
such learning schemes for Clifford gates, then introduce
new ones suited for non-Clifford RZZ(θ) gates.
A common component in all of these schemes is called

readout twirling [27]. It consists of applying an X gate
with 50% probability independently on each qubit before
readout, then flipping the measured bits wherever such
gates were applied. (We use “measurement” and “read-
out” synonymously.) In principle, these random X gates
should be sampled independently in each circuit execu-
tion, i.e., each “shot.” Suppose we want to measure an
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n-qubit Pauli expectation value ⟨Pi⟩ = tr(Pi ρ) for Pi ∈ P
and some state ρ, and we denote our estimate thereof af-
ter a finite number Ntot of independent shots as

µ̂ =
(# of +1 outcomes)− (# of -1 outcomes)

Ntot
,

(31)
where ±1 outcomes refer to the observed eigenvalues of
Pi. Because µ̂ will vary from one experiment to the next,
even under identical conditions, we can treat it as a ran-
dom variable whose expectation value, E(µ̂), describes an
average over many hypothetical experiments. Absent any
measurement errors, E(µ̂) = ⟨Pi⟩, i.e., µ̂ is an unbiased
estimate of ⟨Pi⟩, which means we can get it arbitrarily
close to the true value ⟨Pi⟩, with arbitrarily high proba-
bility, by simply taking enough shots. However, measure-
ment errors could bias µ̂ in complicated ways, such that
E(µ̂) bears no simple relation to ⟨Pi⟩. This issue is par-
tially remedied through readout twirling, which ensures
that E(µ̂) = mi⟨Pi⟩ for some coefficient mi that depends
on the statistics of the readout noise but not on the mea-
sured quantum state ρ. (mi = 1 for ideal readout—see
Appendix D in [21].) In other words, readout twirling
still gives a biased estimate for ⟨Pi⟩, but the bias has a
predictable form that will let us distinguish gate errors
from SPAM errors.

A. Clifford gates

Consider a Clifford unitary U whose noisy implemen-
tation is described by the channel G = UN , where N
describes generic noise and U(ρ) = UρU†, as in Sec. II B.
We will assume throughout that the noise does not vary
with time, and is independent of any previous gates.
Since we can Pauli-twirl N using only single-qubit gates,
it suffices to learn the twirled noise channel N̄ . In the
language of PTMs, we only need to learn N̄ = diag(f⃗ ),
since the Pauli fidelities fi = N ii are the only compo-
nents of the noise that figure in Clifford PEC/ZNE. It is
possible to learn these (at least in part) in a way that
is robust to SPAM errors through cycle benchmarking
(CB) [28], a variant of randomized benchmarking.

To introduce CB, we will begin with the simple case
where U = I. This means that every Pauli Pi ∈ P is an
eigenvector of the twirled, noisy identity gate Ḡ = UN̄ =
N̄ with eigenvalue fi—that is:

Ḡ(Pi) = fi Pi. (32)

Applying Ḡ d times to an initial state ρ = 2−n
∑

j sjPj

therefore leads to a final state of

ρ′ = Ḡd(ρ) =
1

2n

∑
j

sjf
d
j Pj (33)

with Pauli expectation values ⟨Pi⟩ = tr(Pi ρ
′) = si f

d
i

that decay exponentially in the circuit depth d at rates
fi. CB exploits this relation by performing the following
steps to estimate each Pauli fidelity fi:

1. Prepare an initial state ρ = 2−n
∑

j sjPj for which

si = tr(Pi ρ) is as large as possible (to maximize
the eventual signal-to-noise ratio). E.g., attempt
to prepare ρ = |ψ⟩⟨ψ| where |ψ⟩ is a separable +1
eigenstate of Pi ∈ P, so si = 1 ideally.

2. Apply Ḡ d times to ρ for varying depths d.

3. Estimate ⟨Pi⟩ for the resulting state Ḡd(ρ) as in
Eq. (31) using readout twirling, denoting the result
by µ̂.

The expected value of µ̂ (which we will denote as µ), i.e.,
the average estimate of ⟨Pi⟩ for a circuit depth d from
noisy experimental data, is

µ := E(µ̂) = simi × fdi , (34)

where the coefficients si andmi depend on state prepara-
tion and measurement errors, respectively, but not on fi
or d. Therefore, even though µ ̸= ⟨Pi⟩ in general, CB ob-
tains an estimate of fi that is robust to SPAM by fitting
the tuples (d, µ̂) to a function d 7→ Ard and extracting r.
These steps are then repeated for all desired Pauli fideli-
ties fi (although it is possible to re-use some of the same
experimental data to get different Pauli fidelities, as we
discuss later).
Besides being robust to SPAM, CB is well-behaved in

two other ways that are critical in many experiments but
less often discussed theoretically. First, it is sensitive,
in that a small change in fi produces a large change in
the data, so the number of shots needed is reasonably
small. Second, it concentrates, meaning that the different
random circuits that arise due to twirling give similar
expectation values, so few of them are needed [29, 30].
We now elaborate on both points in turn.
Sensitivity: Suppose we estimate ⟨Pi⟩ for a circuit

depth d, as per the CB steps described above. Each
±1 measurement outcome follows a Bernoulli distribu-
tion [31] with mean µ from Eq. (34). One way to quantify
how much information about fi is conveyed by each such
outcome is through its (classical) Fisher information [20]

I(fi) =
1

1− µ2

(
∂µ

∂fi

)2

=
µ2

1− µ2

d2

f2i
, (35)

which diverges for large d in the weak-noise limit (see
Appendix E of [21]). Why consider this limit? Because
we need fi ≈ 1 for error mitigation to be feasible in the
first place, so while the exact value of fi, and therefore
also of I(fi), is unknown a priori, a learning scheme that
works well as fi → 1 should also work well in the relevant
regime of fi, by continuity. (Also, crucially, this limit
is analytically tractable.) Concretely, µ → fdi in the
absence of SPAM errors, so we can re-write Eq. (35) as

I(fi)
no SPAM−→
errors

1

f2i ln(fi)2
x2

4(ex − 1)
<∼

0.162

f2i ln(fi)2
, (36)

where we maximized over x = 2d ln(1/fi) numerically
in the last step, which is a convenient way to maximize
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over d in effect [21]. This maximum value of I(fi) then
diverges as fi → 1, thanks to the slow decay of µ versus d
when fi ≈ 1, wherein a small change in fi produces a big
change in µ at large depths d, as quantified by ∂µ/∂fi.
Consequently, CB does not require an exorbitant number
of shots to precisely estimate large Pauli fidelities, since
each shot can be very informative.

Concentration: CB, as described above, uses a new
random circuit for each shot because it must twirl the
gate and measurement noise. For any given depth, this
leads to independent and identically distributed (IID)
measurement outcomes, which are relatively simple to
analyze. For instance, the standard error (i.e., the stan-
dard deviation of µ̂, a widely-used measure of statistical
uncertainty) in estimating µ = E(µ̂) with Ntot shots has
the familiar O(1/

√
Ntot) scaling, specifically:

√
Var(µ̂) =

√
1− µ2

Ntot
. (37)

In many experiments, however, loading a new circuit
into the control electronics used to implement gates is
slow compared to running an already-loaded circuit [32].
It is therefore common practice to use a modified version
of CB where, for any given depth, Nc different random
circuits are chosen, each of which is run Ns/c ≥ 1 times
(the subscript stands for “shots per circuit”) for a total
of Ntot = NcNs/c shots. The resulting estimate of ⟨Pi⟩
(i.e., the sample average), denoted µ̂′, has the same mean
as µ̂, and reduces to µ̂ when Ns/c = 1 as in proper CB. In
general, however, it suffers from larger statistical fluctua-
tions than µ̂, which do not generally scale as O(1/

√
Ntot)

since the measurement outcomes are not IID. Rather, µ̂′

has a standard error of

√
Var(µ̂′) =

√
1− µ2

Ntot
+

(
Ns/c − 1

Ns/c

)
∆2

Nc
, (38)

where

∆2 = Var{ tr[Pi T (ρ)] } = E
{
tr[Pi T (ρ)]2

}
− µ2 (39)

is the variance in expectation values over different ran-
dom, noisy circuits T . (See Appendix F of [21] for de-
tails.) That is, CB defines many random noisy circuits
T , sometimes called “twirl circuits” or “twirl instances,”
comprising d sequential noisy gates G interleaved by ran-
dom Paulis, as depicted in Fig. 5a. Each such circuit can
have a different expectation value, and ∆2 is the vari-
ance thereof, as shown in Fig. 5b. It is an important,
albeit rarely analyzed quantity, since the standard er-
ror of µ̂′ approaches ∆/

√
Nc as Ns/c → ∞. A large ∆

would therefore necessitate many different twirl circuits
(Nc ≫ 1) to precisely estimate µ for any given depth d,
which can be very slow (in terms of wall-clock time). For-
tunately, ∆ → 0 in the limit of weak noise for CB. This
can be seen from Eq. (39), since tr[Pi T (ρ)] → 1 for all T
in this limit. We will not seek a formal bound on ∆ more

a.

T =

random circuit with d noisy gates G

X
G

Y
. . .

I
G

Z twirled
readout
noiseY Z Z Z

︷ ︸︸ ︷

b.

tr[PiT (ρ)]

probability

-1 1µ

∆

FIG. 5. Cycle benchmarking, like the non-Clifford learning
schemes introduced below, involves running random circuits
comprising d noisy gates G interleaved with random Paulis
drawn from some prescribed distribution. These gates are
then followed by a readout noise channel flanked by random
bit flips [21, 27]. We describe such a noisy circuit by a channel
T , as shown in the top panel. Each of these possible circuits
can give a different Pauli expectation value tr[PiT (ρ)], and
some values arise more often than others, as illustrated in the
bottom panel. (This is not quantum randomness from mea-
surement outcomes, but rather, classical randomness from the
choice of circuit.) The mean of this distribution, µ, describes
our average estimate of ⟨Pi⟩, and the standard deviation ∆
determines how many random circuits are needed to do so
accurately.

broadly; rather, we simply note that the common prac-
tice of reusing a small number of random circuits many
times is well-justified for CB when the noise is weak.
These two properties, namely sensitivity and concen-

tration for weak noise, do not arise automatically. As we
will see in the next section, special care must be taken
to maintain them when generalizing CB for non-Clifford
gates.
Before moving on, however, we must consider non-

trivial Clifford gates U ̸= I. CB works very similarly
in this setting—the key difference being that U now
maps a generic Pauli Pi to a potentially different one
Pj = ±UPiU

†, so

Ḡ(Pi) = ±fiPj . (40)

(In other words, Pi is now a generalized eigenvector of Ḡ
[33].) Since the right-hand side is proportional to Pj ,
another application of Ḡ will introduce a factor of fj
rather than another fi. However, repeated applications
of Ḡ will eventually yield a term proportional to Pi, ul-
timately leading to an exponential decay similar to that
in Eq. (34). Consider U = CNOT and Pi = IZ for il-
lustration. This U maps Pi to Pj = ZZ and vice versa,
meaning:

Ḡd(Pi) = (fifj)
d/2Pi (41)

for even depths d. Therefore, by measuring ⟨Pi⟩ for var-
ious (even) circuit depths, as described earlier, one can
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obtain an estimate of fifj that is robust to SPAM errors.
Unfortunately, this product does not uniquely specify fi
or fj . One can partially sidestep this “degeneracy” and
isolate certain Pauli fidelities by interleaving other single-
qubit gates between applications of Ḡ. However, some
fi fundamentally cannot be learned in a SPAM-robust
way for general Clifford gates [34]. Perhaps unsurpris-
ingly, a similar issue will arise with non-Clifford gates as
well. For CNOTs, principled guesses for fi and fj , given
a measured value of fifj , have led to very effective er-
ror mitigation [9, 10]. We will assume here that similar
heuristics may work for non-Clifford gates too.

