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Abstract

Let E be a locally compact second countable Hausdorff space and F the pertain-

ing family of all closed sets. We endow F respectively with the Fell-topology, the

upper Fell topology or the upper Vietoris-topology and investigate weak conver-

gence of probability measures on the corresponding hyperspaces with a focus on

the upper Fell topology. The results can be transferred to distributional conver-

gence of random closed sets in E with applications to the asymptotic behavior

of measurable selection.
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1 Introduction

To begin with we introduce concepts, which are fundamental for the whole paper: the
Fell-topology, the upper Fell-topology and weak convergence on topological spaces. To
introduce the Fell-topologies let E be a non-empty set endowed with a topology G and
the pertaining families F and K of all closed sets and all compact sets, respectively.
For an arbitrary subset A ⊆ E one defines

M(A) := {F ∈ F : F ∩A = ∅}

and
H(A) := {F ∈ F : F ∩A 6= ∅}.

1

http://arxiv.org/abs/2403.18798v1


The elements of M(A) or H(A) are called missing sets or hitting sets, respectively, of
A. Put

SF = {M(K) : K ∈ K} ∪ {H(G) : G ∈ G} ⊆ 2F .

and
SuF = {M(K) : K ∈ K} ⊆ 2F .

Then the topologies on F generated by SF or SuF are called Fell-topology or upper
Fell-topology and are denoted by τF or τuF , respectively. The name goes back to J.
Fell (1962) [4]. The topological spaces (F , τF ) and (F , τuF ) are examples of hyper-
spaces. From now on we assume that the underlying carrier space (E,G) is locally
compact, second-countable and Hausdorff. Then the hyperspace (F , τF ) is com-
pact, second-countable and Hausdorff, confer G. Beer [1] for these properties and
much more information on the Fell-topology. Whereas (F , τuF ) is also compact and
second-countable, but it is not Hausdorff, confer Ferger [5].

To introduce the second concept let (X,O) be an arbitrary topological space with
induced Borel σ-algebra B ≡ B(X) := σ(O). Let

Π ≡ Π(X,O) := {P : P is a probability measure on (X,B)}.

For each open O ∈ O consider the evaluation map eO : Π → R defined by eO(P ) :=
P (O) for all P ∈ Π. If O> := {(a,∞) : a ∈ R} ∪ {∅,R} is the right-order topology on
R, then the initial topology with respect to the functions eO : Π → (R,O>), O ∈ O,
is called weak topology on Π and denoted by τweak. It goes back to Topsøe [13]. An
introduction to the weak topology can be found in the textbook of Gänssler and Stute
[7].

Next, let (A,≤) be a directed set and (Pα) be a net in Π converging to P ∈ Π in
the weak topology:

Pα → P in (Π, τweak). (1)

By construction of the initial topology we have that (1) is equivalent to

eO(Pα) → eO(P ) in (R,O>) ∀ O ∈ O,

which in turn by the definitions of eO and O> is equivalent to

lim inf
α

Pα(O) ≥ P (O) ∀ O ∈ O. (2)

By complementation we further obtain from (2) that (1) is equivalent to

lim sup
α

Pα(F ) ≤ P (F ) for all closed sets F in (X,O). (3)

Thus, if (X,O) is metrizable and Pα actually is a sequence, then one can conclude
from the Portmanteau-Theorem that convergence in (Π, τweak) is the same as the
well-known weak convergence of probability measures on metric spaces, confer, e.g.
Billingsley [2]. Therefore, in general we say that (Pα) converges weakly to P on (X,O),
if (1) holds and alternatively write for this: Pα →w P on (X,O).
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We are now in a position to explain what this paper is about. It is (mainly) about
the characterisation of weak convergence Pα →w P on (F , τuF ) and its relation to
weak convergence on (F , τF ). Let BF := σ(τF ) and BuF = σ(τuF ) be the underlying
Borel-σ algebras. It follows from Lemma 2.1.1 in Schneider and Weil [12] that these
coincide:

BF = BuF . (4)

Therefore the involved probability measures have the same domain.

The paper is organized as follows: In the next section we learn about equivalent
characterisations for weak convergence on (F , τuF ). Since the Fell topology is stronger
than the upper Fell topology, weak convergence on (F , τF ) entails this on (F , τuF ) and
in general the reversal is not true, but it is under an additional assumption. Moreover,
we find a close relationship to weak convergence on (F , τuV ), where τuV is the upper
Vietoris topology. This is created when K is replaced by F in the construction of
τuF . A surprising result is that every net of probability measures converges weakly
on (F , τuF ). And whenever it converges to some P it converges also to every Q,
which dominates P . Consequently, the space (Π(F , τuF ), τweak) is compact and in
general not Hausdorff. In section 3 we extend our results to random closed sets in
E and measurable selections. It is shown that the distributions of these selections
converge weakly to a Choquet capacity in the sense of Ferger [6], Definition 1.4. Under
a uniqueness assumptions one obtains classical weak convergence in (E,G). Finally, in
section 4 (appendix) we present some statements that are used in our proofs.

2 Weak convergence of probability measures on the
hyperspace (F , τuF )

By construction SuF is a subbase of τuF . This means that every basic open set has the
form

⋂m

i=1
M(Ki) for compact sets K1, . . . ,Km and m ∈ N. But since

⋂m

i=1
M(Ki) =

M(
⋃m

i=1
Ki) and K :=

⋃m

i=1
Ki is compact, we see that SuF actually is a base of τuF .

Consequently each open set O ∈ τuF has the representation

O =
⋃

K∈K∗

M(K)

for some subclass K∗ ⊆ K. Therefore, a general τuF -closed set F can be written as

F =
⋂

K∈K∗

H(K).

