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Abstract  

Digital PCR (dPCR) has revolutionized nucleic acid diagnostics by enabling absolute 

quantification of rare mutations and target sequences. However, current detection methodologies 

face challenges, as flow cytometers are costly and complex, while fluorescence imaging methods, 

relying on software or manual counting, are time-consuming and prone to errors. To address these 

limitations, we present SAM-dPCR, a novel self-supervised learning-based pipeline that enables 

real-time and high-throughput absolute quantification of biological samples. Leveraging the zero-

shot SAM model, SAM-dPCR efficiently analyzes diverse microreactors with over 97.7% 

accuracy within a rapid processing time of 3.16 seconds. By utilizing commonly available lab 

fluorescence microscopes, SAM-dPCR facilitates the quantification of sample concentrations 

ranging from 0.74 to 17.49× 103 copies µL-1 for target nucleic acid templates. The accuracy of 

SAM-dPCR is validated by the strong linear relationship (R² = 0.9939) observed between known 

and inferred sample concentrations. Additionally, SAM-dPCR demonstrates versatility through 

comprehensive verification using various samples and reactor morphologies. This accessible, cost-

effective tool transcends the limitations of traditional detection methods or fully supervised AI 

models, marking the first application of SAM in nucleic acid detection or molecular diagnostics. 

By eliminating the need for annotated training data, SAM-dPCR holds great application potential 

for nucleic acid quantification in resource-limited settings. 

  



1. Introduction 

The ongoing COVID-19 pandemic has highlighted the urgent need for accurate and rapid 

quantification of biological samples, particularly for diagnostic purposes1–3. Absolute 

quantification, which provides precise numerical expression levels, is crucial for improving the 

sensitivity and effectiveness of detecting rare templates, such as viral particles or low-abundance 

biomarkers4. Accurate measurement of biological samples is essential for various applications in 

genomics5,6, proteomics7,8, and molecular diagnostics9,10.  

Digital PCR (dPCR) is an advanced technology that enables the detection and quantification of 

rare mutations and target sequences11. Unlike conventional PCR or quantitative PCR (qPCR), 

which rely on relative quantification, dPCR allows for highly sensitive absolute quantification of 

nucleic acids without the need for standard curves4,12. eliminates amplification bias and enhances 

reproducibility. However, current analysis methodologies for dPCR face significant challenges, 

including high cost, complexity, time consumption, and potential errors13–15. 

In dPCR, the sample undergoes dispersion into tens of thousands of compartments for 

amplification4,16,17. The inferred concentration is ascertained by employing Poisson statistics to 

analyze the proportions of positive (fluorescent) and negative (little to no fluorescence) 

droplets18,19. Consequently, the precise identification of positive droplets in dPCR images is crucial 

for preserving the quantitative analysis accuracy of target nucleic acids. Flow cytometers, 

frequently regarded as the gold standard for quantification, are costly and necessitate specialized 

training for operation and analysis20. Conversely, fluorescence imaging, which depends on 

software or manual counting, is time-intensive and susceptible to human errors21. 

Despite the remarkable strides made through deep learning in bio-analysis22–27, its application in 

digital Polymerase Chain Reaction (dPCR) analysis remains fraught with challenges. Traditional 

supervised machine learning algorithms, such as Mask R-CNN28 and Yolov529,30, have been 

successful in automating droplet reading and analysis. However, these methods are hampered by 

several limitations. Firstly, these supervised machine learning algorithms require clean or 'ground 

truth' data for training, which can only be satisfied through labor-intensive data collection and 

manual annotation31,32. This process often leads to a marked gap between training and inferring 

domains due to the inherent variability in dPCR data. Moreover, the precondition of interframe 

continuity in these supervised methods may limit their ability to accurately visualize rapid 

transformations, such as changes in droplet diameters or primer sets1,33. This limitation necessitates 

further model training to accommodate these new experimental settings, thereby impeding the 

comparability and reproducibility of results across different laboratories and platforms. 

To address these limitations, we introduce the SAM-dPCR, a novel and high-throughput algorithm 

for real-time absolute quantification of biological samples. SAM-dPCR combines the cutting-edge 

Zero-Shot Segment Anything Model (SAM) open-sourced by Meta34 with the efficiency and 

accuracy of dPCR technology, offering a groundbreaking and generative solution. By leveraging 

a large-scale dataset and employing a deep neural network architecture, SAM stands out for its 

exceptional generalization capabilities, seamlessly adapting to diverse imaging scenarios without 

extensive retraining or fine-tuning. SAM-dPCR eliminates the need for labor-intensive data 



annotation, thereby streamlining the quantification process and significantly reducing analysis 

time. Furthermore, SAM's self-supervised nature enables SAM-dPCR to adapt to different 

appearances and characteristics of objects of interest across variations in digital PCR image quality, 

accommodating varying experimental conditions and sample types. SAM-dPCR not only enhances 

the analysis and interpretation of digital PCR results but also improves the reliability and utility of 

this vital molecular biology technique. 

