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Abstract—Informing drivers about the predicted state of
upcoming traffic lights is considered a key solution to reduce
unneeded energy expenditure and dilemma zones at inter-
sections. However, newer traffic lights can react to traffic
demand, resulting in spontaneous switching behavior and poor
predictability. To assess whether future traffic light assistance
services are viable, it is crucial to understand how strongly
predictability is affected by such spontaneous switching be-
havior. Previous studies have so far only reported percentages
of adaptivity-capable traffic lights, but the actual switching
behavior has not been measured. Addressing this research
gap, we conduct a large-scale predictability evaluation based
on 424 million recorded switching cycles over four weeks for
18,009 individual traffic lights in Hamburg. Two characteristics
of predictability are studied: cycle discrepancy and wait time
diversity. Results indicate that fewer traffic lights exhibit hard-
to-predict switching behavior than suggested by previous work,
considering a reported number of 90.7% adaptive traffic lights
in Hamburg. Contrasting previous work, we find that not all
traffic lights capable of adaptiveness may necessarily exhibit
low predictability. We critically review these results and derive
avenues for future research.

Index Terms—Eco-Driving, Future Mobility, GLOSA, Smart
City, Traffic Light Prediction

I. INTRODUCTION

Cooperative intelligent transport systems are considered a
key pillar of future urban development since they address
a multitude of issues related to urban mobility [1]. By
allowing traffic participants and road infrastructure elements
to communicate and collaborate with each other, not only the
safety but also the efficiency of traffic can be improved.

One key application is predicting the switching patterns
of a traffic light as a vehicle approaches it. Such traffic light
assistance services, known under the terms Green Light Opti-
mal Speed Advisory (GLOSA), Eco-Approach and Departure
(EAD), or Time-To-Green (TTG), allow vehicles to reduce
unnecessary stops and energy expenditure by adjusting the
personal driving speed to the current or upcoming green
phase(s) [2]. In addition, informing drivers about future color
changes may avoid the safety issue of dilemma zones [3].
These occur when the traffic light unexpectedly turns amber,
leading to impulsive acceleration or abrupt braking.

To establish reliable traffic light assistance services in the
real world, the switching behavior needs to be predicted as
accurately as possible. Typically, predictions are generated by
the intersection controller [4] or a cloud system [5], based on

the real-time switching behavior. This switching behavior is
recorded over a longer period to detect reoccurring patterns.

In addition, the traffic light’s real-time status also plays a
large role in accurate prediction. Installed vehicle detectors
or public transport prioritization can change the operation
of traffic lights in a matter of seconds, resulting in unstable
switching patterns [6], [7]. In consequence, the accuracy of
predictions is deprived, leading to an unreliable traffic light
assistance service.

To understand the importance of this problem, it must be
studied how many traffic lights express unstable switching
behavior. Diverse statements from previous works indicate
a high percentage of adaptivity-capable traffic lights of up
to 95% in cities [6]. However, in practice, adaptivity can
follow constraints within the signal program, meaning that
predictability is not necessarily affected. Other factors, such
as traffic density, may have an impact as well. Thus, a direct
measurement of predictability is required to determine the
feasibility of traffic light assistance services. The lack of
such direct measurements in previous studies constitutes a
substantial knowledge gap.

In this paper, make the following contributions:

o We aim to address this knowledge gap and measure the
predictability of traffic lights by detecting instabilities in
the switching behavior. The foundation for our research
is provided by an open data platform in Hamburg that
provides real-time data for thousands of traffic lights
throughout the urban area.

e We develop two novel metrics, cycle discrepancy and
wait time diversity, that measure switching behavior
patterns needed for prediction. In this way, we aim to
tell whether current prediction methods are suitable for
the seen patterns.

e Based on four weeks of recorded data, we aim to
draw much more reliable and detailed conclusions than
previous work on the feasibility and prospect of traffic
light assistance services.

The rest of this paper is structured as follows. In Section II,
we dissect specific types of traffic adaptivity and how these
may impact predictability. Section III summarizes previous
studies on adaptive traffic lights. Our methods for data min-
ing and predictability analysis are presented in Section IV.
Finally, our predictability analysis results are discussed in
Section V, and concluded in Section VI.
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Fig. 1. Possible switching behaviors of traffic lights and the resulting
patterns between cycles depending on the short-term adaptivity level.