B. Non-Clifford gates

While there exist some SPAM-robust methods for
learning general, noisy non-Clifford gates (at least in
part) [35, 36], it is easier to ensure sensitivity and concen-
tration by devising schemes that are tailored for specific
gates of interest. In particular, we will consider 2-qubit
gates of the form U = RPQ(θ), where P,Q ∈ {X,Y, Z}
and θ /∈ {0, ±π/2, π} is a generic rotation angle for which
the gate is non-Clifford. Such gates arise naturally in
several types of qubits [23–25]. For concreteness, we will
focus on U = RZZ(θ) gates, from which the more gen-
eral RPQ(θ) case follows through a change of basis. In
contrast with the CB formalism for Clifford gates from
the previous section, it will be more natural here to learn
PTM elements of the noisy gate G = UN itself, rather
than those of the factored noise channel N . Of course,
learning G is equivalent to learning N , although the for-
mer approach is especially convenient for Pauli shaping,
which deals directly with G, not N (see, e.g., Eq. (14)).
For mathematical convenience, we will express G, the

PTM of G, in the same ordered basis as in Sec. II, i.e.,
we will order the set of 2-qubit Paulis P as in Eq. (18).
It will also be convenient to define the subsets

Pc =
{
II, ZZ, XX, Y Y, IZ, ZI, Y X, XY

}
(42)

Pa =
{
XI, Y Z, XZ, Y I, IX, ZY, ZX, IY

}
of P = Pc ∪ Pa, comprising the eight Paulis that com-
mute and anti-commute with ZZ respectively. The PTM
of the ideal gate, given in Eqs. (19) and (20), is block-
diagonal with 2 × 2 blocks. In principle, almost all the
elements of G outside these blocks could be nonzero due
to noise. However, said elements can be cancelled out
without affecting the others (i.e., without affecting the
logical action of the gate) by twirling G over Pc—that is,
by using

Ḡc(ρ) =
1

8

∑
Pi∈Pc

Pi G
(
Pi ρPi

)
Pi (43)

in place of G as the starting point for Pauli shaping. In
other words, Ḡc, the associated PTM, is block-diagonal
with 2 × 2 blocks whose elements are equal to the cor-
responding ones of G (see Appendix C of [21]). This

“partial” twirling (over Pc rather than P, hence the sub-
script c) does not yield Pauli noise, but it still simplifies
the learning problem by ensuring that we only need to
learn the elements of

Ḡc =



G0,0 G0,1 0
G1,0 G1,1

. . .

G6,6 G6,7

G7,6 G7,7

G8,8 G8,9

G9,8 G9,9

. . .

G14,14 G14,15

0 G15,14 G15,15


, (44)

rather than the full PTM G. In principle, these remain-
ing elements could take (almost) arbitrary values. But in
practice, if the noise is weak enough to be amenable to
mitigation, then these elements should be close to their
ideal values. This leads to four qualitatively different
types of PTM elements to be learned, which are color-
coded in Eq. (44):

Type 1 (Gii ≈ 1): These top-left, diagonal elements de-
scribe how G preserves Paulis that commute with
ZZ, and should be close to 1.

Type 2 (Gii ≈ cos θ): These bottom-right, diagonal el-
ements describe how G preserves Paulis that anti-
commute with ZZ, and should be close to cos θ.

Type 3 (Gij ≈ ± sin θ): These bottom-right, off-
diagonal elements describe how G mixes Paulis
that anti-commute with ZZ, and should be close
to ± sin θ.

Type 4 (Gij ≈ 0): These top-left, off-diagonal elements
describe how G mixes Paulis that commute with
ZZ, and should be close to 0.

These distinct types stand in contrast with the Clifford
case, where all Pauli fidelities approach 1 in the weak-
noise limit (so there is only one type). We now describe
learning schemes tailored for each different type of PTM
element.

Type 1 elements

Type 1 elements behave much like Pauli fidelities. We
can therefore learn them using modified cycle benchmark-
ing, in which we Pauli-twirl G (or equivalently Ḡc), then
follow the steps of standard CB for the resulting channel.
Note that this is different than standard CB for nontriv-
ial (i.e., U ̸= I) Clifford gates. There, one inserts random
Paulis on either side of G so as to Pauli-twirl the associ-
ated noise channel N without changing the logical effect
of the gate, described by U . Here, we instead Pauli-twirl
the noisy gate itself, thus intentionally spoiling its logical
effect—in a particular way—and turning it into a Pauli
channel with PTM

Ḡ = diag
(
G0,0, . . . ,G7,7, G8,8, . . . ,G15,15

)
. (45)



11

This channel is not unitary, even in the weak-noise limit.
However, because Ḡ is diagonal, we can learn the ele-
ments Gii, for 1 ≤ i ≤ 7, by preparing an eigenstate of
Pi, applying this Pauli channel d times for various depths
d, estimating ⟨Pi⟩ for each using readout twirling, and fit-
ting the results to d 7→ Ard, from which r gives a SPAM-
robust estimate ofGii. (G00 = 1 assuming the noisy gate
is CPTP.) Moreover, this scheme is sensitive and it con-
centrates, much like standard CB; that is, I(Gii) → ∞
and ∆ → 0 in the weak-noise limit. (See Appendices E
and F in [21].) It is summarized in Fig. 6a.

Type 2 and 3 elements

It may seem from Eq. (45) that we could learn the
Type 2 elements (Gii for 8 ≤ i ≤ 15) in the same way.
Indeed, this approach would formally give SPAM-robust
estimates of said elements—but it would not be sensi-
tive nor would it concentrate, thus making it of limited
practical use. More precisely, Eq. (36) implies that

I(Gii) <∼
0.162

cos(θ)2 ln[cos(θ)]2
<∞ (46)

in the weak-noise limit, meaning that each shot would
give relatively little information about Gii, so far more
shots would be needed than for Type 1 elements (or Pauli
fidelities in the Clifford case). Intuitively, the problem is
that Gii

d ≈ cos(θ)d generally decays quickly with d, so
the measured expectation values ⟨Pi⟩ would quickly ap-
proach zero regardless of Gii’s exact value, and resolving
them to within a reasonable relative error would require
many shots. To make matters worse, the expectation val-
ues of different random circuits would not concentrate;
rather, they would have a variance of

∆2 → 1

2

[
1 + cos(2θ)d − 2 cos(θ)2d

]
(47)

in the weak-noise limit, which quickly asymptotes to 1/2
with growing depth d. (See Appendix F of [21].) The is-
sue is that the lower-right blocks of the ideal PTM U (see
Eqs. (19) and (20)) are 2-dimensional rotation matrices,
so Pauli-twirling the ideal gate implements rotations over
Pa by a uniformly random angle of ±θ. Repeating such
twirled gates therefore produces a random walk with a
rapidly growing variance given by Eq. (47). Ultimately,
this means that modified CB is impractical for Type 2 ele-
ments, since it would require many more shots from many
more random circuits (compared to Type 1 elements).
These issues highlight the importance of grouping PTM
elements into distinct types based on their approximate
values—Type 1 and Type 2 elements may appear sim-
ilarly in Eq. (45), but they can behave very differently
since the latter can be much smaller.

Instead, we introduce two other learning schemes
which, together, satisfy all of our desiderata. The first of
these schemes (called partial-twirl benchmarking) yields

some information about the Type 3 elements, which
we then use, together with the second scheme (called
correlated-twirl benchmarking), to get the Type 2 ele-
ments.
Partial-twirl benchmarking: The main idea of this

scheme is to apply Ḡd
c for various depths d, i.e., to ap-

ply the noisy gate G d times, twirling each one indepen-
dently over Pc, the set of Paulis that commute with ZZ,
rather than over all Paulis. Estimating ⟨Pi⟩ for Pi ∈ Pa

at different depths and fitting the results will then give
SPAM-robust estimates of certain PTM elements.
Since the PTM of the partially-twirled gate, Ḡc, is

block-diagonal (see Eq. (44)), we can find Ḡ
d
c by simply

taking the d th power of each 2 × 2 block. Consider one
such block from the bottom-right of Ḡc, which we will
denote as B:

B :=

(
Gii Gij

Gji Gjj

)
, (48)

where i ∈ {8, 10, 12, 14} and j = i + 1. The form of Bd

depends qualitatively on the eigenvalues of B, which are:

λ± =
1

2

[
Gii +Gjj ±

√
(Gii −Gjj)2 + 4GijGji

]
.

(49)
Intuitively, the elements of Bd are functions of λd±, so
there can be two distinct cases: If λ± are real, they will
produce exponential decays. If λ± = re±iω are complex,
because the term in the square root is negative, they will
instead produce exponentially-damped oscillations with
some frequency ω and decay rate r. We will call these
two cases, namely when Im(λ±) = 0 and Im(λ±) ̸= 0, the
strong and weak noise regimes respectively. (They are
analogous to over/critically-damped and under-damped
classical harmonic oscillators, respectively.) In the strong
noise regime, applying Ḡc repeatedly to a generic initial
state ρ and measuring ⟨Pi⟩ for Pi ∈ Pa will give expec-
tation values that decay steadily towards their asymp-
totic values with growing circuit depth d. In the weak-
noise regime, these expectation values will instead os-
cillate with d as they gradually decay, much like Rabi
oscillations. (In the weak-noise limit there is no decay
and the oscillations persist as d→ ∞.) The two regimes
should therefore typically be easy to distinguish exper-
imentally. This scheme assumes that the gate is in the
weak noise regime, i.e., that:

(Gii −Gjj)
2 assumed

< −4GijGji (50)

for all 2 × 2 blocks of Type 2 and 3 elements. This is
our only assumption about these PTM elements, and it
amounts to assuming that the gate’s logical effect is not
overwhelmed by noise. In the weak-noise limit, the left
and right hand sides of (50) approach 0 and 4 sin(θ)2 re-
spectively. More broadly, we expect this condition to be
easily satisfied on modern quantum processors, provided
the chosen θ is not unreasonably small.
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Twirl sequence Expectation values Output

a. Modified cycle
benchmarking P P P P · · ·

d

µ̂

Fit
Gii (Type 1 elements)

b. Partial-twirl
benchmarking

Pc Pc Pc Pc · · ·
d

µ̂

Fit
GijGji (Type 3 elements)

c. Correlated-twirl
benchmarking

Pc

Pa

Pa

Pc

Pc

Pa

Pa

Pc

. . .
50%

50%

50%

50%

d

µ̂

Fit
Gii (Type 2 elements)

FIG. 6. All three non-Clifford learning schemes work by repeating the noisy gate G d times for various depths d, twirling each
one in a prescribed way, then estimating Pauli expectation values for the resulting quantum state. Fitting these estimated
values, µ̂, versus d to a prescribed function then gives SPAM-robust estimates of the various PTM elements of G (or products
thereof). Each row above depicts a different, complementary, learning scheme. The first column (Twirl sequence) shows the
sets of Paulis over which each G is twirled. The branching in the bottom row indicates that either path is taken with 50%
probability. The middle column (Expectation values) illustrates typical results, with orange dots depicting empirical estimates
µ̂ of the true expectation values, and solid gray curves depicting the resulting fits. (The dashed curves in the middle plot
show the exponential envelope d 7→ ±rd, and are meant to guide the eye.) Finally, the right column (Output) lists the PTM
elements, or products thereof, that can be extracted by fitting the data.