Thus the equivalence (1) ⇔ (3) immediately yields a first characterisation:

Proposition 1. The following two statements (i) and (ii) are equivalent:

(i) Pα →w P on (F , τuF ).
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(ii)

lim sup
α

Pα(
⋂

K∈K∗

H(K)) ≤ P (
⋂

K∈K∗

H(K)) (5)

for every collection K∗ ⊆ K of compact sets in E.

We say that (Pα) is asymptotically compact-bounded, if for each ǫ > 0 there exists
a K ∈ K such that

lim inf
α

Pα({F ∈ F : F ⊆ K}) ≥ 1− ǫ. (6)

Notice that {F ∈ F : F ⊆ K} = (H(Kc))c is τF -closed, because K
c ∈ G. Therefore

it lies in BF = BuF , the domain of the Pα. Similarly, a single probability measure P
is said to be compact-bounded, if for each ǫ > 0 there exists a K ∈ K such that

P ({F ∈ F : F ⊆ K}) ≥ 1− ǫ. (7)

Corollary 1. If Pα →w P on (F , τuF ) and (Pα) is asymptotically compact-bounded,
then

lim sup
α

Pα(
⋂

F∈F∗

H(F )) ≤ P (
⋂

F∈F∗

H(F )) (8)

for every collection F∗ ⊆ F of closed sets in E.
If the limit P is compact-bounded, then the reverse conclusion holds: (8) implies

that Pα →w P on (F , τuF ) and that (Pα) is asymptotically compact-bounded.

Proof. In Remark 1 below we will show that the intersections in (8) are elements of
BuF , so that all probabilities are well-defined. Let ǫ > 0 and F := {F ∈ F : F ⊆ K}
with K as in (6). Then using the partition {F,Fc} one finds that

⋂
F∈F∗ H(F ) ⊆⋂

F∈F∗(H(F ) ∩ F) ∪Fc. Since H(F ) ∩F ⊆ H(F ∩K) for all F ∈ F∗, we obtain:

lim sup
α

Pα(
⋂

F∈F∗

H(F )) ≤ lim sup
α

Pα(
⋂

F∈F∗

H(F ∩K)) + lim sup
α

Pα(F
c). (9)

Now, F ∩K ∈ K, whence by Proposition 1

lim sup
α

Pα(
⋂

F∈F∗

H(F ∩K)) ≤ P (
⋂

F∈F∗

H(F ∩K)) ≤ P (
⋂

F∈F∗

H(F )), (10)

where the last equality is trivial, because F ∩K ⊆ F and so H(F ∩K) ⊆ H(F ) for
all F . By complementation the condition (6) is equivalent to

lim sup
α

Pα(F
c) ≤ ǫ. (11)

Combining (9)-(11) we arrive at

lim sup
α

Pα(
⋂

F∈F∗

H(F )) ≤ P (
⋂

F∈F∗

H(F )) + ǫ ∀ ǫ > 0.

Taking the limit ǫ → 0 yields the assertion (8).
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As to the reverse implication let ǫ > 0 and K ∈ K as in (7). Fix some r > 0 and
consider the open r-neighborhood Kr− and the closed r-neighborhood Kr of K, see
in the appendix for their definitions. Notice that K ⊆ Kr− ⊆ Kr. It follows:

lim sup
α

Pα(F ∈ F : F * Kr) = lim sup
α

Pα(F ∈ F : F ∩ (Kr)c 6= ∅)

= lim sup
α

Pα(H((Kr)c))

≤ lim sup
α

Pα(H((Kr−)c)) because Kr ⊇ Kr−

≤ P (H((Kr−)c)) by (8) with F∗ = {(Kr−)c} ⊆ F , because Kr− ∈ G

≤ P (H(Kc)) because Kr− ⊇ K

= 1− P (M(Kc)) = 1− P ({F ∈ F : F ⊆ K}) ≤ ǫ by (7).

After complementation this shows asymptotic compact-boundedness of (Pα) upon
noticing that Kr is compact by Lemma 4. Since K ⊆ F , condition (8) entails condition
(5). Therefore an application of Proposition 1 yields that Pα →w P on (F , τuF ).

Remark 1. Let τuV be the upper Vietoris topology. This is generated by SuV :=
{M(F ) : F ∈ F}. Notice that

H(B) ∈ BF for all Borel-sets B ∈ B(E), (12)

confer Matheron [9], p.30. Thus by Lemma 2.1.1 in Schneider and Weil [12] and (12)
the Borel-σ algebra BuV := σ(τuV ), like BuF , is the same as BF . Similarly as for SuF

one shows that SuV is a base for τuV , whence the family {
⋂

F∈F∗ H(F )),F∗ ⊆ F} is
exactly the family of all τuV -closed sets. In particular, these intersections are Borel-
sets, i.e., they are elements of BuV = BF = BuF . As a further consequence we obtain
that (8) is equivalent to Pα →w P on (F , τuV ).

Recall that the family of sets occurring in (5) coincides with the family of all
τuF -closed sets. Our next result shows that one can reduce this family significantly.
For its formulation we need the following denotation: For a set A ⊆ F the boundary
of A with respect to the Fell-topology is denoted by ∂FA.

Theorem 2. The following statements (i)-(iii) are equivalent:

(i) Pα →w P on (F , τuF ).
(ii)

lim sup
α

Pα(

m⋂

i=1

H(Ki)) ≤ P (

m⋂

i=1

H(Ki)) (13)

for every m ∈ N and every finite collection K1, . . . ,Km of non-empty compact sets
in E.