II. BACKGROUND

The interaction of traffic lights at an intersection is orches-
trated in a sequence of stages in which specific directions are
given green. Each traffic light runs a program, continuously
iterating between predefined states (colors) and transitions.
One complete iteration through this program has been tra-
ditionally named cycle and typically has a fixed duration
[5]. Modern traffic lights still run in cycles but may be able
to adapt to current conditions by updating states, stages, or
programs. This adaption can occur in a long-term or short-
term time frame.

Long-term adaptivity accounts for traffic changes over
the day (peak traffic times, off-peak traffic times), over the
week (weekdays, Sundays, and public holidays), and over
the year (normal times, holiday times, peak shopping times).
Depending on current traffic or daytime, predefined programs
are interchanged for longer periods of time. This kind of
adaptivity is usually not a problem for traffic light prediction
because it occurs at predictable times.

A much larger problem for prediction is short-term adap-
tivity. This kind of adaptivity may occur spontaneously
by disabling, enabling, stretching, or shortening individual
states. Three levels of short-term adaptivity, as highlighted
in Figure 1, can be distinguished:

1) Fixed-time traffic lights always run in the same way,
regardless of how the traffic situation changes.

2) Fartially adaptive traffic lights are able to adjust their
green time depending on the current traffic situation.
This includes shortening and lengthening green phases
or suspending and inserting individual program stages
while maintaining the cycle time. If, for example,
a bus is registered from the adjacent direction, the
demand stage in which the bus is given clearance
can be switched immediately afterward in favor of the
originally planned stage.

3) Fully adaptive traffic lights are not based on a signal

program that is changed. Instead, states are inter-
changed freely as demanded, while they may be con-
strained to maximum or minimum durations. Usually,
the main direction is set to green, and the secondary
direction is only enabled if there is a request.

To determine which traffic lights are suitable for assistance
services, it is crucial to distinguish which kinds of programs
run on each traffic light. Based on an inquiry to Hamburg’s
authorities as of June 22, 2023, a mere 9.3% (161) out
of 1731 intersection nodes in the city follow a fixed-time
program, leaving the remaining 90.7% (1570) with adaptive
capabilities. However, this only provides limited information
about how the traffic lights actually switch. Thus, a direct
analysis of the switching behavior is necessary to determine
how much predictability is actually affected.

III. RELATED WORK

At how many intersections the prediction of traffic lights
could be challenging has so far been mainly conveyed
through percentages separating fixed from adaptive programs.
According to Bodenheimer et al. (2014) [6], in the ten biggest
German cities, 73% of all traffic lights are fully or partially
adaptive, with a percentage of 95% adaptive traffic lights
in Hamburg, +4.3% from our current estimate. Protschky et
al. (2014) [5] come to similar findings, observing that the
majority of traffic lights are traffic responsive, given a strong
focus on Munich. The time-gap control scheme, in which
vehicles are let through in bulks, seems to be popular among
adaptive traffic lights, according to Erdmann (2013) [8].

The number of traffic-adaptive signals seems to grow over
time, as a follow-up study by Bodenheimer et al. (2015)
[9] reported ~ 75% of all intersections in the ten biggest
German cities to be adaptive, indicating a 2% increase.
Also, larger metropolitan areas seem to employ more traffic-
adaptive signals, at least in Germany. Fakler et al. (2014)
[10] report that traffic-actuated signal control comprises ~
65% in cities with 50-100,000 inhabitants to ~ 80% in
cities with more than one million inhabitants. These findings
are also referenced in more recent studies, for example, by
Schneegans et al. (2022) [11] and Heckmann et al. (2023)
[12]. Outside of Germany, Cai et al. (2009) [13] and Peng et
al. (2018) [14] have reported high adoption of traffic-adaptive
capabilities as well.