Assuming condition (50), we can write Bd in the form

Bd =

(
ard cos(ωd− δ) · · ·

· · · · · ·

)
, (51)

where

a = 2

√
GijGji

(Gii −Gjj)2 + 4GijGji

r =
√

GiiGjj −GijGji (52)

ω = arctan2

(√
−(Gii −Gjj)2 − 4GijGji , Gii +Gjj

)
δ = arctan2

(
Gii −Gjj ,

√
−(Gii −Gjj)2 − 4GijGji

)
,

and ellipses denote different matrix elements that are
generally nonzero (see Appendix G of [21]). We also use
the notation arctan2(y, x) to denote arctan(y/x) with an
appropriate quadrant correction, as in many program-
ming languages. In the weak-noise limit (a, r, ω, δ) →
(1, 1, θ, 0) [37]. More generally, Eqs. (51) and (52) sug-
gest that one could perhaps follow steps akin to CB, but
with measured expectation values at different d forming
a decaying sinusoid ∝ rd cos(ωd − δ) rather than a pure
exponential decay. Fitting the data to this curve would
then give a decay rate r, a frequency ω, and a phase

δ, from which one could learn about the relevant PTM
elements by inverting Eq. (52).
There remains one problem, however. In the other

learning schemes discussed so far, the PTM of interest
was diagonal, so an expectation value ⟨Pi⟩ at depth d
only depended on one component si = tr(ρPi) of the
initial state ρ = 1

4

∑
k skPk. Here, however, because Bd

is not diagonal, ⟨Pi⟩ will be a linear combination of si
and sj , with weights that vary with d. That is, assuming
ideal measurements for the moment (for simplicity):

⟨Pi⟩ = tr[ Ḡd
c(ρ)Pi] = si ar

d cos(ωd− δ) + sj (B
d)01,

(53)
where (Bd)01 is the top-right element of Bd from
Eq. (51), which is generally nonzero and depends on
d. This means that state preparation errors, which can
cause si and sj to deviate from their intended values in-
dependently, can impact our estimates of ⟨Pi⟩ in more
pernicious ways than before, i.e., not just as a constant
scale factor that can be absorbed into the amplitude of
the fitted curve and ignored. To sidestep this issue, we
prose applying Pi to ρ with 50% probability before ap-
plying Ḡc. The resulting state

ρ′ =
1

2

(
ρ+ PiρPi

)
=

1

4

∑
k

s′kPk (54)

has

s′i = tr(ρ′Pi) = si s′j = tr(ρ′Pj) = 0, (55)
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i.e., it has the same Pi component as ρ but no Pj compo-
nent, because {Pi, Pj} = 0. We will refer to this step as
state-prep twirling, in analogy to readout twirling, since it
uses randomization to make state preparation errors bet-
ter behaved. By suppressing the second term in Eq. (53)
(effectively replacing sj with s′j = 0), state-prep twirling
ensures that state preparation errors only contribute a
constant scale factor in our estimates of ⟨Pi⟩, as in CB.
This allows us to fit our estimates of ⟨Pi⟩ versus d and
extract values of r, ω, and δ that are robust to SPAM
errors.

Ultimately, then, partial-twirl benchmarking com-
prises the following steps. For each i ∈ {8, 10, 12, 14}
and j = i+1 (indices that label 2-qubit Paulis according
to Eq. (18)):

1. Prepare an initial state ρ = 1
4

∑
k skPk for which

si = tr(Pi ρ) is as large as possible. E.g., attempt
to prepare ρ = |ψ⟩⟨ψ| where |ψ⟩ is a separable +1
eigenstate of Pi, so si = 1 ideally.

2. (State-prep twirling.) Apply Pi with 50% proba-
bility to ρ, independently in each shot, to produce
an average state ρ′.

3. Apply Ḡc d times to ρ′ for varying depths d, where
Ḡc denotes the noisy RZZ(θ) gate G twirled over
Pc, the eight Paulis that commute with ZZ.

4. Estimate ⟨Pi⟩ for the resulting state Ḡd(ρ′) as in
Eq. (31) using readout twirling, denoting the result
by µ̂.

The expected value of µ̂ for a circuit depth d is then

µ := E(µ̂) = simi a× rd cos(ωd− δ), (56)

where a, r, ω and δ are given by Eq. (52), and the coeffi-
cient mi describes the measurement errors, as introduced
at the start of Sec. III. (Cf. the equivalent expression for
cycle benchmarking in Eq. (34).) Note that SPAM er-
rors only affect the amplitude of this decaying sinusoid.
We can therefore estimate its decay rate, frequency and
phase in a SPAM-robust way by fitting the tuples (d, µ̂)
to d 7→ Ard cos(ωd − δ) and extracting r, ω and δ, re-
spectively. We can then solve Eq. (52) for the underlying
PTM elements to get:

GijGji = −
(
r sin(ω)

cos(δ)

)2

(57)

Gii = r
[
cos(ω) + sin(ω) tan(δ)

]
(58)

Gjj = r
[
cos(ω)− sin(ω) tan(δ)

]
, (59)

which do not depend on the amplitude A. The procedure
is summarized in Fig. 6b.

The expectation values from this scheme concentrate
as desired, i.e., ∆ → 0 in the weak-noise limit (see Ap-
pendix F of [21]). Unfortunately, the steps above only
give us products GijGji of Type 3 elements, rather
than their isolated values. While there are partial
workarounds [38], we suspect this is a fundamental lim-
itation like the CB “degeneracy” arising in the Clifford
case [34]. If so, one could rely on similar approximations
here to isolate the Type 3 elements, e.g., assume that
Gij = −Gji as in the weak-noise limit.

There is one remaining issue with this scheme: the
measurement results are highly sensitive to the decay rate
and oscillation frequency, r and ω respectively, but not
to the phase δ (see Appendix E of [21]). Intuitively, a
small change in r or ω leads to a big change in µ at
large depths, as quantified by ∂µ/∂r and ∂µ/∂ω. In con-
trast, a small change in δ only produces a small offset
in µ regardless of the depth. In other words, the phase
is typically harder to fit precisely than the other two pa-
rameters. This is a minor issue for Type 3 elements, since
δ ≈ 0 for weak noise, and Eq. (57) only depends on δ to
order O(δ2). However, Eqs. (58) and (59) both depend
on it more strongly, namely to order O(δ), so our inabil-
ity to precisely fit δ can lead to poor estimates of Type 2
elements (Gii and Gjj) using this method. We therefore
introduce one final scheme to more accurately estimate
these latter elements.

Correlated-twirl benchmarking: Due to the above diffi-
culty in fitting δ, partial-twirl benchmarking should only
be used to learn the Type 3 elements—a different scheme
can then be used to learn the Type 2 elements. The key
insight underpinning this final scheme is that twirling
G over Pa, the 8 Paulis that anti-commute with ZZ,
leads to a block-diagonal PTM Ḡa that resembles Ḡc

in Eq. (44), but with all the off-diagonal components
negated [39]. Suppose we apply G twice, and with equal
probability we either twirl the first instance over Pc then
the second over Pa, or twirl the first over Pa then the
second over Pc. We refer to this as correlated twirling,
since the second gate is twirled in a manner that depends
on how the first gate was twirled. It results in a Pauli
channel, but not the same one as if we had simply Pauli-
twirled G directly. As in the previous section, all PTMs
in question are block-diagonal, so it suffices to consider a
generic 2 × 2 PTM block. Specifically, the overall PTM
that describes correlated twirling has blocks:

1

2

(
Gii Gij

Gji Gjj

)
︸ ︷︷ ︸
block from Ḡc

(
Gii −Gij

−Gji Gjj

)
︸ ︷︷ ︸

block from Ḡa

+
1

2

(
Gii −Gij

−Gji Gjj

)
︸ ︷︷ ︸

block from Ḡa

(
Gii Gij

Gji Gjj

)
︸ ︷︷ ︸
block from Ḡc

=

(
G2

ii −GijGji 0
0 G2

jj −GijGji

)
. (60)
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The resulting PTM is therefore diagonal, but with ele-
ments that depend non-trivially on the elements of G.
(We use the colors for Type 2 and 3 elements in Eq. (60),
but it applies also to Type 1 and Type 4 elements.)
Therefore, by repeating this sequence for varying depths,
as in cycle benchmarking, we can learn G2

ii−GijGji and
G2

jj −GijGji in a SPAM-robust way. And since we have
already learnedGijGji through partial-twirl benchmark-
ing, we can therefore isolate the Type 2 elements Gii and
Gjj .

We refer to this scheme as correlated-twirl benchmark-
ing. It uses the same steps as CB, but with different—and
to the best of our knowledge, unusual—twirling. That is,
for each i ∈ {8, 10, 12, 14} and j = i+1 (indices that label
2-qubit Paulis according to Eq. (18)):

1. Prepare an initial state ρ = 1
4

∑
k skPk for which

si = tr(Pi ρ) is as large as possible. E.g., attempt
to prepare ρ = |ψ⟩⟨ψ| where |ψ⟩ is a separable +1
eigenstate of Pi, so si = 1 ideally.

2. Apply Ḡc then Ḡa, or Ḡa then Ḡc, each with 50%
probability, where Ḡc and Ḡa denote the noisy gate
G twirled over Pc or Pa respectively. Repeat this
process independently d/2 times for varying (even)
depths d, as shown in Fig. 6c.

3. Estimate ⟨Pi⟩ for the resulting state as in Eq. (31)
using readout twirling, denoting the result by µ̂.

The resulting expectation values decay exponentially
with depth, with no oscillations, as in CB. Concretely,
the expected value of µ̂ is

µ := E(µ̂) = simi × (G2
ii −GijGji)

d/2, (61)

where the coefficients si and mi depend on state prepa-
ration and measurement errors respectively, as in CB,
but not on the noisy gate in question. So by fitting the
tuples (d, µ̂) to d 7→ Ard/2, the resulting r gives a SPAM-
robust estimate of G2

ii−GijGji. Like CB, this scheme is
sensitive and it concentrates (see Appendices E and F of
[21]). Finally, by adding the learned value ofGijGji from
partial-twirl benchmarking, we obtain an estimate of the
Type 2 element Gii. These same steps can be repeated
with i ↔ j to learn Gjj . The procedure is summarized
in Fig. 6c.

While the three learning schemes we have introduced
may seem more complicated than CB, they actually have
similar experimental requirements. Not only do they in-
volve the same kinds of circuits (just drawn from different
distributions), but they require a similar number of dis-
tinct experiments. In particular, a 2-qubit Pauli channel
has 15 non-trivial Pauli fidelities [40]. One might there-
fore expect that it takes 15 distinct experiments to learn
these with CB, where each “experiment” consists of es-
timating some Pauli expectation value ⟨Pi⟩ for various
depths d. However, it is possible to recycle data and
use the same measurement outcomes to estimate ⟨ZX⟩
and ⟨IX⟩ simultaneously, for instance, since [I, Z] = 0.

In fact, 6 different expectation values (for the weight-1
Paulis, namely IX, IY , . . . , ZI) can be found for free in
this way, reducing the required number of distinct exper-
iments to 9. The same trick applies to all the schemes we
have introduced, which therefore require only 11 distinct
experiments in total. Specifically, the Type 1 elements
require 5 distinct experiments (modified CB), the Type 3
elements require just 2 experiments (partial-twirl bench-
marking), and the Type 2 elements require 4 experiments
(correlated-twirl benchmarking).