(iii) The inequality (13) holds for every m ∈ N and every finite collection K1, . . . ,Km

of non-empty compact sets in E such that P (∂FH(Ki)) = 0 for all 1 ≤ i ≤ m.
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Proof. The implication (i) ⇒ (ii) follows from Proposition 1 withK∗ = {K1, . . . ,Km}.
For the reverse direction (ii) ⇒ (i) one has to show (3), i.e.

lim sup
α

Pα(F) ≤ P (F) for all τuF − closed sets F. (14)

We prove this by contradiction. So, assume that there exists a τuF -closed set F such
that

lim sup
α

Pα(F) > P (F). (15)

The complement Fc of F in F lies in τuF and τuF has a countable base {M(K) : K ∈
K0}, where K0 is a certain countable family of non-empty compact sets, confer, e.g.,
Ferger [5] or Gersch [8]. Thus one can find a sequence (Ki)i∈N of non-empty compact
sets such that Fc =

⋃
i∈N

M(Ki), whence F =
⋂

i∈N
H(Ki). For every k ∈ N put

Fk :=
⋂k

i=1
H(Ki). Then Fk ↓ F, k → ∞ and therefore

P (Fk) ↓ P (F), k → ∞. (16)

Let a := 1

2
(lim supα Pα(F)− P (F). By assumption (15) the real number a is positive

and by definition satisfies

lim sup
α

Pα(F) = P (F) + 2a > P (F) + a. (17)

Recall that (A,≤) is the directed set, where α is at home. By (16) and a > 0 there
exists a k ∈ N such that

P (Fk)− P (F) < a/2. (18)

By definition lim supα Pα(F) = infβ∈A supα≥β Pα(F) and thus (17) ensures that

sup
α≥β

Pα(F) > P (F) + a ∀ β ∈ A. (19)

It follows that

sup
α≥β

Pα(Fk) ≥ sup
α≥β

Pα(F) > P (F) + a/2 + a/2 > P (Fk) + a/2 ∀ β ∈ A. (20)

Here, the first inequality holds, because Fk ⊃ F, the second equality is (19) and the
last equality follows from (18). Taking the infimum over all β ∈ A we obtain

P (Fk) + a/2 ≤ inf
β∈A

sup
α≥β

Pα(Fk) = lim sup
α

Pα(Fk) = lim sup
α

Pα(

k⋂

i=1

H(Ki))

≤ P (

k⋂

i=1

H(Ki)) = P (Fk) by assumption (ii).

Consequently, P (Fk) + a/2 ≤ P (Fk) and thus a ≤ 0 in contradiction to a > 0. Since
the implication (ii) ⇒ (iii) is trivial, it remains to prove that (iii) implies (ii).
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For this purpose consider Ri = R(Ki) := {r > 0 : P (∂H(Kr
i )) = 0}, 1 ≤ i ≤ m.

Here, Kr
i is the closed r-neighborhood of Ki, which by Lemma 4 in the appendix is

compact. We know from Lemma 7 in the appendix that for each index i the com-
plement Rc

i of Ri is denumerable, whence
⋃m

i=1
Rc

i is denumerable as well. As a
consequence R(K1, . . . ,Km) :=

⋂m

i=1
R(Ki) = (

⋃m

i=1
Rc

i )
c lies dense in [0,∞). Thus

there exists a sequence (rj)j∈N in R(K1, . . . ,Km) such that rj ↓ 0, j → ∞. Conclude
that

lim sup
α

Pα(

m⋂

i=1

H(Ki)) ≤ lim sup
α

Pα(

m⋂

i=1

H(K
rj
i )) ≤ P (

m⋂

i=1

H(K
rj
i )) ∀ j ∈ N. (21)

Here, the first inequality holds, because Ki ⊆ K
rj
i and therefore H(Ki) ⊆ H(K

rj
i ). As

to the second inequality observe that rj ∈ R(Ki) for every 1 ≤ i ≤ m, which means
that P (∂H(K

rj
i ) = 0 for all i and so we can use assumption (iii) taking into account

that the K
rj
i are all compact. Finally, consider Ej :=

⋂m

i=1
H(K

rj
i ), j ∈ N, which by

monotonicity of (rj) are monotone decreasing. So σ-continuity of P from above yields:

lim
j→∞

P (

m⋂

i=1

H(K
rj
i )) = lim

j→∞
P (Ej) = P (

⋂

j∈N

Ej) = P (

m⋂

i=1

⋂

j∈N

H(K
rj
i )). (22)

Put Cij := K
rj
i . Observe that for each fixed 1 ≤ i ≤ m we have that Cij ↓ Ki, j → ∞

and that (Cij)j∈N ⊆ K. Thus
⋂

j∈N
H(Cij) = H(Ki) for every 1 ≤ i ≤ m by Lemma 8

in the appendix. Infer that

P (

m⋂

i=1

⋂

j∈N

H(K
rj
i )) = P (

m⋂

i=1

H(Ki)). (23)

Thus taking the limit j → ∞ in (21) yields (ii) by (22) and (23).

Next we relate Pα →w P on (F , τuF ) with Pα →w P on (F , τF ). A first simple
relation is given in:

Proposition 3. If Pα →w P on (F , τF ), then Pα →w P on (F , τuF ).

Proof. This follows from the equivalent characterization (2) taking into account that
τF ⊇ τuF .

Weak convergence on (F , τF ) is well-studied in contrast to that on (F , τuF ). For
example Pα →w P on (F , τF ) if and only if Pα(H(K)) → P (H(K)) for all compact K
with P (∂FH(K)) = 0. This and other characterisations can be found in in Molchanov
[10]. Here, only sequences of probability measures are considered. However, in Ferger
[5] we carry over the theory to nets of probability measures.

Our next result is really astonishing and has interesting consequences. Here we
say that Q dominates P (in symbol: P ≤ Q) if P (

⋂m

i=1
H(Ki)) ≤ Q(

⋂m

i=1
H(Ki)) for

every m ∈ N and for every collection K1, . . . ,Km of non-empty compact sets.

7



Lemma 1. Every net (Pα) is weakly convergent on (F , τuF ) with limit δE, the Dirac-
measure at point E. Moreover, if Pα →w P on (F , τuF ), then Pα →w Q on (F , τuF )
for each Q that dominates P .