However, there are also contradictory statements. Olaverri-
Monreal et al. (2018) [15] report that most control systems
in urban areas are still pre-timed, i.e., follow a fixed-time
program. Coaligning with this finding, a high prevalence
of fixed timing was also reported by Yusuf et al. (2021)
[16]. The contradiction may arise from regional differences,
as Avatefipour and Sadry (2018) [17] report that fixed-time
traffic lights are widespread in Malaysia. In 2017, the U.S.
Department of Transportation' reported widespread use of
adaptive signal control in the United Kingdom, Asia, and
Australia, whereas, in the U.S., those are being used on less
than one percent of all signalized intersections. Thus, certain

'See:  https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/pdf/
asct_brochure.pdf (retrieved on January 24, 2024)
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regions seem to have refrained from implementing adaptive
traffic lights up to this point. Hamburg stands out with one
of the highest adoption rates, making it an optimal candidate
for predictability analysis.

As discussed by Bodenheimer et al. (2014) [6], the high
numbers of adaptive traffic lights seem to be a clear motivator
for studies on advanced prediction methods. In their study,
the authors propose a graph-based method that becomes
more accurate as the green phase is approached, counteract-
ing adaptive shifts. Recent Machine-Learning-based methods
proposed by Schneegans et al. (2023) [11] follow a similar
self-adaption. While such methods represent a key focus
in current research, varying waiting times between green
phases are a key challenge, as they impute temporal stability
by provoking frequent adjustments to the prediction. In the
following, we will refer to this type of instability as wait time
diversity.

A different method was proposed by Protschky et al.
(2014) [5]. The probabilistic approach operates by stacking
recorded cycles similar to Figure 1, calculating the most
likely signal phase and its probability of occurrence for
each second. As illustrated by Otto et al. (2023) [18], this
method reacts to varying green phases by blurring out the
boundaries between predicted states. This aspect can be seen
as a key advantage, as it allows speed advisory algorithms
to concentrate on certain parts of the traffic light prediction.
Such an approach was demonstrated by Mahler et al. (2012)
[19] and Typaldos et al. (2023) [20]. Furthermore, Protschky
et al. (2014) [5] also show that this method is capable of
producing a prediction even with highly delayed real-time
traffic light data. Besides these advantages, one key drawback
is that this method is vulnerable to misalignment of switching
behavior between the stacked cycles. In the following, we
name this type of instability cycle discrepancy.

As both probabilistic and self-adaptive methods have indi-
vidual weak points, a closer analysis of the types of instability
expressed by traffic lights is required. Yet, among mainly
superficial and often partially verifiable information, no study
can be identified that directly measures the types of instability
impacting predictability. This observation provides the entry
point for our study.

IV. METHODS FOR PREDICTABILITY ANALYSIS

To address the described knowledge gap, we propose
a direct measurement of cycle discrepancy and wait time
diversity based on collected traffic light data. The idea is to
measure the presence of switching patterns, as these patterns
are the foundation for current prediction methods. Afterward,
by observing both metrics in conjunction, we estimate how
predictability evolves throughout the day and at how many
intersections poor predictability can be seen.

A. Data Acquisition and Preprocessing

Real-time state observations are obtained from an open,
centralized traffic light data broker, where they are pooled
from 10 traffic controllers for individual city areas in Ham-
burg. Given are the following types of observations for

each individual traffic light: state (color) changes, program
changes, and a timestamp whenever a new cycle is started.
Additionally, we obtain and combine car, cyclist, bus, and
pedestrian detector changes to estimate how varying traffic
levels affect switching behavior.

Both an MQTT client and an HTTP polling script are
utilized in combination over the course of 4 weeks to obtain
data from all available traffic lights in the system. Afterward,
the collected data is utilized for a direct analysis of switching
patterns.

The following preprocessing steps are conducted to en-
hance data reliability and prepare recorded observations for
predictability analysis. As we obtain a continuous stream of
observations, we first reconstruct cycles for each individual
traffic light as depicted in Figure 1.

The cycles are then stored in a weekly table with “hourly
buckets” representing one hour for each weekday and each
traffic light. Data recorded over multiple weeks is overlayed
onto the same hourly buckets. This rasterization allows for
a computationally efficient hourly analysis of predictability
over time within a week. The massive number of cycles
stored in the database can be queried efficiently for each hour
and each traffic light, aggregating hourly instability metrics.