Type 4 elements

The only potentially nonzero PTM elements in
Eq. (44) left to learn are those of Type 4. Unfortunately,
we do not yet know of a good way to learn these. The
issue is that, like the Type 3 elements, all SPAM-robust
learning schemes we have found [41] let us measure prod-
ucts GijGji, rather than isolated elements Gij and Gji.
We suspect this to be a fundamental limitation, analo-
gous to that for Clifford gates [34]. And since these Type
4 elements should be close to zero for low-noise gates, we
expect their products to be extremely small in practice,
and therefore very challenging to resolve. For now, we
propose to simply bound them using our knowledge of
the other PTM elements, by demanding that the learned
channel be CPTP [14].
Note that these Type 4 PTM elements are the same

ones that led to a pathologically large γ in the sec-
ond example from Sec. II C 2 (see Eq. (26)). In other
words, these small—but potentially nonzero—elements
seem both hard to learn and hard to mitigate (specif-
ically, to cancel). Such elements are unique to non-
Clifford gates like RZZ(θ), since any PTM element of a
noisy Clifford that should be zero (ideally) can be made
zero through twirling. The same is not true of non-
Clifford gates, whose noise generally cannot be twirled
over the full Pauli group without spoiling the effect of
the gate.

IV. DISCUSSION & OUTLOOK

This work was motivated by the prospect of using er-
ror mitigation to simulate quantum dynamics on pre-
fault-tolerant quantum computers in a semi-analog way.
More specifically, the Trotter/Floquet circuits arising
in quantum simulation can be realized using weakly-
entangling gates (e.g., RZZ(θ) for small angles θ), which
can be performed faster and with higher fidelity in some
experiments than can entangling Clifford gates (e.g.,
CNOTs). However, the current prevailing machinery of
error mitigation—including both the noise learning and
noise cancellation or amplification components—relies
critically on the gate(s) of interest being Clifford, and
is therefore incompatible with such non-Clifford, weakly-
entangling gates. We have shown how to generalize both
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components of error mitigation to non-Clifford gates.
Specifically, we introduced the framework of Pauli shap-
ing, which transforms any quantum channel into almost
any other channel in expectation, at the cost of a sam-
pling overhead, and which reduces to earlier methods
when applied to Clifford gates. As this technique relies on
detailed knowledge of the former channel, we also intro-
duced three schemes to characterize noisy RZZ(θ) gates,
which are natural in many experiments, in a SPAM-
robust way. In doing so, however, we uncovered several
new challenges that do not arise with Clifford gates.

Clifford gates have a simple structure by definition, in
that they map every Pauli operator (in a density matrix)
to some other Pauli, rather than to a mixture thereof.
This makes it possible to twirl the noise in an imperfect
Clifford gate over the full set of Paulis using only single-
qubit gates, leading to relatively simple noise in effect.
In this sense, non-Clifford gates have more complicated
structures that admit less twirling, so mitigating them
presents a trade-off: the associated noise is potentially
weaker, but more complex. While this upside is sub-
stantial, the cost can be serious, leading to unwanted ef-
fects in error mitigation that have no analogue in Clifford
gates. The main examples we encountered involve PTM
elements of noisy RZZ(θ) gates that describe how a Pauli
Pi gets mapped to a different one Pj , where [Pi, ZZ] = 0
and Pj ∝ Pi ZZ (e.g., Pi = ZI and Pj = IZ). We called
these Type 4 elements in Sec. III. They equal zero in
noiseless gates, but can be slightly nonzero in practice
due to experimental imperfections. Because they belong
to a non-Clifford gate, we know of no good way to elim-
inate them through twirling. And while it is possible
to do so through Pauli shaping, the resulting sampling
overhead is impractically large, no matter how weak the
noise. This would not be an issue if these Type 4 PTM
elements happened to be negligibly small and could sim-
ply be ignored. However, they also seem particularly
difficult to measure in a SPAM-robust way, making it
hard to know precisely how small they are in experi-
ments. There are no such troublesome PTM elements
in Clifford gates, because these gates’ simpler structure
enables more twirling, which leads to simpler noise.

We do not yet know how common such small-but-
not-easily-eliminated PTM elements are for other non-
Clifford gates, although they appear to be quite generic.
However, we can imagine several tentative ways to
sidestep them. One way could be at the device physics
level, by designing gates whose errors overwhelmingly
affect the larger PTM elements. Another would be to
synthesize a noiseless non-Clifford gate by Pauli-shaping
a probabilistic mixture of Cliffords in which entangling
gates rarely arise. For instance, rather than mitigate a
physical RZZ(θ) gate, one could instead perform I, ZZ,

or a noisy RZZ(π/2) gate (which is Clifford, so the Type
4 elements can be twirled away) with appropriate proba-
bilities, then use Pauli shaping to transform the resulting
channel into a noiseless RZZ(θ) in the spirit of [42–44].
If θ is small, RZZ(π/2) need only be performed with low
probability, so the overall channel would contain little
gate noise, and the resulting overhead could be reason-
able. Another, more speculative approach, could be to
approximately amplify non-Clifford gate noise (for ZNE)
without ever learning the troublesome PTM elements.
Consider, for example, a noisy RZZ(θ) gate twirled over
the Paulis that commute with ZZ, whose PTM is there-
fore block-diagonal with 2×2 blocks as in Eq. (44). Con-
sider one such block

B =

(
Gii Gij

Gji Gjj

)
, (62)

where Gii and Gjj (called Type 1 elements in Sec. III)
are known, and the Type 4 elements Gij and Gji are
unknown but small. There are several possible notions
of noise amplification in such a gate, some of which in-
volve replacing B with B1+α through Pauli shaping, for
different noise levels 1+α ≥ 1. To first order in Gij and
Gji:

B1+α ≈
(
G 1+α

ii ηGij

ηGji G 1+α
jj

)
= B ⊙

C︷ ︸︸ ︷(
Gα

ii η
η Gα

jj

)
(63)

for

η =
G 1+α

ii −G 1+α
jj

Gii −Gjj
. (64)

Since C depends only on Gii and Gjj , one could amplify
the noise, up to an approximation error of order O(G 2

ij)+

O(GijGji)+O(G 2
ji), without knowing the exact value of

Gij or Gji. Doing so would entail a sampling overhead,
although a potentially much smaller one than is required
to cancel the noise (see Example 2 of Appendix C in [21]).
Whether or not non-Clifford error mitigation can out-

perform the Clifford variety remains to be seen. Ul-
timately, this comes down to whether reduced noise
strength can outweigh increased noise complexity, which
in turn, depends on specific techniques to handle this
complexity, like those mentioned above. We expect such
techniques to be a fruitful area for future research.
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Appendix A: Pauli shaping produces the intended expectation values

Suppose we wish to apply a channel A to an initial state ρ on n qubits, then estimate the expectation value

⟨O⟩A = tr
[
OA(ρ)

]
(A1)

of an observable O =
∑

λ λ |λ⟩⟨λ| for the resulting state. (Any gates preceding or following A in a quantum circuit can
be absorbed into the definition of ρ and O respectively.) Suppose, however, that we can only implement a different
channel G in place of A, e.g., due to experimental imperfections. We will show that through Pauli shaping—that is,
by inserting random n-qubit Paulis on either side of G with an appropriate distribution, then scaling the measurement
outcomes {λ}—one can recover ⟨O⟩A without needing to implement A. The situation is summarized below, with the
circuit on the left showing what we would like to implement, and that on the right showing what we will implement
instead.

ρ A
O

Desired circuit involving A, giving ⟨O⟩A

perform with
probability |Qij |/γ

ρ Pj G Pi
O

× γ sgn(Qij)
︷ ︸︸ ︷

Pauli shaping circuits involving G, giving ⟨O⟩ps

We begin by defining the PTMs A and G of the channels A and G, respectively, by

Aij = 2−n tr[Pi A(Pj)] and Gij = 2−n tr[Pi G(Pj)] (A2)

for n-qubit Paulis Pi and Pj . We then take the characteristic matrix C to be be any 4n × 4n real matrix satisfying
A = C ⊙G as in Eq. (14) of the main text, where ⊙ denotes a Hadamard/element-wise product. Finally, we define
the corresponding quasi-probability matrix

Q = 2−4n WCW , (A3)

where W is the Walsh matrix defined in Eq. (3) of the main text, as well as the normalizing factor

γ =
∑
ij

|Qij |. (A4)

Claim: By inserting Paulis Pj and Pi before and after G, respectively, with probability |Qij |/γ in each shot indepen-
dently, and multiplying the measurement outcomes (i.e., the recorded eigenvalues of O) by γ sgn(Qij), the resulting
expectation value ⟨O⟩ps equals the desired one ⟨O⟩A.

Proof: We begin by finding ⟨O⟩ps. There are two types of randomness involved in Pauli shaping: that of the
measurement outcomes {λ} for a given quantum circuit (i.e., for fixed Paulis Pi and Pj), and that from the choice of
circuit. For a fixed circuit in which G is flanked by Paulis Pj and Pi as shown above, the probability of observing λ
when measuring O is

Pr(λ | i, j) = tr
[
|λ⟩⟨λ|Pi G(Pj ρPj)Pi

]
. (A5)

One then records λ× γ sgn(Qij) in place of λ, as described above. The probability of running this random circuit in
the first place is

Pr(i, j) = |Qij |/γ. (A6)

Therefore, the overall expectation value from Pauli shaping, combining both sources of randomness and invoking the
chain rule (for probabilities), is:

⟨O⟩ps =
∑
λij

λγ sgn(Qij) Pr(λ | i, j) Pr(i, j)︸ ︷︷ ︸
Pr(λ, i, j)

=
∑
ij

γ sgn(Qij) tr
[
OPi G(Pj ρPj)Pi

] |Qij |
γ

(A7)

=
∑
ij

Qij tr
[
OPi G(Pj ρPj)Pi

]
.
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To show that this expression equals ⟨O⟩A, we then decompose both ρ = 2−n
∑

ℓ sℓPℓ and O =
∑

k rkPk in the Pauli
basis using appropriate coefficients {sℓ} and {rk} to get

⟨O⟩ps = 2−n
∑
ijkℓ

Qij rk sℓ tr
[
PkPi G(PjPℓPj)Pi

]
= 2−n

∑
kℓ

rk sℓ

∑
ij

W kiQijW jℓ

 tr[Pk G(Pℓ)] =
∑
kℓ

rk sℓ Ckℓ Gkℓ,

(A8)

where we’ve used Eq. (A2) together with the facts that PiPkPi = W kiPk and WQW = C. Finally, since Akℓ =
Ckℓ Gkℓ by definition of C, we can use Eq. (A2) again to conclude that:

⟨O⟩ps =
∑
kℓ

rk sℓ Akℓ = 2−n
∑
kℓ

rk sℓ tr[Pk A(Pℓ)] = tr[OA(ρ)] = ⟨O⟩A. □ (A9)

Of course, the variance of the recorded outcomes is generally larger with Pauli shaping than it would be if we could
implement A rather than G. Given access to A, the variance would be

∆O2
A = tr

[
O2A(ρ)

]
− ⟨O⟩2A, (A10)

which depends on ρ and A, of course, but can be upper-bounded as

∆O2
A ≤ tr

[
O2A(ρ)

]
≤
∑
i

σi(O
2)σi

[
A(ρ)

]
(A11)

≤ σ1(O
2)
∑
i

σi
[
A(ρ)

]
= ∥O2∥ tr

[
A(ρ)

]
= ∥O∥2

using the von Neumann trace inequality, where σi(M) denotes the ith largest singular value of a matrix M and ∥ · ∥
denotes the operator/spectral/2 norm. (We use the standard notation ∆O2 to denote the variance in measurement
outcomes for a quantum observable O. It has no relation to the quantity ∆ in Eq. (38) of the main text. The letter
σ is similarly overloaded: its meaning above has no relation to the function in Eq. (16), which describes the action of
a generic Clifford gate on Paulis.) Due to the extra randomness inherent in Pauli shaping, its recorded outcomes are
generally less concentrated, having a variance of

∆O2
ps =

∑
λij

[
λγ sgn(Qij)

]2
Pr(λ | i, j) Pr(i, j)− ⟨O⟩2ps (A12)

= γ
∑
ij

|Qij | tr
[
O2Pi G(Pj ρPj)Pi

]
− ⟨O⟩2A.