Proof. If K1, . . . ,Km are non-empty compact sets, then δE(
⋂m

i=1
H(Ki)) = 1, whence

(ii) of Theorem 2 is fulfilled and therefore Pα →w δE on (F , τuF ). Each Q that
dominates P satisfies (ii) of Theorem 2, which shows the second claim by another
application of Theorem 2.

As immediate consequences we obtain:

Corollary 2. The topological space (Π(F , τuF ), τweak) is compact. In general it is not
Hausdorff and therefore not metrizable.

Corollary 3. In general the reverse conclusion in Proposition 3 is not true.

In view of the last result, the question arises under which additional conditions
the reversal applies. The answer involves the family F0,1 of all sets with at most one
element, i.e., F0,1 = {∅} ∪ {{x} : x ∈ E}. Since the empty set and all singletons are
closed, F0,1 ⊆ F . According to Lemma 9 in the appendix F0,1 is τF -closed and thus
in particular is a Borel-set: F0,1 ∈ BF .

Theorem 4. Suppose that

(i) Pα →w P on (F , τuF ),
(ii) For each ǫ > 0 there exists a K ∈ K such that

lim inf
α

Pα({F ∈ F : ∅ 6= F ⊆ K}) ≥ 1− ǫ, (24)

(This is a bit more than asymptotic compact-boundedness (6).)
(iii) P (F0,1) = 1.

Then
Pα →w P on (F , τF ). (25)

Proof. Let F be τF -closed and for each ǫ > 0 let K ∈ K as in (ii). Put B := {F ∈
F : ∅ 6= F ⊆ K}. Since B = H(E) ∩ M(Kc) Lemma 2.1.1 in Schneider and Weil
[12] ensures that B ∈ BF is a Borel-set and hence the probabilities in (24) are well-
defined. The decomposition F = (F ∩ B) ∪ (F ∩ Bc) yields that F ⊆ C ∪ Bc with
C = F∩B ∈ BF . According to (ii) lim infα Pα(B) ≥ 1−ǫ, whence by complementation
lim supα Pα(B

c) ≤ ǫ. It follows that

lim sup
α

Pα(F) ≤ lim sup
α

Pα(C) + ǫ for every ǫ > 0. (26)

In the sequel cluF and clF refer to the closure with respect to the upper Fell-topology
and the Fell-topology, respectively. The next relation is the key of our proof.
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C ⊆ cluF (C) ⊆ clF (C) ∪ Fc
0,1. (27)

The first ⊆ holds by definition of the closure. As to the second one let F ∈ cluF (C).
Then there exists a net (Fα) in C with Fα → F in (F , τuF ). If F /∈ F0,1, then it lies
in the set on the right side of (27) as desired. So it remains to consider F ∈ F0,1. If
F = ∅, then Fα → F in (F , τF ) by Lemma 10 (b) in the appendix and consequently
F ∈ clF (C). If F = {x} is a singleton, then we use that ∅ 6= Fα ⊆ K for all α ∈ A,
because Fα ∈ C ⊆ B. Thus we can apply Lemma 10 (a) in the appendix, which yields
that Fα → F in (F , τF ), whence F ∈ clF (C) also in that last case. This finally shows
that (27) is true.

Next, observe that

lim sup
α

Pα(C) ≤ lim sup
α

Pα(clF (C)) ≤ P (cluF (C), (28)

by the first part of (27) and by assumption (i), because cluF (C) is τuF -closed. The
second part of (27) gives

P (cluF (C)) ≤ P (clF (C)) + P (Fc
0,1) = P (clF (C)) ≤ P (clF (F)) = P (F). (29)

Here, the first inequality holds by the second part of (27), the equality holds by
assumption (iii), the second inequality holds by clF (C) ⊆ clF (F), because C ⊆ F and
the last equality holds, since F is τF -closed. Combining (26), (28) and (29) results in

lim sup
α

Pα(F) ≤ P (F) + ǫ ∀ ǫ > 0.

Taking the limit ǫ → 0 yields the convergence in (25).

3 Distributional convergence of random closed sets
in (F , τuF )

Let (Ω,A,P) be a probability space. A map C : Ω → F is called random closed set
(in E on (Ω,A,P)), if it is A − BF measurable. Its distribution P ◦ C−1 is a proba-
bility measure on (F , τF ), but also on (F , τuF ) by (4). Conversely, by the canonical
construction every probability measure P on (F , τF ) or (F , τuF ), respectively, is the
distribution of a random closed set on a probability space (Ω,A,P). Indeed, one can
take (Ω,A,P) = (F ,BF , P ) = (F ,BuF , P ) and C is equal to the identity map.

If (Cα)α∈A is a net of random closed sets Cα in E on (Ωα,Aα,Pα), then as usual
we define distributional convergence by weak convergence of the distributions. More

precisely, Cα
D
→ C in (F , τuF ), if Pα ◦ C−1

α →w P ◦ C−1 on (F , τuF ) and Cα
D
→ C in

(F , τF ), if Pα ◦ C−1
α →w P ◦ C−1 on (F , τF ).

The short discussion above shows that every result in the last section (except for
Corollary 2) can be formulated in terms of random closed sets. For example Theorem
2 takes the following form:

9



Theorem 5. The following statements are equivalent:

(i) Cα
D
→ C in (F , τuF ).

(ii)

lim sup
α

Pα(Cα∩K1 6= ∅, . . . , Cα∩Km 6= ∅) ≤ P(C ∩K1 6= ∅, . . . , C ∩Km 6= ∅) (30)

for every m ∈ N and every finite collection K1, . . . ,Km of non-empty compact sets
in E.

(iii) The inequality (30) holds for every m ∈ N and every finite collection K1, . . . ,Km

of non-empty compact sets in E such that P(C ∈ ∂FH(Ki)) = 0 for all 1 ≤ i ≤ m.