 

 

Fig. 1 Illustration and workflow of SAM-dPCR for real-time digital nucleic acid assays. The 

process begins with sample super dilution, followed by partitioning the PCR mixture into 20,000+ 

microreactors. Post-PCR amplification, ~2,000 microreactors are imaged and analyzed by the 

SAM-dPCR algorithm. The algorithm automatically segments microreactors and evaluates each 

mask in terms of size, predicted IoU, and stability score. Microreactors are classified as positive 



(red) or negative (blue) based on fluorescence intensity. The template concentration is estimated 

by performing a statistical analysis that involves fitting the proportion of positive reactors to the 

Poisson distribution. The successful application of both droplet and microwell digital PCR is 

depicted. 

 

2. Results 

The SAM-dPCR algorithm was developed to enable automatic and high-throughput absolute 

quantification of target nucleic acid templates, eliminating the need for annotated training data. 

The samples were subjected to serial dilution and partitioning using droplet-based and microwell-

based platforms respectively, as illustrated in Fig. 1. Utilizing a customized lab-on-a-chip system, 

each sample generated over 20,000 monodispersed droplets, with individual droplets measuring 

46.37 ± 1.64 µm (equivalent to a volume of 52.20 pL). Following a three-temperature droplet 

digital PCR (ddPCR) amplification process, approximately 2,000 microreactors were imaged 

using FITC fluorescence microscopy. Real-time processing of the captured images was performed 

through a graphical user interface (GUI) and analyzed using the SAM-dPCR algorithm. The zero-

shot SAM model, in combination with a fluorescence intensity-based classification algorithm, 

facilitated automatic image segmentation and classification. Droplets containing templates were 

classified as positive (red), while those without templates were classified as negative (blue), based 

on sequential frame analysis at a rate of one frame per second. Each segmented mask was evaluated 

simultaneously based on its diameter, predicted Intersection over Union (IoU), and stability score. 

Subsequently, the template concentration was estimated by performing a statistical analysis that 

involves fitting the proportion of positive reactors to the Poisson distribution. 

The SAM-dPCR algorithm was validated across varied sample concentrations to analyze its 

performance and effectiveness. Fig. 2(a) and (b) illustrate the application of SAM-dPCR to both 

droplet and microwell dPCR experiments, respectively. The figures display overlaid segmentation 

masks on sample images, which are automatically annotated by the zero-shot SAM model. These 

masks delineate the microreactors, enabling further classification and analysis. The analysis results 

yielded inferred concentrations ranging from 0.74 to 17.49× 103 copies µL-1, demonstrating a 

strong linearity correlation (R² = 0.9939) with known sample concentrations. This robust 

correlation underscores the precision and validity of our SAM-dPCR approach. Fig. 2(b) presents 

similar results for microwell dPCR experiments, analyzed using SAM-dPCR algorithm without 

necessitating transfer learning, modifications, or retraining. Again, a strong linearity correlation 

(R² = 0.9867) was observed, with concentrations inferred ranging from 0.14 to 2.81 × 103 copies 

µL-1, reinforcing the efficacy of our approach. To validate the approach, here our templates utilized 

the Seahorse (Hippocampus kuda) genome, specifically the cytochrome c oxidase subunit I (COI) 

region with an amplicon size of 206 bp, which was serially diluted to concentrations of 0.4 pg, 4 

pg, and 40 pg per 20 μL PCR system. The microwell dPCR dataset was prepared similarly, with 

concentrations ranging from 1.66 × 10−15 mol/L to 1.66 × 10−13 mol/L and a reaction-well volume 

of 755 pL. The amplified templates included two types of double-stranded genes, blaNDM and 

blaVIM, which control the expression of β-lactamases (bla), an antibiotic agent for carbapenems. 

Further details of the dPCR experiments can be found in the Materials and Methods section. 

 



 

Fig. 2 Efficacy of the SAM-dPCR algorithm across dPCR tasks with varying sample 

concentrations. The figure displays sample images overlaid with masks from benchtop dPCR 

experiments, including both droplet PCR (a) and microwell dPCR (b) with serially diluted 

templates. The segmentation masks, automatically annotated by the zero-shot SAM model, outline 

the microreactors for further classification and analysis. Sample concentrations are determined by 

fitting the analysis results to a Poisson distribution. The strong linearity correlation, demonstrated 

by the linear regression equations, confirms the validity and precision of the SAM-dPCR algorithm. 

(Scale bar = 200 μm). 

 



 

Fig. 3 Efficacy of the SAM-dPCR algorithm under varied imaging and thermal cycling 

conditions. Sample images from benchtop ddPCR experiments, including FITC fluorescence 

images, bright field images, and merged images, are overlaid with automatically annotated masks. 

