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Abstract

We present a new dataset called Real Acoustic Fields (RAF)
that captures real acoustic room data from multiple modali-
ties. The dataset includes high-quality and densely captured
room impulse response data paired with multi-view images,
and precise 6DoF pose tracking data for sound emitters and
listeners in the rooms. We used this dataset to evaluate exist-
ing methods for novel-view acoustic synthesis and impulse re-
sponse generation which previously relied on synthetic data.
In our evaluation, we thoroughly assessed existing audio and
audio-visual models against multiple criteria and proposed
settings to enhance their performance on real-world data.
We also conducted experiments to investigate the impact of
incorporating visual data (i.e., images and depth) into neu-
ral acoustic field models. Additionally, we demonstrated
the effectiveness of a simple sim2real approach, where a
model is pre-trained with simulated data and fine-tuned with
sparse real-world data, resulting in significant improvements
in the few-shot learning approach. RAF is the first dataset to
provide densely captured room acoustic data, making it an
ideal resource for researchers working on audio and audio-
visual neural acoustic field modeling techniques. Demos and
datasets are available on our project page.

1. Introduction
Sound waves reflect off objects in a scene before reaching a
listener’s ears. These reflections change the sound waves in
complex ways and convey the objects’ size, shape, and mate-
rial properties. Accurately modeling these changes is crucial
for spatial audio rendering, and plays a key role in adding
the sense of immersion in a variety of application domains,
such as 3D games, virtual and augmented reality [22, 70].

The goal of a sound propagation model is typically to
estimate a room impulse response (RIR) for a given emitter
and listener pose. RIRs are linear filters that, when con-

* Work done during an internship at Meta.

volved with an input sound, simulate the sound that would
be perceived by the listener, performing changes like adding
reverb or dampening certain frequencies. Estimating RIRs
for novel emitter and listener poses from sparsely sampled
RIRs acquired from a scene has been a major focus of recent
work in audio [5, 21, 26, 28, 42] and audio-visual learn-
ing [2, 9, 13, 37, 54, 55]. Inspired by novel-view synthe-
sis [32, 38, 40], an emerging line of work has proposed
learning-based models based on neural fields [34, 36, 57].

Despite the recent interest in sound propagation in the
audio-visual community, existing methods have been de-
veloped and evaluated on highly simplified datasets with
artificially generated impulse responses. This is due to the
fact that collecting real-world RIRs is a challenging pro-
cess that requires both playing and recording sounds from
densely sampled positions throughout a scene. Many dif-
ferent data collection efforts have each made different com-
promises between the conflicting factors in terms of realism,
ground truth, and costs. Existing datasets [11, 29, 33] thus
make highly restrictive assumptions, such as by having only
a single sound emitter at a fixed pose, by having limited
(2D-only) spatial coverage of the scenes, or by having only
simple planar geometry. Consequently, these datasets do
not fully capture the complexities of real-world room ge-
ometry, material variations, and source directivity. The lack
of a real “gold standard” benchmark makes it challenging
to effectively analyze existing approaches under real-world
assumptions and to drive research on audio-visual informed
sound propagation toward its true potential.

In this paper, we propose an audio-visual sound propaga-
tion dataset and benchmark that addresses the shortcomings
of previous approaches. Our Real Acoustic Fields (RAF)
dataset is a multimodal real acoustic room dataset with dense
3D audio captures of a large space filled with and without
furniture. To capture dense and calibrated audio in the rooms,
we used a custom-built microphone tower system and robotic
loudspeaker stand. The microphone tower contains 36 om-
nidirectional microphones placed at different heights and
positions. The robotic stand can rotate and position the loud-
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Figure 1. Data capturing setup. (a) Audio capture (left): the loudspeaker and microphone recording system (Earful Tower) are placed at
different locations within the room to measure and capture RIRs. (b) Visual capture (right): the camera rig (Eyeful Tower) moves around
rooms to capture multi-view images for visual reconstruction and novel-view synthesis.

speaker at different heights, enabling us to capture sound
source directivity data. We used a motion capture system
to precisely track the pose of the microphones and the loud-
speaker throughout the scene. Moreover, we pair our RIR
recordings with captured high-fidelity images and geome-
try [66] to enable more potential research in the audio-visual
direction. The resulting dataset contains high-fidelity dense
RIRs, speech recordings from existing speech datasets, posi-
tion annotations, and visual reconstructions.

Using this dataset, we conduct the first systematic study
of recent audio and audio-visual sound propagation models,
including: 1) extension of common 2D approaches into 3D
scenes, 2) how perceptual similarity metrics proposed by
other models [34, 37] change the generated sounds, and 3)
the role of visual information in audio-visual models. Finally,
our dataset also allows us to evaluate few-shot training. We
propose a simple, yet highly effective “sim2real” approach
that begins by pretraining on synthetic data and then refining
the result with a small number of real-world samples. We
will release the dataset and benchmark upon acceptance.