Notice that by Lemma 6 (i) P(C ∈ ∂FH(Ki)) = P(C ∩ Ki 6= ∅, C ∩ K0
i = ∅).

Thus we see that Theorem 5 is a generalization of Vogel’s [15] Lemma 2.1, where only
sequences rather than nets of random closed sets are considered and furthermore E is
required to be the euclidian space Rd.

Assume C and D are random closed sets with P∗(C * D) = 0, where P∗ is the
outer measure of P. This means that {C * D} is a P-null set and by completion of
the probability space (Ω,A,P) we can achieve that {C * D} ∈ A. Now we can say
that C ⊆ D P-almost surely (a.s.). In this case P ◦D−1 dominates P ◦ C−1 and from
Lemma 1 we can deduce:

Lemma 2. Cα
D
→ E in (F , τuF ) for all nets (Cα) of random closed sets in E. More-

over, if Cα
D
→ C in (F , τuF ) and D is a random closed set with C ⊆ D P-a.s., then

Cα
D
→ D in (F , τuF ).

In short, every superset of a limit set is also a limit set. Conversely, every net
(Dα) of subsets, i.e., Dα ⊆ Cα Pα-a.s., also converges to C. In fact, a somewhat more
general result applies:

Lemma 3. Let (Cα) and (Dα) be nets of random closed sets in E on (Ωα,Aα,Pα)
such that

lim sup
α

Pα(Dα * Cα) = 0. (31)

Then Cα
D
→ C in (F , τuF ) entails Dα

D
→ C in (F , τuF ).

Proof. Let K1, . . . ,Km be non-empty compact sets in E. Then

m⋂

i=1

{Dα ∩Ki 6= ∅}

=

m⋂

i=1

({Dα ∩Ki 6= ∅} ∩ {Dα ⊆ Cα}) ∪ (

m⋂

i=1

{Dα ∩Ki 6= ∅}) ∩ {Dα * Cα}

⊆
m⋂

i=1

{Cα ∩Ki 6= ∅} ∪ {Dα * Cα}.
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Consequently,

lim sup
α

Pα(

m⋂

i=1

{Dα ∩Ki 6= ∅})

≤ lim sup
α

Pα(

m⋂

i=1

{Cα ∩Ki 6= ∅}) + lim sup
α

Pα(Dα * Cα)

= lim sup
α

Pα(

m⋂

i=1

{Cα ∩Ki 6= ∅}) by (31)

≤ P(C ∩K1 6= ∅, . . . , C ∩Km 6= ∅) by Theorem 5.

Another application of Theorem 5 yields the assertion.

With our next result we can give an answer to the following question: If Cα
D
→ C

in (F , τuF ), then what can we say about the asymptotic behaviour of random vari-
ables ξα ∈ Cα?

Theorem 6. For each α ∈ A let ξα : (Ωα,Aα,Pα) → (E,B(E)) be a measurable map
(random variable in E). Suppose that:

(i) Cα
D
→ C in (F , τuF ).

(ii) lim supα Pα(ξα /∈ Cα) = 0.
(iii) For every ǫ > 0 there exists a K ∈ K such that

lim inf
α

Pα(ξα ∈ K) ≥ 1− ǫ.

Then
lim sup

α
Pα(ξα ∈ F ) ≤ TC(F ) ∀ F ∈ F , (32)

where TC is a Choquet-capacity, namely the capacity functional of C given by
TC(B) = P(C ∩B 6= ∅), B ∈ B(E).
If in addition C ⊆ {ξ} P-a.s. for some random variable ξ in E on (Ω,A,P), then

ξα
D
→ ξ in (E,G). (33)

Proof. By Lemma 2.1.1 in Schneider and Weil [12] BF = σ({H(G) : G ∈ G}). Thus
Dα := {ξα} are random closed sets, because {Dα ∈ H(G)} = {ξα ∈ G} ∈ Aα. From

(i) and (ii) it follows by Lemma 3 that {ξα}
D
→ C in (F , τuF ). Conclude with (iii) and

Corollary 1 (in the formulation for random closed sets and with F∗ = {F} a singleton)
that

lim sup
α

Pα(ξα ∈ F ) = lim sup
α

Pα({ξα} ∩ F 6= ∅) ≤ P(C ∩ F 6= ∅) = TC(F ) ∀ F ∈ F .

(34)
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This shows (32). Under the additional assumption C ⊆ {ξ} a.s. it follows that TC(F ) ≤
P(ξ ∈ F ), whence we can infer from (34) that lim supα Pα(ξα ∈ F ) ≤ P(ξ ∈ F ) for all
closed F , which by (3) yields the distributional convergence (33).

If a net (ξα) satisfies (32), then we say that it converges in distribution to (the
random closed set) C and denote this by

ξα
D
→ C.

This new type of distributional convergence has been introduced and analyzed in

Ferger [6]. Here, for instance we show in Theorem 4.2 that ξα
D
→ C is equivalent to

{ξα}
D
→ C in (F , τuV ).

Remark 2. Suppose that C ⊆ {ξ} P-a.s. Under the assumptions (i)-(iii) of the last
theorem it follows that actually C = {ξ} P-a.s. To see this notice that E ∈ F and
Pα(ξα ∈ E) = 1 for all α ∈ A. Therefore (32) with F = E yields that P(C ∩E 6= ∅) =
P(C 6= ∅) = 1, whence P(C = ∅) = 0, which in turn by the assumption on C gives the
a.s. equality.

Remark 3. Since TC(B) = P(C ∈ H(B)), the capacity functional TC is by (12) well-
defined on the Borel-σ algebra B(E) on (E,G). In general, TC is not a probability
measure. In fact, it is a probability measure if and only if there exists a random vari-

able {ξ} such that C
D
= {ξ}, see Ferger [5]. For further properties of TC we refer to

Molchanov [10].