(a) The post-45 cycle results generally exhibit a higher number of classified positive droplets 

compared to 25 cycles. FITC images show reduced size variation and a lower FAR, while merged 

images display a lower FRR. (Scale bar = 100 μm). (b) Automatic segmentation and analysis of 

bright field images using the zero-shot SAM model. The analysis of droplet diameter from bright 

field images demonstrates higher accuracy and uniformity compared to fluorescence field images, 

which can be attributed to the elimination of fluorescence scattering. 

The adaptability of the SAM-dPCR algorithm was assessed under diverse imaging and thermal 

cycling conditions. The results, depicted in Fig. 3, demonstrate the algorithm's effectiveness when 

applied to fluorescence, bright, and merged field dPCR images. Analysis of fluorescence and 

merged images using SAM-dPCR (Fig. 3(a)) revealed that FITC fluorescence images exhibited 

less size variation and a lower false accept rate (FAR), indicating a higher level of masks IoU and 

stability score. Conversely, merged images displayed a lower false rejection rate (FRR), indicating 

improved droplet classification results. Furthermore, the algorithm's performance was evaluated 

through testing on images with varied fluorescence intensities, which were obtained under 

different PCR amplification conditions. Notably, PCR cycling for 25 and 45 cycles showed that 

the latter condition led to a greater number of droplets being identified and classified as positive, 

highlighting the adaptability of SAM-dPCR to varying thermal cycling conditions. In Fig. 3(b), 

SAM-dPCR was successfully applied to bright field images without the need for modifications or 

retraining. The algorithm accurately segmented droplets ranging from dozens to hundreds in 

number. Moreover, the analysis of droplet diameter from bright field images demonstrated higher 

accuracy compared to fluorescence field images, which can be attributed to the elimination of 

fluorescence scattering. These results underscore the robustness and generalization capability of 

SAM-dPCR under varied experimental conditions. 



 

 

Fig. 4 Evaluation of the SAM-dPCR algorithm's robustness and versatility through dPCR 

image analysis testing. (a) and (b) Sample images overlaid with masks, derived from our newly 

curated dataset, featuring both droplet and microwell dPCR benchtop experiments. Images 

categorized based on the number of masks per image, ranging from fewer than 50 to 400-800. 

SAM-dPCR demonstrates robust performance when handling between 200 to 600 reactors per 

image, with a strong correlation between segmented mask count and ground truth. Predicted 

Intersection over Union (IoU) consistently exceeds 93% within this range, achieved without 

manual annotation or a training dataset. SAM-dPCR generates comprehensive three-dimensional 

plots, enabling simultaneous visualization of hundreds of reactors within 3.16 seconds. Manual 

counting measurement served as the ground truth for evaluation. (c) The breakdown of SAM-

dPCR's runtime. The algorithm integrates seamlessly into common fluorescence microscopes, 

offering automatic and efficient analysis, and reducing time and cost requirements significantly. 

 

The robustness and versatility of the SAM-dPCR algorithm were evaluated through a series of 

dPCR image analysis experiments, as depicted in Fig. 4. The dataset comprises a collection of 

1024×1024 fluorescence images obtained from a diverse range of dPCR experiments, representing 

various sample types, target genes, and experimental conditions. This diversity allows for the 

robust testing and evaluation of our algorithm's performance. The images were categorized based 

on the number of masks per image, ranging from fewer than 50 to 400-800, as shown in Fig. 4(a) 

and (b). Here manual counting measurement served as the ground truth for evaluation. Our 

findings demonstrate that the SAM-dPCR algorithm exhibits robust performance when handling 

between 200 to 600 reactors per image. We observed a strong correlation between the segmented 

mask count and the ground truth, with the predicted IoU of masks consistently exceeding 93% 



within this range. Notably, this performance was achieved without the need for manual annotation 

or a training dataset, owing to SAM's pre-training on over 1 billion masks from 11 million licensed 

and privacy-respecting images34. Additionally, the SAM-dPCR algorithm generates 

comprehensive three-dimensional plots for each image, enabling visualization of hundreds of 

reactors simultaneously within a remarkable time frame of 3.16 seconds. In contrast, manual 

counting takes over 200 seconds to count approximately 300 droplets. Moreover, conventional 

methods, such as manual counting or software ImageJ do not provide this level of detail, as they 

solely offer user-calculated sample concentration. A detailed breakdown of our algorithm's 

runtime is provided in Fig. 4(c). The SAM-dPCR analysis process encompasses four main 

computational operations: (1) reading images from the API or SDK cable of the fluorescence 

microscope, taking approximately 0.03 seconds per image; (2) segmenting and classifying 

microreactors using SAM-dPCR, requiring less than 2.21 seconds and 0.47 seconds per image, 

respectively; (3) plotting and displaying the results, taking approximately 0.13 seconds per image; 

and (4) outputting the labeled images and analyzed results into a designated folder, necessitating 

around 0.04 seconds per image. Regarding adaptability, SAM-dPCR algorithm can seamlessly 

integrate into common laboratory fluorescence microscopes. However, commercialized software 

often necessitates specific facilities. For instance, Bio-Rad's QX Manager is limited to Bio-Rad 

Droplet Digital PCR Systems, including QX600, QX600 AutoDG, QX200, and QX200 AutoDG. 