Not all traffic controllers sending data to the centralized
broker are 100% reliable. Data issues also influence pre-
dictability but make our measurements of the real switching
behavior unreliable. Thus, we only measure predictability on
reliable data. To detect and remove errors in the obtained
data, incorrect cycles are detected and pruned based on the
following ruleset:

« Amber must not appear longer than 6 seconds. Addition-
ally, red-amber must not appear longer than 2 seconds.

¢ Cycles with the following transitions are disallowed:
Red to amber, amber to green, amber to red-amber,
green to red-amber, red-amber to red, and red-amber
to amber.

e Cycles must not be longer than 1.5x or shorter than
0.5x the median of directly preceding and following
cycles.

The first two are derived from German traffic light op-
eration constraints. The last one was derived empirically
from preliminary analyses of occurring errors due to missing
messages.

Traffic lights are excluded from further consideration when
more than 10% of the total reconstructed cycles are removed,
indicating overall inconsistent or erroneous data. With the re-
maining traffic light data, the instability metrics are calculated
to determine predictability over the weekly course for each
traffic light.

B. Instability Metrics and Predictability

To measure instabilities, we detect whether reoccurring
patterns in the switching behavior are present. The pre-
dictability is then derived by checking if these patterns can
be detected with one of the previously proposed prediction
methods.



Our first proposed metric is the cycle discrepancy. This
metric aims to capture second-wise differences between in-
dividual switching cycles of a traffic light. A low cycle dis-
crepancy indicates that green phases are switched at similar
times in each cycle. Given two cycles C; and Cs consisting
of state seconds that may have different lengths [; and [o,
our metric is as follows:

max(l1,l2)—1 1 ifi>1liori>ls

= Z 1 if Ci[d] # Csfi] ey

i=0 0 otherwise

Cycle
Discrepancy

The resulting value is given in seconds of discrepancy
between two cycles. Zero seconds mean that both cycles are
equal. If a value close to zero persists throughout recorded
cycles, a high stability is given. If, however, a high value is
encountered, a cycle-stacking approach is likely not a good
option for prediction.

By calculating the median over all pairs of cycles for all
hourly buckets in a week, we obtain an hourly timeline of the
median cycle discrepancy for each traffic light. The median
is chosen as an aggregation robust against outliers, especially
too long cycles due to missing cycle start observations.

Evaluating the impact of certain cycle discrepancies on the
stability of green phases, we additionally determine the green
length for each cycle. Given in seconds, we also aggregate
the green lengths of all cycles in each hourly bucket using
the median.

The cycle discrepancy has a strong focus on the alignment
of patterns between cycles. However, there are also prediction
methods that do not rely on cycle alignment, instead predict-
ing the time it takes to switch between different phases. Thus,
we calculate a second metric that captures whether there are
reoccurring wait times between green phases. If the wait time
between green phases is always the same, this hints a high
predictability, independent of the cycle length.

For each hourly bucket, we combine the collected cycles
into a continuous sequence. This step assumes continuity
between recorded cycles. In case of gaps between cycles,
which may be caused by the removal of erroneous cycles,
we create multiple in itself continuous sequences. Then, after
each green phase, we count the waited seconds until the next
green phase, given in an integer value. Based on the recorded
wait times, the diversity of wait times is calculated as follows:

Wait Time # Different Wait Times
a # Total Wait Times

2

Diversity

The calculated value is mapped from 0% to 100% wait
time diversity. The order of recurring patterns is not consid-
ered. However, even for random orders, if only a few different
waiting times are seen, predictions using self-adaption are
more likely to be correct, given the limited number of
possibilities. In the opposite case, the waiting time changes
frequently, provoking frequent adjustments to an adaptive
prediction. If this case is detected, a self-adaptive prediction
approach is likely not a good option.

One special case is when only a few green/red phases
are switched throughout an hour. In this case, the wait time

diversity is high, as it is highly unpredictable at which point
in time the green/red phase will reoccur. Typically, this case
arises with traffic lights that don’t switch for most of the
time, meaning that a prediction assuming a continuation
of the current phase is likely accurate, resulting in high
predictability.