2. Related Work

Novel-view acoustic datasets. Many RIR datasets are col-
lected for acoustic research [26, 30, 31, 63] while they are
not applicable for novel-view acoustic propagation model-
ing. MeshRIR [29] recorded real-world monaural impulse
responses from a three-dimensional cuboidal room, with
microphones at a fixed height. The room was empty and
lacked visual information about the scene. Two previous
methods by Liang et al. [33] and Chen et al. [11] collected
real-world audio-visual datasets for novel-view acoustic syn-
thesis tasks. Nevertheless, Liang et al. [33] only features
a single stationary sound source and Chen et al. [11] only
has sparse receiver positions, which might not represent the
entire acoustic environment for arbitrary speaker-receiver
pairs. SoundSpaces 1.0 [7] and SoundSpaces 2.0 [10] gener-
ated large-scale synthetic acoustic datasets based on room

mesh from existing 3D scene datasets [6, 46, 56, 65, 67].
However, these synthetic datasets lack the complexities of
real-world room geometry, material variations, and source
directivity. To address this, we have gathered a real-world
multimodal acoustic room dataset to further research in the
field of neural acoustics.

RIR synthesis. Synthesizing RIR has been a longstand-
ing research topic. Simulated approaches for RIR synthesis
primarily rely on wave-based [19, 61] or geometric meth-
ods [8, 10, 52]. While these methods effectively simulate
sound propagation in space, they often struggle to repro-
duce all wave-based sound effects. Geometric models do
not account for interference and diffraction. While wave-
based models are theoretically applicable to all frequencies,
they face difficulty in accurately modeling the frequency-
dependent directional characteristics of sound sources, re-
ceivers, and rooms with complex geometries. Recent meth-
ods have leveraged machine learning techniques to create
more realistic RIRs. Ratnarajah et al. [48] use a generative
adversarial network (GAN) to synthesize RIRs. Later work
extended this approach by conditioning on scene meshes [47]
and visual signals [49]. Few other works focus on learning
continuous implicit neural representations for audio scenes,
which target generating high-fidelity impulse responses at
any arbitrary emitter-listener positions for a single scene,
such as NAF [36], INRAS [57] and NACF [34]. Neverthe-
less, prior studies have primarily focused on simulated data
owing to the absence of suitable real-world datasets. Our
novel dataset presents a path to extend these approaches
toward real-world modeling of neural acoustic fields.

Audio-visual acoustic learning. Recent works have ex-
plored learning acoustic information from both audio and
vision. Chen et al. [12] and Chowdhury et al. [15] propose
de-reverberating audio signals using visual environment en-
coding. Some researchers investigate the visual acoustic
matching problem [9, 54, 55], aiming to synthesize audio
that matches target acoustic properties based on images.
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Table 1. Dataset comparison. We compare the attributes of our dataset with previously proposed datasets.

Dataset Modality Real-world Visual source Dimension Scenes Density

SoundSpaces 1.0 [7] A & V ✗ Mesh 2D 103 16 samples/m2

SoundSpaces 2.0 [10] A & V ✗ Mesh 3D 1600+ –
MeshRIR [29] A ✓ – 2.5D 1 18 samples/m3

RAF (ours) A & V ✓ NeRF & Mesh 3D 2 372 samples/m3

Some works learn to generate sounds at the arbitrary speaker
and listener positions via sparse audio-visual observations
of scenes [13, 37]. Others focus on the novel-view acoustic
synthesis task, synthesizing binaural sound from audio and
visual information at a new viewpoint [2, 11, 14, 33]. We use
our dense 3D audio-visual dataset to evaluate these methods’
effectiveness and the role of vision.

Visual scene capture and view synthesis. There is a rich
literature on capturing static scenes to reconstruct them in
3D and/or to render novel viewpoints; see recent surveys
for a comprehensive overview [50, 60]. Many approaches
that focus on 3D scene reconstruction use representations
such as (truncated) signed distance fields to combine mul-
tiple observations from RGB-D sensors [43, 44, 58, 69] or
standard color videos [20, 25, 41, 59]. These approaches
tend to sacrifice rendering fidelity in favor of better 3D re-
construction accuracy. On the other hand, when the visual
quality of novel views is paramount, approaches building
on image-based rendering [4, 24, 45, 53] or, more recently,
neural radiance fields [3, 39, 64, 66] have achieved the high-
est visual fidelity, even while compromising the quality of
the reconstructed 3D geometry. To maximize the visual fi-
delity of our dataset, we capture and reconstruct it using the
VR-NeRF approach [66].

3. The RAF Dataset

We present RAF, a dataset of densely recorded real-world
room impulse responses (RIR) paired with dense multi-view
images of the scenes. To the best of our knowledge, this is
the first multi-modal 3D RIR dataset with dense audio and
visual measurements paired with precise 6DoF tracking data.
In this section, we will introduce the hardware setup used
for data collection and our data collection pipeline.

3.1. Audio Capturing

Our goal is to collect dense RIR samples that cover the entire
scene with paired transmitter and receiver locations.

Hardware. To facilitate the audio data collection process,
we developed a novel microphone tower system called Earful
Tower, as shown in Figure 1. The tower features 36 omni-
directional microphones. These microphones were placed
at different height levels on the tower, arranged in the shape
of an inverted pine cone. We positioned more microphones

at the average human ear height level and used fewer micro-
phones at lower levels. The microphones are integrated with
three RME 12Mic-D units, daisy-chained and phase-locked
to record synchronized multi-channel audio signals.