In contrast, our SAM-dPCR does not require specific facilities or trained operators. Our approach 

demonstrates automatic and efficient analysis capabilities, significantly reducing the time and cost 

required. 

 

We evaluated the performance of our algorithm, SAM-dPCR, by comparing it with the fully 

supervised Deep-qGFP model, as illustrated in Fig. 5. Deep-qGFP was trained using a Yolo-V5m 

model and the Region Proposal Network (RPN) on over 200 manually labeled ddPCR datasets. To 

establish a benchmark, we employed manual counting and ImageJ measurements as the ground 

truth. Our results indicate that SAM-dPCR outperforms Deep-qGFP in terms of droplet diameter 

measurement and dPCR image analysis. In Fig. 5(a) and Table 1, SAM-dPCR outperformed 

Deep-qGFP by accurately estimating droplet diameter with an average deviation of only 5.177 

pixels, while Deep-qGFP consistently underestimated droplet diameter with an average deviation 

of 24.893 pixels. This discrepancy can be attributed to the difference between the training dataset 

and the testing dataset, which contains droplets with non-uniform fluorescence distribution due to 

varied experimental conditions. SAM-dPCR also achieved a higher accuracy of 97.658% in 

droplet number counting compared to Deep-qGFP's 96.23% as Fig. 5(b) depicts. SAM-dPCR also 

exhibits a lower positive droplet count error of 1.548% (equivalent to 3.5 droplets), while Deep-

qGFP has an error of 9.491% (equivalent to 13.75 droplets). Fig. S1 (Supplementary 

Information) further supports these results across different testing datasets. These findings 

highlight the limitations of fully supervised learning approaches that rely on data-driven priors 

learned from paired noisy and clean measurements. In contrast, SAM-dPCR provides higher 

accuracy and adaptability, underscoring its superiority over conventional algorithms. 

 



 

Fig. 5 Performance evaluation of SAM-dPCR compared to the fully supervised Deep-qGFP 

model. (a) SAM-dPCR accurately estimated droplet diameter with an average deviation of 5.177 

pixels, while Deep-qGFP consistently underestimated droplet diameter with an average deviation 

of 24.893 pixels. This discrepancy can be attributed to non-uniform fluorescence distribution in 

the testing dataset due to varied experimental conditions. (b) SAM-dPCR achieved a higher 

accuracy of 97.658% in droplet number counting compared to Deep-qGFP's 96.23%. SAM-dPCR 

also exhibited a lower positive droplet count error of 1.548% (equivalent to 3.5 droplets), while 

Deep-qGFP had an error of 9.491% (equivalent to 13.75 droplets). Notably, SAM-dPCR competes 

with or even surpasses the fully supervised Deep-qGFP results, despite not requiring a manually 

annotated training dataset. Manual counting and ImageJ measurement served as the ground truth 

for comparison. (Scale bar = 100 μm). 



Table 1. Comparative analysis of our algorithm and fully supervised Deep-qGFP model. 

Metric Our algorithm Deep-qGFP 

Require annotated dataset No Yes 

Droplet diameter error 5.177 pixels 24.893 pixels 

dPCR analysis accuracy 97.658% 96.230% 

Positive droplet count error 1.548% 9.491% 

 

Our SAM-dPCR algorithm exhibits robust generalization capabilities when directly applied to a 

range of microreactor-based biological applications, as illustrated in Fig. 6. These microreactors, 

including droplets, microwells, and agaroses, are enhanced with DNA intercalating dyes, such as 

SYBR Green or EvaGreen, for visualization. Our SAM-dPCR analysis algorithm has been 

successfully employed in droplet single-cell sequencing (Fig. 6 (a)), agarose digital PCR (Fig. 6 

(b)), and droplet-based digital quantification of bacterial suspensions (Fig. 6 (c)). In each of these 

scenarios, the microreactors are automatically and accurately segmented and classified, with the 

resulting data plotted and concentrations calculated accordingly. Notably, our approach offers 

significant advantages in terms of efficiency and accessibility compared to conventional manual 

counting methods. Furthermore, the results highlight the broad generalization capability of the 

SAM-dPCR algorithm, surpassing reported fully supervised AI models. To the best of our 

knowledge, this represents the first successful implementation of a self-supervised AI model in 

various droplet microfluidics scenarios, including ddPCR, droplet single-cell sequencing, and 

droplet-based bacterial quantification. 