This case can be cross-examined through the cycle discrep-
ancy since many continuous red cycles are detected, resulting
in a low value. Thus, it is required to combine both metrics
to determine a reliable indication of overall predictability.

Combining both metrics, we obtain a schema as high-
lighted in Table I that models predictability with current
approaches. In case both instability metrics are high, the
predictability can be considered generally low. Similarly,
low cycle discrepancy and low wait time diversity indicate
high predictability — patterns in this area are likely similar
to fixed-time programs or express minor adaptivity. In case
one of both instability metrics is high, further consideration
is required, as not all prediction methods may apply. For
bottom-right cases, cycle-stacking prediction methods should
be avoided. For top-left cases, self-adaptive prediction meth-
ods may come with the drawback of frequent prediction
adjustments resulting in poor usability.

As a result, we obtain a twofold measurement of pre-
dictability that is agnostic from the internal logic of each
traffic light, as it estimates predictability purely by outside
observation of the switching pattern’s stability.

V. RESULTS

Our evaluation is split into two parts. First, we discuss how
many traffic lights sent reliable data. To ensure meaningful
results, only traffic lights reliably sending data are considered
for our predictability analysis. Second, we explore how
predictability evolves throughout the week in relation to the
observed traffic levels. For each traffic light, we estimate the
predictability by checking whether none, one, or both types
of unstable switching behavior are expressed.

In addition, the measured cycle-wise green length is set in
relation to the cycle discrepancy to estimate whether there
are predictable overlaps between switching cycles. A map
is utilized to study whether unstable switching behavior is
present at most or only a few intersections and if there
is a relation between traffic lights connected to the same
controller. Finally, we validate our results through a randomly
selected sample of recorded switching patterns.

TABLE 1
TYPES OF PREDICTABILITY MAPPED BY OUR TWO METRICS.

Cycle Discrepancy

Wait Time Diversity Low

High

High

High predictability® Low predictability

Low High predictability | High predictability2

1 Unpredictable wait time between green phases.

2Unpredictable with cycle-stacking prediction method.



A. Collected Data

Our experiment is conducted based on a recording from
00:00 September 23, 2023, until 00:00 October 21, 2023,
comprising four full weeks. For 19,844 individual traffic
lights theoretically available through the centralized data
broker, 18,009 traffic lights sent data. For 519 of those,
in addition to the primary signal, we also have data for
secondary signals such as green arrows.

During our measurement period, traffic lights have
switched their colors ~1.2 billion times and started a new
cycle ~1 billion times. Out of those, 424 million cycles could
be reconstructed. Only a part of cycles is reconstructible, as
sometimes, color information is missing, even though cycle
start observations are available. This can be caused by errors
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Fig. 3. Cycle discrepancy and wait time diversity, illustrating that most
traffic lights only express one kind of switching instability. One vertical
line, aligned between both charts, represents the weekly progression of both
metrics.

in the data transmission. Furthermore, there are also traffic
lights that still send cycle start observations even when they
are turned off (e.g., during the night). In addition to the traffic
light observations, we also received 642 million observations
indicating occupancy changes of the traffic detectors.

The number of cycles naturally decreases during the night
as traffic lights gradually go offline. In consequence, we see
a decrease of up to =~ 24% in hourly buckets that contain
reconstructed cycles at night.

13.8 million reconstructed cycles were flagged as erro-
neous and discarded, out of which 8.4 million cycles were too
long or too short. Too long (red-)amber phases were detected
at 7 million cycles. At 6 million cycles, invalid transitions
between states were detected. This type of quality assurance
can only be applied for traffic lights that also switch to
(red-)amber. 34% of traffic lights switch between green and
red and are thus not suitable. The most common were traffic
lights switching between green, red, and (red-)amber (40%).

In 5.7 million cases, the removal of a cycle leads to a
discontinuity between recorded cycles. Here, 10% of traf-
fic lights comprise 85% of these cases. Thus, for a large
proportion of cases, there is a continuity of cycles in the
recorded history. In many cases, multiple errors were detected
in one cycle. 90% of errors are distributed over 10% of traffic
lights, indicating that a minor group of traffic lights caused
most invalid cycles. At 2106 traffic lights, more than 10%
of cycles were erroneous. These traffic lights are excluded in
the subsequent analyses, assuming they switch similarly to
the remaining part of the traffic lights.