For generating room excitation signals during RIR mea-
surements, we used a Genelec 8030C speaker mounted
on a robotic stand. This stand offers remote control, pro-
grammable height adjustment, and speaker axis rotation.

Capturing procedure. We uniformly distribute the micro-
phone tower at walkable positions in the room that might
be occupied by a human listener (i.e., open areas). We used
the robotic stand to automate the rotation of the loudspeaker
every 120° on its axis at each position, to obtain differently
oriented sound sources. During the recording process, we
played logarithmic sine-sweep signals and simultaneously
recorded the resulting reverberated signals using the micro-
phones on the tower. After completing a full-circle rotation,
the speaker stand would adjust its height, and we would
repeat the measurements for each 120° turn. Then we relo-
cated the microphone tower to a new position and repeated
the measurements. We shifted the speaker to a new location
after the microphone tower had swept through the entire
scene. Meanwhile, after each sine-sweep, we played and
recorded 6-second long speech utterances randomly sampled
from the VCTK dataset [62].

To accurately track the orientation and positions of the
loudspeaker and microphones in the room, we used the Opti-
Track motion capture system. We placed reflective markers
on the loudspeaker and the microphone tower, allowing us to
precisely estimate their 6 degrees of freedom (6DoF) poses.

Captured data. With the setup described above, we col-
lected dense data from one room under two different config-
urations. In the first setting, the room was empty and only
contained the essential equipment necessary for capturing
impulse response data. In the second setting, we furnished
the room to resemble a simple studio or living room. We
collected 47K RIRs for the empty room and 39K RIRs for
the furnished room. The collected RIRs are 4 seconds long,
which comprehensively captures the acoustic information.
Our room has two parts: a large room with soft material
walls to absorb sounds, and a smaller room with concrete
walls for increased reverberation. We show our RIR dis-
tribution and room measurements in Figure 2. Please see
Appendix A.3 for more details.
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3.2. Visual Capturing

To provide a high-fidelity visual reconstruction of the scenes
and synthesize the appearance from any viewpoint, we fol-
low the VR-NeRF approach [66] to capture dense multi-view
images for the scenes, using the Eyeful Tower multi-camera
rig shown in Figure 1. We move the Eyeful Tower rig to
cover the available floor area for a dense capture of our
static scenes, resulting in 3,388 images for the furnished
room and 8,030 images for the empty room. We use Agisoft
Metashape [1] to estimate the poses of cameras within the
rig using structure-from-motion and reconstruct a textured
mesh of each scene. Lastly, we use ground control points
to align the cameras and RIR data to the same coordinate
system. The audio and visual captures are performed sepa-
rately to prevent any interference between audio and visual
devices (e.g., speakers and microphones appearing in the
images) and to eliminate the impact of camera devices on
audio capture (e.g., cameras creating reflections).

To generate the views at each microphone or speaker
position, we train NeRF models using the Instant NGP archi-
tecture [66] for each scene. This enables us to examine the
effectiveness of incorporating visual signals, such as RGB
and depth information, into acoustic field modeling.

3.3. Comparison to Prior Datasets

We compare our dataset to several prior acoustic datasets
collected from real scenes or through simulators in Table 1.
In comparison to the real MeshRIR dataset [29], our dataset
offers 20 times denser and more extensive coverage of room
impulse response data from different height levels. Further-
more, our dataset features more complex room geometry and
materials with furniture, going beyond the limitations of a
single box-shaped room. Compared to simulated datasets
such as SoundSpaces 1.0 [8] and SoundSpaces 2.0 [10], our
dataset stands out for its high-quality real impulse responses
and high-fidelity visual rendering from NeRF. In contrast,
the simulated datasets fall behind in terms of both audio and
visual quality, resulting in a less realistic representation of
real-world acoustics.

4. Learning 3D Neural Acoustic Fields
Modeling acoustic fields can be formulated as: given the
speaker’s spatial position s = (xs, ys, zs)∈R3, the speaker
orientation θ ∈ R2, and the receiver spatial position r =
(xr, yr, zr) ∈ R3 in a room, a function F predicts the corre-
sponding impulse response h:

F : (s, r,θ) 7→ h ∈ RT . (1)

Previous studies have proposed various methods to learn
F , but they rely on synthetic data. We investigate and im-
prove those existing models in real-world scenarios using our
dataset. Additionally, we evaluate the effectiveness of using
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Figure 2. Data distribution of RAF. Blue dots represent speaker
positions and red dots represent microphone positions. The room
dimensions are shown on the right.

geometry or visual cues to model acoustic fields. Moreover,
we introduce a simple yet effective sim2real approach for
synthesizing RIRs in few-shot scenarios, which can signifi-
cantly enhance performance.

4.1. Models

We adopted several existing state-of-the-art 2D acoustic field
and audio-visual models to our 3D setup, with some modifi-
cations. These models are briefly described below.