If Cα is a random closed set and ξα is a random variable in E with ξα ∈ Cα Pα-
a.s., then ξα is called a measurable selection of Cα. By the Fundamental selection
theorem, confer Molchanov [10] on p.77, the existence of ξα is guaranteed. A net (ξα)
satisfying condition (iii) of the above Theorem 6 is called asymptotically tight. This
condition is much weaker than the classical (uniform) tightness, which requires that
Pα(ξα /∈ K) ≤ ǫ for all α ∈ A and not only in the limit.

The following corollary provides an answer to the question posed above.

Corollary 4. Assume that Cα
D
→ C in (F , τuF ) and that (ξα) is a net of measurable

selections ξα of Cα. If (ξα) is asymptotically tight, then ξα
D
→ C. In case that C ⊆ {ξ}

a.s. for some random variable ξ we obtain: ξα
D
→ ξ in (E,G).

Proof. Conditions (i) and (iii) of Theorem 6 are fulfilled by assumption. Since each
ξα is a measurable selection, we have that P(ξα /∈ Cα) = 0 for all α ∈ A, whence
condition (ii) is trivially fulfilled and thus Theorem 6 yields the assertion.

4 Appendix

In this section we present several results, which we use in our proofs above. For some
of these, the statements are known in case E is a finite-dimensional linear space with
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a metric d such as for example E = Rd. More details are given in our notes at the end
of the appendix.

Since (E,G) is locally compact, second-countable and Hausdorff it is metrizable.
By Theorem 2 of Vaughan [14] the underlying metric d can be chosen such that:

Every bounded set is relatively compact. (35)

In addition (E, d) is complete and thus a polish metric space. For the extremely use-
ful result (35) confer also Engelking [3], Exercise 4.2C on p. 265. Although Vaughan’s
theorem was published in 1937, it does not seem to be so well known.

Given a point x ∈ E and a non-empty subset A ⊆ E let d(x,A) := inf{d(x, a) : a ∈
A} denote the distance of x from A. As usual B(x, r) := {y ∈ E : d(y, x) < r} denotes
the (open) ball with center x and radius r > 0. Moreover, Ar := {x ∈ E : d(x,A) ≤ r}
and Ar− := {x ∈ E : d(x,A) < r} are respectively the closed and open r-neighborhoods
of A, where r > 0.

We use the usual notation Int(A) ≡ Ao, cl(A) ≡ A and ∂A for the interior, the
closure and boundary, respectively, of A in (E,G).

Lemma 4. If K 6= ∅ is compact, then Kr is compact for all r > 0.

Proof. Firstly, observe that Kr = d(·,K)−1((−∞, r]) is closed as the pre-image of
the closed half-line (−∞, x] under the continuous function x 7→ d(x,K). Therefore by
(35) it suffices to show that Kr is bounded, i.e., there exist some x0 ∈ E and some
s > 0 such that Kr ⊆ B(x0, s). We prove this by contradiction. So, assume that
Kr * B(x0, s) for each x0 ∈ E and for all s > 0, that means there exists some y ∈ E
with d(y,K) ≤ r, but d(y, x0) ≥ s. Since K ∈ K, there exists some z ∈ K such that
d(y,K) = d(y, z). By the triangle-inequality we know that d(x0, y) ≤ d(x0, z)+d(z, y),
which implies that s− r ≤ d(x0, y)− d(z, y) ≤ d(x0, z). It follows that s− r ≤ d(x0, z)
for all x0 ∈ E and for all s > 0. Choosing x0 = z leads to s ≤ r for all s > 0, which
is a contradiction. Now, by closedness Kr = Kr and Kr ∈ K by (35), whence Kr is
compact.

For A ⊆ F let IntF (A) and clF (A) denote the interior and closure, respectively,
of A in (F , τF ). In the following we will use that by construction of τF the basic open
sets B are all of the type

B = M(K) ∩H(G1) ∩ . . . ∩H(Gl) (36)

with K ∈ K, G1, . . . , Gl ∈ G and l ∈ N0. For l = 0 we obtain B = M(K).

Lemma 5. If A ⊆ E is an arbitrary subset, then

IntF (H(A)) = H(Int(A)). (37)

Proof. W.l.o.g. A is nonempty, because otherwise equation (37) is trivially fulfilled.
We first prove the relation ⊆. So, let F ∈ IntF (H(A)). By definition of the interior
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there exists an O ∈ τF such that F ∈ O and O ⊆ H(A). Since every open set is the
union of basic open sets we find a basic open set as in (36) such that

F ∈ M(K) ∩H(G1) ∩ . . . ∩H(Gl) ⊆ H(A). (38)

In particular, F ∈ H(A), i.e., F ∩ A 6= ∅, whence F 6= ∅, which is the same as
F ∈ H(E). Now, E ∈ G and therefore we can assume that l ≥ 1. It follows that:

∃ i ∈ {1, . . . , l} : Gi ∩Kc ⊆ A. (39)

We prove (39) by contradiction. For that purpose recall that, if U and V are subsets of
E, then the following equivalence holds: U ⊆ V ⇔ U ∩ V c = ∅. So let us assume that
(39) is not true, which means that Gi∩K

c∩Ac 6= ∅ ∀ i ∈ {1, . . . , l}. Consequently, for
each i ∈ {1, . . . , l} there exists a point xi with xi ∈ Gi, xi /∈ K and xi /∈ A. Introduce
H := {x1, . . . , xl}. Then H has the following properties: H ∈ F , H ∩K = ∅ (because
all xi are not K) and H ∩Gi 6= ∅ ∀ 1 ≤ i ≤ l (because xi ∈ H ∩Gi for each i). Thus

H ∈ M(K) ∩H(G1) ∩ . . .H(Gl) ⊆ H(A),

where the last relation ⊆ holds by (38). It follows that H ∈ H(A), i.e., H ∩ A 6= ∅ in
contradiction to xi /∈ A for all i. This is the proof of (39).