B. Evaluation of Traffic Light Predictability in Hamburg

After preprocessing, the weekly progression (see Figure 2)
of our two instability metrics shows a clear day-night rhythm,
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while no pronounced difference between weekends and work-
ing days is seen. During the morning traffic surge, cycle
discrepancy quickly reaches a plateau with a median of 2
seconds, dropping back to 0 seconds overnight. These values
are quite low, considering a 2-second cycle discrepancy only
occurs at times when the median green length is between 20
seconds and 23 seconds and, thus, only comprises 10% at
maximum.

A similar plateau is seen with wait time diversity, al-
though some traffic lights seem to express higher diversity
throughout the night. This observation is likely caused by
fewer switched green phases during the late evening and
early morning, which increases the chance that the observed
waiting times between green phases are unique. This effect
may also have impacted the low nightly cycle discrepancy.

Even though cycle discrepancy and wait time diversity
seem to coincide in the weekly progression, Figure 3 high-
lights that there are many cases in which only one of both
types of instabilities is high. Thus, many traffic lights seem
to be predictable even though they express one kind of
instability pattern. Compared to these cases, the number of
traffic lights expressing both instabilities seems to be low.

In numbers, 33% of hourly buckets have a cycle discrep-
ancy of more than 5 seconds, while 23% of hourly buckets
have a wait time diversity of more than 20%. Hourly buckets
with more than 5 seconds cycle discrepancy and more than
20% wait time diversity only comprise 12% of the overall
distribution. Thus, an overall high switching instability seems
only to be expressed by a small fraction of 90.7% adaptivity-
capable traffic lights.

As shown in Figure 4, the median green length of cycles
is often substantially longer than the cycle discrepancy. This
type of overlap occurs in 90% of hourly buckets with at least
one green phase, often aligned to the second. When viewed
in the cycle diagram, this produces “columns” of traffic light
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Fig. 5. Spatial distribution of median cycle discrepancy and wait time
diversity per traffic light across Hamburg. Shown are the lanes associated
with each traffic light. The zoomed-in section highlights three intersections
in more detail, which express different levels of predictability.

colors, as we will later see in concrete examples.

Specific patterns in the diagram allow a further understand-
ing of the arrangement of green phases. First, the specified
minimum green time of 5 seconds in Germany [21] can be
seen. For some hourly buckets, values lower than 5 seconds
can also be seen, indicating cases where short green phases
were often extended over a cycle. Horizontal and diagonal
line artifact patterns may give us more insights into which
types of constraints are utilized by traffic light programs
to arrange green phases. From these patterns, we randomly
extract samples to study the seen switching behavior to
further investigate their composition.

The horizontal lines seem to mainly contain programs in
which the green phase is active for a full cycle, occasionally
interrupted by red phases. The prevalent cycle lengths of 60
seconds, 75 seconds, and 90 seconds result in the observed



concentration.

Diagonal lines from top-left to bottom-right appear to
come mainly from adaptive traffic lights capable of extending
green phases until a maximal length. Shorter green phases
can be placed more flexibly within the cycle, elevating cycle
discrepancy. Increased green lengths shrink the room for
placement, resulting in less cycle discrepancy. This tradeoff
seems to constrain the possible adaptation, resulting in the
observed linear relationship.

Figure 5 shows how the two types of instability are
spatially distributed across intersections. For each traffic light,
the median of all hourly buckets is visualized. Based on this
observation, high instability appears to be restricted to a few
intersections and only rarely to single traffic lights. This result
is expected, as a specific kind of traffic adaptivity is likely to
affect all signals at an intersection handled by one controller.

We cross-checked this finding by comparing the instabili-
ties of traffic lights serving different transport modes. Based
on this analysis, no noticeable differences were found be-
tween traffic lights for cars, cyclists, pedestrians, and buses —
all expressed similarly low instability. Notably, the influence
of wait time diversity mainly extends to intersections distinct
from those affected by cycle diversity, confirming the mutual
exclusion that was seen before. In consequence, it may make
sense to employ different prediction methods at different
intersections.