NAF. The neural acoustic field [36] models the room
acoustics using an implicit representation. NAF learns a
grid of local geometric features G to encode the spatial in-
formation of speakers and receivers at different positions,
and queried speakers and receivers grid features G(s) and
G(r) will be provided to the NAF F as additional context.

NAF represents impulse response h in the time-frequency
domain H = |STFT(h)| ∈ RF×K using short-time Fourier
transform (STFT), where F is the numbers of frequency bin
and K is the number of time frames. Given the frequency
bin f and time frame k, NAF predicts the log magnitude of
the spectrogram Ĥ(k, f):

Ĥ(k, f) = F (G(s),G(r),θ, k, f) , (2)

and it minimizes the L1 loss between predicted and ground-
truth impulse response in log scale:

LNAF = ∥ log Ĥ(k, f)− logH(k, f)∥1. (3)

To obtain the time-domain impulse response h, NAF per-
forms inverse STFT on predicted spectrogram magnitude
|Ĥ| with random phase.

INRAS. The implicit neural representation for audio
scenes [57] is inspired by interactive acoustic radiance trans-
fer, where sound energy first scatters from the emitter to the
boundaries of the scene, then propagates through the scene
by bouncing between the surfaces, and finally gathers at
the listener position. INRAS defines a set of bounce points
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{bi}Ni=1⊂R3, which are uniformly sampled from the scene
surface. It represents the position of speakers or receivers
using the relative distance to those bounce points, which
provides more information about the scene geometry:

{ds
i}Ni=1 = {s− bi}Ni=1, {dr

i}Ni=1 = {r− bi}Ni=1. (4)

INRAS encodes speaker relative distance {ds
i}Ni=1, re-

ceiver relative distance {dr
i}Ni=1, and bounce point positions

{bi}Ni=1 into latent features S,R,B ∈ RN×D, where D is
the feature dimension size. The time embedding M∈RT×D

is introduced for the whole time sequence and obtains spatial-
time features via matrix multiplication. INRAS generates
time-domain RIRs directly by decoding given features:

ĥ = F
(
MS⊤,MR⊤,MB⊤,θ

)
. (5)

The INRAS model minimizes the STFT loss in the time-
frequency domain H = |STFT(h)|, including spectral con-
vergence loss Lsc and magnitude loss Lmag:

LINRAS = Lsc + Lmag =
∥Ĥ −H∥2

∥H∥2
+ ∥Ĥ −H∥1. (6)

We used multi-resolution STFT loss [68], which involves
computing an STFT loss at multiple time-frequency scales.
NACF. Neural Acoustic Context Field (NACF) [34] is a
multimodal extension of INRAS which uses additional con-
text from other modalities. Specifically, NACF uses RGB
images vrgb and depth images vdepth for each predefined
bounce point bi to extract local geometric and semantic
information, and material properties. Similar to INRAS,
RGB and depth images are encoded into latent context em-
beddings Crgb,Cdepth ∈ RN×D via nonlinear projection
and converted into space-time features.1 NACF decodes
provided features with additional context to generate the
impulse response in the time domain:

ĥ = F
(
MS⊤,MR⊤,MB⊤,MC⊤

rgb,MC⊤
depth,θ

)
. (7)

NACF minimizes the same loss as INRAS (Equation 6),
as well as the energy decay loss proposed by Majumder
et al. [37], which encourages the energy decay curves of the
predicted and target RIRs to be similar. Given the magnitude
spectrogram H ∈ RF×K , we calculate the decay curve
D(H):

D(H)[k] = 1 +
Ek∑K

i=k+1 Ei

, (8)

where Ek =
∑

f H(f, k)2 is the energy of time frame k.
We minimize the L1 distance between the predicted and
ground-truth decay curves in log space:

Ldecay = ∥ logD(Ĥ)− logD(H)∥1, (9)

1We remove the acoustic coefficient context due to the unavailability
of material coefficient annotations for our dataset and our objective of
modeling real-world captures without additional annotations.

simulator
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implicit network

Emitter
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predicted RIR

simulated RIR

real RIR

simulator 
pretraining

real-world
fine-tuning

Stage 1

Stage 2

Figure 3. Sim2real method overview. First, we train the implicit
network on simulated data with densely sampling emitter–listener
position pairs. We then fine-tune it on sparse real-world data.

resulting in the overall loss with multi-resolution STFT:

LNACF = Lsc + Lmag + λLdecay, (10)

where λ is the weight of the decay loss.

AV-NeRF. We also consider the very recent AV-NeRF
model [33]. Unlike NACF, which uses fixed visual con-
texts independent from speaker-receiver positions, AV-NeRF
provides local visual information Cr

rgb,C
r
depth that depends

on the listener position. It predicts impulse responses:

ĥ = F
(
s, r,Cr

rgb,C
r
depth,θ

)
. (11)

We also minimize the losses in Equation 10.