 



 

Fig. 6 Versatile applicability of SAM-dPCR demonstrated across various biological 

applications. The SAM-dPCR algorithm was successfully applied in diverse contexts, 

supplemented with DNA intercalating dyes for visualization such as SYBR Green or EvaGreen. 

(a) Droplet detection and classification results for droplet single-cell sequencing with varied 

barcoding. Statistical validation of results was performed, analyzing over 2,000 droplets per 

experimental condition, with inferred concentrations plotted. (Scale bar = 100 μm). (b) Image 

analysis results showcasing representative frames from agarose-based digital PCR with different 

encapsulation rates. (Scale bar = 100 μm). (c) Image analysis results of representative frames for 

droplet-based digital bacterial quantification under varying suspension conditions. (Scale bar = 

100 μm).  



 

3. Discussion and Conclusion 

Digital PCR (dPCR) has revolutionized molecular biology by providing unparalleled precision, 

sensitivity, and absolute quantification of nucleic acids. However, traditional analysis methods 

such as manual counting or flow cytometry face challenges including high costs, complexity, and 

limited accessibility. Although AI-assisted automatic analysis techniques have been reported, 

existing models are fully supervised and limited to specific training datasets, making it difficult 

for rapid transformations, such as changes in droplet diameters or primer sets. Consequently, the 

comparability and reproducibility of results across different laboratories and platforms are 

compromised. 

To address these limitations, we introduce SAM-dPCR, which integrates the Zero-Shot Segment 

Anything Model (SAM) with a fluorescence intensity-based classification algorithm. SAM-dPCR 

efficiently analyzes diverse dPCR images with over 97.7% accuracy within a rapid processing time 

of 3.16 seconds. It can be seamlessly integrated into commonly available lab fluorescence 

microscopes, enabling the quantification of sample concentrations ranging from 0.74 to 17.49× 

103 copies µL-1 for target nucleic acid templates. The accuracy of SAM-dPCR is validated by the 

strong linear relationship (R² = 0.9939) observed between known and inferred sample 

concentrations. 

In this study, we demonstrate the remarkable benefits and versatility of SAM-dPCR in absolute 

quantification by applying it to various DNA intercalating dye-labeling scenarios, such as SYBR 

Green and EvaGreen. These scenarios encompass droplet-based, microwell-based, and agarose-

based applications commonly employed in a wide range of biological experiments. Our image 

datasets span a diverse range of droplet and microwell patterns, sample types, target genes, and 

experimental settings, highlighting the versatility of SAM-dPCR across various dPCR applications 

and experimental conditions. SAM-dPCR operates in two modes: offline and real-time. In offline 

mode, images and videos are collected and stored for post-experiment analysis, allowing for 

parameter fine-tuning. In real-time mode, the captured image and analysis results are displayed on 

our GUI simultaneously. 

The performance of SAM-dPCR is influenced by various factors, including the model architecture 

and image quality parameters such as focusing, luminance, and resolution. Here we acquired SAM 

due to its remarkable generalization capabilities, enabling it to adapt seamlessly to diverse imaging 

scenarios without extensive retraining or fine-tuning. The SAM model can be loaded with three 

different encoders: ViT-B, ViT-L, and ViT-H. While ViT-H exhibits substantial improvements 

over ViT-B, the gains over ViT-L are marginal. These encoders have different parameter counts, 

with ViT-B having 91M, ViT-L having 308M, and ViT-H having 636M parameters. This 

difference in size also affects the speed of data processing. To maximize accessibility and simplify 

the model architecture, we acquired the ViT-B encoder to develop the SAM-dPCR algorithm. 

Additionally, we optimized imaging settings, including focusing, exposure conditions, 

magnifications (ranging from 4× to 20×), droplet sizes (diameter ranging from 18 to 114 pixels), 

and image resolutions (ranging from 256×256 to 4140×3096 pixels), for both bright fields and 

fluorescence fields. Our experiments demonstrated that fluorescence noise caused by fouling or 

specks of dust did not interfere with the segmentation results, as it was much smaller than the 

microreactors in size. We also found minimal spatial variation in the background signal and the 



exposure allowed for a certain level of light transmission loss. The SAM-dPCR pipeline utilizes 

disposable microfluidic chips for routine background signal evaluations. 

We determined that the SAM-dPCR algorithm exhibits robust performance when handling 

between 200 to 600 reactors per image, as shown in Fig. 4. However, reactor size measurement 

error occurs heavily when the number of masks is smaller than 100 (Fig. S2(a), Supplementary 

Information) due to incomplete microreactors in the testing image. Additionally, miss-detection 

occurs heavily when the number of masks is larger than 600 (Fig. S2(b), Supplementary 

Information). This can be attributed to the limitation of the training dataset of SAM, in which 

there are approximately 100 masks per image on average. This issue can be addressed by fine-

tuning the SAM model on more specific downstream dPCR image segmentation tasks or cropping 

the image into smaller regions with microreactor numbers less than 400 of the testing image. 