This quantity also depends on ρ, A, and G, but it can be similarly upper-bounded as

∆O2
ps ≤ γ

∑
ij

|Qij |

max
kℓ

tr
[
O2Pk G(Pℓ ρPℓ)Pk

]
≤ γ2∥O∥2. (A13)

Since the standard error of the mean in estimating ⟨O⟩A using N shots (i.e., N circuit executions) with access to A is

∆OA/
√
N , whereas that from Pauli shaping is ∆Ops/

√
N , Pauli shaping incurs roughly a γ2 sampling overhead for

estimating expectation values to within a given statistical error.

Appendix B: Pauli shaping reduces to Clifford PEC/ZNE

Consider a 2n × 2n Clifford unitary U . Using the same notation as in the main text, we define an invertible function
σ : {0, 4n − 1} → {0, 4n − 1} such that Pσ(i) ∝ U†PiU for every n-qubit Pauli Pi. Moreover, we use the notation
k = i ⊕ j when Pk ∝ PiPj . We begin with two lemmas about the Walsh matrix elements W ij defined in Eq. (3) of
the main text.



20

Lemma B1: W ijW ik = W i, j⊕k.

Proof: By definition, Pj⊕k = z PjPk for some z ∈ C. Then:

W i, j⊕k Pj⊕k = PiPj⊕kPi = zPiPjPkPi = zW ijW ik Pj(Pi)
2Pk = W ijW ik Pj⊕k. □

Lemma B2: W ij = W σ(i), σ(j).

Proof: By definition, Pσ(i) = vi U
†PiU and Pσ(j) = vj U

†PjU for vi, vj ∈ {−1, 1}. Then:

W σ(i), σ(j) Pσ(j) = Pσ(i)Pσ(j)Pσ(i) = v2i vj (U
†PiU)(U†PjU)(U†PiU) = vj U

†PiPjPiU = W ij Pσ(j). □

Suppose we implement a channel G in place of an ideal gate U(ρ) = UρU†, which we want to transform (in expectation)
into A from Eq. (7) of the main text through Pauli shaping—without invoking the formalism of Clifford PEC/ZNE.
That is, we want to realize an aggregate PTM of

A = UN̄
1+α

(B1)

as in Eq. (8), for some desired α, where U is the PTM of U and N̄ = diag(f⃗ ) is the PTM of the twirled noise channel
N̄ (which comes from Pauli-twirling N = U−1G) with Pauli fidelities fi = tr[Pi N (Pi)]/2

n. The elements of U are
give by

U ij = tr(PiUPjU
†)/2n = vi tr(Pσ(i)Pj)/2

n = vi δσ(i), j , (B2)

using the same notation of Pσ(i) = vi U
†PiU for vi = ±1 as in the proof of Lemma B2. The elements of A are

therefore

Aij =
∑
k

U ik

(
N̄

1+α
)
kj

=
∑
k

vi δσ(i), k f
1+α
k δkj = vi f

1+α
j δσ(i), j . (B3)

It follows that, for generic noise, we need a characteristic matrix C with elements

Cij = fαj δσ(i), j (B4)

to satisfy Eq. (14) of the main text (that is, to get A = C ⊙ G, where G is the PTM of G). The associated
quasi-probability matrix Q = WCW /42n has elements

Qij = 4−2n
∑
kℓ

W ikCkℓW ℓj = 4−2n
∑
kℓ

W ik

(
fαℓ δσ(k), ℓ

)
W ℓj = 4−2n

∑
k

W ikW σ(k), j f
α
σ(k)

Lemma B2
= 4−2n

∑
k

W σ(i), σ(k)W σ(k), j f
α
σ(k) (B5)

Lemma B1
= 4−2n

∑
k

W σ(i)⊕j, σ(k) f
α
σ(k)

= 4−2n
(
W f⃗ α

)
σ(i)⊕j

,

or, written in terms of the vector of quasi-probabilities q⃗ from Sec. II B of the main text, defined by W q⃗ = f⃗ α:

Qij = 4−n q⃗σ(i)⊕j , (B6)

which is precisely Eq. (16) from the main text. That is, Step 1 of Clifford PEC/ZNE (from Sec. II B) can be described
as inserting Paulis Pσ(i) and Pi before and after G respectively, where Pi ∼ unif(P). Step 2 can be described as inserting
an extra Pauli Pk before Pσ(i) with quasi-probability qk. Both steps are shown separately in the left circuit below.
Combining the two adjacent Paulis (as in the middle circuit), and relabelling k⊕σ(i) as j (as in the right circuit), we
arrive at the previous equation. In other words, Pauli shaping is operationally identical to Clifford PEC/ZNE when
the target gate U is Clifford, as claimed in the main text.

Pk Pσ(i) G Pi = Pk⊕σ(i) G Pi = Pj G Pi

quasi-prob.
= qk

prob. = 4−n quasi-prob. = 4−nqk quasi-prob. = 4−nqσ(i)⊕j

(setting j = k ⊕ σ(i))

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Appendix C: Mathematical details of Pauli shaping examples

Before delving into the details of the two examples of Pauli shaping from Sec. II C 2 of the main text, we begin this

section with a useful lemma. Consider two characteristic matrices C(1) and C(2), which correspond respectively to
quasi-probability matrices

Q(1) = 2−4n WC(1)W Q(2) = 2−4n WC(2)W . (C1)

Suppose we apply Pauli shaping to a channel G (with PTM G) according to C(1) to create an aggregate channel with

PTM C(1) ⊙G at the cost of a sampling overhead γ21 , where γ1 =
∑

ij |Q
(1)
ij |. Then, treating this aggregate channel

as a black box, suppose we do a second, outer layer of Pauli shaping according to C(2), thus producing an aggregate
channel with PTM

C(2) ⊙
(
C(1) ⊙G

)
=
(
C(2) ⊙C(1)

)
⊙G, (C2)

at the cost of a total sampling overhead (γ1γ2)
2, where γ2 =

∑
ij |Q

(2)
ij |. Alternatively, we could realize the same

aggregate channel by applying a single layer of Pauli shaping with characteristic matrix C = C(2) ⊙ C(1), with a
corresponding quasi-probability matrix Q = WCW /42n, incurring a potentially different sampling overhead of γ2

where γ =
∑

ij |Qij |.

Lemma C1: γ ≤ γ1γ2.

Proof: We begin by rewriting the relation C = C(2) ⊙ C(1) in terms of the quasi-probability matrices associated
with each characteristic matrix:

WQW =
(
WQ(2)W

)
⊙
(
WQ(1)W

)
, (C3)

or equivalently:

Q = 4−2n W
[(
WQ(2)W

)
⊙
(
WQ(1)W

)]
W . (C4)

The elements of Q can therefore be expressed as

Qij = 4−2n
∑

abcdkℓ

W ia

[(
W akQ

(2)
kℓ W ℓb

)(
W acQ

(1)
cd W db

)]
W bj

Lemma B1
= 4−2n

∑
abcdkℓ

(
W i⊕k, aW ac

)(
W j⊕ℓ, bW bd

)
Q

(2)
kℓ Q

(1)
cd (C5)

=
∑
cdkℓ

δi⊕k, c δj⊕ℓ, d Q
(2)
kℓ Q

(1)
cd

=
∑
kℓ

Q
(2)
kℓ Q

(1)
i⊕k, j⊕ℓ.

In other words, Q is a convolution of Q(1) and Q(2). It follows immediately that

γ =
∑
ij

∣∣Qij

∣∣ =∑
ij

∣∣∣∣∣∑
kℓ

Q
(2)
kℓ Q

(1)
i⊕k, j⊕ℓ

∣∣∣∣∣ ≤∑
kℓ

∣∣∣Q(2)
kℓ

∣∣∣∑
ij

∣∣∣Q(1)
i⊕k, j⊕ℓ

∣∣∣ =∑
kℓ

∣∣∣Q(2)
kℓ

∣∣∣ γ1 = γ1γ2. □ (C6)

An important consequence of this lemma is that, in both examples from Sec. II C 2 of the main text, we only need
to consider block-diagonal characteristic matrices. More precisely, suppose we want to transform a noisy gate G
into an a channel A through Pauli shaping, and that we do so using a generic characteristic matrix C(2) such that

A = C(2) ⊙G. Now consider the operation of twirling G over the 8 Paulis that commute with ZZ. In the ordered
basis (18) from the main text, this twirling is described by

Q(1) = diag

(
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
, 0, 0, 0, 0, 0, 0, 0, 0

)
, (C7)
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whose corresponding characteristic matrix is block-diagonal with identical 2× 2 blocks:

C(1) = WQ(1)W =



1 1 0
1 1

1 1
1 1

. . .

1 1
0 1 1


. (C8)

In both examples, G is block-diagonal with 2× 2 blocks, so G = C(1) ⊙G. Therefore,

A = C(2) ⊙G = C(2) ⊙
(
C(1) ⊙G

)
= C ⊙G, (C9)

where C = C(2) ⊙C(1) is also block-diagonal with 2 × 2 blocks, and γ ≤ γ1γ2 from Lemma C1. Therefore, in both
examples from Sec. II C 2 of the main text, the optimal (i.e., lowest possible) sampling overhead is achieved by a
block-diagonal characteristic matrix with 2× 2 blocks.

Example 1

To correct a coherent over- or under-rotation by ϵ, as in the first example, we consider a block-diagonal characteristic
matrix C given by Eqs. (22)–(24) of the main text. The bottom four blocks are fixed by Eq. (14), whereas we choose
the top four to be identical in order to simplify the calculations. The associated γ = 1

256

∑
ij |(WCW )ij | is given by

8γ = 8
∣∣x− y

∣∣+ ∣∣2 + x+ y + 2c+ 2s
∣∣+ ∣∣2 + x+ y − 2c− 2s

∣∣+ ∣∣2− x− y − 2c+ 2s
∣∣+ ∣∣2− x− y + 2c− 2s

∣∣, (C10)

where x and y are the free coefficients introduced in the main text, and

c =
cos(θ)

cos(θ + ϵ)
s =

sin(θ)

sin(θ + ϵ)
. (C11)

By inspection, Eq. (C10) is minimized when x = y, which we will consider from now on. Notice also that Eq. (C10) is
invariant under the transformations (c, s) 7→ (s, c) and (c, s) 7→ (−c,−s). We can simplify the equation by removing
these symmetries and expressing γ as

4γ =
∣∣x− (−1−M −m)︸ ︷︷ ︸

x1

∣∣+ ∣∣x− (−1 +M +m)︸ ︷︷ ︸
x2

∣∣+ ∣∣x− (1−M +m)︸ ︷︷ ︸
x3

∣∣+ ∣∣x− (1 +M −m)︸ ︷︷ ︸
x4

∣∣ (C12)

for

M = max
{
|c|, |s|

}
m = sgn(cs) min

{
|c|, |s|

}
. (C13)

Note that

sin2(θ)− sin2(θ + ϵ) = −
[
cos2(θ)− cos2(θ + ϵ)

]
(C14)

for any θ and ϵ, and that the sign of the left (and right) hand side indicates whether |s| (and |c|) is greater or smaller
than 1. It follows that M ≥ 1 and |m| ≤ 1, which implies x1 ≤ x3 ≤ x2 ≤ x4. It is helpful to visualize γ as a sum of
two functions, one comprising the first two terms in Eq. (C12) and one comprising the last two, as shown in Fig. C1.
It is then clear, geometrically, that the minimum value of γ is achieved at

x =
1

2
(x2 + x3) = m, (C15)

which gives γ =M , as in Eq. (25) of the main text.
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x

|x− x1|+ |x− x2||x− x3|+ |x− x4|

x1 x3 x2 x4

FIG. C1. The components of Eq. (C12) grouped into two functions which sum to 4γ.