NAF++ and INRAS++. We observed that the energy
decay loss (Equation 9) from Majumder et al. [37] used
in NACF can also improve the results of the other mod-
els. We therefore introduce improved models NAF++ and
INRAS++ that have these losses:

LNAF++ = Lmag + λLdecay, (12)
LINRAS++ = Lsc + Lmag + λLdecay. (13)

4.2. Sim2real for Few-Shot RIR Synthesis

Real-world impulse responses can be expensive to acquire in
large quantities, and obtaining a dense capture of such data
for scenes can be particularly challenging. For example, in
comparison to a visual NeRF, there are comparatively fewer
geometric constraints. To address this limitation, we propose
a two-stage training approach that leverages simulated audio
data to enhance the synthesis of real-world audio with a
limited amount of training samples. Our method comprises
two key stages: pretraining on dense synthetic data and fine-
tuning on sparse real-world samples, as shown in Figure 3.

Pretraining on dense synthetic data. In the first stage,
we pretrain our audio neural field F , e.g., INRAS, on the
rich synthetic impulse responses generated from an acoustic
simulator with diverse emitter and listener positions. We use
the room’s geometry and acoustic properties (reverberation)
observed from limited real examples to create the simulator.
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Table 2. Evaluation on RAF with 48 kHz high-fidelity impulse responses. We evaluate each method with the quality of generated impulse
response, storage requirements, and inference speed. The results are averaged across two scenes. Original denotes uncompressed audio. The
best results are in bold.

Method Variation STFT error C50 error EDT error T60 error Parameters Storage Speed
(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓ (Million) ↓ (MB) ↓ (ms) ↓

C
la

ss
ic

al Linear
AAC 1.26 2.49 0.085 25.64

–
2,033.81

–Opus 0.92 0.86 0.029 10.19 2,033.81
original 0.88 0.83 0.027 7.82 9,518.32

Nearest
AAC 1.04 1.97 0.064 22.83

–
2,033.81

–Opus 0.49 0.76 0.021 10.03 2,033.81
original 0.38 0.71 0.020 7.67 9,518.32

N
eu

ra
l

NAF [36] vanilla 0.64 0.71 0.021 10.08 5.51 22.04 11.98+ decay loss 0.64 0.53 0.017 8.19

INRAS [57] vanilla 0.36 0.79 0.025 8.01 1.33 5.31 3.36+ decay loss 0.39 0.57 0.017 6.17

NACF [34] vanilla 0.39 0.59 0.017 6.62 1.52 6.05 3.17
+ temporal 0.39 0.59 0.018 7.31 1.75 7.00 3.41

AV-NeRF [33] vanilla 0.39 0.73 0.021 8.11 12.99 51.98 6.48

By exposing the model to a diverse range of simulated audio
data, we enable it to learn general impulse response patterns
and spatial information, which serve as a strong foundation
for subsequent fine-tuning.
Fine-tuning on sparse real-world samples. We use
sparse real-world audio samples for fine-tuning the neural
field F . By fine-tuning it on real-world data, the model
adapts to the specifics of real-world audio while retaining
the knowledge gained from the simulator data. By combin-
ing the strengths of the simulator and real-world data, our
method achieves high-quality audio synthesis with sparse
real-world data and strikes a balance between data collection
cost and synthesis performance.

5. Experiments
We use our real-world dataset to evaluate audio and audio-
visual acoustic field modeling methods. Also, we showcase
our sim2real method that boosts them in the few-shot setting.

5.1. Evaluation of 3D Neural Acoustic Fields

We evaluate the methods on the 3D acoustic field modeling
task using our full real-world dataset.
Models. We consider both state-of-the-art neural field mod-
els and classical models. To adapt to the 3D domain, we
extend NAF [36], INRAS [57], NACF [34], AV-NeRF [33],
and their variants, introducing an extra dimension for neu-
ral acoustic field modeling, which was not feasible with
other existing datasets. Following [36, 57], we also compare
with traditional signal processing methods using linear and
nearest-neighbor interpolation on the training data. To im-
prove the storage efficiency, we also apply audio encoding

methods such as Advanced Audio Coding (AAC) and Opus
to compress audio with low bit rates; see Appendix A.2 for
details.

Metrics. Following Su et al. [57], we use several metrics
to assess the quality of the predicted impulse responses, in-
cluding Clarity (C50), Reverberation Time (T60), and Early
Decay Time (EDT). C50 quantifies the clarity of acoustics by
measuring the ratio of initial sound energy to subsequent re-
flections within a room, with higher values indicating clearer
acoustics. T60 reflects the overall sound decay within a
room, while EDT focuses on the early portion of the sound
decay curve. We also evaluate STFT error, the absolute error
between the predicted and the ground-truth log-magnitude
spectrograms [16, 36]. Additionally, we measure the com-
putational efficiency of each method by evaluating storage
requirements for saving audio scenes and the inference time
needed for rendering an impulse response.

Experimental setup. For each scene, we use 80% of the
data for training and hold out 5% and 15% for validation and
testing, respectively. The impulse responses are resampled to
48 kHz or 16 kHz sampling rate and are cut to 0.32s for train-
ing and evaluation based on the average reverberate time of
the room. For all experiments, we use the AdamW optimizer
[27, 35] with a learning rate of 10−3, an exponential decay
learning rate scheduler with a rate of 0.98, and a batch size
of 128. We train all the models on an NVIDIA A100 GPU
for 200 epochs and evaluate the last epoch. For NACF [34]
and AV-NeRF [33], we use the visual NeRF model to render
the corresponding RGB and depth images for novel views.
We test inference time on the same NVIDIA A100 GPU for
all the methods to ensure fair comparison.
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NAF++ NACF INRAS++Opus-nearest

Figure 4. Visualization of generated RIRs from different methods. We visualize the ground-truth (in blue) and predicted (in red) impulse
responses of several methods for qualitative comparison.