In conclusion, our results demonstrate that SAM-dPCR provides accurate, high-throughput, and 

reliable absolute quantification of biological samples. As the first self-supervised AI model applied 

in dPCR, SAM-dPCR eliminates the need for clean or 'ground truth' data, which is challenging 

due to the non-repetitive nature of each amplification process. This versatility positions SAM-

dPCR as a powerful tool for researchers seeking accurate and efficient quantification of biological 

samples across different experimental setups. In the future, the SAM-dPCR pipeline can be 

adapted to multiplex tests in dPCR by designing fluorescent probes with different emission spectra 

specifically targeting different molecules or stratifying the fluorescence intensity for different 

targets. Moreover, optimizations could include further exploration into stain-less image analysis 

or virtual histological staining of biological samples for label-free and non-invasive diagnosis to 

further simplify the technical requirements of fluorescent dyes and the accompanying optics for 

detection. 

 

4. Materials and methods 

4.1 Sample preparation  

High-fidelity Q5® DNA Polymerase (New England Biolabs) was employed as the primary 

commercial kit for the droplet digital PCR (ddPCR) reactions. The ddPCR reaction mix comprised 

diluted restriction enzymes, dNTPs, buffer, forward and reverse primers, Tween-20, PEG-8000, 

and PCR water. The detailed composition of the ddPCR reagents is outlined in Supplementary 

Table 1. The cDNA templates were serially diluted for the ddPCR experiments, maintaining a 

stock cDNA concentration of (1.12 ± 0.09) × 104 copies µL−1. 

For the ddPCR experiments depicted in Fig. 2, the PCR mixture was formulated with 1X KAPA 

HIFI buffer, 0.3 mM dNTP, 1X KAPA HIFI polymerase, 0.3 µM forward and reverse primers, 

templates, 0.1% NP-40, 0.2% Tween 20, and 0.1 mg/mL BSA (NEB, USA). Template 

concentrations of 40 pg, 4 pg, and 0.4 pg per 20 µL PCR system were used. The PCR protocol was 

initiated with denaturation at 95°C for 3 min, followed by 45 cycles of denaturation at 98°C for 20 

s, annealing at 61°C for 15 s, and extension at 72°C for 15s. The final extension was conducted at 

72°C for 1 min, with an indefinite hold at 12°C. The extracted Seahorse (Hippocampus kuda) 

genome, targeting the cytochrome c oxidase subunit I (COI) with an amplicon size of 206 bp, was 

utilized as the PCR template. The forward and reverse primers sequences were as follows: 

Forward primer (5→3): TTTCTTCTCCTCCTTGCTTCCTCAG 



Reverse primer (5→3): GAAATTGATGGGGGTTTTATGTTG 

For the ddPCR experiments in Fig. 3, the PCR mixture incorporated 1X Platinum SuperFi II buffer, 

0.2 mM dNTP, 1X Platinum SuperFi II polymerase, 0.5 µM forward and reverse primers, 

templates, 0.2% Tween 20, 0.2 mg/mL BSA (NEB, USA), and 0.4% PEG-8000. The PCR protocol 

included initial denaturation at 98°C for 30 s, followed by 25 or 45 cycles of denaturation at 98°C 

for 10 s, annealing at 60°C for 10 s, and extension at 72°C for 15s. The final extension was 

performed at 72°C for 5 min with an indefinite hold at 12°C. The sequences of the templates and 

primers used are detailed as follows: 

The PCR template (5→3):  

GTCTCGTGGAGCTCGACAGCATNNNNNNTGNNNNNNTGCCTACGACAAACAGACCT

AAAATCGCTCATTGCATACTCTTCAATCAG 

Forward primer (5→3): 

Acrydite-ACTAACAATAAGCTCUAUAGTCTCGTGGAGCTCGACAG 

Reverse primer (5→3):  

CTGATTGAAGAGTATGCAATGAG 

In the single-cell sequencing experiments (Fig. 6), the PCR mixture was prepared using 1X 

TaKaRa PrimeSTAR GXL buffer, 0.2 mM dNTP, 1X TaKaRa PrimeSTAR GXL polymerase, 0.2 

µM forward and reverse primers, templates, 0.5% Tween 20, 0.1 mg/mL BSA (NEB, USA), and 

0.5% PEG-8000. The PCR program was initiated with 25 cycles at 95°C for 10 s, 59°C for 15 s, 

and 68°C for 15 s, followed by a final extension at 68°C for 3 min and a hold at 25°C. The 

sequences of templates and primers are provided in Table 2. 