Example 2

The second example of Pauli shaping from Sec. II C 2 of the main text can be derived from a Lindblad equation. A
general Lindblad equation on n qubits can be written as

dρ

dt
= L(ρ) = −i[H, ρ] +

4n−1∑
j,k=1

Γjk

(
PjρPk − 1

2

{
PkPj , ρ

})
, (C16)

where H = H† is a Hamiltonian, {Pj} are n-qubit Paulis (excluding the identity), and Γ = (Γjk)
4n−1
j,k=1 = Γ† is a

positive semi-definite matrix. When all terms are time-independent, the solution to Eq. (C16) for an initial state ρ is

ρ′ = eLt(ρ); (C17)

in other words, it is described by the channel G = eLt. To simplify the notation, we will absorb t into the definition
of L, i.e., set t = 1 and consider G = eL. The second example in the main text comes from picking H = θ

2ZZ, which
describes the effect of the ideal gate, together with a nonzero dissipative term with a coefficient matrix

Γ = −1

2
ln(1− 2ϵ)



0 0
. . .

0
1 i
−i 1

1 i
−i 1

1 i
−i 1

1 i
0 −i 1


, (C18)

expressed in the ordered basis (18) from the main text. Computing the PTM of L and taking its matrix exponential
then gives Eq. (26). We can cancel this noise through Pauli shaping using the characteristic matrix C from Eq. (27)
of the main text, which corresponds to a γ of

γ =
1

16

∣∣∣∣1− x+
1

1− 2ϵ
+

6

1− ϵ

∣∣∣∣+ 1

32

(∣∣∣∣1 + x+
1

1− 2ϵ
− 16√

1− 2ϵ
+

6

1− ϵ

∣∣∣∣+ ∣∣∣∣1 + x+
1

1− 2ϵ
+

16√
1− 2ϵ

+
6

1− ϵ

∣∣∣∣)
+

1

4

(∣∣∣∣1− x+
1

2ϵ− 1

∣∣∣∣+ ∣∣∣∣1 + x+
1

2ϵ− 1

∣∣∣∣)+
3

16

(∣∣∣∣x− 2ϵ2

1− 3ϵ+ 2ϵ2

∣∣∣∣+ ∣∣∣∣x+
2ϵ2

1− 3ϵ+ 2ϵ2

∣∣∣∣) , (C19)

where x is a free parameter that we can choose so as to minimize γ. Taking the ϵ → 0 limit of this expression gives
Eq. (30) of the main text, which is lower-bounded by 3/2.
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It is possible, however, to approximately amplify the noise at much lower cost. Specifically, notice that we can factor
the PTM G of the noisy gate from Eq. (26) as either G = UN or G = NU here, for the same noise channel

N =



(
1 0
2ϵ 1− 2ϵ

)
0(

1− ϵ −ϵ
−ϵ 1− ϵ

)
(
1− ϵ ϵ
ϵ 1− ϵ

)
(
1− ϵ ϵ
ϵ 1− ϵ

)
√
1−2ϵ I √

1−2ϵ I √
1−2ϵ I

0
√
1−2ϵ I



(C20)

either way, where I is a 2 × 2 matrix and U is the PTM of the ideal RZZ(θ) gate from Eq. (19). There are several
reasonable notions of what it means to amplify the noise in G by a factor of 1+α, as discussed in the main text, but
one is to use Pauli shaping to replace G with

UN1+α = N1+α U =



(
1 0
2ϵ 1− 2ϵ

)1+α

0(
1− ϵ −ϵ
−ϵ 1− ϵ

)1+α

(
1− ϵ ϵ
ϵ 1− ϵ

)1+α

(
1− ϵ ϵ
ϵ 1− ϵ

)1+α

(1−2ϵ)
1+α
2 R(2)

. . .

0 (1−2ϵ)
1+α
2 R(2)



. (C21)

Consider a 2× 2 block from the top-left of G:

B =

(
Gii Gij

Gji Gjj

)
, (C22)

where i ∈ {0, 2, 4, 6} and j = i+ 1. In order to Pauli-shape G into UN1+α, we need to effectively replace each such
block B by B1+α. In general, if the off-diagonal elements of B are small (as they are in this example) we can hope
to instead approximate B1+α with a simple expression that differs from the exact B1+α by errors of order O(G2

ij),

O(G2
ji) and O(GijGji). To keep track of error orders, we will rewrite the off-diagonal terms of B as Gij = ζG′

ij and

Gji = ζG′
ji for some small bookkeeping parameter ζ that we will use for series expansions. To (quickly) approximate

B1+α to first order in O(ζ), we will use the standard identity

d

dζ
eF (ζ) =

∫ 1

0

ezF (ζ) F ′(ζ) e(1−z)F (ζ) dz (C23)

for the derivative of a matrix exponential, where F is a suitably well-behaved matrix-valued function. Using Eq. (C23),
one can formally show that

B =

(
Gii 0
0 Gjj

)
︸ ︷︷ ︸

BD

+ζ

(
0 G′

ij

G′
ji 0

)
︸ ︷︷ ︸

BA

= eF (ζ) (C24)

for some function

F (ζ) = ln(BD) + ζ

[
ln(Gii/Gjj)

Gii −Gjj

]
BA +O(ζ2), (C25)
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assuming Gii,Gjj > 0. Then, using Eq. (C23) again, we can formally expand B1+α = e(1+α)F (ζ) in powers of ζ as

B1+α = e(1+α)F (0) + ζ
d

dζ

∣∣∣
ζ=0

e(1+α)F (ζ) +O(ζ2)

= B1+α
D + ζ

[
(1 + α) ln(Gii/Gjj)

Gii −Gjj

] ∫ 1

0

B
z(1+α)
D BAB

(1−z)(1+α)
D dz +O(ζ2) (C26)

= B1+α
D + ζ ηBA +O(ζ2)

=

(
G1+α

ii ηGij

ηGji G1+α
jj

)
+O

(
G2

ij

)
+O

(
GijGji

)
+O

(
G2

ji

)
for η in Eq. (64) of the main text. (Note that η → (1 + α)Gα

ii in the limit of Gjj → Gii.) Therefore, to first order in
the off-diagonal elements, B1+α can be written as the Hadamard product of B with a matrix that only depends on
the diagonal terms of B, as in Eq. (63).

This means that by Pauli-shaping G with a characteristic matrix of

C = diag(C1, C2, C2, C2, C3, C3, C3, C3), (C27)

where

C1 =

(
1 x

1 + α 1− 2αϵ

)
C2 =

(
1− αϵ 1 + α
1 + α 1− αϵ

)
C3 = (1− αϵ)

(
1 1
1 1

)
(C28)

for any x of our choice, we get an aggregate channel of A = C ⊙ G = UN1+α + O(ϵ2). In other words, using a
characteristic matrix C that does not require knowledge of the off-diagonal elements Gij in the top-left of G (which
are called Type 4 elements in Sec. III of the main text), we can effectively implement a channel that is very close to
the desired UN1+α = N1+α U when the gate noise is weak. (That is, we constructed C1 and C2 without needing to
know the values of the Type 4 elements.) Unlike in Clifford ZNE, this noise amplification still comes at a sampling
overhead, albeit a much smaller one than is required to cancel the noise. Specifically, picking x = 1+α for convenience
in C1 leads to

γ =
1

256

∑
ij

∣∣(WCW )ij
∣∣ = (3 + 7ϵ)|α|

4
+

1

4

∣∣4 + α(1− 3ϵ)
∣∣, (C29)

which reduces to γ = 1 + α(1 + ϵ) for α > 0 and small ϵ. That is, we can approximately amplify weak noise by a
factor of 1 + α at the cost of a sampling overhead that is approximately linear in α and that vanishes as α→ 0.

This example is unusual in that the associated noise channel does not depend on the factorization order: if we write
G = UN = N ′U as in the main text, then N = N ′. This is because the noise contributes only an overall damping
factor to Paulis that anti-commute with ZZ (i.e., in the bottom-right of G). While this will not generally be the case
in experiments, the trick above with B1+α nonetheless applies more broadly. To see how, let G denote an RZZ(θ)
gate with arbitrary noise. If we twirl G over Pc, the set of Paulis that commute with ZZ, the resulting PTM Ḡc

will be 2 × 2 block-diagonal, as in Eq. (44). Because the ideal PTM U also has this block structure, so does the
PTM of the resulting (partially twirled) noise channel N̄c = U−1Ḡc. And since the top-left blocks of U are identity

matrices, the top-left blocks of the noise-amplified PTM N̄
1+α
c U are just those of Ḡ raised to the power of α, as

in the example above. This may make it possible to approximately amplify generic noise on RZZ(θ) gates without
learning the troublesome Type 4 PTM elements. In general, of course, the factorizations Ḡc = UN̄c = N̄ ′

c U will lead
to different noise channels N̄c ̸= N̄ ′

c, and it is not clear at present which one—if either—provides a useful notion of
noise amplification.

Appendix D: Readout twirling details

Consider estimating the expectation value ⟨Pi⟩ = tr(ρPi) of an n-qubit Pauli Pi with respect to a state ρ, subject to
measurement/readout errors. In this section, we show that readout twirling [27] gives an estimate that is proportional
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to the ground truth ⟨Pi⟩, on average, with a proportionality coefficient that depends on the statistics of the readout
errors, but not on ρ.

We begin by defining some notation. Let

W =

(
1 1
1 −1

)⊗n

(D1)

be a 2n-dimensional Walsh-Hadamard matrix, then W⊤ =W and W 2 = 2nI. Also, for any j ∈ {0, 1}n let

Xj = Xj1 ⊗ · · · ⊗Xjn Zj = Zj1 ⊗ · · · ⊗ Zjn (D2)

be n-qubit Paulis comprising X’s and I’s, or Z’s and I’s, respectively, as labelled by j. Define the vector z⃗j ∈ R2n

such that Zj = diag(z⃗j), then evidently z⃗j = W |j⟩, where |j⟩ = |j1⟩ ⊗ · · · ⊗ |jn⟩ is a standard basis vector. Also,

note that Xj = 2−nWZjW . Finally, define the vectors p⃗, v⃗ ∈ R2n of ideal probabilities and ideal expectation values,
respectively, with elements

pj = ⟨j|ρ|j⟩ vj = tr(Zj ρ) = ⟨Zj⟩. (D3)

Then v⃗ =Wp⃗, since∑
k

Wjk pk =
∑
k

Wjk tr
(
|k⟩⟨k|ρ

)
= tr

[(∑
k

Wjk|k⟩⟨k|
)
ρ
]
= tr

[
diag

(
W |j⟩

)
ρ
]
= tr(Zj ρ) = vj . (D4)

The typical way to estimate ⟨Pi⟩ is to apply single-qubit gates to rotate Pi into a matrix that is diagonal in the
computational basis, then measure each qubit in this same basis (i.e., the Z eigenbasis). Since we are modeling
single-qubit gates as being noiseless, it therefore suffices to consider a diagonal Pi from the start, i.e., we can take
Pi = Zj for some j ∈ {0, 1}n in this analysis. Each measurement returns a random n-bit string k ∈ {0, 1}n distributed
according to p⃗, in the absence of readout error. From each measured k, we can record ⟨k|Zj |k⟩ = ±1, the corresponding
eigenvalue of Zj . If we perform Ntot such measurements on identical copies of ρ, and estimate ⟨Zj⟩ by µ̂ defined in
Eq. (31) of the main text, then

E(µ̂) =
Ntot Pr(+1)−Ntot Pr(−1)

Ntot
=
∑
k

Wjk pk = (Wp⃗)j = vj = ⟨Zj⟩ (D5)

as expected. That is, without readout errors, µ̂ is an unbiased estimate of ⟨Zj⟩.