Results. We show our quantitative results with 48K sam-
pling rate RIRs in Table 2. We found that INRAS++, the
version of INRAS with a decay loss, performs best on most
metrics, has a lightweight architecture, and fast inference
speed. Opus audio encoding with nearest-neighbor interpola-
tion is on par with several learning-based methods, suggest-
ing the dense distribution of our captured RIRs throughout
the scenes. INRAS++ and NAF++ outperform their vanilla
models by a large margin on the C50, EDT, and T60 met-
rics which indicates that the energy decay loss helps models
learn the energy attenuation significantly better. We show
the qualitative result in Figure 4. We see that NACF and
INRAS++ can generate impulse responses closer to ground
truth while NAF++ fails even despite having good metric
results. We also visualize loudness maps in Figure 6, where
we obtain 3D occupancy grids from our visual NeRF model
with a resolution of 0.1 m. We can see that both INRAS++
and NACF learn a continuous acoustic field. When com-
paring with the acoustic fields in furnished and unfurnished
rooms, we can see the models have successfully captured
the phenomenon of sound occlusion. See Appendix A.1 for
more results.

5.2. Evaluation of Few-Shot RIR Synthesis

We next conduct experiments to explore how model perfor-
mance varies with different training data scales. Additionally,
we benchmark our Sim2Real method against other baselines
in challenging few-shot scenarios.
Experimental setup. We trained each model on the fur-
nished room using various training data scales, ranging from
0.3% to 100%, where the former comprises ∼100 samples
and the latter has 31.3K samples. To prevent overfitting, we
reserved 10% of the training samples for early stopping at
each scale. For our sim2real model, we created a geometric-
based Pyroomacoustics Scheibler et al. [51] shoebox acous-
tic simulator for pretraining, using the parameters of room
bounding box and average T60 calculated from real-world

examples. The training involved a dense pretraining stage
on simulated data, followed by fine-tuning using real-world
examples with a learning rate of 5×10−4.

Results. We present our results in Figure 5 and Table 3.
Our Sim2Real model demonstrates substantial performance
improvements in few-shot setups, specifically with 0.3%, 1%,
and 5% of the total training samples (approximately 100, 300,
and 1500 samples, respectively). As the number of training
samples increases, the advantages of using simulated data
for training become smaller. While our sim2real model lags
behind the model trained with the complete dense dataset,
which exhibits a 55% improvement over our model trained
with 5% of the data, it’s worth noting that we only use a basic
shoebox simulator. We believe this performance gap will
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Figure 5. Few-shot RIR synthesis results. We evaluate the per-
formances of models with different numbers of training data. The
results are reported in the furnished room. Our Sim2Real method
can improve the performance in cases of limited training data.
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Figure 6. Loudness map visualization. Given an emitter position and its orientation, we visualize the intensity of predicted impulse
responses over the spaces from the top view and side view, for the furnished and unfurnished room. Red means loud and blue means quiet.
The arrow denotes the speaker’s orientation.

Table 3. Few-shot experiments with 1% training data.

Method STFT Err C50 Err EDT Err T60 Err
(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓

Simulator [51] 1.47 5.14 0.170 44.00
NAF++ 0.69 2.38 0.072 21.77
INRAS++ 0.53 2.42 0.098 25.15
NACF 0.50 2.30 0.067 22.87
sim2real INRAS++ 0.51 1.86 0.056 17.31

Table 4. Ablation experiments on the bounce point sampling
strategy. We perform the experiments on the furnished room.

Method Modality Bnc point STFT C50 EDT T60

strategy (dB) ↓ (dB) ↓ (sec) ↓ (%) ↓
INRAS++ A 2D 0.42 0.57 0.017 6.21
NACF A & V 2D 0.40 0.58 0.017 6.04
INRAS++ A 3D 0.41 0.53 0.016 5.84

be further narrowed down if we can apply more advanced
simulators, such as Chen et al. [7, 10].

5.3. Ablation Study

Bounce point sampling. We investigate the impact of our
bounce point sampling strategy on model performance. To
do this, we compare our 3D bounce point sampling method
with the original 2D sampling method at a fixed height. As
shown in Table 4, our 3D bounce point sampling enhances
the model’s performance. Additionally, INRAS++ with

Table 5. Ablation experiments on speaker orientation.

Method STFT Err C50 Err EDT Err T60 Err
(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓

INRAS++ w/o ori. 0.42 0.64 0.018 6.57
INRAS++ 0.40 0.55 0.016 5.59

2D bounce points shows a comparable performance against
the audio-visual model NACF, suggesting that the audio
modality alone suffices for the current setup.