Put G := Gi ∩Kc with Gi from (39). Then G ∈ G and G ⊆ A. Moreover:

∅ 6= F ∩Gi = (F ∩Gi ∩Kc) ∪ (F ∩Gi ∩K) = F ∩Gi ∩Kc = F ∩G. (40)

Here, the first relation 6= follows from F ∈ H(Gi) by (38). The subsequent equality
follows from the decomposition E = Kc ∪ K. The next equality also follows from
(38), which implies that F ∈ M(K). Hence F ∩ K = ∅ and so F ∩ Gi ∩ K = ∅ a
fortiori. Since G ∈ G and G ⊆ A, we have that G ⊆ Int(A). Deduce from (40) that
∅ 6= F ∩G ⊆ F ∩Int(A), whence F ∩Int(A) 6= ∅, which is the same as F ∈ H(Int(A)).

To see the reverse relation ⊇ in (37) assume that F ∈ H(Int(A)). In the sequel we
use the following property of H(·): H(

⋃
A∈A A) =

⋃
A∈A H(A) for every family A of

subsets of E. Apply this property to the family A = {G ∈ G : G ⊆ A}. It yields that

H(Int(A)) = H(
⋃

G∈A

G) =
⋃

G∈A

H(G).

Thus one finds an open G with G ⊆ A such that F ∈ H(G). Infer from H(G) ∈ τF
and H(G) ⊆ H(A) that H(G) ⊆ IntF (H(A)). Since F ∈ H(G) we finally obtain that
F ∈ IntF (H(A)).

We use Lemma 5 to describe the boundary of the hitting-sets of a compact set in
the Fell-topology τF .

Lemma 6. If K is compact in (E,G), then:

(i) ∂FH(K) = H(K) \ H(K0).

14



(ii) ∂FH(K) = {F ∈ F : ∅ 6= F ∩K ⊆ ∂K}.

Proof. (i) By definition ∂FH(K) = clF (H(K)) \ IntF (H(K)). Here, clF (H(K)) =
H(K), because H(K) is τF -closed as H(K)c = M(K) ∈ τF . Moreover,
IntF (H(K)) = H(K0) by Lemma 5, which now results in the equality (i).

(ii) By (i)

∂FH(K) = H(K) ∩M(K0) = {F ∈ F : F ∩K 6= ∅, F ∩K0 = ∅}.

Consequently, we have to show: If F ∈ F satisfies F ∩ K 6= ∅, then the following
equivalence holds:

F ∩K0 = ∅ ⇔ F ∩K ⊆ ∂F

To see the if-part let x ∈ F ∩ K, i.e., x ∈ F and x ∈ K. We have to prove that
x ∈ ∂F = K \K0 = K ∩ (K0)c. Since x ∈ K, it suffices to show that x /∈ K0. Assume
that x ∈ K0. Then x ∈ F ∩K0 in contradiction to F ∩K0 = ∅. For the only-if-part
recall the equivalence U ⊆ V ⇔ U ∩ V c = ∅. By assumption F ∩ K ⊆ ∂F . Since
∂F = K ∩ (K0)c the equivalence yields

∅ = F ∩K ∩ (K ∩ (K0)c)c = F ∩K ∩ (Kc ∪K0) = (F ∩K ∩Kc) ∪ (F ∩K ∩K0)

= F ∩K ∩K0 = F ∩K0

In the proof of Theorem 2 the set R(K) = {r > 0 : P (∂FH(Kr)) = 0} plays an
important role.

Lemma 7. If K is compact, then the complement R(K)c of R(K) is at most countable.
As a consequence R(K) lies dense in [0,∞).

Proof. The key argument for the proof is to show that the sets ∂FH(Kr), r > 0, are
pairwise disjoint. Indeed, assume that this is not true. Then there exist two reals
0 < r < s such that ∂FH(Kr) ∩ ∂FH(Ks) 6= ∅. Therefore we find a set F ∈ F with
F ∈ ∂FH(Kr) and F ∈ ∂FH(Ks). By Lemma 6 (ii) this means that F satisfies the
following two relations: (a) ∅ 6= F ∩Kr ⊆ ∂Kr and (b) ∅ 6= F ∩Ks ⊆ ∂Ks.

Now, ∂Kr ⊆ {x ∈ E : d(x,K) = r} for all r > 0. To see this first observe that
∂Kr = Kr ∩ (Kr)c by Lemma 4. So, if x ∈ ∂Kr, then d(x,K) ≤ r and there exists a
net (xα) converging to x with d(xα,K) > r for all indices α. But d(·,K) is continuous,
whence d(x,K) ≥ r. Thus (a) and (b) imply (c) ∅ 6= F ∩Kr ⊆ {x ∈ E : d(x,K) = r}
and (d) ∅ 6= F ∩Ks ⊆ {x ∈ E : d(x,K) = s}.

By (c) there exists a point x ∈ F ∩Kr with d(x,K) = r. Since r < s and therefore
Kr ⊆ Ks, x a fortiori lies in F∩Ks, so that from (d) we can conclude that d(x,K) = s.
It follows that r = s in contradiction to r < s.

Next, observe that R(K)c = {r > 0 : P (∂FH(Kr)) > 0} =
⋃

m∈N
Em with

Em = {r > 0 : P (∂FH(Kr)) ≥ 1/m}. Here, Em contains at most m elements, because
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otherwise we find at least m+ 1 positive numbers r1, . . . , rm+1 with P (∂FH(Krj)) ≥
1/m for all 1 ≤ j ≤ m+ 1. Herewith we arrive at

1 ≥ P (

m+1⋃

j=1

∂FH(Krj)) =

m+1∑

j=1

P (∂FH(Krj) ≥ (m+ 1)
1

m
> 1,

a contradiction. (Note that here the pairwise disjointness is essential, because it ensures
the equality.) Thus R(K)c =

⋃
m∈N

Em is denumerable. As to the second assertion
of the lemma assume that R(K)c is not dense in [0,∞). Then there exists a point
x ∈ [0,∞) and a non-degenerate interval I containing x with I ∩R(K) = ∅, which is
the same as I ⊆ R(K)c. It follows that I is denumerable, a contradiction.