Readout errors can be described by a stochastic matrix A whose elements Aℓk give the probability that a k measure-
ment outcome gets misreported as an ℓ, for any k, ℓ ∈ {0, 1}n [26]. Under such errors, the distribution of measured
bit-strings becomes p⃗ ′ = Ap⃗ (according to the law of total probability), rather than p⃗. Therefore:

E(µ̂) = (Wp⃗ ′)j = (WAp⃗ )j = 2−n(WAWv⃗ )j = 2−n
∑
ℓ

(WAW )jℓ ⟨Zℓ⟩, (D6)

which generally does not equal ⟨Zj⟩, nor does it have any simple functional relation to it.

Readout twirling implements a random Xm operation both before and after the noisy readout, for m drawn uniformly
from {0, 1}n in each shot. In effect, this replaces A with

A′ = 2−n
∑
m

XmAXm = 2−3n
∑
m

(WZmW )A(WZmW ) = 2−3nW
[(∑

m

z⃗mz⃗
⊤
m

)
⊙ (WAW )

]
W (D7)

= 2−2nW
[
I ⊙ (WAW )

]
W,

where ⊙ denotes a Hadamard/element-wise product. To derive this expression, we used the identity

diag(x⃗)M diag(x⃗) = (x⃗x⃗⊤)⊙M (D8)

for any matrix M and vector x⃗ of compatible sizes, and the fact that∑
m

z⃗mz⃗
⊤
m =

∑
m

W |m⟩⟨m|W⊤ = 2nI, (D9)
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where {|m⟩} are standard basis vectors. This means that with noisy, twirled readout, the distribution of measured
bit-strings is p⃗ ′′ = A′p⃗. The average value of µ̂ therefore becomes

E(µ̂) = (Wp⃗ ′′)j = 2−n(WA′Wv⃗)j = 2−n
([
I ⊙ (WAW )

]
v⃗
)
j
= mj⟨Zj⟩, (D10)

where mj = 2−n(WAW )jj is independent of the measured state ρ, as claimed in the main text.

Appendix E: Sensitivity of learning schemes

Suppose we want to estimate the expectation value of a Pauli observable Pm with respect to a state ρ by repeating
many identical measurements in the eigenbasis of Pm on copies of ρ. Let the random variable Y = ±1 denote the
outcome of one such measurement, where the value of Y indicates the observed eigenvalue. Following the notation
from the main text, we will denote the expectation value of Y by µ = E(Y). In the absence of readout error, µ is equal
to the ideal Pauli expectation value of ⟨Pm⟩ = tr(Pm ρ), but with readout error, µ need not equal ⟨Pm⟩ in general, as
explained in Appendix D.

The probability mass function of Y is

p(y) = Pr(Y = y) =

{
(1 + µ)/2 y = 1

(1− µ)/2 y = −1.
(E1)

Suppose the state ρ is produced by a noise learning scheme, and that µ depends on some parameter ϕ that we wish
to learn. The corresponding (classical) Fisher information is

I(ϕ) = E

[(
∂

∂ϕ
ln p(Y)

)2
]
=

∑
y∈{1,−1}

p(y)

(
y

2p(y)

∂µ

∂ϕ

)2

=
1

1− µ2

(
∂µ

∂ϕ

)2

, (E2)

as in Eq. (35) of the main text. Now consider the case where µ decays exponentially with circuit depth d, as in cycle
benchmarking (CB), modified CB, and correlated-twirl benchmarking (see Eqs. (34) and (61)). That is, suppose

µ = Ard, (E3)

where we wish to learn the decay rate 0 < r ≤ 1 (so we will write r instead of the general placeholder ϕ in the
equations below), and where the amplitude A depends on SPAM errors. The corresponding Fisher information is

I(r) = µ2

1− µ2

d2

r2
=

A2 r2d

1−A2 r2d
d2

r2
, (E4)

as in Eq. (35). Since we aim to characterize the Fisher information in the limit of weak noise, we begin by taking
A→ 1 in the expression above, which corresponds to the limit of ideal state preparation and measurement. The result
still depends on the circuit depth d. To find the maximum Fisher information, we will optimize over d, treating it as
a continuous parameter for the moment and demanding that ∂

∂dI(r)
∣∣
A=1

= 0. We know of no closed-form expression

for this optimum, so it is convenient to parameterize the Fisher information in terms of x = 2d ln(1/r) instead:

I(r)
∣∣
A=1

=
1

r−2d − 1

d2

r2
=

1

r2 ln(r)2
x2

4(ex − 1)︸ ︷︷ ︸
g(x)

, (E5)

as in Eq. (36) of the main text. This way all dependence on d is captured by g(x), plotted in Fig. E1, which can
be shown numerically to achieve a maximum value of g(x⋆) ≈ 0.162 at x⋆ ≈ 1.59. This means the maximum Fisher
information is approximately

I(r)
∣∣
A=1
d=d⋆

≈ 0.162

r2 ln(r)2
(E6)
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x

g(x)

0 x⋆ ≈ 1.59 4 6 8
0

0.05

0.10

≈ 0.162

FIG. E1. The function g(x) from Eq. (E5).

at d⋆ ≈ 1.59
2 ln(1/r) , as in Eq. (36). Of course, d⋆ is not generally an integer, so the true maximum Fisher information

can be slightly lower due to rounding. (The impact of this rounding on I(r) is negligible for r ≈ 1 since ∂x
∂d ≈ 0 in this

regime, but it can be substantial when r is small. Eq. (E6) should therefore not be used in the latter regime.) If r → 1
in the weak-noise limit then I(r)

∣∣
A=1, d=d⋆

→ ∞, meaning that the measurement outcomes can be informative about

the value of r, so relatively few shots are needed. This is the case in Clifford CB, modified CB (for Type 1 elements)
and correlated-twirl benchmarking (since G2

ii −GijGji → sin(θ)2 + cos(θ)2 = 1 in the weak-noise limit). However, if
we were to use modified CB to learn the Type 2 elements, we would have r → cos(θ) in the weak-noise limit, leading
to a much lower Fisher information when θ ̸≈ 0, and therefore requiring substantially more shots. As a result, we
recommend using partial-twirl benchmarking and correlated-twirl benchmarking to learn the Type 2 elements instead,
in general.

Finally, consider the case where

µ = Ard cos(ωd− δ), (E7)

as in partial-twirl benchmarking (see Eq. (56) of the main text). Before proceeding, we note that for any x ∈ (0, 1)
and φ ∈ R,

cos(φ)2

1− x cos(φ)2
≤ 1

1− x

sin(φ)2

1− x cos(φ)2
≤ 1. (E8)

The Fisher information for the decay rate r from Eq. (E7) is

I(r) =
(
Ardd

r

)2
cos(ωd− δ)2

1−A2r2d cos(ωd− δ)2
, (E9)

which follows from plugging Eq. (E7) into Eq. (E2). It is difficult to maximize this expression over d in general, since
it can behave differently depending on how the oscillations line up with the exponential decay. (E.g., the optimal
depth d⋆ used in Eq. (E6) could happen to give cos(ωd⋆ − δ) = 0.) In the weak-noise limit, however, the exponential
decay will be slow compared to the oscillations, which motivates the upper bound

I(r) ≤
(
Ardd

r

)2

max
φ

cos(φ)2

1−A2r2d cos(φ)2
. (E10)

We can bound this expression further using Eq. (E8) provided Ard < 1, which is guaranteed whenever

d > d0 := − ln(A)

ln(r)
. (E11)

Consider a 2× 2 PTM block B (from the diagonal of Gc) which deviates from the ideal expression in Eq. (20) of the
main text by an arbitrary perturbation:

B =

(
cos θ − sin θ
sin θ cos θ

)
+ ε

(
x00 x01
x10 x11

)
, (E12)
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for some small ε > 0, then one can show that d0 = O(ε) through Eq. (52). In other words, we can use Eq. (E8) for
any non-trivial depth d > d0 → 0 in the weak-noise limit to find

I(r) ≤
(
Ardd

r

)2
1

1−A2r2d
, (E13)

which is identical to Eq. (E4), and therefore also diverges at d⋆ as r → 1. Similarly, now using ω in place of the
generic parameter ϕ:

I(ω) =
(
Ardd

)2 sin(ωd− δ)2

1−A2r2d cos(ωd− δ)2
≤
(
Ardd

)2 ≤ A2

e2 ln(r)2
(E14)

in the weak-noise limit, which also diverges as r → 1. In other words, the measurement outcomes from partial-twirl
benchmarking are informative about both r and ω. The phase δ, however, is harder to learn—while ∂µ/∂r and ∂µ/∂ω
both pick up a factor of d, ∂µ/∂δ does not. More precisely, the second inequality in (E8) gives

I(δ) =
(
Ard

)2 sin(ωd− δ)2

1−A2r2d cos(ωd− δ)2
≤
(
Ard

)2 ≤ A2 (E15)

in the weak-noise limit, which is much smaller than the maximum values of both I(r) and I(ω).

Appendix F: Concentration in learning schemes

Suppose we would like to execute random quantum circuits from some particular family (e.g., defined by one of the
learning or mitigation schemes discussed in the main text) then estimate some Pauli expectation value ⟨Pm⟩. Ideally,
we would pick a new random circuit for every shot and record ±1 based on the observed eigenvalue of Pm, repeating
this process Ntot times and averaging the results. (We denote this average as µ̂ in the main text.) However, it is
convenient in many experiments to instead pick a small number Nc of random circuits and to run each one Ns/c times,
leading to a total number of shots Ntot = NcNs/c, as described in the main text.

Consider a random quantum channel T describing a random (potentially noisy) circuit which is chosen from some
prescribed family of circuits with probability Pr(T ). Let the random variable Y(T ) = ±1 denote a measurement
outcome (more precisely, the observed eigenvalue of Pm) from running T . Define the conditional expectation

µ(T ) = E
[
Y(T )

∣∣T ], (F1)

which is the expected value of the measurement outcomes from a given circuit T (i.e., the average outcome in the
limit of infinitely many executions of T ). Since T is random, µ(T ) is also a random variable, with some mean

µ = E
[
µ(T )

]
(F2)

and some variance ∆2, as illustrated in Fig. 5 of the main text. We are interested in the case where there are
Nc different random circuits, all drawn independently from the same distribution, and each one is executed Ns/c

times. Let the random variable Tj denote the jth random circuit, and the random variable Yi(Tj) = ±1 denote the
measurement outcome from the ith time circuit Tj is run, for 1 ≤ j ≤ Nc and 1 ≤ i ≤ Ns/c. As described in the main
text, we will use the random variable

µ̂′ =
1

Ntot

Ns/c∑
i=1

Nc∑
j=1

Yi(Tj) (F3)

as an estimator for µ. It is unbiased, since

E(µ̂′) =
1

Ntot

Ns/c∑
i=1

Nc∑
j=1

E
{
E
[
Yi(Tj)

∣∣Tj]} =
1

Ntot

Ns/c∑
i=1

Nc∑
j=1

E
[
µ(T )

]
= µ (F4)
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using the law of total expectation (we follow the standard notation in which the inner E is over Yi for fixed Tj , and
the outer one is over Tj), and it has a variance of

Var(µ̂′) = E(µ̂′2)− E(µ̂′)2 = E(µ̂′2)− µ2. (F5)

There are three distinct types of terms in the sum

E(µ̂′2) =
1

N2
tot

Ns/c∑
i=1

Nc∑
j=1

Ns/c∑
k=1

Nc∑
ℓ=1

E
[
Yi(Tj)Yk(Tℓ)

]
, (F6)

which we will analyze separately.