Speaker orientation. We use a directional speaker during
our data capture, exhibiting directivity patterns that affect
the acoustic experience of receivers We explore how neural
models use orientation information by removing speaker
orientation embeddings from the inputs. As demonstrated
in Table 5, the quality of the generated RIRs significantly
improves when orientation information is included. Please
see Appendix A.3 for RIR visualization for different orienta-
tions.

Energy decay loss. We study how model performance
varies with the weights of the energy decay loss. We conduct
experiments for INRAS++ on the furnished room and set
λ to {0.1, 0.2, 0.3, 0.5}. We present our results in Table 6.
It shows that increasing the weights of decay loss improves
metrics like C50, EDT, and T60 errors, though it comes
with a tradeoff in the STFT error metric. For our primary
experiments, we choose λ = 2.0 for balanced performance.
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Table 6. Ablation experiments on the energy decay loss.

λ
STFT Err C50 Err EDT Err T60 Err

(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓

INRAS++

1.0 0.39 0.58 0.017 5.98
2.0 0.40 0.55 0.016 5.59
3.0 0.41 0.49 0.016 5.48
5.0 0.43 0.49 0.015 5.34

6. Conclusion

This paper introduces RAF, a multimodal real-world acoustic
room dataset collected for facilitating research on novel-view
acoustic synthesis and neural acoustic field modeling tech-
niques. RAF includes dense 3D room impulse response cap-
tures of a large space, both with and without furniture. It also
include visual data captured from multiple viewpoints and
precise tracking of sound sources and receivers in the room.
We systematically evaluated existing techniques for audio
and audio-visual novel-view acoustic synthesis using this
real-world data. We provided insights into the performance
of individual models and proposed new improvements. Fur-
thermore, we conducted experiments to investigate the im-
pact of incorporating visual data (i.e., images and depth)
into neural acoustic field models. This dataset fills a gap in
existing research by providing real-world data for evaluating
and benchmarking novel-view acoustic synthesis models and
impulse response generation techniques. In the future, we
plan to expand the dataset to more room configurations.

Limitations and Broader Impacts. Collecting real-world
room impulse data is expensive and time-consuming, which
makes scaling up data collection for multiple rooms or scenes
challenging. Our dataset only have RIRs data from a single
physical room, although with two different configurations.
Thus, its utility is limited for research aiming to generalize
across different rooms and scenes. Using RIR data can
produce audio recordings that mimic real recordings from
a specific room. However, this capability can lead to the
creation of deceptive and misleading media.
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A.1. Additional Experimental Results

Benchmark on 16 KHz impulse responses. We also eval-
uate each method on our benchmark with impulse responses
of 16 kHz sampling rate. We show the results in Table 7.
We can see that INRAS++ performs best overall, which
matches with the conclusion in Section 5.1.

More qualitative results. We provide more predicted RIR
visualization for qualitative comparison in Figure 9. We also
provide more loudness map visualization on the different
scenes for qualitative comparison in Figure 10.

Empty versus furnished room. One advantage of our
dataset is that it contains a scene in two conditions — empty
and furnished, which allows studying the difference in acous-
tic fields introduced by furniture. Due to a lack of ground-
truth comparison, we visualize the generated impulse re-
sponses from INRAS++ trained on each scene individually
as an approximation of the acoustic field. We show our re-
sults in Figure 7, where we can see that generated impulse
responses with different acoustic properties.

A.2. Implementation Details

In this section, we will demonstrate the implementation of
each baseline in detail.

AAC and Opus. We convert the raw waveform (.wav)
into AAC (.m4a) and Opus (.opus) encoding and reverse
the compression using FFmpeg commands as shown below:

1 # AAC compression
2 encode_command = f"ffmpeg -i audio.wav -t {

audio_length} -c:a aac -b:a 24k temp.m4a"
3 decode_command = f"ffmpeg -i temp.m4a -c:a

pcm_f32le -ar {sampling_rate} audio_aac.wav"
4

5 # Opus compression
6 encode_command = f"ffmpeg -i audio.wav -t {

audio_length} -c:a opus -strict -2 -b:a 24k
temp.opus"

7 decode_command = f"ffmpeg -i temp.opus -c:a
pcm_f32le -ar {sampling_rate} audio_opus.wav"

Listing 1. FFmpeg commands for audio compression

We cut the audio to be the same length (0.32s) and cor-
responding sampling rate (16K or 48K) for fair evaluation
comparison.

Note that we use a different Opus encoder which can
achieve better compression performance than NAF used [36].
Due to the heavy computation of constructing a high-
dimensional interpolation engine, we modify the baseline
algorithm by first matching the nearest neighbor of the emit-
ter in the training distribution and then performing the near-
est neighbor or linear interpolation to generate impulse re-
sponses for given listener positions.

NAF. We follow the official implementation of NAF 2,
and create 3D grid features based on the bounding boxes
of scenes. For experiments with 16 kHz sampling rate, we
use an STFT with an FFT size of 512, a window length of
256, and a hop length of 128. For 48 kHz sampling rate, we
use an STFT with an FFT size of 1024, a window length
of 512, and a hop length of 256. We perform inverse STFT
on the predicted magnitude of the RIR spectrogram with
random spectrogram phase to obtain time-domain RIR. We
set λ = 1.0 for the weight of energy decay loss when training
NAF++.