If A is a family of subsets of E, then

H(
⋂

A∈A

A) ⊆
⋂

A∈A

H(A). (41)

Our next lemma gives a condition which ensures equality.

Lemma 8. If (Kj)j∈N is a sequence of compact sets with Kj ↓ K ∈ K, then H(K) =⋂
j∈N

H(Kj).

Proof. By (41) it remains to show that
⋂

j∈N
H(Kj) ⊆ H(K). So, let F ∈

⋂
j∈N

H(Kj).
Then for every j ∈ N there exists a point yj ∈ F ∩Kj 6= ∅. In particular, (yj)j∈N is
a sequence in K1, because (*) K1 ⊇ K2 ⊇ . . . by assumption. Since K1 is compact,
(yj)j∈N has a convergent subsequence. For notational simplicity we assume that yj →
y ∈ K1. It follows from (*) that yj ∈ F ∩Kj ⊆ F ∩Kn for all j ≥ n and all n ∈ N. Thus
(yj)j≥n is a sequence in F ∩Kn ∈ F for all n ∈ N. By closedness the limit y lies in
F ∩Kn for all n ∈ N, which in turn means that y ∈

⋂
n∈N

(F ∩Kn) = F ∩
⋂

n∈N
Kn =

F ∩K by assumption. Consequently, F ∩K is non-empty as it contains y and therefore
F ∈ H(K).

Since H(·) is monotone increasing with respect to ⊆, the assertion in Lemma 8
can be rewritten as H(Kj) ↓ H(K).

Recall the family F0,1 of all singletons inclusive the empty set. It is a Borel-set:
F0,1 ∈ BF = σ(τF ). This follows from the following lemma.

Lemma 9. The set F0,1 is closed in (F , τF ).

Proof. Since (F , τF ) is metrizable, we can argue with sequences. So, let (Fn) be a
sequence in F0,1 with Fn → F in (F , τF ). If F = ∅, then F ∈ F0,1 and we are
ready. Assume that F 6= ∅. We have to prove that F is a singleton. Let G ∈ G with
F ∩ G 6= ∅ (as for instance G = E). Then there exists a natural number n0 such
that Fn ∩G 6= ∅ for all n ≥ n0. Since all Fn are either empty or a singleton, we now
know that these Fn are singletons. Consequently, for every n ≥ n0 there exists a point
xn ∈ E with Fn = {xn}. Since convergence in the Fell-topology is equivalent with
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convergence in sense of Painlevé-Kuratowski, it follows that F = lim infn→∞{xn},
where lim infn→∞ An denotes the lower limit of a sequence (An)n∈N of sets, confer,
e.g., Theorem C.7 in Molchanov [10]. It follows from the definition of the lower limit
that F is the set of all limit points of the sequence (xn). Now, E is Hausdorff and
therefore F is a singleton.

Since τF ⊇ τuF , convergence in the Fell-topology entails that in the upper Fell-
topology. As to the reverse we have:

Lemma 10. Let (Fα) be a net in F .

(a) Assume that

(i) Fα → F = {x} in (F , τuF ) with x ∈ E.
(ii) There exists a K ∈ K and α0 ∈ A such that ∅ 6= Fα ⊆ K for all α ≥ α0.

Then Fα → F in (F , τF ).
(b)

Fα → ∅ in (F , τuF ) ⇔ Fα → ∅ in (F , τF )

Proof. (a) Let S ∈ SF = {M(K) : K ∈ K} ∪ {H(G) : G ∈ G} be a subbase-
neighborhood of F . If S = M(K0) with K0 ∈ K, then S ∈ τuF , whence by (i) there
exists an α1 ∈ A such that Fα ∈ S for all α ≥ α1. If S = H(G) with G ∈ G, then
x ∈ G. For K1 := K \G with K as in (ii) we know that it is compact and that x /∈ K1.
Consequently F = {x} ∈ M(K1) ∈ τuF . By (i) there exists an α2 ∈ A such that
Fα ∈ M(K1) for all α ≥ α2. Conclude that

∅ = Fα ∩K1 = Fα ∩ (K \G) = Fα ∩K ∩Gc = Fα ∩Gc ∀ α ≥ α0, α2,

because Fα ∩K = Fα by (ii). Herewith it follows that

∅ 6= Fα = (Fα ∩G) ∪ (Fα ∩Gc) = Fα ∩G ∀ α ≥ α0, α2

and thus Fα ∈ H(G) = S for all α ≥ α3 with some α3 ≥ α0, α2. Summing up we
arrive at Fα → F in (F , τF ).

(b) It remains to prove the implication ⇒. But this follows immediately, because
every subase-neighborhhod lies in SuF as ∅ /∈ H(G) for every open G.

Notes

If E is a linear space with a metric d, then the statements in Lemmas 4-7 can be
found in Salinetti and Wets [11]. More precisely, Lemma 5 is presented in (1.9) on
p. 389 in the special case that A is compact, whereas we allow A to be an arbitrary
subset of E. Lemma 6 is given in (1.10) on the same page, but without proof. Similarly,
the statement of Lemma 4 is a little hidden in the line directly before Corollary 1.13
on p.390, again without proof. Furthermore, our Lemma 7 coincides with the just
mentioned Corollary 1.13. Here, Salinetti and Wets [11] use a completely different
technique to prove it, however the argument only works if E is actually a normed
linear space. In addition, Lemma 8 is used in Molchanov [10] on p.7 without any
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justification. Finally, as far as Lemmata 9 and 10 are concerned, due to their special
character, we assume that these are new findings.
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