Same shot from the same circuit (i = k and j = ℓ): There are Ntot such terms in Eq. (F6), for which

E
[
Yi(Tj)Yi(Tj)

]
= E

[
(±1)2

]
= 1. (F7)

Different circuits (j ̸= ℓ): There are Nc(Nc − 1)N2
s/c such terms, for which Yi(Tj) and Yk(Tℓ) are independent

since they come from different random circuits Tj and Tℓ, which are themselves independent:

E
[
Yi(Tj)Yk(Tℓ)

]
= E

{
E
[
Yi(Tj)Yk(Tℓ)

∣∣Tj , Tℓ]} = E
[
µ(Tj)µ(Tℓ)

]
= µ2. (F8)

Different shots from the same circuit (i ̸= k and j = ℓ): There are Ns/c(Ns/c − 1)Nc such terms, which are
conditionally independent given Tj :

E
[
Yi(Tj)Yk(Tj)

]
= E

{
E
[
Yi(Tj)Yk(Tj)

∣∣Tj]} = E
[
µ(Tj)2

]
= µ2 +∆2. (F9)

Therefore

E(µ̂′2) =
1

N2
tot

[
Ntot +Nc(Nc − 1)N2

s/c µ
2 +Ns/c(Ns/c − 1)Nc (µ

2 +∆2)
]
= µ2 +

1− µ2

Ntot
+

(
Ns/c − 1

Ns/c

)
∆2

Nc
, (F10)

so the standard error
√
Var(µ̂′) is given by Eq. (38) of the main text, which reduces to Eq. (37) when Ns/c = 1 (in

which case we denote the estimator as µ̂ rather than µ̂′).

We now examine the quantity ∆ for the different learning schemes discussed in the main text, which are meant to
extract certain elements of a PTM G describing a noisy RZZ(θ) gate. In general, ∆ will depend on the very elements
of G we wish to measure, so its exact value cannot be known a priori. Instead, we approximate it by calculating ∆ in
the limit of weak noise (where it is tractable) for various learning schemes, as discussed in the main text. We use the
expression for ∆ in Eq. (39) as a starting point. In general, the random channel T in that equation should describe
not just the quantum gates being characterized and the random single-qubit gates surrounding them, but also any
state-prep twirling, readout error, and readout twirling. (Readout error can be described by a stochastic matrix A
that acts after an ideal measurement, as in Appendix D, or equivalently here, as a quantum channel that acts before
an ideal measurement, as in Fig. 5.) However, these latter elements vanish in the weak-noise limit, so we need only
consider T comprising repeated ideal RZZ(θ) gates (described by a unitary channel U with PTM U from Eqs. (19)
and (20)) surrounded by random Pauli gates.

We begin with modified cycle benchmarking, where U is repeated d times, and each occurrence is twirled independently
over the full set of 2-qubit Paulis. This means

T = T (d)T (d−1) · · · T (1) (F11)

for

T (k)(ρ) = Pℓ U(PℓρPℓ)Pℓ =

{
U(ρ) = UρU†, [Pℓ, Z⊗Z] = 0

U†(ρ) = U†ρU, {Pℓ, Z⊗Z} = 0,
(F12)
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where Pℓ ∼ unif(P) is sampled independently in each layer k. Therefore, when estimating the expectation value of
some Pauli Pi ∈ P:

∆2 = E
{
tr[PiT (ρ)]2

}
− µ2 = tr

[
P⊗2
i E

(
T ⊗2

)
(ρ⊗2)

]
− µ2 = tr

{
P⊗2
i

[
E
(
T (k)⊗2

)]d
(ρ⊗2)

}
− µ2, (F13)

where we used the identity tr(M)2 = tr(M ⊗M) for any square matrix M to bring the expectation into the trace,
then the fact that each layer is twirled independently to distribute the overall expectation into each layer. Since Pℓ

in Eq. (F12) commutes or anti-commutes with Z⊗Z with equal probabilities,

E
(
T (k)⊗2

)
=

1

2
U⊗2 +

1

2
U†⊗2 =: V. (F14)

So for a generic initial state ρ = 1
4

∑
k skPk,

∆2 = tr
[
P⊗2
i (Vd)(ρ)

]
− µ2 =

∑
kℓ

sksℓ
1

16
tr
[
P⊗2
i Vd(Pk⊗ Pℓ)

]
︸ ︷︷ ︸

(V d)ii,kℓ

−µ2, (F15)

where (V d)ii,kℓ are the PTM elements of Vd. Moreover, because span{Pi, Pj} is an invariant subspace of U for
Pj ∝ (Z⊗Z)Pi, span(S) is invariant under V for

S =
(
Pi ⊗ Pi, Pi ⊗ Pj , Pj ⊗ Pi, Pj ⊗ Pj

)
. (F16)

In other words, because the PTM of U is block-diagonal with 2× 2 blocks, the PTM of V is block-diagonal with 4× 4
blocks (in an appropriate ordered basis). We can therefore evaluate ∆ by calculating one of these blocks, denoted V S,
and taking the dth power of it. Concretely,

V S =

(
1

16
tr
[
SkV(Sℓ)

])
1≤k,ℓ≤4

=
1

2

(
U ii U ij

U ji U jj

)⊗2

+
1

2

(
U ii −U ij

−U ji U jj

)⊗2

=


U2

ii 0 0 U2
ij

0 U iiU jj U ijU ji 0
0 U ijU ji U iiU jj 0

U2
ji 0 0 U2

jj

 , (F17)

since U ij = −U ji, where Sk denotes the kth element of S. Then

∆2 =
(
1 0 0 0

)
U2

ii 0 0 U2
ij

0 U iiU jj U ijU ji 0
0 U ijU ji U iiU jj 0

U2
ji 0 0 U2

jj


dsisisisj

sjsi
sjsj

− µ2, (F18)

where

µ = tr
[
Pi

(1
2
U +

1

2
U†
)d

(ρ)
]
= Ud

ii si. (F19)

If [Pi, Z⊗Z], which is the case when learning Type 1 elements through modified CB, then U ii = U jj = 1 and
U ij = U ji = 0, so V S = I and therefore ∆ = 0 in the weak-noise limit. The same is true for standard CB on
Clifford gates. Note however that this property does not arise automatically: if instead {Pi, Z⊗Z} = 0, then
U ii = U jj = cos(θ) and U ij = −U ji = ± sin(θ), so

∆2 =
1

2

(
1 0 0 0

)
1 + cos(2θ)d 0 0 1− cos(2θ)d

0 1 + cos(2θ)d −1 + cos(2θ)d 0
0 −1 + cos(2θ)d 1 + cos(2θ)d 0

1− cos(2θ)d 0 0 1 + cos(2θ)d


sisisisj
sjsi
sjsj

− cos(θ)2d s2i . (F20)

Since (si, sj) → (1, 0) in the weak-noise limit, the resulting ∆ is given by Eq. (47) of the main text. In other words,
the random circuits arising in modified CB lead to expectation values that are highly spread out when measuring
Paulis that anti-commute with Z⊗Z. This is another reason why modified CB is generally impractical for learning
Type 2 elements.

In contrast, partial-twirl benchmarking (PTB) and correlated-twirl benchmarking (CTB) both have ∆ = 0 in the limit
of weak noise since, for any given depth d, the random circuits they use are all logically equivalent (i.e., they describe
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identical unitaries). More precisely, in PTB each layer T (k) has the same form as in Eq. (F12), but Pℓ ∼ unif(Pc),
so T (k) = U in the weak-noise limit, which immediately gives ∆ = 0 using Eq. (F13). The situation is similar with
CTB, although to analyze that scheme it is convenient to decompose T = T (d/2) · · · T (1) with (even) depth d into d/2
independent random layers

T (k)(ρ) = Pm UPmPℓ UPℓ, (F21)

each of which comprises two RZZ(θ) gates, where we use the notation Pℓ(ρ) = PℓρPℓ. Then Pℓ ∼ unif(P) and
Pm ∼ unif(Pa) if Pℓ ∈ Pc, or Pm ∼ unif(Pc) if Pℓ ∈ Pa. In either case, T (k) reduces to the identity channel in the
weak-noise limit, which immediately implies ∆ = 0.

Appendix G: Partial-twirl benchmarking details

In this section we derive Eqs. (51), (52), and (57)–(59) from the main text. Consider the 2× 2 matrix

B =

(
Gii Gij

Gji Gjj

)
, (G1)

which forms a block on the bottom-right of the diagonal of Gc, the PTM describing a noisy RZZ(θ) gate twirled
over Pc, the set of Paulis that commute with ZZ. The blue and green colors serve to denote Type 2 and Type 3
elements respectively. As in the main text, we will assume that B has complex eigenvalues, i.e., that its eigenvalues
satisfy condition (50). To avoid any ambiguity with complex square roots being multi-valued (e.g., +i and −i are
both square roots of −1), we will write these eigenvalues as

λ± = x± iy = re±iω (G2)

here, where the real and imaginary parts

x =
1

2

(
Gii +Gjj

)
y =

1

2

√
−(Gii −Gjj)2 − 4GijGji (G3)

are both well-defined, and the magnitude r and argument ω are defined in the usual way in Eq. (52) of the main text.
Likewise, we will write the corresponding (unnormalized) eigenvectors of B as

v⃗± =

(
Gii −Gjj ± 2iy

2Gji

)
. (G4)

It follows that (
1
0

)
=

−i
4y

(
v⃗+ − v⃗−

)
, (G5)

so for any circuit depth d, we can express the top-left element of Bd as

(
1 0

)(Gii Gij

Gji Gjj

)d(
1
0

)
=

−i
4y

(
1
0

)
·
(
λd+v⃗+ − λd−v⃗−

)
=

−i
4y

[
(Gii −Gjj)(λ

d
+ − λd−) + 2iy(λd+ + λd−)

]
(G6)

= rd
[(

Gii −Gjj

2y

)
sin(ωd) + cos(ωd)

]
.

We can combine both terms in the square brackets using the identity

a cos(ωd− δ) = a
[
sin(δ) sin(ωd) + cos(δ) cos(ωd)

]
(G7)

by demanding that the amplitude a and phase δ satisfy

a sin(δ) =
Gii −Gjj

2y
a cos(δ) = 1, (G8)
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which immediately gives the expressions for a and δ in Eq. (52) of the main text. These definitions then yield

(
1 0

)(Gii Gij

Gji Gjj

)d(
1
0

)
= ard cos(ωd− δ), (G9)

as in Eq. (51).

We now derive Eqs. (57)–(59) of the main text, which give Gii, Gjj and GijGji as functions of r, ω and δ, which
can be estimated experimentally. Note, from the definitions above, that

r cosω = x r sinω = y ay =
√
−GijGji. (G10)

Combining these equations with Eq. (G8) gives

cos(δ) =
1

a
=

y√
−GijGji

=
r sin(ω)√
−GijGji

, (G11)

which immediately leads to Eq. (57) of the main text. Note that since cos(δ)−2 = 1 + O(δ2) for δ near 0, GijGji

depends only weakly on the fitted value of δ when the noise is weak (meaning δ is small). Similarly,

tan(δ) =
Gii −Gjj

2y
=

Gii −Gjj

2r sin(ω)
, (G12)

so

Gii −Gjj

2
= r sin(ω) tan(δ). (G13)

Adding this quantity to x, or subtracting it from x, gives the expressions for Gii and Gjj from Eqs. (58) and (59)
respectively. However, since tan(δ) = O(δ), these expressions depend strongly on the fitted values of δ, so we do not
advise using them. Instead, we recommend correlated-twirl benchmarking.
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