Table 2. Sequences of templates and primers in single-cell sequencing experiments  

 Sequence (5→3) 

Barcode 1 

Template 
GTCTCGTGGAGCTCGACAGNNNNNNNNNNNN 

TCGCTCATTGCATACTCTTCAATCAGC 

Primer 
Forward GTCTCGTGGAGCTCGACAG 

Reverse GCTGATTGAAGAGTATGCAATG 

Barcode 2 

Template 
GTCTCGTGAGTCAGGACAGNNNNNNNNNNNN 

TCGCTCATTGCATACTCTTCAATCAGC 

Primer 
Forward GTCTCGTGAGTCAGGACAG 

Reverse GCTGATTGAAGAGTATGCAATG 

Barcode 3 

Template 
GTCTCGTGACCTCGGACAGNNNNNNNNNNNN 

TCGCTCATTGCATACTCTTCAATCAGC 

Primer 
Forward GTCTCGTGACCTCGGACAG 

Reverse GCTGATTGAAGAGTATGCAATG 

Barcode 4 
Template 

GTCTCGTGGACAGTGACAGNNNNNNNNNNNN 

TCGCTCATTGCATACTCTTCAATCAGC 

Primer Forward GTCTCGTGGACAGTGACAG 



Reverse GCTGATTGAAGAGTATGCAATG 

 

4.2 Microfluidic chip fabrication and droplet generation 

A flow-focusing microfluidic chip with cross-sectional dimensions of 30.0 μm (width) and 38.5 

μm (height) was designed and fabricated for droplet generation 100 (Fig. S3 Supplementary 

Information). The chip was created using standard SU-8 photolithography and 

Polydimethylsiloxane (PDMS) replica molding processes. Initially, a master mold of 60.0 μm 

height was prepared by spinning SU8-2075 photoresist at 5000 r.p.m. for 28 s on a 4" silicon wafer, 

followed by UV exposure, baking, and developer bath according to the manufacturer's 

specifications. PDMS prepolymers (Dow, Inc., Sylgard 184) with a base-to-curing ratio of 10:1 

were degassed, poured onto the SU-8 masters, and baked at 60°C for 10 h. The PDMS was then 

removed and cut to the desired shape, with inlets and outlets punched through. Both the PDMS 

slabs and glass slides were treated with oxygen plasma for 1 min and bonded by brief baking at 

110°C. Finally, the microfluidic devices were hydrophobized by baking at 55°C for 24 h. 

Monodisperse emulsions were generated using a custom microfluidic setup, driven by two syringe 

pumps (Legato 100, KD Scientific or Ph.D. 2000, Harvard Apparatus, USA) at the inlets. 

Commercial droplet generation oil (1864006, Bio-Rad Laboratories, Inc.) was used as the 

continuous phase. The resulting droplets exhibited a uniform size distribution with a mean 

diameter of 46.37 ± 1.64 µm (0.052 nL). The generated droplets were collected and transferred 

into 0.2 mL PCR stripe tubes, which were covered with mineral oil to minimize evaporation. PCR 

reactions were performed in a thermal cycler (Bio-Rad) with a hot start at 94 °C for 5 min, followed 

by 55 cycles of denaturation at 94 °C for 30 s, annealing, and extension at 60 °C for 1 min. 

Subsequently, the droplets were isolated onto a glass slide for observation. 

 

4.3 Microreactors imaging and image processing 

The amplified droplets were collected and dispensed into a specially designed PDMS chamber for 

observation under a lab fluorescence microscope. Imaging of the emulsions was performed using 

an inverted microscope (Eclipse Ti-U, Nikon) coupled with a camera (DS-Qi2, Nikon) in both 

brightfield and fluorescence fields. Fluorescence excitation was achieved at 455 nm, and the 

emitted light was captured by a CCD through a 495 nm long-pass filter. Images were acquired at 

4× magnification with an exposure time of 1 s and a sensor sensitivity of 200. For each sample, 10 

images were taken at different positions, excluding edges, encompassing over 2,000 droplets in 

total. The droplet diameter was quantified and analyzed using ImageJ (National Institutes of Health 

and the Laboratory for Optical and Computational Instrumentation).  

The microwell droplet digital PCR (dPCR) images presented in this manuscript were acquired 

using a 3D Digital PCR chip v2, with each reaction well having a volume of 755 pL (ThermoFisher 

Scientific, USA). These experiments were conducted by our collaborator, Prof. Mingli You, from 

the School of Life Science and Technology at Xi'an Jiaotong University31. The experimental 

design involved a series of dilutions, spanning a broad dynamic range of template concentrations, 

i.e., negative, 100×, 20×, 10× and 5× dilutions from the original concentration of 1.66 × 10−13 

mol/L. This study amplified two types of double-stranded genes, specifically blaNDM and blaVIM, 



which regulate the expression of β-lactamases, a class of antibiotic agents used against 

carbapenems. The corresponding DNA sequences can be accessed on the GenBank website 

(https://www.ncbi.nlm.nih.gov/genbank/) using the nucleotide codes NC023908 and NC023274 

for blaNDM and blaVIM, respectively. Due to the extensive length of the complete gene sequences, 

we selected specific subsequences as templates and subsequently redesigned the corresponding 

primers and probes. These genes were synthesized as plasmids by QingsKe, based in Xi'an, China, 

who also synthesized all primers. The probes for blaNDM and blaVIM, labeled as blaNDM-AF488 

and blaVIM-TET respectively, were modified with AF488 and TET, and were synthesized by 

Sangon, based in Shanghai, China.  