INRAS. We follow the implementation of INRAS pro-
vided by the authors in their supplementary material3, and
add an extra dimension for the emitter, listener, and bounce
point position. We changed the original bounce point sam-
pling method, which only sampled points with a specific
height. Instead, we apply Poisson sampling on the scene
meshes to obtain 256 bounce points in 3D to represent scene
geometry in a better way. To optimize multi-resolution
STFT loss, we set FFT size as {128, 512, 1024, 2048},
window length as {80, 240, 600, 1200}, and hop length as
{16, 50, 120, 240}. We set λ = 2.0 for the weight of the
energy decay loss.

NACF. We use the same architecture as INRAS for NACF.
We keep the original bounce point sampling strategy in the
paper and render visual context using VR-NeRF [66]. We
render 256×256 pixel RGB, and depth images with a field
of view of 90°. We use the surface normal of each bounce
point to determine the look-at view of the virtual camera.
Following the original paper, RGB and depth images are
down-sampled to 16× 16 and are encoded with an MLP as
visual contexts. We set λ = 2.0 for the weight of energy
decay loss. We optimize the multi-resolution STFT loss with
the same hyperparameters as INRAS.

AV-NeRF. Because we have a different setup from AV-
NeRF [33] where we have omnidirectional microphones in-
stead of orientated binaural receivers, we adopt their method
with several changes. We use VR-NeRF [66] to render 4
perspective views of 256×256 RGB and depth maps with a
field of view of 90° for each receiver’s position, and encode
them with frozen ResNet18 [23] trained on ImageNet [17].
We removed the relative angle because it does not fit our
setup. We set λ = 2.0 for the weight of energy decay loss.

A.3. Dataset
Impulse response data processing. We followed the sine-
sweep deconvolution process as described by Farina [18] to
extract the impulse response from the signals recorded by the
microphones. For each extracted impulse response, we saved
the 3D location of the receiver, as well as the 3D location and

2https://github.com/aluo-x/Learning Neural Acoustic Fields/
3https://openreview.net/forum?id=7KBzV5IL7W
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Table 7. Benchmark with 16 kHz sampling rate.

Method Variation STFT error C50 error EDT error T60 error Parameters Storage Speed
(dB) ↓ (dB) ↓ (sec) ↓ (%) ↓ (Million) ↓ (MB) ↓ (ms) ↓

C
la

ss
ic

al Linear
AAC 1.14 1.09 0.040 8.79

–
680.45

–Opus 1.06 0.80 0.032 7.48 680.45
original 1.02 0.82 0.032 6.82 3,172.77

Nearest
AAC 0.72 0.83 0.027 8.08

–
680.45

–Opus 0.58 0.61 0.020 6.96 680.45
original 0.48 0.71 0.020 7.68 3,172.77

N
eu

ra
l

NAF [36] vanilla 0.77 0.69 0.025 8.15 5.51 22.04 5.57+ decay loss 0.77 0.63 0.023 7.43

INRAS [57] vanilla 0.44 0.65 0.024 6.15 1.33 5.31 2.10+ decay loss 0.45 0.54 0.019 5.34

NACF [34] vanilla 0.45 0.58 0.020 5.47 1.52 6.05 2.39
+ temporal 0.48 0.60 0.022 6.59 1.75 7.00 2.78

AV-NeRF [33] vanilla 0.46 0.58 0.021 6.12 12.99 51.98 5.80

Em
pt
y

Fu
rn
ish

ed

Figure 7. Visualization comparison of generated RIRs from different scenes. We present visualizations of four pairs of generated impulse
responses, each sharing the same emitter-receiver position in both the empty room and the furnished room. These visualizations highlight
the variations in the acoustic fields between the two distinct scenes.

orientation of the sound source. The length of the impulse
response is 4 seconds and all audio data was recorded at
a sampling rate of 48 kHz and stored at a resolution of 32
bits. We show the RT60 distribution of our collected RIRs
in Figure 8

Visual rendering. We provide renderings of room meshes
as a simple overview in Figure 11.

Speaker orientation. In Figure 12, we provide visualiza-
tions of impulse response pairs from our captured dataset.
These pairs share the same emitter-listener position but dif-
fer in emitter orientations. The orientations of directional
speakers impact the resulting impulse responses.
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Figure 8. RT60 distribution.
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Figure 9. Visualization of generated RIRs. We visualize the ground truth (in blue) and predicted (in red) impulse responses of several
methods for qualitative comparison.

to
p 

vi
ew

sid
e 

vi
ew

INRAS++NACFNAF++

Emitter

to
p 

vi
ew

sid
e 

vi
ew

Figure 10. Loudness map visualization. We visualize the intensity of predicted impulse responses over the spaces from the top view and
side view given an emitter position and its orientation. Red means loud and blue means quiet.
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Furnished Room Unfurnished Room
Figure 11. Scene overview of RAF.

Figure 12. Visualization of ground-truth RIRs with different orientations.
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