To conclude the results and cross-validate our metrics,
we randomly extract hourly buckets from our database. The
contained switching patterns are depicted in 6.

As seen in this sample, most programs maintain a constant
cycle length. In some cases, cycles switched between differ-
ent lengths, as indicated by blue proportions in the diagrams.
This can be due to a program change or a missed cycle start
observation. Furthermore, hourly buckets comprised of the
traffic light color ”dark” (turned off) are also seen, which
can be likely traced back to secondary signals such as green
arrows.

Focusing on the type of patterns, partially adaptive pro-
grams can be seen in some examples, likely in A5, A3,
F1, All, Al5, D14, or E14. Switching behaviors resembling
fully adaptive traffic lights are presumably seen in A9 and
F9. Some examples, such as D5 or B9, cannot be clearly
distinguished. D10 and D3 show aforementioned examples
in which green is the default state with occasional, fixed-
length interruption by red.

Although adaptive patterns are seen, the case study sup-
ports our main finding: most traffic lights in Hamburg express
quite stable patterns — more than expected, considering the
high reported number of adaptivity-capable traffic lights. The
adaption seems to be limited to a few seconds for most traffic
lights, if present at all.

C. Discussion

Our results indicate that most traffic lights in Hamburg
are highly predictable, suggesting only a minor part of the
90.7% of traffic lights demonstrate their adaptivity capability
to an extent that poses challenges for prediction. These results
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Fig. 6. Randomly selected sample of hourly buckets indicating different
switching behaviors. Title format: (cycle discrepancy, wait time diversity).

also contrast previous works, implying that low predictability
cannot be assumed from a high number of adaptivity-capable
traffic lights. Although highly unstable switching patterns
were seen, these are restricted to a few intersection nodes.
While switching instability increases throughout the morn-
ing traffic surge, it seems to be quickly exhausted, indicating
a potential limitation of adaptivity given through traffic flow
patterns or its specific implementation at the intersection
controller. This is an important finding, as it indicates that



traffic light assistance services may be less hindered by traffic
adaptive switching behaviors than previously claimed.

However, there are also some limitations to consider.
Methodologically, a key assumption is that the obtained
traffic light data is trustworthy enough, supported by error
detection and removal. Our hourly median aggregation as-
sumes that instabilities, when present, are seen over 50%
of cycles for a representative measurement of predictability
or statistically even out. Thus, although there may be an
occasional wrong prediction, our results correspond to the
chance of an accurate prediction when approaching a traffic
light at a random time.

While we consider instability measurements as an inverse
proxy of predictability, it is important to encompass that
each prediction method has its individual strengths and
weaknesses. Where we have drawn the line between bad
and good predictability, some areas for application may have
stricter or less strict requirements to interpret a prediction
as accurate. Finally, our analysis inherently only provides a
snapshot of predictability, meaning that future measurements
are required to depict a trend.

VI. CONCLUSION AND FUTURE WORK

Predicting switching behavior for traffic light assistance
services has been considered challenging for adaptivity-
capable traffic lights. However, our study highlights that not
all adaptivity-capable traffic lights may also exhibit unstable
switching behavior. Thus, we find a substantial gap between
theory and practice for traffic light prediction.

Current prediction methods may not perform equally well
in all situations, depending on the types of instability ex-
hibited by a traffic light and the application scenario. Two
identified weaknesses are the temporal instability of self-
adaptive prediction methods and the reliance on pattern align-
ment between cycles with probabilistic prediction methods.
Two instability metrics are proposed that, in conjunction, may
help find situations in which one of both should be preferred.
These may also generalize to future prediction methods.

Future work should further explore the reasons for the ob-
served discrepancy between theory and data. Understanding
whether traffic flow or the configuration of control programs
imposes natural constraints on adaptivity is seen as one
potential avenue, assisting in the development of traffic light
assistance services.

Measurements in the future could help in understanding the
long-term evolution of traffic adaptiveness. Based on related
work, real-time traffic light data seems to be available in
multiple cities, meaning there may be much more potential
knowledge that can be extracted from large-scale data obser-
vations.

To assist such future evaluations, artifacts for our ex-
periments can be found at https://github.com/priobike/
priobike-predictability-study.
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