The original agarose digital PCR images depicted in Fig. 6 (c) were provided by our collaborators, 

Dr. Xuefei Leng and Prof. Chaoyong Yang, from the College of Chemistry and Chemical 

Engineering at Xiamen University35. The original images in Fig. 6 (d) were extracted from 

previously published bacterial quantification work36. 

 

4.4 Deep-learning-assisted automatic data analysis 

The SAM-dPCR algorithm utilized the Zero-Shot Segment Anything Model (SAM) as its core 

architecture. SAM is a self-supervised deep learning model that enables accurate image 

segmentation without the need for annotated training data. In this study, we employed the ViT-B 

encoder variant of SAM due to its balance between model size and performance. The ViT-B 

encoder has 91 million parameters, providing a good trade-off between computational efficiency 

and segmentation accuracy. The entire process was executed using the Pytorch deep learning 

framework on an NVIDIA Tesla V100-SXM2-16GB hardware platform. 

This self-supervised SAM-dPCR deep learning model segmented and classified microreactors, 

negating manual annotation. Each of the segmented reactors was evaluated based on diameter, 

predicted Intersection over Union (IoU), and stability score simultaneously. Statistical analysis 

was then performed, including distribution and inferred concentration based on fluorescence 

intensity differences. The figure displays images from both droplet and microwell dPCR benchtop 

experiments, overlaid with segmentation masks that are automatically annotated by the zero-shot 

SAM model. These masks delineate the microreactors and classify them into positive and negative 

categories based on fluorescence intensity. 

The performance of ddPCR was assessed by evaluating its linearity range, limit of quantification 

(LOQ), and reproducibility. Sample concentration inference was determined by fitting the data 

into a Poisson distribution using Equation (8). Over 2,000 microreactors, including droplets and 

microwells, were analyzed for each concentration. 

The probability Ρr(𝛸 = 𝑘) that a microreactor will contain k copies of target gene if the mean 

number of target copies per microreactor is 𝜆: 

𝑓(𝑘, 𝜆) = Ρr(𝛸 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
 (1) 

where  



k is the number of occurrences (k can take values 0, 1, 2, ...). 

e is Euler's number (e = 2.71828…). 

! is the factorial function. 

Inputting k=0 gives the probability that a microreactor will be empty: 

Ρr(𝛸 = 0) = 𝑒−𝜆 (2) 

For the number of microreactors being large enough, the observed fraction of empty microreactors 

(E) gives estimation of Ρr(𝛸 = 0) 

E = 𝑒−𝜆 (3) 

At the same time, by definition of E, 

E =
𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁
 (4) 

Solving (3) we get 

𝜆 = −ln (𝐸) (5) 

As 𝜆 is the copies per microreactor, concentration of copies per volume is 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝜆

𝑉𝑚𝑖𝑐𝑟𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟
 (6) 

Which means  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
−ln (𝐸) 

𝑉𝑚𝑖𝑐𝑟𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟
 (7) 

Combining (4) and (7), we get  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = −ln (
𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
)/𝑉𝑚𝑖𝑐𝑟𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 (8) 

4.5 Graphical user interface 

The SAM-dPCR algorithm was implemented as a standalone software tool using Python and 

packaged as a user-friendly graphical user interface (GUI). The GUI allowed users to interact with 

the software, input dPCR images, and visualize the segmentation results in real-time. The software 

was designed to seamlessly integrate with common laboratory fluorescence microscopes, enabling 

easy adoption and utilization in different experimental setups. 

The GUI also plots the droplets by accumulating results from sequential frames. Users have the 

option to digitally save the raw images, background-subtracted images, plot results, and calculated 

values. The size of the droplets and the calculated template concentration are continuously 

displayed at the bottom. Additionally, the GUI can operate in offline mode to analyze pre-saved 

image datasets by reading folders. The design codes for the GUI can be found in the Supporting 

Materials. 



 

4.6 Statistical analysis 

Statistical analysis was performed using GraphPad Prism software (GraphPad Software). All data 

are presented as mean ± standard deviation (SD) with n ≥ 3. Hypothesis testing was conducted 

using a t-test, and significance was defined as p ≤ 0.05. 
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